WO2019151558A1 - Apparatus and method for evaluating soundness of fuel nozzle - Google Patents

Apparatus and method for evaluating soundness of fuel nozzle Download PDF

Info

Publication number
WO2019151558A1
WO2019151558A1 PCT/KR2018/001901 KR2018001901W WO2019151558A1 WO 2019151558 A1 WO2019151558 A1 WO 2019151558A1 KR 2018001901 W KR2018001901 W KR 2018001901W WO 2019151558 A1 WO2019151558 A1 WO 2019151558A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
water
fuel nozzle
fuel
water level
Prior art date
Application number
PCT/KR2018/001901
Other languages
French (fr)
Korean (ko)
Inventor
서동균
박세익
주용진
신주곤
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2019151558A1 publication Critical patent/WO2019151558A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Definitions

  • the present invention relates to an apparatus for evaluating soundness of fuel nozzles and an evaluation method thereof, and more particularly, to an apparatus for evaluating soundness of fuel nozzles for effectively performing hysteresis management for each fuel nozzle and an evaluation method thereof.
  • the gas turbine for power generation consists of a compressor, a combustor, and a turbine.
  • the compressor compresses air to high pressure, and the high pressure air and fuel are injected and combusted in the combustor.
  • the high temperature and high pressure combustion gas generated at this time rotates the turbine to produce electricity.
  • the combustor is provided with a plurality of fuel nozzles, and the fuel nozzle is provided with a plurality of injection holes.
  • the gas turbine combustor For stable operation of the gas turbine combustor, it is necessary to identify whether the fuel nozzle is deformed or clogged, and ultimately evaluate the soundness so that fuel injection can be performed normally through cleaning or replacement.
  • the clogging phenomenon of foreign substances in the fuel nozzle may cause instability of combustion due to fuel amount variation for each fuel nozzle hole, and thus vibration and backfire.
  • damage due to overheating and hitting of the material may occur, and may cause deformation of the nozzle hole.
  • the present invention has been made to solve the above-mentioned problems, and quantitatively evaluates the state of fuel nozzles in a fuel injection device, such as a combustor of a gas turbine, and effectively manages the health of the fuel nozzles in the future. And its evaluation method.
  • Another object of the present invention is to provide an apparatus for evaluating the health of a fuel nozzle and a method for evaluating the same, which shorten the test time of a plurality of fuel nozzles.
  • an apparatus for evaluating the health of a fuel nozzle is an apparatus for evaluating the health of a fuel injection device including a plurality of fuel nozzles, wherein the apparatus for evaluating the health of a fuel nozzle includes: A water level measurement module including an injection water supply unit for supplying injection water, a plurality of measurement tanks corresponding to each of the fuel nozzles, and measuring a level of the measurement tank in which the injection water injected through the fuel nozzle is accommodated; And a control unit for calculating, recording, and storing an injection coefficient for each of the fuel nozzles based on the water level measured by the water level measurement module to quantitatively evaluate the state of the fuel nozzles.
  • a method for evaluating the health of a fuel nozzle the method for evaluating the health of a fuel injection device including a plurality of fuel nozzles, wherein the injection water is supplied to each of the plurality of fuel nozzles.
  • An injection coefficient calculating step and an injection coefficient monitoring and recording step of quantitatively evaluating the state of the fuel nozzle by monitoring, recording, and storing the injection coefficient calculated in the injection coefficient calculating step for each of the fuel nozzles.
  • the fuel nozzle soundness evaluation device and the evaluation method according to the present invention by quantitatively evaluating the state of the fuel nozzle in the fuel injection device, such as the combustor of the gas turbine, it provides the effect of effectively performing the history management for each fuel nozzle in the future can do.
  • the injection coefficient can be accurately measured by keeping the pressure of the injection water supplied to the fuel nozzle constant and stabilizing the water surface of the measuring tank.
  • FIG. 1 is a block diagram schematically showing an apparatus for evaluating the health of a fuel nozzle and a fuel nozzle according to an embodiment of the present invention.
  • FIG. 2 is a view showing a water level measurement module applied to the present invention.
  • Figure 3 is a perspective view showing a unit level measurement module applied to the present invention.
  • FIG. 4 is a flowchart of a method for evaluating the health of a fuel nozzle according to the present invention.
  • FIG. 5 is data in real time measuring the water level before and after cleaning the fuel nozzle using the fuel nozzle health evaluation apparatus according to the present invention.
  • the embodiments described below are suitable embodiments for understanding the technical features of the present invention and the health evaluation device of the fuel nozzle.
  • the technical features of the present invention are not limited by the embodiments described or applied to the embodiments described below, and various modifications are possible within the technical scope of the present invention.
  • An apparatus for evaluating the health of a fuel nozzle according to the present invention is based on evaluating the health of a fuel injection device including a plurality of fuel nozzles.
  • the fuel injection value may be, but is not limited to, a combustor of a gas turbine.
  • an apparatus 100 for assessing health of a fuel nozzle includes a spray water supply unit 200, a water level measurement module 300, and a controller 400.
  • the injection water supply unit 200 supplies injection water to a plurality of fuel nozzles, respectively. Specifically, the injection water supply unit 200 may supply the injection water supplied from the water supply source 210 to each fuel nozzle.
  • the water level measurement module 300 includes a plurality of measurement tanks 310 corresponding to the respective fuel nozzles, and measures the level of the measurement tank 310 in which the injection water injected through the fuel nozzles is accommodated.
  • the measuring tank 310 is provided in the lower portion of the fuel nozzle and provided with a receiving space therein, can receive and accumulate the injection water injected from the fuel nozzle.
  • the present invention can evaluate the state of the fuel nozzle by measuring the level of the injection water contained in the measuring tank (310).
  • the controller 400 calculates, records, and stores an injection coefficient for each fuel nozzle 10 based on the water level measured by the water level measurement module 300 to quantitatively evaluate the state of the fuel nozzle 10.
  • control unit 400 may collect the water level information of the injection water accommodated in the measurement tank 310 from the water level measurement module 300, and calculate and quantify the injection coefficient of the fuel nozzle 10 based on this.
  • the water level measurement module 300 may measure the water level in real time through the water level meter 320 installed for each individual measuring tank 310, and the control unit 400 receives the real-time level value of the water, and receives The injection coefficient can be calculated from the level value and hydrodynamic theory.
  • controller 400 may calculate the injection coefficient for each fuel nozzle 10 or calculate the injection coefficients before and after the cleaning of the fuel nozzle 10 to quantify the state of the fuel nozzle 10.
  • controller 400 monitors, records, and stores the injection coefficients of each of the numerical fuel nozzles 10, so that the internal state of each nozzle can be accurately evaluated and the history can be managed.
  • the health assessment device 100 of the fuel nozzle according to the present invention is used as described above, the state of the fuel nozzle 10 is quantitatively evaluated in a fuel injection device such as a combustor of a gas turbine, and thus the history of each fuel nozzle 10 is made. It can provide the effect of effective management.
  • the injection water supply unit 200 may include a supply line 201 and a supply pump 230.
  • the injection water supply unit 200 may further include a pressure adjusting member 250.
  • the supply line 201 may connect the fuel supply unit 10 and the water supply source 210 providing the injection water.
  • the supply line 201 may be branched to the number of each fuel nozzle 10, and the branched branch line 202 may be connected to each nozzle. Accordingly, each fuel nozzle 10 may be separately supplied with the injection water.
  • the supply pump 230 may be provided on the supply line 201 to supply the injection water from the water supply source 210 to the supply line 201. That is, water may be supplied from the water supply source 210 to the supply line 201 by the pumping of the supply pump 230, and the water supplied to the fuel nozzle 10 through the supply line 201 may be a fuel nozzle ( It can be spray water through 10). At this time, the supply pump 230 may be provided to enable the pressure control to ensure a sufficient flow rate for the test.
  • the pressure regulating member 250 is provided on the supply line 201 at the rear end of the supply pump 230 to adjust the pressure of the injection water supplied to the fuel nozzle 10.
  • the pressure regulating member 250 may include a pressure regulator 251, a first pressure gauge 252, and a second pressure gauge 253.
  • the pressure regulator 251 may be connected to the supply line 201 at the rear end of the supply pump 230, and the first pressure gauge 252 may be provided at the front end of the pressure regulator 251 to measure the pressure at the front end of the pressure regulator 251.
  • the second pressure gauge 253 may be provided at the rear end of the pressure regulator 251 to measure the pressure at the rear end of the pressure regulator 251.
  • the first pressure gauge 252 and the second pressure gauge 253 may be connected to the control unit 400.
  • the user may input a set pressure for evaluation to the pressure regulator 251, and the control unit 450 provided in the controller 400 receives a signal of the first pressure gauge 252 which is the primary pressure of the pressure regulator 251. After comparing with the set pressure, if the pressure difference occurs, the secondary pressure of the pressure regulator 251 can be adjusted by operating the pressure regulator 251. Accordingly, the pressure of the second pressure gauge 253 for measuring the pressure at the front end of the fuel nozzle 10 may be kept constant.
  • the present invention can accurately calculate the injection coefficient of the fuel nozzle 10 by maintaining a constant pressure of the injection water supplied to the fuel nozzle 10 by the pressure regulating member 250.
  • the water level measurement module 300 may further include a connection member 330.
  • the connecting member 330 may connect and fix the plurality of measuring tanks 310 to each other so that the plurality of measuring tanks 310 are fixed to the lower positions of the respective fuel nozzles 10.
  • the present invention since the present invention includes individual measuring tanks 310 for each of the fuel nozzles 10 in order to evaluate the plurality of fuel nozzles 10 simultaneously, the size of the measuring tank 310 is reduced and the flow rate of the injected water is accommodated. As it decreases, the wave of the surface and the shaking of the measuring tank 310 may occur due to the injection.
  • the connecting member 330 connects the plurality of measuring tanks 310 to fix the positions of the measuring tanks 310 and simultaneously move the plurality of measuring tanks 310, thereby causing waves and shaking due to the injection of the jetting water. Can be minimized.
  • the plurality of measuring tanks 310 are fixed to the connection member 330, the position of the measuring tank 310 may be fixed to the lower portion of the fuel nozzle 10.
  • the water level of the injection water accommodated in the plurality of measuring tanks 310 can be accurately measured.
  • connection member 330 is coupled to the side of the plurality of measuring tanks 310 as shown in the embodiment, it may be provided detachably with the measuring tank (310).
