JP4813961B2 - Ultrasonic sound pressure measuring device - Google Patents

Ultrasonic sound pressure measuring device Download PDF

Info

Publication number
JP4813961B2
JP4813961B2 JP2006121568A JP2006121568A JP4813961B2 JP 4813961 B2 JP4813961 B2 JP 4813961B2 JP 2006121568 A JP2006121568 A JP 2006121568A JP 2006121568 A JP2006121568 A JP 2006121568A JP 4813961 B2 JP4813961 B2 JP 4813961B2
Authority
JP
Japan
Prior art keywords
sound pressure
ultrasonic
ultrasonic sound
value
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006121568A
Other languages
Japanese (ja)
Other versions
JP2007292625A (en
JP2007292625A5 (en
Inventor
真樹 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Denki Engineering Co Ltd
Original Assignee
Hitachi Kokusai Denki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Denki Engineering Co Ltd filed Critical Hitachi Kokusai Denki Engineering Co Ltd
Priority to JP2006121568A priority Critical patent/JP4813961B2/en
Publication of JP2007292625A publication Critical patent/JP2007292625A/en
Publication of JP2007292625A5 publication Critical patent/JP2007292625A5/ja
Application granted granted Critical
Publication of JP4813961B2 publication Critical patent/JP4813961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体ウエハー、ガラスマスク、液晶ガラス基板およびハードディスク盤などの超音波振動による洗浄に関し、特に超音波振動の超音波音圧測定に関する。   The present invention relates to cleaning of semiconductor wafers, glass masks, liquid crystal glass substrates, hard disk boards and the like by ultrasonic vibration, and more particularly to ultrasonic sound pressure measurement of ultrasonic vibration.

半導体ウエハー、液晶用のガラス、ハードディスク盤等の精密加工品の精密洗浄には、高周波の超音波洗浄装置が用いられている。
精密洗浄の対象とする汚れは、1μm以下の付着粒子等であり、洗浄溜槽内に満たされた洗浄液中を伝わる超音波振動、又は、洗浄液と超音波振動との相乗効果により、汚れを剥離させるものである。
年々、半導体ウエハーおよび液晶用のガラスに代表されるように、被洗浄物の外形の大きさが大きくなる上、回路パターンの微細化が進み高密度回路が形成されるようになり、半導体ウエハーおよび液晶用のガラスの製造過程に組み入れられる洗浄装置にもますます洗浄むらを発生させない均一な高精密の洗浄が行える洗浄装置が求められるようになってきた。
従って、高精密の洗浄が行える超音波洗浄装置の洗浄効果の調査や、洗浄装置自体の性能評価の方法として、超音波音圧測定が広く用いられている。従来は、瞬時・瞬時の超音波音圧を電圧などにより表示器に表示するポータブル超音波音圧計を用いられていた。このような超音波音圧計に備えられた音圧検出プローブは、超音波周波数や周囲温度による偏差が生じ、また指示計が平均値指示であるため急峻な超音波音圧変化に追従できなかったりして、一般には超音波音圧の絶対値測定が行えるものではなかった。
近年の半導体などの精密洗浄用の超音波洗浄装置では、SI単位系によった超音波音圧測定を求められ、かつ、時間経過のデータなどにより品質評価が行える測定器が要望されてきた。
A high-frequency ultrasonic cleaning apparatus is used for precision cleaning of precision processed products such as semiconductor wafers, liquid crystal glass, and hard disk boards.
The dirt that is subject to precision cleaning is adhered particles of 1 μm or less, and the dirt is peeled off by the ultrasonic vibration transmitted through the cleaning liquid filled in the cleaning tank or the synergistic effect of the cleaning liquid and ultrasonic vibration. Is.
Every year, as represented by semiconductor wafers and glass for liquid crystals, the size of the object to be cleaned increases, and the circuit pattern becomes finer and high density circuits are formed. There has been an increasing demand for a cleaning apparatus that can perform uniform and high-precision cleaning that does not cause uneven cleaning even in a cleaning apparatus incorporated in the manufacturing process of glass for liquid crystals.
Therefore, ultrasonic sound pressure measurement is widely used as a method for investigating the cleaning effect of an ultrasonic cleaning apparatus capable of performing high-precision cleaning and for evaluating the performance of the cleaning apparatus itself. Conventionally, a portable ultrasonic sound pressure meter that displays instantaneous and instantaneous ultrasonic sound pressure on a display using voltage or the like has been used. The sound pressure detection probe provided in such an ultrasonic sound pressure meter has a deviation due to the ultrasonic frequency and the ambient temperature, and the indicator is an average value indication, so it cannot follow a sharp change in the ultrasonic sound pressure. In general, the absolute value of ultrasonic sound pressure cannot be measured.
2. Description of the Related Art In recent ultrasonic cleaning apparatuses for precision cleaning of semiconductors and the like, there has been a demand for a measuring instrument that requires ultrasonic sound pressure measurement using an SI unit system and that can perform quality evaluation based on time-lapse data.

