JP2016044661A - Injection measuring device and injection measuring method - Google Patents

Injection measuring device and injection measuring method Download PDF

Info

Publication number
JP2016044661A
JP2016044661A JP2014171986A JP2014171986A JP2016044661A JP 2016044661 A JP2016044661 A JP 2016044661A JP 2014171986 A JP2014171986 A JP 2014171986A JP 2014171986 A JP2014171986 A JP 2014171986A JP 2016044661 A JP2016044661 A JP 2016044661A
Authority
JP
Japan
Prior art keywords
liquid
pressure
injection
sealed container
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014171986A
Other languages
Japanese (ja)
Other versions
JP6335070B2 (en
Inventor
隆史 鎌子
Takashi Kamako
隆史 鎌子
賢太郎 渡部
Kentaro Watabe
賢太郎 渡部
元洋 佐野
Motohiro Sano
元洋 佐野
剛生 渡邊
Takeo Watanabe
剛生 渡邊
輝夫 山口
Teruo Yamaguchi
輝夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP2014171986A priority Critical patent/JP6335070B2/en
Publication of JP2016044661A publication Critical patent/JP2016044661A/en
Application granted granted Critical
Publication of JP6335070B2 publication Critical patent/JP6335070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an appropriate measurement to be carried out without requiring any troublesome works.SOLUTION: A measurement control device 8 of this invention injects liquid from an injection nozzle 2 into a closed vessel 1, calculates a frequency fof a pressure oscillation and a rise amount ΔPof pressure, measures a mass Nof discharged liquid in order to return a pressure in the closed vessel 1 to a prescribed back-pressure with a mass flow meter 7 and sets a coefficient M in view of an equation of M=N×f/ΔP. The measurement control device 8 calculates an injection-quantity Iq in reference to an equation of Iq=M×(ΔP/f) under application of a frequency (f) of pressure oscillation calculated in respect to injection of liquid in subsequent measurement of liquid injection amount, a rise amount of pressure ΔP and a coefficient M.SELECTED DRAWING: Figure 1

Description

本発明は、噴射計測装置における計測精度向上の技術に関するものである。   The present invention relates to a technique for improving measurement accuracy in an injection measurement device.

噴射計測装置としては、図4に示すように、検査液体を充填したシリンダ形状の測定容器100と、測定容器100内に検査液体を噴射するノズル(弁ニードル)101と、測定容器100内の検査液体の測定容器100の長手方向の軸に沿って振動する第1圧力固有振動102の節に配置した圧力センサ103とを備えた噴射計測装置が知られている(特許文献1)。   As the injection measuring device, as shown in FIG. 4, a cylinder-shaped measurement container 100 filled with a test liquid, a nozzle (valve needle) 101 for spraying the test liquid into the measurement container 100, and a test in the measurement container 100 There is known an injection measuring device including a pressure sensor 103 disposed at a node of a first pressure natural vibration 102 that vibrates along a longitudinal axis of a liquid measurement container 100 (Patent Document 1).

ここで、この噴射計測装置においては、測定容器100内へのノズル101からの検査液体の噴射に伴う圧力変動を圧力センサ103で検出し、検出した圧力変動を周波数分析して、第1圧力固有振動102の第1高調波の周波数と、測定容器100の長手方向の距離より推定した第1高調波の波長である推定波長とより音速を求める。そして、求めた音速と、測定容器100の容積と、圧力センサ103で検出した測定容器100内の検査液体の圧力上昇量とから、ノズル101から測定容器100内へ噴射された検査液体の噴射量を算出する。   Here, in this injection measurement device, the pressure fluctuation accompanying the injection of the inspection liquid from the nozzle 101 into the measurement container 100 is detected by the pressure sensor 103, the detected pressure fluctuation is subjected to frequency analysis, and the first pressure inherent The speed of sound is obtained from the frequency of the first harmonic of the vibration 102 and the estimated wavelength that is the wavelength of the first harmonic estimated from the distance in the longitudinal direction of the measurement container 100. Then, from the calculated sound velocity, the volume of the measurement container 100, and the pressure increase amount of the test liquid in the measurement container 100 detected by the pressure sensor 103, the injection amount of the test liquid injected from the nozzle 101 into the measurement container 100 Is calculated.

このような噴射計測装置によれば、測定容器100内の検査液体の測定容器100の長手方向の軸に沿って振動する第1圧力固有振動102の節に圧力センサ103を配置しているので、圧力センサ103への第1圧力固有振動の影響は抑制される。よって、圧力変動の検出の際に、第1圧力固有振動の周波数成分をノイズとしてフィルタによって除去する必要が無くなり、当該第1圧力固有振動の周波数成分を含む広い周波数範囲において検査液体の圧力変動を検出することができる。   According to such an injection measurement device, since the pressure sensor 103 is arranged at the node of the first pressure natural vibration 102 that vibrates along the longitudinal axis of the measurement container 100 of the test liquid in the measurement container 100, The influence of the first pressure natural vibration on the pressure sensor 103 is suppressed. Therefore, it is not necessary to remove the frequency component of the first pressure natural vibration as noise when detecting the pressure variation, and the pressure variation of the test liquid can be detected in a wide frequency range including the frequency component of the first pressure natural vibration. Can be detected.

特許4130823号公報Japanese Patent No. 4130823

上述のように、圧力固有振動の周波数と圧力固有振動の推定波長より求まる音速と、測定容器の容積とより検査液体の噴射量を測定する噴射計測装置によれば、次のような問題がある。   As described above, according to the jet measurement device that measures the injection speed of the test liquid based on the sound speed obtained from the frequency of the pressure natural vibration and the estimated wavelength of the pressure natural vibration, and the volume of the measurement container, there are the following problems. .