  • connection member 330 may be coupled to the side of the measuring tank 310 and fixed.
  • present invention is not limited thereto, and the shape and the coupling position of the connection member 330 may be variously modified according to the shape and arrangement of the plurality of measuring tanks 310.
  • connection member 330 may be provided detachably to the measuring tank (310). Accordingly, the installation and dismantling work at the power plant site where the combustor is installed can be facilitated.
  • the water level measurement module 300 may include a water level meter 320.
  • the water level meter 320 is provided in each measuring tank 310 individually, and can measure the water level of the injection water accommodated in the measuring tank 310.
  • the measuring tank 310 may be provided with a projection 311 made of a transparent material on the side. Accordingly, the water level and the internal state of the measuring tank 310 can be visually confirmed.
  • the water level meter 320 may be provided in the measuring tank 310 to measure the level of the sprayed water in real time.
  • the water level gauge 320 may transmit the measured water level value to the controller 400.
  • the controller 400 may calculate the water level increase rate by collecting the water level value over time.
  • the type of the level gauge 320 is not limited, and if the level of the measuring tank 310 can be measured and transmitted to the control unit 400 in real time, various types of the level gauge 320 may be provided.
  • the water level measurement module 300 may further include a sleep stabilization member 350.
  • the sleep stabilizing member 350 may be provided to be in contact with the water surface of the spray water accommodated in the measuring tank 310, and may attenuate waves generated in the water surface by spraying the spray water.
  • the injection water injected through the fuel nozzle 10 may generate surface waves while colliding with the surface of the injection water accumulated in the measurement tank 310. Due to this wave, the surface of the sprayed water of the measuring tank 310 may become unstable, which may cause difficulty in accurately measuring the water level by the water gauge 320.
  • the surface stabilizing member 350 may attenuate such surface waves while floating in contact with the surface of the sprayed water to stabilize the water level so that the water level may be accurately measured by the water level gauge 320.
  • the sleep stabilization member 350 may include a rotation shaft 351 and a stabilizer 352.
  • the rotating shaft 351 is installed on the inner surface of the measuring tank 310 and may be provided to be moved up and down in accordance with the level of the injection water.
  • the stabilizer 352 is installed on the rotating shaft 351 to be rotatable about the rotating shaft 351 and may contact the water surface of the sprayed water accommodated in the measuring tank 310.
  • the end of the rotary shaft 351 is inserted into the guide groove 313 formed up and down on the inner surface of the measuring tank 310, can be guided by the guide groove 313 can move up and down.
  • the rotating shaft 351 moves up and down according to the level of the sprayed water accumulated in the measuring tank 310.
  • the stabilizer 352 may be rotatably installed on the rotation shaft 351 to be installed inside the measuring tank 310.
  • the stabilizer 352 may stabilize the surface waves of the water while the bottom surface contacts the water surface and pivots about the rotation shaft 351 as the rotary shaft 351 moves up and down.
  • the shape of the stabilizer 352 is not limited, and various shapes may be applied as long as the surface of the stabilizer 352 may be stabilized in contact with a predetermined area of the surface of the water.
  • the stabilizer 352 may be disposed below the fuel nozzle 10 to directly collide with the injection water injected from the fuel nozzle 10 downward. Accordingly, since the sprayed water collides with the stabilizer 352 and accumulates in the measuring tank 310, the generation of surface waves can be minimized by avoiding direct collision of the sprayed water with the surface of the water.
  • the shape and position of the stabilizer 352 is not limited to those described above and the drawings, and various modifications are possible as long as the surface wave can be stabilized in contact with the water surface.
  • the controller 400 may include a data collection unit 410, a calculation unit 430, a control unit 450, and a monitoring unit 460.
  • the data collection unit 410 may be connected to each of the water level meter 320 provided in the water level measurement module 300 to collect the water level information measured by the water level meter 320.
  • the calculation unit 430 may calculate the water level increase speed and the injection coefficient through the collected water level information.
  • the control unit 450 may be connected to the constant pressure 251, the first pressure gauge 252, and the second pressure gauge 253 to control the pressure of the injection water in front of the fuel nozzle 10.
  • the monitoring unit 460 may monitor, record, and store the injection coefficient for each fuel nozzle 10.
  • the configuration of the control unit 400 and the role of each configuration is not limited to the above description, and various controls may be performed if necessary for soundness evaluation.
  • control unit 400 collects the water level information of each measuring tank 310 measured by the water level measurement module 300 in real time, calculates the increase rate of the water level by the collected water level information, Bernoulli's theorem
  • the injection coefficient of each fuel nozzle 10 can be calculated by Equation 1 below.
  • the role of the controller 400 may be performed by the calculation unit 430.
  • C noz is the injection coefficient in the fuel nozzle 10
  • P noz (t) is the pressure value applied to the front end of the fuel nozzle 10
  • P amb is the pressure applied to the measuring tank 310
  • a Noz is The effective area of the fuel nozzle 10 to be injected
  • a s (t) is the surface area of the water over time
  • dL (t) / dt is the rate of increase of the level of the measuring tank.
  • P amb can generally correspond to atmospheric pressure.
  • the injection coefficient of each fuel nozzle 10 can be derived by the level value measured in real time by the individual measuring tank 310 and Bernoulli's theorem which is a hydrodynamic theory.
  • Equation 2 the flow rate Q (t) of the incompressible fluid injected from the fuel nozzle 10 can be expressed by Equation 2 below.
  • Equation 3 the mass according to the flow rate accumulated in the measuring tank 310 may be represented by Equation 3 according to the mass conservation law.
  • Equation 3 m cv is the mass accumulated in the measuring tank 310, m in is the mass flowing into the measuring tank 310, m out is the mass flowing out of the measuring tank 310.
  • Equation 3 may be expressed by Equation 4 below, assuming that the accumulated injection water is a compressive fluid.
  • Equation 4 Substituting Equation 2 into Equation 4 and removing the density term ⁇ and the flow rate term Q, Equation 4 may be represented by Equation 5 below.
  • Equation 5 dL (t) / dt is a level increase rate calculated based on the measured water level.
  • Equation 1 may be expressed.
  • L1 which is the level of the measuring tank 310
  • L2 is the level of the water level where the surface area is constant because no obstacles occur during the test (see FIGS. 3 and 5). Since the surface area of L1 to L2 is constant, A s (t) is assumed to be A s, 1 , and the rate of increase of water level is constant from L1 to L2, so dL (t) / dt is assumed to be (dL / dt) 1 . , Equation 5 may be represented by Equation 6 below.
  • Equation 7 the injection coefficient in Equation 6 may be expressed as Equation 7 below.
  • the injection coefficient of each fuel nozzle 10 calculated as described above may be monitored / recorded / stored by the controller 400.
  • the injection water supply unit 200 supplies the injection water to a plurality of the fuel nozzle 10 at the same time, the water level measurement module 300 simultaneously measures the water level of the plurality of the measuring tank 310, The controller 400 may simultaneously calculate and record the injection coefficients of the fuel nozzles 10. Accordingly, the test time for health assessment can be shortened.
  • the method for evaluating the health of a fuel nozzle according to the present invention uses the above-described apparatus for evaluating the health of a fuel nozzle, and hereinafter, redundant description of the same configuration will be omitted.
  • the method for evaluating the health of the fuel nozzle according to the present invention includes a spray water supply step (S110), a water level measurement step (S120), an injection coefficient calculation step (S130), and an injection coefficient monitoring and recording step (S140). .
  • injection water is supplied to the plurality of fuel nozzles 10, respectively.
  • the set pressure input by the user is compared with the pressure of the first pressure gauge 252 at the front end of the pressure regulator 251 provided in the supply line 201, and the pressure deviation is determined. If it is out of the error range, the secondary pressure of the rear end of the constant pressure regulator 251 may be adjusted by operating the constant pressure regulator 251. Accordingly, the pressure of the second pressure gauge 253 for measuring the pressure at the front end of the fuel nozzle 10 may be kept constant.
  • the level measurement step S120 the level of the injection water injected from the fuel nozzle 10 and accommodated in the measurement tank 310 is measured. At this time, the water level can be measured in real time through the water level meter 320 provided in the individual measuring tank (310).
  • the injection coefficient calculation step S130 calculates the injection coefficient for each fuel nozzle 10 based on the water level measured in the water level measurement step S120.
  • the injection coefficient calculation step (S130) collecting the water level information of each measuring tank 310 measured in the water level measurement step (S120) in real time, and calculates the increase rate of the water level by the collected water level information
  • the injection coefficient of each fuel nozzle 10 can be calculated by the above equation 1 based on Bernoulli's theorem.
  • the injection coefficient monitoring and recording step S140 monitors, records, and stores the injection coefficients calculated in the injection coefficient calculation step S130 for each fuel nozzle 10 to quantitatively evaluate the state of the fuel nozzle 10. do.
  • Figure 5 is a data measuring the water level of the measuring tank 310 according to the time of the unit fuel nozzle using the water level measurement module 300 according to the present invention.
  • a line is a graph measuring the water level in the state before the cleaning of the fuel nozzle 10
  • B line is a graph measuring the water level in the state after the cleaning of the fuel nozzle 10.
  • the water level cannot be measured below L1.
  • L2 is the position where the water level speed is changed by the obstacle.
  • the increase in water level can be obtained from the slope of the graph between L1 and L2, and this value can be substituted into Equation 7 to obtain the injection coefficients before and after the cleaning of the fuel nozzle 10.
  • Equation 7 The increase in water level can be obtained from the slope of the graph between L1 and L2, and this value can be substituted into Equation 7 to obtain the injection coefficients before and after the cleaning of the fuel nozzle 10.
  • the injection coefficient of the fuel nozzle 10 after cleaning is larger than the injection coefficient of the fuel nozzle 10 before cleaning. In this way, the internal state of the fuel nozzle 10 can be quantitatively checked.
  • the fuel nozzle soundness evaluation device and the evaluation method according to the present invention by quantitatively evaluating the state of the fuel nozzle in the fuel injection device, such as the combustor of the gas turbine, it provides the effect of effectively performing the history management for each fuel nozzle in the future can do.
  • the injection coefficient can be accurately measured by keeping the pressure of the injection water supplied to the fuel nozzle constant and stabilizing the surface of the measurement tank.