図4は、従来技術の超音波振動体を用いて大型化した被洗浄物を洗浄する超音波洗浄装置による洗浄物の洗浄状況および超音波音圧測定の状況を表わす断面斜視図である。
洗浄液溜槽11の下面には超音波洗浄液の噴射のための孔であるスリット形状を有した洗浄液噴射孔13が形成されている。
この洗浄液噴射孔13(スリット)から超音波振動を伴った噴射洗浄液14が被洗浄物17の洗浄面に対して噴射して付着異物を除去する。なお洗浄液は、洗浄液供給口15より所定の液体圧力が加えられて洗浄液溜槽11内に供給される。
そこで例えば、液晶用のガラスのように大きな洗浄物であれば、被洗浄物17を矢印(X;スリット方向に直角)方向に移動させながら、洗浄物の全面をくまなく洗浄させる。
超音波音圧測定は、スリット13から噴射される噴射洗浄液14の超音波音圧を測定するために被洗浄物17に換え、ポータブル超音波音圧計20の音圧検出プローブ21を噴射される洗浄液14に充て、スリット13方向に移動させながら、およびスリット13と交差する方向に移動させながら超音波音圧を検出する。音圧検出プローブ21に有する音圧センサー(圧電素子)の検出電流がポータブル超音波音圧計20に入力され、ここで電圧値(Vrms)の指示計で表示され目視で音圧値として読み取る。このようにしてスリット13の全面の音圧の変化状況を指示計の読みで認識して行く。
従来は、洗浄箇所に超音波音圧むらが生じた場合これを電圧値(Vrms)の変化量として捉えるようなものであった。電圧値(Vrms)は平均値表示であるので、速い急峻な変化には追従できていない。
図5は、従来の超音波音圧測定装置で測定された測定位置対音圧特性図である。図では示されていないが周波数による超音波音圧差、温度による超音波音圧差が生じている。
FIG. 4 is a cross-sectional perspective view showing a state of cleaning of a cleaning object and a state of ultrasonic sound pressure measurement by an ultrasonic cleaning apparatus that cleans an object to be cleaned that has been enlarged using a conventional ultrasonic vibrator.
A cleaning liquid injection hole 13 having a slit shape which is a hole for spraying the ultrasonic cleaning liquid is formed on the lower surface of the cleaning liquid reservoir 11.
The jet cleaning liquid 14 accompanied by ultrasonic vibration is jetted from the cleaning liquid jet holes 13 (slits) onto the cleaning surface of the object 17 to remove the adhered foreign matter. The cleaning liquid is supplied into the cleaning liquid reservoir 11 by applying a predetermined liquid pressure from the cleaning liquid supply port 15.
Therefore, for example, in the case of a large cleaning object such as glass for liquid crystal, the entire surface of the cleaning object is cleaned while moving the object 17 to be cleaned in the direction of the arrow (X; perpendicular to the slit direction).
In the ultrasonic sound pressure measurement, the cleaning liquid sprayed from the sound pressure detection probe 21 of the portable ultrasonic sound pressure meter 20 is used instead of the cleaning object 17 in order to measure the ultrasonic sound pressure of the spray cleaning liquid 14 sprayed from the slit 13. 14, the ultrasonic sound pressure is detected while moving in the direction of the slit 13 and moving in the direction intersecting the slit 13. The detection current of the sound pressure sensor (piezoelectric element) included in the sound pressure detection probe 21 is input to the portable ultrasonic sound pressure meter 20, where it is displayed on a voltage value (Vrms) indicator and visually read as a sound pressure value. In this way, the change of the sound pressure on the entire surface of the slit 13 is recognized by reading the indicator.
Conventionally, when the ultrasonic sound pressure unevenness occurs in the cleaning portion, this is regarded as a change amount of the voltage value (Vrms). Since the voltage value (Vrms) is an average value display, it cannot follow a rapid and steep change.
FIG. 5 is a measurement position vs. sound pressure characteristic diagram measured by a conventional ultrasonic sound pressure measurement device. Although not shown in the figure, an ultrasonic sound pressure difference due to frequency and an ultrasonic sound pressure difference due to temperature are generated.