すなわち、まず、計測に用いるノズル101の種類等によって、測定容器100の容積が変化することがあるため、適正な計測を行うために、計測に用いるノズル101の交換の際に、測定容器100の容積を計測し直して設定する煩雑な作業が必要となる。   That is, first, since the volume of the measurement container 100 may change depending on the type of the nozzle 101 used for measurement, the measurement container 100 may be replaced when the nozzle 101 used for measurement is replaced in order to perform appropriate measurement. The complicated work of measuring and setting the volume again is required.

また、上述のような、圧力固有振動の周波数と圧力固有振動の推定波長より音速を測定し、測定した音速を用いて検査液体の噴射量を測定する噴射計測装置によれば、推定波長の圧力固有振動の実際の波長に対する相違による誤差等、個々の噴射装置の特性等に応じた誤差が発生してしまうことがある。   In addition, according to the jet measurement device that measures the sound velocity from the frequency of the pressure natural vibration and the estimated wavelength of the pressure natural vibration as described above, and measures the injection amount of the test liquid using the measured sound velocity, the pressure of the estimated wavelength is measured. Errors depending on the characteristics of the individual injection devices, such as errors due to differences in natural vibration with respect to the actual wavelength, may occur.

そこで、本発明は、圧力固有振動の周波数と圧力固有振動の推定波長と測定容器の容積より検査液体の噴射量を測定する噴射計測装置において、煩雑な作業を必要とすることなく適正な計測を行えるようにすることを課題とする。   Therefore, the present invention provides an injection measurement device that measures the injection amount of the test liquid from the frequency of the pressure natural vibration, the estimated wavelength of the pressure natural vibration, and the volume of the measurement container, and performs an appropriate measurement without requiring complicated work. The challenge is to be able to do it.

前記課題達成のために、本発明は、所定圧力で液体を内部空間に充填した密閉容器と、前記密閉容器の内部空間に向かって液体を噴射するノズルと、前記密閉容器の内部空間内の液体の圧力を検出する圧力センサと、前記密閉容器内の液体の圧力が前記所定圧力となるように排出する排出手段と、前記排出手段により排出された液体の質量を計測する排出質量計測手段と、係数を設定する係数設定手段と、前記係数設定手段によって設定された係数を用いて液体の噴射量を計測する計測手段とを備えた噴射計測装置を提供する。ここで、前記係数設定手段は、前記ノズルから液体を噴射させ、当該液体の噴射による圧力の変動を前記圧力センサを用いて計測した後、前記排出手段に液体を排出させて前記排出質量計測手段に排出された液体の質量を計測させると共に、計測した圧力の変動が表す圧力振動の周波数と、計測した圧力の上昇量とを算定し、算定した周波数をfd、算定した上昇量をΔPd、前記排出質量計測手段によって計測された液体の質量をNdとして、係数Mを
M = Nd×fd 2/ΔPd
により設定するものであり、前記計測手段は、前記ノズルから液体を噴射させ、当該液体の噴射による圧力の変動を前記圧力センサを用いて計測すると共に、計測した圧力の変動が表す圧力振動の周波数と、計測した圧力の上昇量とを算定し、算定した周波数をf、算定した上昇量をΔPとして、液体の噴射量Iqを、前記係数設定手段によって設定された係数Mを用いて、
Iq = M×(ΔP/f2)
により算出するものである。
In order to achieve the above object, the present invention provides a sealed container filled with liquid at a predetermined pressure, a nozzle for ejecting liquid toward the inner space of the sealed container, and a liquid in the inner space of the sealed container. A pressure sensor for detecting the pressure of the liquid, a discharge means for discharging the liquid in the sealed container so that the pressure of the liquid becomes the predetermined pressure, a discharge mass measurement means for measuring the mass of the liquid discharged by the discharge means, There is provided an injection measuring device comprising coefficient setting means for setting a coefficient and measuring means for measuring a liquid injection amount using the coefficient set by the coefficient setting means. Here, the coefficient setting means causes the liquid to be ejected from the nozzle, measures a change in pressure due to the ejection of the liquid using the pressure sensor, and then causes the ejecting means to eject the liquid, thereby causing the ejected mass measuring means to The mass of the discharged liquid is measured, and the frequency of the pressure vibration represented by the measured pressure fluctuation and the amount of increase in the measured pressure are calculated, the calculated frequency is f d , and the calculated amount of increase is ΔP d The mass of the liquid measured by the discharged mass measuring means is N d , and the coefficient M is
M = N d × f d 2 / ΔP d
The measurement means ejects a liquid from the nozzle, measures a pressure variation due to the ejection of the liquid using the pressure sensor, and expresses a frequency of pressure vibration represented by the measured pressure variation. And the measured pressure increase amount, the calculated frequency as f, the calculated increase amount as ΔP, and the liquid injection amount Iq using the coefficient M set by the coefficient setting means,
Iq = M × (ΔP / f 2 )
It is calculated by.

ここで、このような噴射計測装置は、前記密閉容器の内部空間を球形状とし、前記ノズルを、前記密閉容器の前記内部空間の球形状の球面に対して凹凸を形成しないように配置し、前記圧力センサを、前記密閉容器の前記内部空間の球形状の球面に対して凹凸を形成しないように配置することが好ましい。   Here, such an injection measurement device has a spherical inner space of the sealed container, and the nozzle is disposed so as not to form irregularities on the spherical spherical surface of the inner space of the sealed container, It is preferable that the pressure sensor is arranged so as not to be uneven with respect to the spherical spherical surface of the inner space of the sealed container.

このようにすることにより、液体の噴射によって発生する振動を乱れのない単一のモードの振動とすることができ、精度よく液体の振動の周波数を算出することができるようになる。また、この結果、液体の噴射量または噴射率を良好に測定できるようになる。   By doing so, the vibration generated by the ejection of the liquid can be made into a single mode vibration without disturbance, and the frequency of the liquid vibration can be calculated with high accuracy. As a result, it is possible to satisfactorily measure the liquid ejection amount or ejection rate.