Abstract

The present invention provides an apparatus and a method for evaluating soundness of a fuel nozzle. The apparatus for evaluating soundness of a fuel nozzle, which evaluates soundness of a fuel injection device having a plurality of fuel nozzles, comprises: an injection water supply unit for supplying injection water to each of a plurality of fuel nozzles; a plurality of measurement tubs corresponding to the fuel nozzles, respectively; a water level measuring module for measuring water level of each of the measurement tubs in which the injection water injected through the fuel nozzles is received; and a control unit for calculating a jet coefficient for each of the fuel nozzles on the basis of the water level measured by the water level measuring module, and recording and storing same to quantitatively evaluate a state of each of the fuel nozzles.

Description

연료노즐의 건전성 평가장치와 그 평가방법Fuel nozzle soundness evaluation device and evaluation method
본 발명은 연료노즐의 건전성 평가장치와 그 평가방법에 관한 것이며, 더욱 상세하게는 개별 연료노즐별로 이력관리를 효과적으로 수행하는 연료노즐의 건전성 평가장치와 그 평가방법에 관한 것이다.The present invention relates to an apparatus for evaluating soundness of fuel nozzles and an evaluation method thereof, and more particularly, to an apparatus for evaluating soundness of fuel nozzles for effectively performing hysteresis management for each fuel nozzle and an evaluation method thereof.
발전용 가스터빈은, 압축기, 연소기, 터빈으로 구성되어 있다. 압축기는 공기를 고압으로 압축하고, 연소기에서 고압의 공기와 연료가 분사되어 연소한다. 이때 발생한 고온 고압의 연소가스가 터빈을 회전시켜 전기를 생산한다. 연소기는 복수의 연료노즐이 설치되어 있고, 연료노즐에는 복수의 분사홀이 구비된다. The gas turbine for power generation consists of a compressor, a combustor, and a turbine. The compressor compresses air to high pressure, and the high pressure air and fuel are injected and combusted in the combustor. The high temperature and high pressure combustion gas generated at this time rotates the turbine to produce electricity. The combustor is provided with a plurality of fuel nozzles, and the fuel nozzle is provided with a plurality of injection holes.
가스터빈 연소기의 안정적 운영을 위해서는, 연료노즐의 변형유무나 막힘 현상을 규명하고, 궁극적으로 세정이나 교환을 통해 연료분사가 정상적으로 이루어 질 수 있도록 건전성을 평가하여야 한다. 특히, 연료노즐의 이물질 막힘 현상은, 연료 노즐 홀 별 연료량 편차에 의한 연소불안정과 이에 따른 진동 및 역화현상을 일으킬 수 있다. 또한, 고압으로 공급되는 연료와 함께 고속으로 이물질이 분사될 경우, 소재의 과열과 타격으로 인한 손상이 발생할 수 있고, 노즐홀의 변형을 유발시킬 수 있다. For stable operation of the gas turbine combustor, it is necessary to identify whether the fuel nozzle is deformed or clogged, and ultimately evaluate the soundness so that fuel injection can be performed normally through cleaning or replacement. In particular, the clogging phenomenon of foreign substances in the fuel nozzle may cause instability of combustion due to fuel amount variation for each fuel nozzle hole, and thus vibration and backfire. In addition, when a foreign material is injected at a high speed with the fuel supplied at a high pressure, damage due to overheating and hitting of the material may occur, and may cause deformation of the nozzle hole.
종래 발전소 현장에서 연료노즐의 건전성 평가를 수행하는 경우, 이상 현상 발생 시에 연료노즐을 해체하여 별도의 시험장치 없이 육안으로만 점검을 수행하는 것이 일반적이기 때문에, 노즐의 내부 결함이나 변형 유무를 정확히 확인할 수 없고 단순히 교체여부를 판단하는 수준에 그치는 문제가 있다. In the case of performing the integrity evaluation of fuel nozzles at the site of a conventional power plant, it is common to dismantle the fuel nozzles in the event of an abnormal phenomenon and perform visual inspection only without a separate test device. There is a problem that can not be confirmed and simply judges the replacement.
이에 따라 종래 방식에 의하면, 신규의 연료노즐이나 평가의 대상이 되는 노즐이 가지는 내부 상태를 정량적으로 정확하게 평가하여 연료노즐의 점검, 수리, 교체 등을 신속하게 평가하는데에 어려움이 있었다. Accordingly, according to the conventional method, it is difficult to quickly evaluate the inspection, repair, replacement, etc. of the fuel nozzle by quantitatively accurately evaluating the internal state of the new fuel nozzle or the nozzle to be evaluated.
따라서, 연소기 장치 내에 세정 전후의 개선 정도를 판단하고 연료노즐의 수명 이력관리를 위해서 각각의 연료노즐별로 정량적인 평가를 할 수 있는 평가장치가 필요한 실정이다.Therefore, there is a need for an evaluation apparatus capable of quantitative evaluation for each fuel nozzle in order to determine the degree of improvement before and after cleaning in the combustor device and to manage the life history of the fuel nozzle.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 가스터빈의 연소기와 같은 연료분사장치에서 연료노즐의 상태를 정량적으로 평가하여, 향후 연료노즐 별로 이력관리를 효과적으로 수행하는 연료노즐의 건전성 평가장치와 그 평가방법을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and quantitatively evaluates the state of fuel nozzles in a fuel injection device, such as a combustor of a gas turbine, and effectively manages the health of the fuel nozzles in the future. And its evaluation method.
또한, 본 발명은 복수의 연료노즐의 테스트 시간을 단축시키는 연료노즐의 건전성 평가장치와 그 평가방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide an apparatus for evaluating the health of a fuel nozzle and a method for evaluating the same, which shorten the test time of a plurality of fuel nozzles.
상기 목적을 달성하기 위해, 본 발명에 따른 연료노즐의 건전성 평가장치는, 복수의 연료노즐을 구비하는 연료분사장치의 건전성을 평가하는 연료노즐의 건전성 평가장치에 있어서, 복수의 상기 연료노즐에 각각 분사수를 공급하는 분사수 공급부와, 각각의 상기 연료노즐에 대응되는 복수의 측정조를 포함하고, 상기 연료노즐을 통해 분사된 분사수가 수용되는 상기 측정조의 수위를 측정하는 수위측정모듈과, 상기 수위측정모듈에서 측정한 수위를 기초로 각각의 상기 연료노즐 별로 분사계수를 산출하고 기록 및 저장하여, 상기 연료노즐의 상태를 정량적으로 평가하는 제어부를 포함한다. In order to achieve the above object, an apparatus for evaluating the health of a fuel nozzle according to the present invention is an apparatus for evaluating the health of a fuel injection device including a plurality of fuel nozzles, wherein the apparatus for evaluating the health of a fuel nozzle includes: A water level measurement module including an injection water supply unit for supplying injection water, a plurality of measurement tanks corresponding to each of the fuel nozzles, and measuring a level of the measurement tank in which the injection water injected through the fuel nozzle is accommodated; And a control unit for calculating, recording, and storing an injection coefficient for each of the fuel nozzles based on the water level measured by the water level measurement module to quantitatively evaluate the state of the fuel nozzles.
본 발명의 다른 측면에 의한 연료노즐의 건전성 평가방법은, 복수의 연료노즐을 구비하는 연료분사장치의 건전성을 평가하는 연료노즐의 건전성 평가방법에 있어서, 복수의 상기 연료노즐에 각각 분사수를 공급하는 분사수 공급단계와, 상기 연료노즐에서 분사되어 측정조에 수용된 분사수의 수위를 측정하는 수위측정단계와, 상기 수위측정단계에서 측정한 수위를 기초로 각각의 상기 연료노즐 별로 분사계수를 산출하는 분사계수 산출단계와, 상기 분사계수 산출단계에서 산출한 분사계수를 각각의 상기 연료노즐 별로 모니터링하고 기록 및 저장하여, 상기 연료노즐의 상태를 정량적으로 평가하는 분사계수 모니터링 및 기록단계를 포함한다. According to another aspect of the present invention, there is provided a method for evaluating the health of a fuel nozzle, the method for evaluating the health of a fuel injection device including a plurality of fuel nozzles, wherein the injection water is supplied to each of the plurality of fuel nozzles. Calculating the injection coefficient for each of the fuel nozzles on the basis of a water supply step, a level measurement step of measuring the level of the injection water injected from the fuel nozzle and received in the measurement tank, and a level measured in the level measurement step An injection coefficient calculating step and an injection coefficient monitoring and recording step of quantitatively evaluating the state of the fuel nozzle by monitoring, recording, and storing the injection coefficient calculated in the injection coefficient calculating step for each of the fuel nozzles.
본 발명에 따른 연료노즐의 건전성 평가장치와 그 평가방법에 의하면, 가스터빈의 연소기와 같은 연료분사장치에서 연료노즐의 상태를 정량적으로 평가하여, 향후 연료노즐 별로 이력관리를 효과적으로 수행하는 효과를 제공할 수 있다.According to the fuel nozzle soundness evaluation device and the evaluation method according to the present invention, by quantitatively evaluating the state of the fuel nozzle in the fuel injection device, such as the combustor of the gas turbine, it provides the effect of effectively performing the history management for each fuel nozzle in the future can do.
또한, 본 발명에 따르면 각각의 연료노즐을 개별로 동시에 평가할 수 있으므로 테스트 시간을 단축시킬 수 있다. In addition, according to the present invention, it is possible to evaluate each fuel nozzle individually and simultaneously, thereby reducing the test time.
또한, 본 발명에 따르면, 연료노즐로 공급되는 분사수의 압력을 일정하게 유시키고, 측정조의 수면을 안정시킴으로써, 분사계수를 정확하게 측정할 수 있다. Further, according to the present invention, the injection coefficient can be accurately measured by keeping the pressure of the injection water supplied to the fuel nozzle constant and stabilizing the water surface of the measuring tank.
도 1은 본 발명의 일실시예에 의한 연료노즐의 건전성 평가장치와 연료노즐을 개략적으로 도시한 블록도이다. 1 is a block diagram schematically showing an apparatus for evaluating the health of a fuel nozzle and a fuel nozzle according to an embodiment of the present invention.
도 2는 본 발명에 적용되는 수위측정모듈을 도시한 도면이다. 2 is a view showing a water level measurement module applied to the present invention.
도 3은 본 발명에 적용되는 단위 수위계측모듈을 도시한 사시도이다. Figure 3 is a perspective view showing a unit level measurement module applied to the present invention.
도 4는 본 발명에 따른 연료노즐의 건전성 평가방법의 흐름도이다. 4 is a flowchart of a method for evaluating the health of a fuel nozzle according to the present invention.
도 5는 본 발명에 따른 연료노즐의 건전성 평가장치를 이용하여 연료노즐의 세정 전 후의 수위를 실시간으로 측정한 데이터이다. FIG. 5 is data in real time measuring the water level before and after cleaning the fuel nozzle using the fuel nozzle health evaluation apparatus according to the present invention.
이하, 첨부된 도면에 따라 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention according to the accompanying drawings will be described in detail.
먼저, 이하에서 설명되는 실시예들은 본 발명인 연료노즐의 건전성 평가장치 및 평가방법의 기술적인 특징을 이해시키기에 적합한 실시예들이다. 다만, 본 발명이 이하에서 설명되는 실시예에 한정하여 적용되거나 설명되는 실시예들에 의하여 본 발명의 기술적 특징이 제한되는 것이 아니며, 본 발명의 기술 범위 내에서 다양한 변형 실시가 가능하다.First, the embodiments described below are suitable embodiments for understanding the technical features of the present invention and the health evaluation device of the fuel nozzle. However, the technical features of the present invention are not limited by the embodiments described or applied to the embodiments described below, and various modifications are possible within the technical scope of the present invention.
본 발명에 따른 연료노즐의 건전성 평가장치는, 복수의 연료노즐을 구비하는 연료분사장치의 건전성을 평가하는 것을 기초로 한다. 여기서 연료분사장치는 가스터빈의 연소기일 수 있으나 이에 한정하는 것은 아니다. An apparatus for evaluating the health of a fuel nozzle according to the present invention is based on evaluating the health of a fuel injection device including a plurality of fuel nozzles. Here, the fuel injection value may be, but is not limited to, a combustor of a gas turbine.