以上の超音波音圧測定を改善するようなものとして、音圧センサー手段を有し、電圧値から超音波音圧値を測定し、超音波音圧波形の周波数を算出し、この周波数に対応する補正係数を用いて超音波音圧値を補正し、補正された超音波音圧値を表示する超音波音圧測定装置がある。(例えば、特許文献1参照)。   As a measure to improve the above ultrasonic sound pressure measurement, it has sound pressure sensor means, measures the ultrasonic sound pressure value from the voltage value, calculates the frequency of the ultrasonic sound pressure waveform, and corresponds to this frequency There is an ultrasonic sound pressure measurement device that corrects an ultrasonic sound pressure value using a correction coefficient to display the corrected ultrasonic sound pressure value. (For example, refer to Patent Document 1).

特開2004−251845号公報(第7頁、図1)Japanese Patent Laying-Open No. 2004-251845 (page 7, FIG. 1)

年々、洗浄対象物である半導体ウエハーや液晶ガラスのような微細加工品は外形の大型化、回路の微細化が進み、精密洗浄の精度向上が求められて来ており、超音波洗浄装置の超音波振動の超音波音圧不均一に起因する微細粒子等の汚れ剥離不徹底や、外形の大型化、回路微細化が進むに伴い、同種の超音波洗浄装置を複数設備した生産ラインでの超音波洗浄装置間での洗浄特性の差が無視できなくなることが問題とされるようになり、更なる均一な超音波振動を発生させ、かつ、装置間での特性差が生じないような、同一精度を有する超音波洗浄装置が求められてきた。
超音波洗浄装置の高精度化に伴い、これを特性評価する測定装置も高精度化の要求が求められてきた。
超音波音圧測定装置に用いられる音圧出検出プローブは、音圧検出プローブに内蔵されているセンサーとして圧電素子が用いられる。この圧電素子が音圧を検出し、その超音波音圧が電圧(電流)の変化量として変換されて取り出されるものである。圧電素子はもともと周波数特性および温度特性を持っており、測定環境の違いによりセンサー感度が異なってくる問題がある。
更に、超音波洗浄装置では通常、純水およびその他の洗浄液といった液体に超音波を照射して洗浄が行われる。この液体中の超音波音圧を測定する場合、液体の流動、液面および装置内壁での超音波の反射などの状況により、超音波音圧値の検出値が大きく変動してしまうので、音圧の特性値として表わしにくいという問題点があった。
Every year, microfabricated products such as semiconductor wafers and liquid crystal glass, which are objects to be cleaned, are becoming larger in size and circuits, and there is a need for improved precision cleaning. Ultra-sound in the production line equipped with multiple ultrasonic cleaning devices of the same type as dirt particles such as fine particles due to non-uniformity of ultrasonic sound pressure due to sonic vibration, thorough removal of dirt, increase in size, and circuit miniaturization. The difference is that the difference in cleaning characteristics between sonic cleaning devices becomes non-negligible, and it is the same that causes more uniform ultrasonic vibrations and no difference in characteristics between the devices. There has been a demand for an ultrasonic cleaning apparatus having accuracy.
Along with the improvement in accuracy of ultrasonic cleaning devices, there has been a demand for higher accuracy in measuring devices that characterize the ultrasonic cleaning devices.
The sound pressure detection probe used in the ultrasonic sound pressure measurement device uses a piezoelectric element as a sensor built in the sound pressure detection probe. This piezoelectric element detects a sound pressure, and the ultrasonic sound pressure is converted and extracted as a change amount of voltage (current). Piezoelectric elements originally have frequency characteristics and temperature characteristics, and there is a problem that sensor sensitivity varies depending on the measurement environment.
Further, in an ultrasonic cleaning apparatus, cleaning is usually performed by irradiating a liquid such as pure water and other cleaning liquid with ultrasonic waves. When measuring the ultrasonic sound pressure in this liquid, the detection value of the ultrasonic sound pressure value varies greatly depending on the flow of the liquid, the reflection of ultrasonic waves on the liquid surface and the inner wall of the device, etc. There was a problem that it was difficult to express as a characteristic value of pressure.