また、このような噴射計測装置が噴射量を計測する液体は、自動車エンジンやその他の燃料であってよい。
以上のような噴射計測装置によれば、ノズルの交換時など計測条件が変化したときに、係数設定手段に係数Mを設定させる簡易な作業を行うだけで、以降は、排出質量計測手段を用いずに、圧力センサを用いた高速かつ適正な噴射量の計測を行うことができる。
In addition, the liquid for which the injection measuring device measures the injection amount may be an automobile engine or other fuel.
According to the injection measuring apparatus as described above, when the measurement conditions change, such as when the nozzle is replaced, only the simple operation of setting the coefficient M to the coefficient setting means is performed. Thereafter, the discharge mass measuring means is used. In addition, a high-speed and appropriate injection amount can be measured using a pressure sensor.

以上のように、本発明によれば、圧力固有振動の周波数と圧力固有振動の推定波長と測定容器の容積とより検査液体の噴射量を測定する噴射計測装置において、煩雑な作業を必要とすることなく適正な計測を行えるようになる。   As described above, according to the present invention, the injection measurement apparatus that measures the injection amount of the test liquid based on the frequency of the pressure natural vibration, the estimated wavelength of the pressure natural vibration, and the volume of the measurement container requires complicated work. It becomes possible to perform proper measurement without any problems.

本発明の実施形態に係る噴射計測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the injection measuring device which concerns on embodiment of this invention. 本発明の実施形態に係る圧力センサの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the pressure sensor which concerns on embodiment of this invention. 本発明の実施形態に係る噴射計測装置の測定部の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the measurement part of the injection measuring device which concerns on embodiment of this invention. 従来の噴射計測装置の構成を示す図である。It is a figure which shows the structure of the conventional injection measuring device.

以下、本発明の実施形態について説明する。
図1に本実施形態に係る噴射計測装置の構成を示す。
図示するように、噴射計測装置は、燃料で満たされた密閉容器1、密閉容器1内に燃料を噴射するインジェクションノズル2、インジェクションノズル2に噴射する燃料を供給するインジェクションポンプ3、密閉容器1内の燃料の圧力を検出する圧力センサ4、連結管を介して密閉容器1に連結された排出バルブ5、排出バルブ5に連結され排出バルブ5が開状態にある期間中、密閉容器1内の燃料の圧力が規定背圧Pbとなるまで密閉容器1内の燃料を排出するリリーフバルブ6、リリーフバルブ6から排出された燃料の質量を計測する質量流量計7、測定制御装置8を備えている。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 shows the configuration of an injection measuring apparatus according to this embodiment.
As shown in the figure, the injection measuring device includes a sealed container 1 filled with fuel, an injection nozzle 2 for injecting fuel into the sealed container 1, an injection pump 3 for supplying fuel to be injected into the injection nozzle 2, and an inside of the sealed container 1 A pressure sensor 4 for detecting the pressure of the fuel, a discharge valve 5 connected to the sealed container 1 via a connecting pipe, and a fuel in the sealed container 1 during a period when the discharge valve 5 is connected to the discharge valve 5 and is open. Are provided with a relief valve 6 for discharging the fuel in the sealed container 1 until the pressure reaches a specified back pressure Pb, a mass flow meter 7 for measuring the mass of the fuel discharged from the relief valve 6, and a measurement control device 8.

次に、測定制御装置8は、測定シーケンスの制御を行うシーケンス制御部81と、測定シーケンスに従って燃料の噴射量や噴射率の測定を行う測定部82を備えている。
次に、図2aに、密閉容器1の形状と、密閉容器1に対するインジェクションノズル2と圧力センサ4の配置を示す。
図示するように、密閉容器1は、球形状の内部空間11と、内部空間11に連結する排出流路12が設けられており、内部空間11、排出流路12には、燃料が満たされている。そして、図1に示すように、排出流路12には、連結管を介して上述した排出バルブ5が連結されている。
Next, the measurement control device 8 includes a sequence control unit 81 that controls the measurement sequence, and a measurement unit 82 that measures the fuel injection amount and the injection rate according to the measurement sequence.
Next, FIG. 2 a shows the shape of the sealed container 1 and the arrangement of the injection nozzle 2 and the pressure sensor 4 with respect to the sealed container 1.
As shown in the figure, the sealed container 1 is provided with a spherical internal space 11 and a discharge flow path 12 connected to the internal space 11. The internal space 11 and the discharge flow path 12 are filled with fuel. Yes. And as shown in FIG. 1, the discharge valve 5 mentioned above is connected with the discharge flow path 12 via the connection pipe.

また、密閉容器1には、インジェクションノズル2が、先端の噴射口が内部空間11の球形状の球面に対して凹凸なく位置するように固定されており、インジェクションノズル2から燃料が内部空間11の球形状の中心に向けて噴射される。   In addition, the injection nozzle 2 is fixed to the sealed container 1 so that the injection port at the tip thereof is positioned without unevenness with respect to the spherical spherical surface of the internal space 11, and fuel is injected from the injection nozzle 2 into the internal space 11. Injected toward the center of the spherical shape.

そして、圧力センサ4は、先端の測定子が内部空間11の球形状の球面に対して凹凸なく位置するように固定されている。ここで、図2aに示した例では、圧力センサ4は、内部空間11の中心からインジェクションノズル2の先端の噴射口に向かう方向と、内部空間11の中心から圧力センサ4の先端の測定子に向かう方向との間の角度θの絶対値が135度となるように配置している。   The pressure sensor 4 is fixed so that the probe at the tip is positioned without unevenness with respect to the spherical spherical surface of the internal space 11. Here, in the example shown in FIG. 2a, the pressure sensor 4 is directed from the center of the internal space 11 to the injection port at the tip of the injection nozzle 2, and from the center of the internal space 11 to the probe at the tip of the pressure sensor 4. It arrange | positions so that the absolute value of angle (theta) between the directions may become 135 degree | times.