도 1을 참조하면 본 발명의 일실시예에 따른 연료노즐의 건전성 평가장치(100)는, 분사수 공급부(200)와, 수위측정모듈(300)과, 제어부(400)를 포함한다. Referring to FIG. 1, an apparatus 100 for assessing health of a fuel nozzle according to an embodiment of the present invention includes a spray water supply unit 200, a water level measurement module 300, and a controller 400.
분사수 공급부(200)는 복수의 연료노즐에 각각 분사수를 공급한다. 구체적으로 분사수 공급부(200)는 물공급원(210)에서 공급된 분사수를 각각의 연료노즐로 공급할 수 있다. The injection water supply unit 200 supplies injection water to a plurality of fuel nozzles, respectively. Specifically, the injection water supply unit 200 may supply the injection water supplied from the water supply source 210 to each fuel nozzle.
수위측정모듈(300)은, 각각의 연료노즐에 대응되는 복수의 측정조(310)를 포함하고, 연료노즐을 통해 분사된 분사수가 수용되는 측정조(310)의 수위를 측정한다. The water level measurement module 300 includes a plurality of measurement tanks 310 corresponding to the respective fuel nozzles, and measures the level of the measurement tank 310 in which the injection water injected through the fuel nozzles is accommodated.
구체적으로, 측정조(310)는 연료노즐의 하부에 마련되고 내부에 수용공간을 구비하여, 연료노즐로부터 분사된 분사수를 수용하여 축적시킬 수 있다. 본 발명은 측정조(310)에 수용된 분사수의 수위를 측정하여 연료노즐의 상태를 평가할 수 있다. Specifically, the measuring tank 310 is provided in the lower portion of the fuel nozzle and provided with a receiving space therein, can receive and accumulate the injection water injected from the fuel nozzle. The present invention can evaluate the state of the fuel nozzle by measuring the level of the injection water contained in the measuring tank (310).
제어부(400)는, 수위측정모듈(300)에서 측정한 수위를 기초로 각각의 연료노즐(10) 별로 분사계수를 산출하고 기록 및 저장하여, 연료노즐(10)의 상태를 정량적으로 평가한다. The controller 400 calculates, records, and stores an injection coefficient for each fuel nozzle 10 based on the water level measured by the water level measurement module 300 to quantitatively evaluate the state of the fuel nozzle 10.
구체적으로 제어부(400)는 수위측정모듈(300)로부터 측정조(310)에 수용된 분사수의 수위 정보를 수집하고, 이를 기초로 연료노즐(10)의 분사계수를 산출하여 수치화할 수 있다. 예를 들어 수위측정모듈(300)은 개별 측정조(310)마다 설치된 수위계(320)를 통해 실시간으로 수위를 측정할 수 있고, 제어부(400)는 이러한 시간별 수위값을 실시간을 수신하고, 수신한 수위값과 유체역학적 이론을 통해 분사계수를 산출할 수 있다. In detail, the control unit 400 may collect the water level information of the injection water accommodated in the measurement tank 310 from the water level measurement module 300, and calculate and quantify the injection coefficient of the fuel nozzle 10 based on this. For example, the water level measurement module 300 may measure the water level in real time through the water level meter 320 installed for each individual measuring tank 310, and the control unit 400 receives the real-time level value of the water, and receives The injection coefficient can be calculated from the level value and hydrodynamic theory.
또한 제어부(400)는 각각의 연료노즐(10) 별로 분사계수를 산출하거나, 연료노즐(10)의 세정 전후의 분사계수를 산출하여 연료노즐(10)의 상태를 수치화할 수 있다. 또한, 제어부(400)는 수치화한 각 연료노즐(10)의 분사계수를 모니터링하고 기록 및 저장함으로써, 개별 노즐의 내부상태를 정확하게 평가하고 이력을 관리할 수 있다. In addition, the controller 400 may calculate the injection coefficient for each fuel nozzle 10 or calculate the injection coefficients before and after the cleaning of the fuel nozzle 10 to quantify the state of the fuel nozzle 10. In addition, the controller 400 monitors, records, and stores the injection coefficients of each of the numerical fuel nozzles 10, so that the internal state of each nozzle can be accurately evaluated and the history can be managed.
이와 같은 본 발명에 다른 연료노즐의 건전성 평가장치(100)를 이용하면, 가스터빈의 연소기와 같은 연료분사장치에서 연료노즐(10)의 상태를 정량적으로 평가하여, 향후 연료노즐(10) 별로 이력관리를 효과적으로 수행하는 효과를 제공할 수 있다.When the health assessment device 100 of the fuel nozzle according to the present invention is used as described above, the state of the fuel nozzle 10 is quantitatively evaluated in a fuel injection device such as a combustor of a gas turbine, and thus the history of each fuel nozzle 10 is made. It can provide the effect of effective management.
구체적으로, 분사수 공급부(200)는, 공급라인(201)과 공급펌프(230)를 포함할 수 있다. 또한, 분사수 공급부(200)는 압력조절부재(250)를 더 포함할 수 있다. In detail, the injection water supply unit 200 may include a supply line 201 and a supply pump 230. In addition, the injection water supply unit 200 may further include a pressure adjusting member 250.
공급라인(201)은 분사수를 제공하는 물공급원(210)과 연료노즐(10)을 연결할 수 있다. 공급라인(201)은 각각의 연료노즐(10)의 개수로 분기되고, 분기된 분기라인(202)은 각각의 노즐에 연결될 수 있다. 이에 따라 각각의 연료노즐(10)은 개별로 분사수를 공급받을 수 있다.The supply line 201 may connect the fuel supply unit 10 and the water supply source 210 providing the injection water. The supply line 201 may be branched to the number of each fuel nozzle 10, and the branched branch line 202 may be connected to each nozzle. Accordingly, each fuel nozzle 10 may be separately supplied with the injection water.
공급펌프(230)는 공급라인(201) 상에 마련되어, 물공급원(210)에서 공급라인(201)으로 분사수를 공급할 수 있다. 즉, 공급펌프(230)의 펌핑에 의해 물공급원(210)에서 공급라인(201)으로 물이 공급될 수 있고, 공급라인(201)을 통해 연료노즐(10)로 공급된 물은 연료노즐(10)을 통과하여 분사수가 될 수 있다. 이때 공급펌프(230)는 테스트를 위한 충분한 유량을 확보하기 위해 압력제어가 가능하게 구비될 수 있다.The supply pump 230 may be provided on the supply line 201 to supply the injection water from the water supply source 210 to the supply line 201. That is, water may be supplied from the water supply source 210 to the supply line 201 by the pumping of the supply pump 230, and the water supplied to the fuel nozzle 10 through the supply line 201 may be a fuel nozzle ( It can be spray water through 10). At this time, the supply pump 230 may be provided to enable the pressure control to ensure a sufficient flow rate for the test.
압력조절부재(250)는, 공급펌프(230) 후단의 공급라인(201) 상에 구비되어, 연료노즐(10)로 공급되는 분사수의 압력을 조절할 수 있다. The pressure regulating member 250 is provided on the supply line 201 at the rear end of the supply pump 230 to adjust the pressure of the injection water supplied to the fuel nozzle 10.
더욱 구체적으로, 압력조절부재(250)는 정압기(pressure regulator)(251)와 제1 압력계(252)와 제2 압력계(253)를 포함할 수 있다.More specifically, the pressure regulating member 250 may include a pressure regulator 251, a first pressure gauge 252, and a second pressure gauge 253.
정압기(251)는 공급펌프(230) 후단의 공급라인(201)에 연결될 수 있고, 제1 압력계(252)는 정압기(251)의 전단에 구비되어 정압기(251) 전단의 압력을 측정할 수 있고, 제2 압력계(253)는 정압기(251)의 후단에 구비되어 정압기(251) 후단의 압력을 측정할 수 있다. 제1 압력계(252)와 제2 압력계(253)는 제어부(400)와 연결될 수 있다. The pressure regulator 251 may be connected to the supply line 201 at the rear end of the supply pump 230, and the first pressure gauge 252 may be provided at the front end of the pressure regulator 251 to measure the pressure at the front end of the pressure regulator 251. The second pressure gauge 253 may be provided at the rear end of the pressure regulator 251 to measure the pressure at the rear end of the pressure regulator 251. The first pressure gauge 252 and the second pressure gauge 253 may be connected to the control unit 400.
사용자는 정압기(251)에 평가를 위한 설정압력을 입력할 수 있고, 제어부(400)에 구비된 컨트롤유닛(450)는 정압기(251)의 1차측 압력인 제1 압력계(252)의 신호를 수신하여 설정압력과 비교한 후, 압력의 편차가 발생하면 정압기(251)를 작동시켜서 정압기(251)의 2차측 압력을 조정할 수 있다. 이에 따라 연료노즐(10) 전단의 압력을 측정하는 제2 압력계(253)의 압력이 일정하게 유지되도록 할 수 있다. The user may input a set pressure for evaluation to the pressure regulator 251, and the control unit 450 provided in the controller 400 receives a signal of the first pressure gauge 252 which is the primary pressure of the pressure regulator 251. After comparing with the set pressure, if the pressure difference occurs, the secondary pressure of the pressure regulator 251 can be adjusted by operating the pressure regulator 251. Accordingly, the pressure of the second pressure gauge 253 for measuring the pressure at the front end of the fuel nozzle 10 may be kept constant.
따라서, 본 발명은 압력조절부재(250)에 의해 연료노즐(10)로 공급되는 분사수의 압력을 일정하게 유지시킴으로써, 연료노즐(10)의 분사계수를 정확하게 산출할 수 있다. Therefore, the present invention can accurately calculate the injection coefficient of the fuel nozzle 10 by maintaining a constant pressure of the injection water supplied to the fuel nozzle 10 by the pressure regulating member 250.
한편, 도 1 및 도 2를 참조하면, 수위측정모듈(300)은 연결부재(330)를 더 포함할 수 있다. 연결부재(330)는, 복수의 측정조(310)가 각각의 연료노즐(10)의 하부 위치에 고정되도록, 복수의 측정조(310)를 서로 연결하여 고정시킬 수 있다.Meanwhile, referring to FIGS. 1 and 2, the water level measurement module 300 may further include a connection member 330. The connecting member 330 may connect and fix the plurality of measuring tanks 310 to each other so that the plurality of measuring tanks 310 are fixed to the lower positions of the respective fuel nozzles 10.
구체적으로 본 발명은 복수의 연료노즐(10)을 동시에 평가하기 위해 연료노즐(10) 별로 개별 측정조(310)를 구비하므로, 측정조(310)의 사이즈가 작아지고 수용되는 분사수의 유량이 적어지면서 분사에 따른 수면의 파동과 측정조(310)의 흔들림이 발생할 수 있다. 연결부재(330)는 복수의 측정조(310)를 연결하여 측정조(310)의 위치를 고정함과 동시에 복수의 측정조(310)가 함께 거동하도록 함으로써, 분사수의 분사에 따른 파동과 흔들림을 최소화시킬 수 있다. 또한 복수의 측정조(310)를 연결부재(330)에 고정시키므로 측정조(310)의 위치가 연료노즐(10)의 하부에 고정될 수 있다. Specifically, since the present invention includes individual measuring tanks 310 for each of the fuel nozzles 10 in order to evaluate the plurality of fuel nozzles 10 simultaneously, the size of the measuring tank 310 is reduced and the flow rate of the injected water is accommodated. As it decreases, the wave of the surface and the shaking of the measuring tank 310 may occur due to the injection. The connecting member 330 connects the plurality of measuring tanks 310 to fix the positions of the measuring tanks 310 and simultaneously move the plurality of measuring tanks 310, thereby causing waves and shaking due to the injection of the jetting water. Can be minimized. In addition, since the plurality of measuring tanks 310 are fixed to the connection member 330, the position of the measuring tank 310 may be fixed to the lower portion of the fuel nozzle 10.
따라서 본 발명은 복수의 연료노즐(10)을 동시에 측정하는 경우에도, 복수의 측정조(310)에 수용되는 분사수의 수위를 정확하게 측정할 수 있다. Therefore, in the present invention, even when the plurality of fuel nozzles 10 are simultaneously measured, the water level of the injection water accommodated in the plurality of measuring tanks 310 can be accurately measured.
예를 들어 연결부재(330)는 도시된 실시예와 같이 복수의 측정조(310)의 측면에 환 형태로 결합되고, 측정조(310)와 탈부착 가능하게 구비될 수 있다.For example, the connection member 330 is coupled to the side of the plurality of measuring tanks 310 as shown in the embodiment, it may be provided detachably with the measuring tank (310).
구체적으로 연결부재(330)는 측정조(310)의 측면에 결합되어 고정될 수 있다. 다만, 이에 한정하는 것은 아니며, 연결부재(330)의 형상과 결합위치는 복수의 측정조(310)의 형상과 배열에 따라 다양하게 변형실시될 수 있다. Specifically, the connection member 330 may be coupled to the side of the measuring tank 310 and fixed. However, the present invention is not limited thereto, and the shape and the coupling position of the connection member 330 may be variously modified according to the shape and arrangement of the plurality of measuring tanks 310.