本発明の目的は、上記従来技術の問題点を解決するために、超音波音圧の絶対値を表わす測定が行え、その超音波音圧測定値を表示することのできる超音波音圧測定装置を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, an ultrasonic sound pressure measuring device capable of performing measurement representing the absolute value of ultrasonic sound pressure and displaying the measured value of ultrasonic sound pressure. Is to provide.

この目的を達成するために、本発明の超音波音圧測定装置は、超音波洗浄装置に備えられた超音波振動板から照射される超音波振動の洗浄液内の音圧を測定する超音波音圧測定装置であって、
音圧検出プローブと、
該音圧検出プローブが検出した検出電圧値を入力とし、該検出電圧値を表示し、パソコンとの通信インタフェース端子を有する電圧測定手段と、
該電圧測定手段の出力および所定のパラメータ情報が該通信インタフェース端子を介して入力とされ、必要な計算、表示および記録を行うパソコンと、
前記音圧検出プローブの先端の温度を温度情報として検出する温度センサーと、
前記超音波洗浄装置の前記超音波振動の周波数情報および前記温度センサーによって検出された前記温度情報を前記所定のパラメータ情報として入力とし、通信インタフェース変換して前記パソコンへ伝達する制御器と、を備え、
前記パソコンは、前記超音波振動の周波数情報の所望の範囲における音圧検出プローブの周波数感度のパラメータ表と、前記プローブの先端の温度の所望の範囲における音圧検出プローブの温度感度のパラメータ表と、および電圧値・パスカル値変換表とを予めメモリに記憶しておき、
該複数のパラメータ表を用いて、前記入力された超音波音圧の電圧値に対して、補正と変換の計算処理を行うことにより、音圧測定時の音圧プローブの周波数感度や、温度感度に起因した誤差の生じない絶対値単位の超音波音圧測定値を前記音圧検出プローブの移動方向の距離に応じたピーク値と平均値で正確な出力とし、表示とするように構成とした。
更に、前記電圧測定手段はオシロスコープ又は高周波電圧計である。
更に、前記パソコンは、前記超音波音圧測定値の時間的変化を記録し、一定時間内の変化を統計的手法にて解析する構成としたものである。
In order to achieve this object, the ultrasonic sound pressure measuring device of the present invention is an ultrasonic sound device for measuring the sound pressure in a cleaning liquid of ultrasonic vibration irradiated from an ultrasonic vibration plate provided in the ultrasonic cleaning device. A pressure measuring device,
A sound pressure detection probe;
Voltage detection means having the detected voltage value detected by the sound pressure detection probe as input, displaying the detected voltage value, and having a communication interface terminal with a personal computer;
A personal computer that outputs the voltage measurement means and predetermined parameter information is input via the communication interface terminal, and performs necessary calculations, display, and recording;
A temperature sensor that detects the temperature of the tip of the sound pressure detection probe as temperature information;
A controller that receives the frequency information of the ultrasonic vibration of the ultrasonic cleaning device and the temperature information detected by the temperature sensor as the predetermined parameter information, converts the communication interface, and transmits the converted information to the personal computer. ,
The personal computer has a parameter table of frequency sensitivity of the sound pressure detection probe in a desired range of the frequency information of the ultrasonic vibration, and a parameter table of temperature sensitivity of the sound pressure detection probe in a desired range of the temperature of the tip of the probe; , And the voltage value / Pascal value conversion table are stored in advance in the memory,
By using the plurality of parameter tables to perform correction and conversion calculation processing on the input ultrasonic sound pressure voltage value, the frequency sensitivity and temperature sensitivity of the sound pressure probe at the time of sound pressure measurement are obtained. The ultrasonic sound pressure measurement value in absolute value units that does not cause an error due to the sound pressure detection probe is output accurately with a peak value and an average value corresponding to the distance in the moving direction of the sound pressure detection probe , and is displayed. .
Further, the voltage measuring means is an oscilloscope or a high frequency voltmeter.
Furthermore, the personal computer is configured to record temporal changes in the ultrasonic sound pressure measurement values and analyze the changes within a predetermined time by a statistical method.