ここで、以上のように本実施形態では、密閉容器1の燃料が充填される内部空間11の形状を球形状とし、インジェクションノズル2の先端と圧力センサ4の先端を内部空間11の球形状の球面の一部を形成するように配置している。よって、密閉容器1の内部空間11の球形状の内部には燃料以外の異物は存在せず、インジェクションノズル2から燃料を内部空間11内に噴射すると、単一のモードの固有振動が、球形状の内部空間11内の異物によって乱されない形態で発生する。よって、圧力センサ4で固有振動を他の振動に妨げられない形態で良好に検出することができる。   Here, as described above, in the present embodiment, the shape of the internal space 11 in which the fuel in the sealed container 1 is filled is made spherical, and the tip of the injection nozzle 2 and the tip of the pressure sensor 4 are made spherical in the internal space 11. It arrange | positions so that a part of spherical surface may be formed. Therefore, there is no foreign matter other than fuel inside the spherical shape of the internal space 11 of the sealed container 1, and when the fuel is injected from the injection nozzle 2 into the internal space 11, the single mode natural vibration is It is generated in a form that is not disturbed by foreign matter in the internal space 11. Therefore, the natural vibration can be favorably detected by the pressure sensor 4 in a form that is not hindered by other vibrations.

なお、このように内部空間11の球形状の単一のモードの固有振動が発生するので、圧力センサ4は、先端が内部空間11の球形状の球面上に位置する位置であれば、任意の位置に配置することができる。   In addition, since the natural vibration of the spherical single mode of the internal space 11 is generated in this way, the pressure sensor 4 can be arbitrarily selected as long as the tip is located on the spherical spherical surface of the internal space 11. Can be placed in position.

すなわち、図2aに示したように、圧力センサ4の先端が密閉容器1の内部空間11の中心の斜め下方向に位置するように圧力センサ4を配置することができる他、たとえば、図2b、c、dに示すように、圧力センサ4の先端が密閉容器1の内部空間11の中心の斜め上方向や、横方向や、下方向に位置するように、圧力センサ4を配置することもできる。   That is, as shown in FIG. 2a, the pressure sensor 4 can be arranged so that the tip of the pressure sensor 4 is positioned obliquely downward from the center of the inner space 11 of the sealed container 1, for example, FIG. As shown in c and d, the pressure sensor 4 can also be arranged so that the tip of the pressure sensor 4 is positioned obliquely upward, laterally, or downwardly from the center of the inner space 11 of the sealed container 1. .

次に、図3に、測定制御装置8の測定部82の機能構成を示す。
図示するように、測定制御装置8の測定部82は、FFT処理部821、ピーク周波数算出部822、フィルタ823、上昇圧力算出部824、噴射測定部825、係数設定部826を備えている。
Next, FIG. 3 shows a functional configuration of the measurement unit 82 of the measurement control device 8.
As shown in the figure, the measurement unit 82 of the measurement control apparatus 8 includes an FFT processing unit 821, a peak frequency calculation unit 822, a filter 823, a rising pressure calculation unit 824, an injection measurement unit 825, and a coefficient setting unit 826.

以下、このような噴射計測装置の、燃料の噴射量(質量)の測定原理について説明する。
密閉容器1の容積をVとし、Kを燃料の体積弾性係数とすると、燃料を体積ΔVだけ密閉容器1内に噴射したときの密閉容器1内の燃料の圧力上昇ΔPは、式(1)で表される。
Hereinafter, the measurement principle of the fuel injection amount (mass) of such an injection measuring device will be described.
When the volume of the sealed container 1 is V and K is the bulk modulus of the fuel, the pressure increase ΔP of the fuel in the sealed container 1 when the fuel is injected into the sealed container 1 by the volume ΔV is expressed by the equation (1). expressed.

ΔP=(K×ΔV)/V …(1)
一方、液体中の音速cは、ρを燃料の密度として、式(2)によって表される。
c = ( K/ρ )1/2 …(2)
よって、式(1)と式(2)とより、燃料の噴射量Iqは、式(3)で示される。
Iq = ΔV×ρ =(ΔP×V) / c2 …(3)
ここで、密閉容器1の球形状の内部空間11の燃料中の音速cは、λを内部空間11の燃料の基本振動の波長、fを内部空間11の燃料の基本振動の周波数として式(4)によって表される。
ΔP = (K × ΔV) / V (1)
On the other hand, the speed of sound c in the liquid is expressed by equation (2), where ρ is the fuel density.
c = (K / ρ) 1/2 (2)
Therefore, the fuel injection amount Iq is expressed by equation (3) from equations (1) and (2).
Iq = ΔV × ρ = (ΔP × V) / c 2 (3)
Here, the speed of sound c in the fuel in the spherical inner space 11 of the sealed container 1 is expressed by the equation (4) where λ is the wavelength of the fundamental vibration of the fuel in the inner space 11 and f is the frequency of the fundamental vibration of the fuel in the inner space 11. ).

c = f×λ…(4)
そして、式(4)を式(3)に代入すると、式(5)が得られる。
Iq =(ΔP×V) / (f2×λ2 )…(5)
いま、係数Mを、式(6)のように定めると、
M =V/λ2 …(6)
式(5)は、式(7)によって表すことができる。
c = f × λ (4)
Substituting equation (4) into equation (3) yields equation (5).
Iq = (ΔP × V) / (f 2 × λ 2 ) (5)
Now, if the coefficient M is determined as in equation (6),
M = V / λ 2 (6)
Formula (5) can be represented by Formula (7).

Iq = M×(ΔP/f2) …(7)
ここで、密閉容器1の容積V、基本振動の波長λは、温度などによって変化する燃料の体積弾性係数や密度や噴射量に依存せずに、固定的に定まる定数であるため、係数Mも噴射量によらない定数となる。したがって、式(7)より、予め係数Mを求めて設定しておけば、液体の噴射量Iqは、燃料の基本振動の周波数fと、液体の圧力上昇ΔPより適正に算出することができる。
Iq = M × (ΔP / f 2 ) (7)
Here, the volume V of the airtight container 1 and the wavelength λ of the fundamental vibration are constants that are fixedly determined without depending on the volume elasticity coefficient, density, or injection amount of the fuel, which varies depending on the temperature. It is a constant that does not depend on the injection amount. Therefore, if the coefficient M is obtained and set in advance from the equation (7), the liquid injection amount Iq can be appropriately calculated from the frequency f of the basic vibration of the fuel and the liquid pressure increase ΔP.