또한, 연결부재(330)는 측정조(310)에 탈부착 가능하게 구비될 수 있다. 이에 따라 연소기가 설치된 발전소 현장에서의 설치 및 해체작업을 용이하게 할 수 있다. In addition, the connection member 330 may be provided detachably to the measuring tank (310). Accordingly, the installation and dismantling work at the power plant site where the combustor is installed can be facilitated.
한편 도 3에 도시된 실시예를 참조하면, 본 발명에 따른 수위측정모듈(300)은 수위계(320)를 포함할 수 있다. 수위계(320)는, 각각의 측정조(310)에 개별로 구비되어, 측정조(310)에 수용된 분사수의 수위를 측정할 수 있다. Meanwhile, referring to the embodiment illustrated in FIG. 3, the water level measurement module 300 according to the present invention may include a water level meter 320. The water level meter 320 is provided in each measuring tank 310 individually, and can measure the water level of the injection water accommodated in the measuring tank 310.
구체적으로, 측정조(310)는 측면에 투명한 재질로 된 투영부(311)를 구비할 수 있다. 이에 따라 측정조(310)의 수위 및 내부상태를 육안으로 확인할 수 있다. 또한, 수위계(320)는 측정조(310)에 구비되어 분사수의 수위를 실시간을 측정할 수 있다. 그리고 수위계(320)는 측정한 수위값을 제어부(400)로 전송할 수 있다. 제어부(400)는 시간에 따른 수위값을 수집하여 수위증가속도를 산출할 수 있다.Specifically, the measuring tank 310 may be provided with a projection 311 made of a transparent material on the side. Accordingly, the water level and the internal state of the measuring tank 310 can be visually confirmed. In addition, the water level meter 320 may be provided in the measuring tank 310 to measure the level of the sprayed water in real time. In addition, the water level gauge 320 may transmit the measured water level value to the controller 400. The controller 400 may calculate the water level increase rate by collecting the water level value over time.
여기서 수위계(320)의 종류에는 한정이 없으며, 측정조(310)의 수위를 실시간을 측정하여 제어부(400)로 전송할 수 있다면 다양한 종류의 수위계(320)가 구비될 수 있다.Here, the type of the level gauge 320 is not limited, and if the level of the measuring tank 310 can be measured and transmitted to the control unit 400 in real time, various types of the level gauge 320 may be provided.
한편, 수위측정모듈(300)은 수면안정부재(350)를 더 포함할 수 있다. 수면안정부재(350)는 측정조(310) 내부에 수용된 분사수의 수면과 접촉되게 구비되어, 분사수의 분사에 의해 수면에서 발생하는 파동을 감쇄시킬 수 있다.Meanwhile, the water level measurement module 300 may further include a sleep stabilization member 350. The sleep stabilizing member 350 may be provided to be in contact with the water surface of the spray water accommodated in the measuring tank 310, and may attenuate waves generated in the water surface by spraying the spray water.
구체적으로 연료노즐(10)을 통해 분사된 분사수는, 측정조(310)에 축적된 분사수의 수면과 충돌하면서 수면파(fluctuation)를 발생할 수 있다. 이러한 파동에 의해 측정조(310)의 분사수의 수면이 불안정해져서 수위계(320)에 의한 정확한 수위 측정에 어려움이 발생할 수 있다. In more detail, the injection water injected through the fuel nozzle 10 may generate surface waves while colliding with the surface of the injection water accumulated in the measurement tank 310. Due to this wave, the surface of the sprayed water of the measuring tank 310 may become unstable, which may cause difficulty in accurately measuring the water level by the water gauge 320.
수면안정부재(350)는 분사수의 수면에 부유하여 접촉하면서 이러한 수면파를 감쇄시켜서 수면을 안정시킴으로써 수위계(320)에 의해 수위가 정확하게 측정되도록 할 수 있다. The surface stabilizing member 350 may attenuate such surface waves while floating in contact with the surface of the sprayed water to stabilize the water level so that the water level may be accurately measured by the water level gauge 320.
구체적으로 수면안정부재(350)는 회전축(351)과 안정체(352)를 포함할 수 있다. 회전축(351)은 측정조(310)의 내면에 설치되고 분사수의 수위에 따라 상하로 이동 가능하게 구비될 수 있다. 안정체(352)는 회전축(351)에 설치되어 회전축(351)을 중심으로 회전 가능하게 구비되며 측정조(310)에 수용된 분사수의 수면에 접촉할 수 있다.In detail, the sleep stabilization member 350 may include a rotation shaft 351 and a stabilizer 352. The rotating shaft 351 is installed on the inner surface of the measuring tank 310 and may be provided to be moved up and down in accordance with the level of the injection water. The stabilizer 352 is installed on the rotating shaft 351 to be rotatable about the rotating shaft 351 and may contact the water surface of the sprayed water accommodated in the measuring tank 310.
더욱 구체적으로, 회전축(351)은 측정조(310)의 내측면에 상하로 형성된 가이드홈(313)에 단부가 끼워지고, 가이드홈(313)에 의해 가이드되어 상하로 이동할 수 있다. 회전축(351)은 측정조(310) 내부에 축적되는 분사수의 수위에 따라 상하로 이동한다. 안정체(352)는 회전축(351)에 회전 가능하게 설치되어 측정조(310) 내부에 설치될 수 있다. 안정체(352)는 회전축(351)의 상하 이동에 따라 하면이 수면과 접촉하고 회전축(351)을 중심으로 선회하면서 수면의 수면파를 안정시킬 수 있다. 안정체(352)의 형상에는 제한이 없으며 수면의 소정 면적과 접촉하여 수면을 안정시킬 수 있다면 다양한 형상이 적용될 수 있다. More specifically, the end of the rotary shaft 351 is inserted into the guide groove 313 formed up and down on the inner surface of the measuring tank 310, can be guided by the guide groove 313 can move up and down. The rotating shaft 351 moves up and down according to the level of the sprayed water accumulated in the measuring tank 310. The stabilizer 352 may be rotatably installed on the rotation shaft 351 to be installed inside the measuring tank 310. The stabilizer 352 may stabilize the surface waves of the water while the bottom surface contacts the water surface and pivots about the rotation shaft 351 as the rotary shaft 351 moves up and down. The shape of the stabilizer 352 is not limited, and various shapes may be applied as long as the surface of the stabilizer 352 may be stabilized in contact with a predetermined area of the surface of the water.
예를 들어 안정체(352)가 연료노즐(10)의 하부에서 배치되어 연료노즐(10)에서 하부로 분사되는 분사수와 직접 충돌하도록 배치될 수 있다. 이에 따라 분사수가 안정체(352)에 충돌한 후 측정조(310)에 축적됨으로써, 분사수와 수면의 직접적인 충돌을 피하여 수면파의 발생을 최소화시킬 수 있다. 다만, 안정체(352)의 형상 및 위치는 상기한 바와 도면에 한정하는 것은 아니며, 수면과 접촉하여 수면파를 안정시킬 수 있다면 다양한 변형실시가 가능하다. For example, the stabilizer 352 may be disposed below the fuel nozzle 10 to directly collide with the injection water injected from the fuel nozzle 10 downward. Accordingly, since the sprayed water collides with the stabilizer 352 and accumulates in the measuring tank 310, the generation of surface waves can be minimized by avoiding direct collision of the sprayed water with the surface of the water. However, the shape and position of the stabilizer 352 is not limited to those described above and the drawings, and various modifications are possible as long as the surface wave can be stabilized in contact with the water surface.
한편, 제어부(400)는 데이터수집유닛(410)과, 산출유닛(430)과, 컨트롤유닛(450)과, 모니터링유닛(460)을 포함할 수 있다. The controller 400 may include a data collection unit 410, a calculation unit 430, a control unit 450, and a monitoring unit 460.
데이터수집유닛(410)은 수위측정모듈(300)에 구비된 각각의 수위계(320)와 연결되어 수위계(320)에서 측정한 수위 정보를 수집할 수 있다. 산출유닛(430)은 수집된 수위 정보를 통해 수수위증가속도와 분사계수 등을 산출할 수 있다. 컨트롤유닛(450)은 정압기(251), 제1 압력계(252) 및 제2 압력계(253)와 연결되어 연료노즐(10) 전단의 분사수의 압력을 콘트롤할 수 있다. 모니터링유닛(460)은 연료노즐(10) 별 분사계수를 모니터링하고 기록 및 저장할 수 있다. 다만, 상기한 제어부(400)의 구성과 각 구성의 역할은 상기한 바에 한정하는 것은 아니며, 건전성 평가를 위해 필요하다면 다양한 제어를 수행할 수 있다. The data collection unit 410 may be connected to each of the water level meter 320 provided in the water level measurement module 300 to collect the water level information measured by the water level meter 320. The calculation unit 430 may calculate the water level increase speed and the injection coefficient through the collected water level information. The control unit 450 may be connected to the constant pressure 251, the first pressure gauge 252, and the second pressure gauge 253 to control the pressure of the injection water in front of the fuel nozzle 10. The monitoring unit 460 may monitor, record, and store the injection coefficient for each fuel nozzle 10. However, the configuration of the control unit 400 and the role of each configuration is not limited to the above description, and various controls may be performed if necessary for soundness evaluation.
한편, 제어부(400)는, 수위측정모듈(300)에서 측정한 각각의 측정조(310)의 수위 정보를 실시간으로 수집하고, 수집된 수위 정보에 의해 수위의 증가속도를 산출하여, 베르누이의 정리에 기초한 하기 수학식 1에 의해 각각의 연료노즐(10)의 분사계수를 산출할 수 있다. 여기서 상기한 제어부(400)의 역할은 산출유닛(430)에서 수행할 수 있다.On the other hand, the control unit 400 collects the water level information of each measuring tank 310 measured by the water level measurement module 300 in real time, calculates the increase rate of the water level by the collected water level information, Bernoulli's theorem The injection coefficient of each fuel nozzle 10 can be calculated by Equation 1 below. The role of the controller 400 may be performed by the calculation unit 430.
[수학식 1][Equation 1]
Figure PCTKR2018001901-appb-I000001
Figure PCTKR2018001901-appb-I000001
여기서, Cnoz는 연료노즐(10) 내의 분사계수이고, Pnoz(t)은 연료노즐(10)의 전단에 걸리는 압력값이고, Pamb는 측정조(310)에 걸리는 압력이고, Anoz은 분사되는 연료노즐(10)의 유효면적이고, As(t)는 시간에 따른 수면의 면적이고, dL(t)/dt는 계측조의 수위 증가속도이다. 여기서 Pamb는 일반적으로 대기압에 해당할 수 있다.Here, C noz is the injection coefficient in the fuel nozzle 10, P noz (t) is the pressure value applied to the front end of the fuel nozzle 10, P amb is the pressure applied to the measuring tank 310, A Noz is The effective area of the fuel nozzle 10 to be injected, A s (t) is the surface area of the water over time, dL (t) / dt is the rate of increase of the level of the measuring tank. Where P amb can generally correspond to atmospheric pressure.
더욱 구체적으로, 개별 측정조(310)에서 실시간으로 측정한 수위값과 유체역학적 이론인 베르누이 정리에 의해 각 연료노즐(10)의 분사계수를 도출할 수 있다. More specifically, the injection coefficient of each fuel nozzle 10 can be derived by the level value measured in real time by the individual measuring tank 310 and Bernoulli's theorem which is a hydrodynamic theory.
베르누이의 정리에 의해 연료노즐(10)로부터 분사되는 비압축성 유체의 유량(Q(t))은 아래의 수학식 2와 같이 나타낼 수 있다. By Bernoulli's theorem, the flow rate Q (t) of the incompressible fluid injected from the fuel nozzle 10 can be expressed by Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2018001901-appb-I000002
Figure PCTKR2018001901-appb-I000002
연료노즐(10)에서 분사수가 분사된 후, 측정조(310)에 축적되는 유량에 따른 질량은 질량보존법칙에 의해 수학식 3과 같이 나타낼 수 있다. 수학식 3에서 mcv는 측정조(310)에 축적되는 질량이고, min는 측정조(310)에 유입되는 질량이고, mout는 측정조(310)에서 유출되는 질량이다.After the injection water is injected from the fuel nozzle 10, the mass according to the flow rate accumulated in the measuring tank 310 may be represented by Equation 3 according to the mass conservation law. In Equation 3, m cv is the mass accumulated in the measuring tank 310, m in is the mass flowing into the measuring tank 310, m out is the mass flowing out of the measuring tank 310.
[수학식 3][Equation 3]
Figure PCTKR2018001901-appb-I000003
Figure PCTKR2018001901-appb-I000003