また、噴射量Iqを時間微分することにより、燃料の噴射率(質量)を算出することもできる。
以下、噴射計測装置において、以上のような式(6)、(7)を利用して燃料の噴射量を計測する動作について説明する。
噴射量の算出は、燃料の噴射量の計測動作の実行前に行う係数Mを設定するためのキャリブレーション動作と、係数Mの設定後に行う燃料の噴射量の計測動作とより実現される。
Further, the fuel injection rate (mass) can also be calculated by differentiating the injection amount Iq with respect to time.
Hereinafter, the operation of measuring the fuel injection amount using the equations (6) and (7) as described above in the injection measuring device will be described.
The calculation of the injection amount is realized by a calibration operation for setting the coefficient M performed before the execution of the fuel injection amount measurement operation and a fuel injection amount measurement operation performed after the coefficient M is set.

まず、キャリブレーション動作について説明する。
キャリブレーション動作において、測定制御装置8のシーケンス制御部81は、インジェクションポンプ3を駆動し、インジェクションノズル2から密閉容器1内に燃料を噴射し、排出バルブ5の開閉の制御を行い、密閉容器1内の燃料の圧力を規定背圧に復帰させると共に、質量流量計7で排出された燃料の質量を計測させる処理を一度もしくは繰返し行う。
First, the calibration operation will be described.
In the calibration operation, the sequence control unit 81 of the measurement control device 8 drives the injection pump 3, injects fuel into the sealed container 1 from the injection nozzle 2, controls opening / closing of the discharge valve 5, and closes the sealed container 1. The process of returning the internal fuel pressure to the specified back pressure and measuring the mass of the fuel discharged by the mass flow meter 7 is performed once or repeatedly.

一方、測定制御装置8の測定部82は、キャリブレーション動作において、シーケンス制御部81の制御下で、以下のように係数Mを設定する。
すなわち、FFT処理部821は、圧力センサ4から出力される、密閉容器1内の燃料の圧力変動を表す圧力信号をFFT処理し、燃料の圧力振動の各周波数成分の大きさを算出する。ピーク周波数算出部822は、FFT処理部821が算出した燃料の圧力振動の各周波数成分の大きさがピーク(最大)となる周波数を、燃料の基本振動の周波数fdとして算出する。
On the other hand, the measurement unit 82 of the measurement control device 8 sets the coefficient M as follows under the control of the sequence control unit 81 in the calibration operation.
That is, the FFT processing unit 821 performs FFT processing on the pressure signal that is output from the pressure sensor 4 and represents the pressure fluctuation of the fuel in the sealed container 1, and calculates the magnitude of each frequency component of the fuel pressure oscillation. The peak frequency calculation unit 822 calculates a frequency at which the magnitude of each frequency component of the fuel pressure vibration calculated by the FFT processing unit 821 reaches a peak (maximum) as the frequency f d of the basic vibration of the fuel.

また、フィルタ823は、圧力センサ4から出力される圧力信号の高周波領域のノイズを除去し、上昇圧力算出部824はフィルタ823がノイズを除去した圧力信号から、密閉容器1内の燃料の圧力上昇ΔPdを算出する。 The filter 823 removes noise in the high frequency region of the pressure signal output from the pressure sensor 4, and the rising pressure calculation unit 824 raises the pressure of the fuel in the sealed container 1 from the pressure signal from which the filter 823 has removed noise. ΔP d is calculated.

そして、係数設定部826は、質量流量計7から、密閉容器1内の燃料の圧力を規定背圧に復帰させるために排出された燃料の質量Ndを取得する。そして、取得した質量Ndと、ピーク周波数算出部822が算出した燃料の基本振動の周波数fdと、上昇圧力算出部824が算出した圧力上昇ΔPdとより以下のように係数Mを算出し、噴射測定部825に設定する。 Then, the coefficient setting unit 826 obtains from the mass flow meter 7 the mass N d of the fuel discharged to restore the fuel pressure in the sealed container 1 to the specified back pressure. The coefficient M is calculated from the acquired mass N d , the frequency f d of the basic vibration of the fuel calculated by the peak frequency calculation unit 822, and the pressure increase ΔP d calculated by the rising pressure calculation unit 824 as follows. , Set in the injection measuring unit 825.

すなわち、係数設定部826は、式(7)によって、
Nd =Iq = M×(ΔPd/fd 2)
の関係が成り立つので、
M = Nd×fd 2/ΔPd
として、係数Mを算出する。
That is, the coefficient setting unit 826 uses the equation (7) to
N d = Iq = M × (ΔP d / f d 2 )
Since the relationship of
M = N d × f d 2 / ΔP d
As a result, the coefficient M is calculated.

次に、このようにしてキャリブレーション動作によって係数Mを設定したならば、以降は、以下のように燃料の噴射量の計測動作を行う。
すなわち、測定制御装置8のシーケンス制御部81は、インジェクションポンプ3を駆動し、インジェクションノズル2から密閉容器1内に燃料を噴射し、排出バルブ5の開閉の制御を行い、密閉容器1内の燃料の圧力を規定背圧に復帰させる処理を一度もしくは繰返し行う。
Next, when the coefficient M is set by the calibration operation as described above, the fuel injection amount measurement operation is performed as follows.
That is, the sequence control unit 81 of the measurement control device 8 drives the injection pump 3, injects fuel into the sealed container 1 from the injection nozzle 2, controls opening / closing of the discharge valve 5, and controls the fuel in the sealed container 1. The process of returning the pressure to the specified back pressure is performed once or repeatedly.