건전성 평가를 하는 동안 측정조(310)에서 유출되는 유량이 없어서 mout은 0 이므로, 축적된 분사수가 압축성 유체라고 가정할 때 수학식 3은 아래의 수학식 4로 나타낼 수 있다. Since m out is 0 because there is no flow rate flowing out of the measuring tank 310 during the health evaluation, the equation 3 may be expressed by Equation 4 below, assuming that the accumulated injection water is a compressive fluid.
[수학식 4][Equation 4]
Figure PCTKR2018001901-appb-I000004
Figure PCTKR2018001901-appb-I000004
수학식 2를 수학식 4에 대입하고 밀도항(ρ)과 유량항(Q)을 제거하면, 수학식 4는 아래의 수학식 5로 나타낼 수 있다. 수학식 5에서 dL(t)/dt는 측정된 수위를 기초로 산출한 수위증가속도이다. Substituting Equation 2 into Equation 4 and removing the density term ρ and the flow rate term Q, Equation 4 may be represented by Equation 5 below. In Equation 5, dL (t) / dt is a level increase rate calculated based on the measured water level.
[수학식 5][Equation 5]
Figure PCTKR2018001901-appb-I000005
Figure PCTKR2018001901-appb-I000005
결과적으로 수학식 5를 통해 분사계수를 정리하면 상기한 수학식 1로 나타낼 수 있다.As a result, when the injection coefficient is summarized through Equation 5, Equation 1 may be expressed.
여기서, 측정조(310)의 수위인 L1은 수위측정이 가능한 높이의 최저점이고, L2는 테스트 중 장애물이 발생하지 않아 수면의 면적이 일정한 높이의 수위이다(도 3과 도 5 참조). L1에서 L2 까지 수면의 면적이 일정하므로 As(t)를 As,1로 가정하고, L1에서 L2 까지 수위 증가속도가 일정하므로 dL(t)/dt를 (dL/dt)1로 가정하면, 수학식 5는 아래의 수학식 6으로 나타낼 수 있다.Here, L1, which is the level of the measuring tank 310, is the lowest point of the height that can measure the water level, and L2 is the level of the water level where the surface area is constant because no obstacles occur during the test (see FIGS. 3 and 5). Since the surface area of L1 to L2 is constant, A s (t) is assumed to be A s, 1 , and the rate of increase of water level is constant from L1 to L2, so dL (t) / dt is assumed to be (dL / dt) 1 . , Equation 5 may be represented by Equation 6 below.
[수학식 6][Equation 6]
Figure PCTKR2018001901-appb-I000006
Figure PCTKR2018001901-appb-I000006
수학식 6에서 분사계수를 정리하면, 아래의 수학식 7과 같이 나타낼 수 있다. In summary, the injection coefficient in Equation 6 may be expressed as Equation 7 below.
[수학식 7][Equation 7]
Figure PCTKR2018001901-appb-I000007
Figure PCTKR2018001901-appb-I000007
이와 같이 산출된 각 연료노즐(10)의 분사계수는 제어부(400)에 의해 모니터링/기록/저장될 수 있다.The injection coefficient of each fuel nozzle 10 calculated as described above may be monitored / recorded / stored by the controller 400.
또한, 상기 분사수 공급부(200)는 복수의 상기 연료노즐(10)에 동시에 분사수를 공급하고, 상기 수위측정모듈(300)은 복수의 상기 측정조(310)의 수위를 동시에 측정하며, 상기 제어부(400)는 복수의 상기 연료노즐(10)의 분사계수를 동시에 산출하고 기록할 수 있다. 이에 따라 건전성 평가를 위한 테스트 시간이 단축될 수 있다.In addition, the injection water supply unit 200 supplies the injection water to a plurality of the fuel nozzle 10 at the same time, the water level measurement module 300 simultaneously measures the water level of the plurality of the measuring tank 310, The controller 400 may simultaneously calculate and record the injection coefficients of the fuel nozzles 10. Accordingly, the test time for health assessment can be shortened.
한편, 이하에서는 도 4를 참조하여, 본 발명의 다른 측면에 따른 연료노즐의 건전성 평가방법을 설명한다. 본 발명에 따른 연료노즐의 건전성 평가방법은 상기한 연료노즐의 건전성 평가장치(100)를 이용한 것으로, 이하에서는 동일한 구성에 대한 중복설명은 생략한다. On the other hand, with reference to FIG. 4, the soundness evaluation method of the fuel nozzle according to another aspect of the present invention will be described. The method for evaluating the health of a fuel nozzle according to the present invention uses the above-described apparatus for evaluating the health of a fuel nozzle, and hereinafter, redundant description of the same configuration will be omitted.
본 발명에 따른 연료노즐의 건전성 평가방법은, 분사수 공급단계(S110)와, 수위측정단계(S120)와, 분사계수 산출단계(S130)와, 분사계수 모니터링 및 기록단계(S140)를 포함한다. The method for evaluating the health of the fuel nozzle according to the present invention includes a spray water supply step (S110), a water level measurement step (S120), an injection coefficient calculation step (S130), and an injection coefficient monitoring and recording step (S140). .
분사수 공급단계(S110)는, 복수의 연료노즐(10)에 각각 분사수를 공급한다. In the injection water supply step S110, injection water is supplied to the plurality of fuel nozzles 10, respectively.
구체적으로, 분사수 공급단계(S110)는, 물공급원(210)에서 연료노즐(10)에 연결된 공급라인(201)으로 분사수가 공급되도록 공급펌프(230)를 구동하는 펌프구동단계(S111)와, 공급되는 분사수의 압력과 설정한 공급압력의 편차가 정해진 오차범위 내인지 판단하는 단계(S112)와, 편차가 정해진 오차범위를 벗어나는 경우, 압력조절부재(250)에 의해 연료노즐(10)의 전단으로 공급되는 분사수의 압력을 조정하는 압력조절단계(S113)를 포함할 수 있다.Specifically, the injection water supply step (S110), the pump driving step (S111) for driving the supply pump 230 to supply the injection water from the water supply source 210 to the supply line 201 connected to the fuel nozzle 10 and The step of determining whether the deviation of the pressure of the injection water supplied and the set supply pressure is within the predetermined error range (S112), and when the deviation is out of the predetermined error range, the fuel nozzle 10 by the pressure adjusting member 250 It may include a pressure control step (S113) for adjusting the pressure of the injection water supplied to the front end of the.
구체적으로, 압력조절단계(S113)는, 사용자가 입력한 설정압력과 공급라인(201)에 구비된 정압기(251)의 전단의 제1 압력계(252)의 압력을 비교하고, 압력의 편차가 정해진 오차 범위를 벗어나면 정압기(251)를 작동시켜서 정압기(251) 후단의 2차측 압력을 조정할 수 있다. 이에 따라 연료노즐(10) 전단의 압력을 측정하는 제2 압력계(253)의 압력이 일정하게 유지되도록 할 수 있다.Specifically, in the pressure adjusting step (S113), the set pressure input by the user is compared with the pressure of the first pressure gauge 252 at the front end of the pressure regulator 251 provided in the supply line 201, and the pressure deviation is determined. If it is out of the error range, the secondary pressure of the rear end of the constant pressure regulator 251 may be adjusted by operating the constant pressure regulator 251. Accordingly, the pressure of the second pressure gauge 253 for measuring the pressure at the front end of the fuel nozzle 10 may be kept constant.
수위측정단계(S120)는, 연료노즐(10)에서 분사되어 측정조(310)에 수용된 분사수의 수위를 측정한다. 이때 개별 측정조(310)에 구비된 수위계(320)를 통해 실시간으로 수위를 측정할 수 있다.In the level measurement step S120, the level of the injection water injected from the fuel nozzle 10 and accommodated in the measurement tank 310 is measured. At this time, the water level can be measured in real time through the water level meter 320 provided in the individual measuring tank (310).
분사계수 산출단계(S130)는, 수위측정단계(S120)에서 측정한 수위를 기초로 각각의 연료노즐(10) 별로 분사계수를 산출한다. The injection coefficient calculation step S130 calculates the injection coefficient for each fuel nozzle 10 based on the water level measured in the water level measurement step S120.
구체적으로, 분사계수 산출단계(S130)는, 수위측정단계(S120)에서 측정한 각각의 측정조(310)의 수위 정보를 실시간으로 수집하고, 수집된 수위 정보에 의해 수위의 증가속도를 산출하여, 베르누이의 정리에 기초한 상기 수학식 1에 의해 각각의 연료노즐(10)의 분사계수를 산출할 수 있다. Specifically, the injection coefficient calculation step (S130), collecting the water level information of each measuring tank 310 measured in the water level measurement step (S120) in real time, and calculates the increase rate of the water level by the collected water level information The injection coefficient of each fuel nozzle 10 can be calculated by the above equation 1 based on Bernoulli's theorem.
분사계수 모니터링 및 기록단계(S140)는, 분사계수 산출단계(S130)에서 산출한 분사계수를 각각의 연료노즐(10) 별로 모니터링하고 기록 및 저장하여, 연료노즐(10)의 상태를 정량적으로 평가한다. The injection coefficient monitoring and recording step S140 monitors, records, and stores the injection coefficients calculated in the injection coefficient calculation step S130 for each fuel nozzle 10 to quantitatively evaluate the state of the fuel nozzle 10. do.
한편, 도 5는 본 발명에 따른 수위측정모듈(300)을 이용하여 단위 연료노즐의 시간에 따른 측정조(310)의 수위를 측정한 데이터이다. A 선은 연료노즐(10)의 세정 전의 상태에서 수위를 측정한 그래프이고, B 선은 연료노즐(10)의 세정 후의 상태에서 수위를 측정한 그래프이다. 여기서 L1 이하에서는 수위를 측정할 수 없다. 그리고, L2는 장애물이 위치하여 수위속도가 변하는 위치이다. On the other hand, Figure 5 is a data measuring the water level of the measuring tank 310 according to the time of the unit fuel nozzle using the water level measurement module 300 according to the present invention. A line is a graph measuring the water level in the state before the cleaning of the fuel nozzle 10, B line is a graph measuring the water level in the state after the cleaning of the fuel nozzle 10. Here, the water level cannot be measured below L1. And, L2 is the position where the water level speed is changed by the obstacle.
L1에서 L2 사이의 그래프의 기울기를 통해 수위증가속도를 구할 수 있고, 이 값을 수학식 7에 대입하여, 연료노즐(10)의 세정 전후의 분사계수를 구할 수 있다. 도 5의 그래프와 수학식 7을 참조하면 세정 후의 연료노즐(10)의 분사계수는 세정 전의 연료노즐(10)의 분사계수보다 큰 것을 확인할 수 있다. 이러한 방식으로 연료노즐(10)의 내부 상태를 정량적으로 점검할 수 있다. The increase in water level can be obtained from the slope of the graph between L1 and L2, and this value can be substituted into Equation 7 to obtain the injection coefficients before and after the cleaning of the fuel nozzle 10. Referring to the graph and equation (7) of Figure 5 it can be seen that the injection coefficient of the fuel nozzle 10 after cleaning is larger than the injection coefficient of the fuel nozzle 10 before cleaning. In this way, the internal state of the fuel nozzle 10 can be quantitatively checked.
본 발명에 따른 연료노즐의 건전성 평가장치와 그 평가방법에 의하면, 가스터빈의 연소기와 같은 연료분사장치에서 연료노즐의 상태를 정량적으로 평가하여, 향후 연료노즐 별로 이력관리를 효과적으로 수행하는 효과를 제공할 수 있다.According to the fuel nozzle soundness evaluation device and the evaluation method according to the present invention, by quantitatively evaluating the state of the fuel nozzle in the fuel injection device, such as the combustor of the gas turbine, it provides the effect of effectively performing the history management for each fuel nozzle in the future can do.
또한, 본 발명에 따르면 각각의 연료노즐을 개별로 동시에 평가할 수 있으므로 테스트 시간을 단축시킬 수 있다. 또한, 연료노즐로 공급되는 분사수의 압력을 일정하게 유시키고, 측정조의 수면을 안정시킴으로써, 분사계수를 정확하게 측정할 수 있다. In addition, according to the present invention, it is possible to evaluate each fuel nozzle individually and simultaneously, thereby reducing the test time. In addition, the injection coefficient can be accurately measured by keeping the pressure of the injection water supplied to the fuel nozzle constant and stabilizing the surface of the measurement tank.
이상, 본 발명의 특정 실시예에 대하여 상술하였지만, 본 발명의 사상 및 범위는 이러한 특정 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의하여 특허청구범위에 기재된 본 발명의 요지를 변경하지 않는 범위 내에서 다양하게 수정 및 변형이 가능하다. Although specific embodiments of the present invention have been described above, the spirit and scope of the present invention are not limited to these specific embodiments, and are described in the claims by those skilled in the art. Various modifications and variations are possible without departing from the spirit of the invention.