一方、測定制御装置8の測定部82は、シーケンス制御部81の制御下で、以下のように密閉容器1内への燃料の噴射の度に燃料の噴射量Iqを測定する。
すなわち、FFT処理部821は、圧力センサ4から出力される、密閉容器1内の燃料の圧力変動を表す圧力信号をFFT処理し、燃料の圧力振動の各周波数成分の大きさを算出する。ピーク周波数算出部822は、FFT処理部821が算出した燃料の圧力振動の各周波数成分の大きさがピーク(最大)となる周波数を、燃料の基本振動の周波数fとして算出する。
On the other hand, the measurement unit 82 of the measurement control device 8 measures the fuel injection amount Iq every time the fuel is injected into the sealed container 1 under the control of the sequence control unit 81 as follows.
That is, the FFT processing unit 821 performs FFT processing on the pressure signal that is output from the pressure sensor 4 and represents the pressure fluctuation of the fuel in the sealed container 1, and calculates the magnitude of each frequency component of the fuel pressure oscillation. The peak frequency calculation unit 822 calculates a frequency at which the magnitude of each frequency component of the pressure vibration of the fuel calculated by the FFT processing unit 821 reaches a peak (maximum) as the frequency f of the basic vibration of the fuel.

一方、フィルタ823は、圧力センサ4から出力される圧力信号の高周波領域のノイズを除去し、上昇圧力算出部824はフィルタ823がノイズを除去した圧力信号から、密閉容器1内の燃料の圧力上昇ΔPを算出する。   On the other hand, the filter 823 removes noise in the high frequency region of the pressure signal output from the pressure sensor 4, and the rising pressure calculation unit 824 raises the pressure of the fuel in the sealed container 1 from the pressure signal from which the filter 823 has removed the noise. ΔP is calculated.

そして、噴射測定部825は、キャリブレーション動作で設定された係数Mと、ピーク周波数算出部822が算出した燃料の基本振動の周波数fと、上昇圧力算出部824が算出した圧力上昇ΔPとから、式(7)に従って燃料の噴射量Iqを算出する。なお、噴射測定部825において、さらに、燃料の噴射量Iqを時間微分して燃料の噴射率(質量)を算出するようにしてもよい。   The injection measurement unit 825 then calculates the coefficient M set in the calibration operation, the frequency f of the basic vibration of the fuel calculated by the peak frequency calculation unit 822, and the pressure increase ΔP calculated by the increase pressure calculation unit 824. The fuel injection amount Iq is calculated according to the equation (7). The injection measurement unit 825 may calculate the fuel injection rate (mass) by differentiating the fuel injection amount Iq with respect to time.

ここまで、噴射計測装置において燃料の噴射量Iqを算出する動作について説明した。
ところで、上述したキャリブレーション動作は、インジェクションノズル2の交換時など計測条件が変化したときのみに行えば良く、計測動作を行う度に行う必要はない。また、キャリブレーション動作が完了したならば、質量流量計7は、これを取り外すようにしてもよい。
以上、本発明の実施形態について説明した。
So far, the operation of calculating the fuel injection amount Iq in the injection measuring device has been described.
By the way, the above-described calibration operation may be performed only when the measurement conditions change, such as when the injection nozzle 2 is replaced, and need not be performed every time the measurement operation is performed. Further, when the calibration operation is completed, the mass flow meter 7 may be removed.
The embodiment of the present invention has been described above.

なお、以上の実施形態では、質量流量計7を用いて、密閉容器1内の燃料の圧力を規定背圧に復帰させるために排出された燃料の質量Ndを計測するようにしたが、質量流量計7に代えて、排出された燃料の質量Nを計測する質量計を用いるようにしてもよい。または、質量流量計7に代えて、排出された燃料の体積流量を計測する流量計と、排出された燃料の温度を計測する温度計を用い、燃料の温度より求まる燃料の密度と流量計が計測した体積流量とより、排出された燃料の質量Ndを計測するようにしてもよい。 In the above embodiment, the mass flowmeter 7 is used to measure the mass N d of the discharged fuel in order to return the fuel pressure in the sealed container 1 to the specified back pressure. Instead of the flow meter 7, a mass meter that measures the mass N of the discharged fuel may be used. Alternatively, in place of the mass flow meter 7, a flow meter that measures the volume flow rate of the discharged fuel and a thermometer that measures the temperature of the discharged fuel are used. more and volume flow measured may be measured by mass N d of the discharged fuel.

また、本実施形態は、燃料以外の任意の液体の噴射量や噴射率の計測にも同様に適用することができる。
以上のように本実施形態によれば、インジェクションノズル2の交換時など計測条件が変化したときのみに質量流量計7を用いてキャリブレーション動作を行えば、以降は、圧力センサ4のみを用いて、高速かつ適正に噴射量等の計測を行うことができるようになる。
Moreover, this embodiment can be similarly applied to measurement of the injection amount and injection rate of any liquid other than fuel.
As described above, according to the present embodiment, if the calibration operation is performed using the mass flow meter 7 only when the measurement conditions change, such as when the injection nozzle 2 is replaced, only the pressure sensor 4 is used thereafter. Thus, it is possible to measure the injection amount and the like at high speed and appropriately.

1…密閉容器、2…インジェクションノズル、3…インジェクションポンプ、4…圧力センサ、5…排出バルブ、6…リリーフバルブ、7…質量流量計、8…測定制御装置、11…内部空間、12…排出流路、81…シーケンス制御部、82…測定部、821…FFT処理部、822…ピーク周波数算出部、823…フィルタ、824…上昇圧力算出部、825…噴射測定部、826…係数設定部。   DESCRIPTION OF SYMBOLS 1 ... Airtight container, 2 ... Injection nozzle, 3 ... Injection pump, 4 ... Pressure sensor, 5 ... Discharge valve, 6 ... Relief valve, 7 ... Mass flow meter, 8 ... Measurement control apparatus, 11 ... Internal space, 12 ... Discharge Flow path 81. Sequence controller 82 Measure unit 821 FFT processing unit 822 Peak frequency calculator 823 Filter 824 Increase pressure calculator 825 Injection measurement unit 826 Coefficient setting unit

Claims (4)

所定圧力で液体を内部空間に充填した密閉容器と、
前記密閉容器の内部空間に向かって液体を噴射するノズルと、
前記密閉容器の内部空間内の液体の圧力を検出する圧力センサと、
前記密閉容器内の液体の圧力が前記所定圧力となるように排出する排出手段と、
前記排出手段により排出された液体の質量を計測する排出質量計測手段と、
係数を設定する係数設定手段と、
前記係数設定手段によって設定された係数を用いて液体の噴射量を計測する計測手段とを有し、
前記係数設定手段は、前記ノズルから液体を噴射させ、当該液体の噴射による圧力の変動を前記圧力センサを用いて計測した後、前記排出手段に液体を排出させて前記排出質量計測手段に排出された液体の質量を計測させると共に、計測した圧力の変動が表す圧力振動の周波数と、計測した圧力の上昇量とを算定し、算定した周波数をfd、算定した上昇量をΔPd、前記排出質量計測手段によって計測された液体の質量をNdとして、係数Mを
M = Nd×fd 2/ΔPd
により設定し、
前記計測手段は、前記ノズルから液体を噴射させ、当該液体の噴射による圧力の変動を前記圧力センサを用いて計測すると共に、計測した圧力の変動が表す圧力振動の周波数と、計測した圧力の上昇量とを算定し、算定した周波数をf、算定した上昇量をΔPとして、液体の噴射量Iqを、前記係数設定手段によって設定された係数Mを用いて、
Iq = M×(ΔP/f2)
により算出することを特徴とする噴射計測装置。
A sealed container filled with liquid at a predetermined pressure;
A nozzle for injecting liquid toward the internal space of the sealed container;
A pressure sensor for detecting the pressure of the liquid in the internal space of the sealed container;
Discharging means for discharging the pressure of the liquid in the sealed container to be the predetermined pressure;
Discharged mass measuring means for measuring the mass of the liquid discharged by the discharging means;
Coefficient setting means for setting a coefficient;
Measuring means for measuring the ejection amount of the liquid using the coefficient set by the coefficient setting means,
The coefficient setting unit ejects a liquid from the nozzle, measures a pressure variation due to the ejection of the liquid using the pressure sensor, and then discharges the liquid to the discharge unit to be discharged to the discharge mass measurement unit. In addition to measuring the mass of the measured liquid, the frequency of the pressure oscillation represented by the measured pressure fluctuation and the amount of increase in the measured pressure are calculated, the calculated frequency is f d , the calculated amount of increase is ΔP d , and the discharge the mass of the liquid as N d which is measured by the mass measuring means, the coefficient M
M = N d × f d 2 / ΔP d
Set by
The measuring means ejects a liquid from the nozzle, measures the pressure fluctuation caused by the liquid ejection using the pressure sensor, and measures the frequency of pressure vibration represented by the measured pressure fluctuation and the rise in the measured pressure. With the calculated frequency f, the calculated increase amount ΔP, and the liquid injection amount Iq using the coefficient M set by the coefficient setting means,
Iq = M × (ΔP / f 2 )
An injection measuring device characterized by the following calculation.
請求項1記載の噴射計測装置であって、
前記密閉容器の内部空間は球形状を有し、
前記ノズルは、前記密閉容器の前記内部空間の球形状の球面に対して凹凸を形成しないように配置されており、
前記圧力センサは、前記密閉容器の前記内部空間の球形状の球面に対して凹凸を形成しないように配置されてことを特徴とする噴射計測装置。
The injection measurement device according to claim 1,
The internal space of the sealed container has a spherical shape,
The nozzle is arranged so as not to form irregularities with respect to the spherical spherical surface of the inner space of the sealed container,
The injection sensor according to claim 1, wherein the pressure sensor is arranged so as not to form irregularities on the spherical spherical surface of the inner space of the sealed container.
請求項1または2記載の噴射計測装置であって、
前記液体は燃料であることを特徴とする噴射計測装置。
The injection measurement device according to claim 1 or 2,
An injection measuring apparatus, wherein the liquid is fuel.
所定圧力で液体を内部空間に充填した密閉容器と、
前記密閉容器の内部空間に向かって液体を噴射するノズルと、
前記密閉容器の内部空間内の液体の圧力を検出する圧力センサと、
前記密閉容器内の液体の圧力が前記所定圧力となるように排出する排出手段とを備えた噴射計測装置において、前記ノズルにより噴射された液体の噴射量を計測する噴射計測方法であって、
前記ノズルから液体を噴射させ、当該液体の噴射による圧力の変動を前記圧力センサを用いて計測した後、前記排出手段に液体を排出させて、排出された液体の質量を計測すると共に、計測した圧力の変動が表す圧力振動の周波数と、計測した圧力の上昇量とを算定し、算定した周波数をfd、算定した上昇量をΔPd、前記排出質量計測手段によって計測された液体の質量をNdとして、係数Mを
M = Nd×fd 2/ΔPd
により設定するステップと、
前記ノズルから液体を噴射させ、当該液体の噴射による圧力の変動を前記圧力センサを用いて計測すると共に、計測した圧力の変動が表す圧力振動の周波数と、計測した圧力の上昇量とを算定し、算定した周波数をf、算定した上昇量をΔPとして、液体の噴射量Iqを、設定された係数Mを用いて、
Iq = M×(ΔP/f2)
により算出するステップを有することを特徴とする噴射計測方法。
A sealed container filled with liquid at a predetermined pressure;
A nozzle for injecting liquid toward the internal space of the sealed container;
A pressure sensor for detecting the pressure of the liquid in the internal space of the sealed container;
In an injection measurement device comprising a discharge means for discharging so that the pressure of the liquid in the sealed container becomes the predetermined pressure, an injection measurement method for measuring an injection amount of the liquid injected by the nozzle,
After the liquid was ejected from the nozzle and the pressure fluctuation due to the ejection of the liquid was measured using the pressure sensor, the liquid was discharged to the discharge means, and the mass of the discharged liquid was measured and measured. Calculate the frequency of the pressure vibration represented by the pressure fluctuation and the amount of increase in the measured pressure. The calculated frequency is f d , the calculated amount of increase is ΔP d , and the mass of the liquid measured by the discharged mass measuring means is calculated. N d and coefficient M
M = N d × f d 2 / ΔP d
Step to set by
The liquid is ejected from the nozzle, the pressure fluctuation due to the liquid ejection is measured using the pressure sensor, and the frequency of the pressure vibration represented by the measured pressure fluctuation and the measured pressure increase amount are calculated. The calculated frequency f is f, the calculated increase amount is ΔP, and the liquid injection amount Iq is set using the set coefficient M,
Iq = M × (ΔP / f 2 )
An injection measurement method comprising the step of calculating by:
JP2014171986A 2014-08-26 2014-08-26 Injection measurement device and injection measurement method Active JP6335070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014171986A JP6335070B2 (en) 2014-08-26 2014-08-26 Injection measurement device and injection measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014171986A JP6335070B2 (en) 2014-08-26 2014-08-26 Injection measurement device and injection measurement method