Claims (14)

  1. 복수의 연료노즐을 구비하는 연료분사장치의 건전성을 평가하는 연료노즐의 건전성 평가장치에 있어서,In the fuel nozzle soundness evaluation device for evaluating the health of the fuel injection device having a plurality of fuel nozzles,
    복수의 상기 연료노즐에 각각 분사수를 공급하는 분사수 공급부; An injection water supply unit supplying injection water to a plurality of the fuel nozzles, respectively;
    각각의 상기 연료노즐에 대응되는 복수의 측정조를 포함하고, 상기 연료노즐을 통해 분사된 분사수가 수용되는 상기 측정조의 수위를 측정하는 수위측정모듈; 및, A level measuring module including a plurality of measuring tanks corresponding to each of the fuel nozzles, and measuring a level of the measuring tank in which the injection water injected through the fuel nozzle is accommodated; And,
    상기 수위측정모듈에서 측정한 수위를 기초로 각각의 상기 연료노즐 별로 분사계수를 산출하고 기록 및 저장하여, 상기 연료노즐의 상태를 정량적으로 평가하는 제어부를 포함하는, 연료노즐의 건전성 평가장치.And a control unit for calculating, recording, and storing an injection coefficient for each of the fuel nozzles based on the water level measured by the water level measurement module, to quantitatively evaluate the state of the fuel nozzles.
  2. 제1항에 있어서,The method of claim 1,
    상기 분사수 공급부는, The injection water supply unit,
    분사수를 공급하는 물공급원과 상기 연료노즐을 연결하는 공급라인; 및,A supply line connecting the fuel nozzle with a water supply source for supplying injection water; And,
    상기 공급라인 상에 마련되어, 상기 물공급원에서 상기 공급라인으로 분사수를 공급하는 공급펌프를 포함하는, 연료노즐의 건전성 평가장치.And a supply pump provided on the supply line to supply injection water from the water supply source to the supply line.
  3. 제2항에 있어서, The method of claim 2,
    상기 분사수 공급부는, 상기 공급펌프 후단의 상기 공급라인 상에 구비되어, 상기 연료노즐로 공급되는 분사수의 압력을 조절하는 압력조절부재를 더 포함하는, 연료노즐의 건전성 평가장치.The injection water supply unit further includes a pressure adjusting member provided on the supply line at the rear end of the supply pump to adjust the pressure of the injection water supplied to the fuel nozzle.
  4. 제1항에 있어서, The method of claim 1,
    상기 수위측정모듈은, 각각의 상기 측정조에 개별로 구비되어, 상기 측정조에 수용된 분사수의 수위를 측정하는 수위계를 더 포함하는, 연료노즐의 건전성 평가장치.The water level measurement module, which is provided separately in each of the measuring tank, further comprising a water level gauge for measuring the level of the injection water contained in the measuring tank, the fuel nozzle health evaluation device.
  5. 제1항에 있어서, The method of claim 1,
    상기 수위측정모듈은, 상기 측정조 내부에 수용된 분사수의 수면과 접촉되게 구비되어, 분사수의 분사에 의해 수면에서 발생하는 파동을 감쇄시키는 수면안정부재를 더 포함하는, 연료노즐의 건전성 평가장치.The water level measurement module further includes a surface stabilization member provided to be in contact with the water surface of the injection water accommodated in the measurement tank to attenuate waves generated at the water surface by the injection of the injection water. .
  6. 제5항에 있어서, The method of claim 5,
    상기 수면안정부재는, The sleep stabilizing member,
    상기 측정조 내면에 설치되고, 분사수의 수위에 따라 상하로 이동 가능하게 구비되는 회전축; 및,A rotating shaft installed on the inner surface of the measuring tank and provided to be movable up and down according to the level of the sprayed water; And,
    상기 회전축에 구비되어 회전축을 중심으로 회전 가능하게 구비되며 상기 측정조에 수용된 분사수의 수면에 접촉하는 안정체를 포함하는, 연료노즐의 건전성 평가장치.And a stabilizer provided on the rotating shaft to be rotatable about the rotating shaft and in contact with the water surface of the injection water accommodated in the measuring tank.
  7. 제1항에 있어서, The method of claim 1,
    상기 수위측정모듈은, 복수의 상기 측정조가 각각의 상기 연료노즐의 하부 위치에 고정되도록, 복수의 상기 측정조를 서로 연결하여 고정시키는 연결부재를 더 포함하는, 연료노즐의 건전성 평가장치.The water level measuring module further includes a connecting member for connecting and fixing the plurality of the measuring tanks to each other so that the plurality of the measuring tanks are fixed to the lower positions of the respective fuel nozzles.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 연결부재는, 복수의 상기 측정조의 측면에 환 형태로 결합되고, 상기 측정조와 탈부착 가능하게 구비되는, 연료노즐의 건전성 평가장치.The connecting member is coupled to the side of the plurality of the measuring tank in an annular shape, and provided with a detachable to the measuring tank, the fuel nozzle health evaluation device.
  9. 제1항에 있어서, The method of claim 1,
    상기 제어부는, 상기 수위측정모듈에서 측정한 각각의 상기 측정조의 수위 정보를 실시간으로 수집하고, 수집된 수위 정보에 의해 수위의 증가속도를 산출하여, 베르누이의 정리에 기초한 하기 수학식 1에 의해 각각의 상기 연료노즐의 분사계수를 산출하는, 연료노즐의 건전성 평가장치.The controller collects, in real time, the water level information of each of the measuring tanks measured by the water level measurement module, calculates an increase rate of the water level based on the collected water level information, and each of the following Equations 1 based on Bernoulli's theorem. A fuel nozzle health evaluation device for calculating an injection coefficient of the fuel nozzle.
    [수학식 1][Equation 1]
    Figure PCTKR2018001901-appb-I000008
    Figure PCTKR2018001901-appb-I000008
    (여기서, Cnoz는 연료노즐 내의 분사계수이고, Pnoz(t)은 연료노즐의 전단에 걸리는 압력값이고, Pamb는 측정조에 걸리는 압력이고, Anoz은 분사되는 연료노즐의 유효면적이고, As(t)는 시간에 따른 수면의 면적이고, dL(t)/dt는 계측조의 수위 증가속도)(C noz is the injection coefficient in the fuel nozzle, P noz (t) is the pressure value applied to the front end of the fuel nozzle, P amb is the pressure applied to the measuring tank, A noz is the effective area of the fuel nozzle to be injected, A s (t) is the surface area over time, and dL (t) / dt is the rate of increase
  10. 제1항에 있어서,The method of claim 1,
    상기 분사수 공급부는 복수의 상기 연료노즐에 동시에 분사수를 공급하고, 상기 수위측정모듈은 복수의 상기 측정조의 수위를 동시에 측정하며, 상기 제어부는 복수의 상기 연료노즐의 분사계수를 동시에 산출하고 기록하는, 연료노즐의 건전성 평가장치. The injection water supply unit simultaneously supplies injection water to a plurality of the fuel nozzles, the level measurement module simultaneously measures the levels of the plurality of measurement tanks, and the control unit simultaneously calculates and records the injection coefficients of the plurality of fuel nozzles. A fuel nozzle soundness evaluation device.
  11. 복수의 연료노즐을 구비하는 연료분사장치의 건전성을 평가하는 연료노즐의 건전성 평가방법에 있어서, In the fuel nozzle health evaluation method for evaluating the health of the fuel injection device having a plurality of fuel nozzles,
    복수의 상기 연료노즐에 각각 분사수를 공급하는 분사수 공급단계;An injection water supply step of supplying injection water to each of the plurality of fuel nozzles;
    상기 연료노즐에서 분사되어 측정조에 수용된 분사수의 수위를 측정하는 수위측정단계;A level measurement step of measuring the level of the injection water injected from the fuel nozzle and accommodated in the measurement tank;
    상기 수위측정단계에서 측정한 수위를 기초로 각각의 상기 연료노즐 별로 분사계수를 산출하는 분사계수 산출단계; 및,An injection coefficient calculating step of calculating an injection coefficient for each of the fuel nozzles based on the water level measured in the water level measuring step; And,
    상기 분사계수 산출단계에서 산출한 분사계수를 각각의 상기 연료노즐 별로 모니터링하고 기록 및 저장하여, 상기 연료노즐의 상태를 정량적으로 평가하는 분사계수 모니터링 및 기록단계를 포함하는 연료노즐의 건전성 평가방법.And the injection coefficient monitoring and recording step of quantitatively evaluating the state of the fuel nozzle by monitoring, recording, and storing the injection coefficient calculated in the injection coefficient calculation step for each of the fuel nozzles.
  12. 제11항에 있어서, The method of claim 11,
    상기 분사수 공급단계는, The injection water supply step,
    물공공급원에서 상기 연료노즐에 연결된 공급라인으로 분사수가 공급되도록 공급펌프를 구동하는 펌프구동단계;A pump driving step of driving a supply pump to supply injection water from a water supply source to a supply line connected to the fuel nozzle;
    공급되는 분사수의 압력과 설정한 공급압력의 편차가 정해진 오차범위 내인지 판단하는 단계; 및,Determining whether a deviation between the pressure of the injection water supplied and the set supply pressure is within a predetermined error range; And,
    상기 편차가 정해진 오차범위를 벗어나는 경우, 압력조절부재에 의해 상기 연료노즐의 전단으로 공급되는 분사수의 압력을 조정하는 압력조절단계를 포함하는, 연료노즐의 건전성 평가방법.And a pressure adjusting step of adjusting the pressure of the injection water supplied to the front end of the fuel nozzle by the pressure adjusting member when the deviation is out of a predetermined error range.
  13. 제11항에 있어서, The method of claim 11,
    상기 수위측정단계는, 각각의 상기 측정조에 개별로 구비된 수위계를 통해 상기 측정조에 수용된 분사수의 수위를 실시간으로 측정하는, 연료노즐의 건전성 평가방법.The level measurement step, the fuel nozzle health evaluation method for measuring in real time the level of the injection water received in the measuring tank through a water level meter provided in each of the measuring tank.
  14. 제11항에 있어서, The method of claim 11,
    상기 분사계수 산출단계는, 상기 수위측정단계에서 측정한 각각의 측정조의 수위 정보를 실시간으로 수집하고, 수집된 수위 정보에 의해 수위의 증가속도를 산출하여, 베르누이의 정리에 기초한 하기 수학식 1에 의해 각각의 연료노즐의 분사계수를 산출하는, 연료노즐의 건전성 평가방법.The step of calculating the injection coefficient, the water level information of each measuring tank measured in the water level measurement step in real time, calculates the rate of increase of the water level by the collected water level information, to the following equation 1 based on Bernoulli's theorem A method of evaluating the health of a fuel nozzle, wherein the injection coefficient of each fuel nozzle is calculated.
    [수학식 1][Equation 1]
    Figure PCTKR2018001901-appb-I000009
    Figure PCTKR2018001901-appb-I000009
    (여기서, Cnoz는 연료노즐 내의 분사계수이고, Pnoz(t)은 연료노즐의 전단에 걸리는 압력값이고, Pamb는 측정조에 걸리는 압력이고, Anoz은 분사되는 연료노즐의 유효면적이고, As(t)는 시간에 따른 수면의 면적이고, dL(t)/dt는 계측조의 수위 증가속도)(C noz is the injection coefficient in the fuel nozzle, P noz (t) is the pressure value applied to the front end of the fuel nozzle, P amb is the pressure applied to the measuring tank, A noz is the effective area of the fuel nozzle being injected, A s (t) is the surface area over time, and dL (t) / dt is the rate of increase
PCT/KR2018/001901 2018-02-02 2018-02-13 Apparatus and method for evaluating soundness of fuel nozzle WO2019151558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180013317A KR102052258B1 (en) 2018-02-02 2018-02-02 Apparatus and method for soundness evaluation of fuel nozzle
KR10-2018-0013317 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019151558A1 true WO2019151558A1 (en) 2019-08-08