Publications (2)

Publication Number Publication Date
JP2016044661A true JP2016044661A (en) 2016-04-04
JP6335070B2 JP6335070B2 (en) 2018-05-30

Family

ID=55635441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014171986A Active JP6335070B2 (en) 2014-08-26 2014-08-26 Injection measurement device and injection measurement method

Country Status (1)

Country Link
JP (1) JP6335070B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045177A (en) * 2014-08-26 2016-04-04 株式会社小野測器 Injection measurement device and injection measurement method
WO2019151558A1 (en) * 2018-02-02 2019-08-08 한국전력공사 Apparatus and method for evaluating soundness of fuel nozzle
CN114687877A (en) * 2020-12-31 2022-07-01 哈尔滨工程大学 On-line calculation method for flow coefficient of injector nozzle based on injector inlet pressure wave

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611861A (en) * 1984-06-14 1986-01-07 Mitsubishi Heavy Ind Ltd Everytime injection gauge
JP2006504038A (en) * 2002-10-25 2006-02-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for measuring the injection rate of a fluid injection valve
JP2014080899A (en) * 2012-10-16 2014-05-08 Ono Sokki Co Ltd Injection measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611861A (en) * 1984-06-14 1986-01-07 Mitsubishi Heavy Ind Ltd Everytime injection gauge
JP2006504038A (en) * 2002-10-25 2006-02-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for measuring the injection rate of a fluid injection valve
JP2014080899A (en) * 2012-10-16 2014-05-08 Ono Sokki Co Ltd Injection measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045177A (en) * 2014-08-26 2016-04-04 株式会社小野測器 Injection measurement device and injection measurement method
WO2019151558A1 (en) * 2018-02-02 2019-08-08 한국전력공사 Apparatus and method for evaluating soundness of fuel nozzle
KR20190093912A (en) * 2018-02-02 2019-08-12 한국전력공사 Apparatus and method for soundness evaluation of fuel nozzle
KR102052258B1 (en) * 2018-02-02 2020-01-08 한국전력공사 Apparatus and method for soundness evaluation of fuel nozzle
CN114687877A (en) * 2020-12-31 2022-07-01 哈尔滨工程大学 On-line calculation method for flow coefficient of injector nozzle based on injector inlet pressure wave

Also Published As

Publication number Publication date
JP6335070B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP5918683B2 (en) Injection measuring device
JP4130823B2 (en) Method and apparatus for measuring the injection rate of a fluid injection valve
JP6335070B2 (en) Injection measurement device and injection measurement method
US10690100B2 (en) Device for measuring the injection rate, method for producing a device of said type, and measuring method
JP6092627B2 (en) Method for determining the amount of liquid removed from a tank
ATE484739T1 (en) METHOD AND DEVICE FOR MEASURING THE SURFACE TENSION OF LIQUIDS
JP6344851B2 (en) Injection measuring device
CN105403730A (en) Fluid instantaneous flow velocity measure apparatus and method based on Helmholtz instability
US20170145975A1 (en) Method and device for characterizing an injector
JP6306983B2 (en) Injection measurement device and injection measurement method
Vass et al. Sensitivity analysis of instantaneous fuel injection rate determination for detailed Diesel combustion models
JP6163013B2 (en) Injection measuring device
CN108368815B (en) Method and device for determining the injection rate of an injection valve
JP5956915B2 (en) Injection measuring device and bulk modulus measuring device
KR20140012761A (en) Method for determining the flow rate of fluids using the ultrasonic transit-time method
CN205879505U (en) High accuracy of automobile -used gas jet valve can tester
CN106017898A (en) High-precision performance tester for vehicle fuel gas injection valve
JP6163012B2 (en) Injection measuring device
Bornmann et al. Self-sensing ultrasound transducer for cavitation detection
Naples et al. Infinite line pressure probe and flush transducer measurements in a rotating detonation engine channel
US11221313B2 (en) Method and device for examining a sample
RU2578019C2 (en) Device for determining characteristics of fuel injection of fuel supply equipment of diesel engines
JP2004515692A (en) Method and computer program for measuring injection amount of injection nozzle, for example, injection nozzle for vehicle, and injection amount measurement device
KR101090952B1 (en) A compensation method for measurement of a fluidic oscillation type flow meter
US10480972B2 (en) Method for controlling an apparatus for ultrasonically measuring the flow rate of a fluid in a measuring channel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180427

R150 Certificate of patent or registration of utility model

Ref document number: 6335070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250