Family

ID=67478353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001901 WO2019151558A1 (en) 2018-02-02 2018-02-13 Apparatus and method for evaluating soundness of fuel nozzle

Country Status (2)

Country Link
KR (1) KR102052258B1 (en)
WO (1) WO2019151558A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102387858B1 (en) * 2021-02-04 2022-04-18 주식회사 성신(Eng) Test system of shower pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090006451U (en) * 2007-12-24 2009-06-29 한국동서발전(주) The Injection Test Device of Fuel Nozzle for Gas Turbine
KR101016566B1 (en) * 2010-12-27 2011-02-24 주식회사 투유 Injector tester and measuring method of injection quantity using the same
KR20120045237A (en) * 2010-10-29 2012-05-09 한국항공대학교산학협력단 A device for measuring droplet mass flux distributions to test spray injection system and the measuring method
KR101466496B1 (en) * 2013-06-28 2014-11-28 한국남부발전 주식회사 Apparatus for testing injection nozzle
JP2016044661A (en) * 2014-08-26 2016-04-04 株式会社小野測器 Injection measuring device and injection measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090006451U (en) * 2007-12-24 2009-06-29 한국동서발전(주) The Injection Test Device of Fuel Nozzle for Gas Turbine
KR20120045237A (en) * 2010-10-29 2012-05-09 한국항공대학교산학협력단 A device for measuring droplet mass flux distributions to test spray injection system and the measuring method
KR101016566B1 (en) * 2010-12-27 2011-02-24 주식회사 투유 Injector tester and measuring method of injection quantity using the same
KR101466496B1 (en) * 2013-06-28 2014-11-28 한국남부발전 주식회사 Apparatus for testing injection nozzle
JP2016044661A (en) * 2014-08-26 2016-04-04 株式会社小野測器 Injection measuring device and injection measuring method

Also Published As

Publication number Publication date
KR102052258B1 (en) 2020-01-08
KR20190093912A (en) 2019-08-12

Similar Documents

Publication Publication Date Title
US6354071B2 (en) Measurement method for detecting and quantifying combustor dynamic pressures
EP2468837A1 (en) Method and device for assessing through-wall leakage of a heating wall of a coke oven
JPH07288993A (en) Online diagnostic system of rotary electric machine
US20080052040A1 (en) State monitoring of machines and technical installations
WO2019151558A1 (en) Apparatus and method for evaluating soundness of fuel nozzle
KR20000011630A (en) Method and apparatus for inspecting steam traps, and management system for managing steam traps
JP2008097643A (en) Remote operation support method and system for power generating facility
CN105292142A (en) Method and device for monitoring cleaning period of air filter in locomotive
CN110285045A (en) A kind of nuclear power plant RCP main pump vibration phase monitoring system and method
CN105880502A (en) Device and method for detecting working state of nozzles in continuous-casting secondary cooling area in real time
CN113669294A (en) Induced draft fan stall early warning method
US5517852A (en) Diagnostic performance testing for gas turbine engines
US4617638A (en) Method and system for determining mass temperature in a hostile environment
WO2018124785A2 (en) Fuel cell device and control method therefor
WO2019088368A1 (en) System and method for predicting wear of power-generating boiler tube
CN108801320A (en) A kind of diagnostic method of natural gas metering system
WO2019146999A1 (en) System and method for detecting battery cell swelling
CN205644232U (en) Probe unit is examined to fire
CN114136639A (en) Flame tube pressure drop measuring device
JPH07128098A (en) Remote diagnostic system for instrumentation facility
CN211263518U (en) Flue gas flow velocity measuring instrument
CN214333870U (en) Non-immersion type nuclear power station valve data acquisition, storage and transmission device
CN217313903U (en) Dust removal ash bucket blanking pipe detection device
CN103838170A (en) Method and system for use in condition monitoring of pressure vessels
CN218439705U (en) A capability test platform for on-vehicle oil-free screw compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903955

Country of ref document: EP

Kind code of ref document: A1