本発明を実施することにより、測定時における各種の条件によって音圧検出プローブの感度が異なるので、これを補正して絶対値単位とした超音波音圧値が得られるので、更に、平均指示値および瞬時指示値を表示できるので、更に、超音波音圧値の時間経過を統計的に算出できるので超音波音圧が分布として識別できるので、超音波洗浄装置の高精度な測定ができ、信頼性の高い評価が行える
具体的指標としては、図2超音波音圧分布特性図により従来の7倍程度の測定位置分解能が得られ、図3超音波音圧の周波数特性図により周波数測定精度は従来の3倍程度の改善が得られ、高精度化の特殊効果が得られた。
By carrying out the present invention, since the sensitivity of the sound pressure detection probe varies depending on various conditions at the time of measurement, an ultrasonic sound pressure value in absolute value units can be obtained by correcting this sensitivity. In addition, since the time lapse of the ultrasonic sound pressure value can be calculated statistically, the ultrasonic sound pressure can be identified as a distribution, so that the ultrasonic cleaning device can be measured with high accuracy and reliability. As a specific index that can be evaluated highly, the measurement position resolution about 7 times that of the conventional measurement position is obtained from the ultrasonic sound pressure distribution characteristic diagram in FIG. 2, and the frequency measurement accuracy is shown in FIG. An improvement of about three times that of the prior art was obtained, and a special effect of higher accuracy was obtained.

図1は本発明の超音波音圧測定装置のシステム系統図である。
1は音圧検出プローブであり、これに内蔵されているセンサーには超音波複合圧電素子が用いられている。この超音波複合圧電素子が超音波音圧を検出し、その超音波音圧が電圧(電流)の変化量として変換されて取り出されるものである。図示していないが音圧検出プローブを移動させる移動機構を有し、超音波洗浄装置のスリット面をくまなく移動させることができる。
2は電圧測定手段、例えばオシロスコープまたは高周波電圧計であり、超音波複合圧電素子1にて検出された電圧(Vp−p)を入力とし、この電圧の変化量を超音波音圧波形にして表示すると同時に、GPIBインタフェースを介して超音波音圧信号を出力する。
3はパソコンであり、オシロスコープから出力される超音波音圧波形を示す電圧(Vp−p)値がGPIB(通信)インタフェースを介して入力され、超音波洗浄装置の内壁形状情報をキーインして、補正処理プログラム、絶対値換算プログラムおよび統計処理プログラムの駆動により計算処理された超音波音圧データの記憶・表示を行う。
4は制御器であり、温度センサーからの温度情報および超音波洗浄装置の励振電源からの周波数情報を入力し、これをGPIBインタフェース信号に変換してパソコンへ伝達するものである。ここで超音波音圧測定装置及び超音波洗浄装置の電源制御を行ってもよい。
5は温度センサーであり、音圧検出プローブ1に装着されている音圧センサー付近に付加し、温度情報を出力する。
本発明の超音波音圧測定装置は、上記の超音波音圧検出プローブ1、オシロスコープ2、パソコン3、制御器4、温度センサー5および音圧検出プローブを移動させる移動機構を備えたものである。
10は噴射形超音波洗浄装置、11は洗浄液溜槽、12は超音波振動体、13は洗浄液噴射孔(スリット)、14は噴射洗浄液、15は洗浄液供給口、16は高周波励振電源、17は被洗浄物である。
噴射形超音波洗浄装置10は、噴射洗浄液14を噴射させるための孔である洗浄液噴射孔(スリット)13および洗浄液供給口15を有する洗浄液溜槽11と、洗浄液溜槽11の中にあって洗浄液中に超音波を伝搬させる高周波励振電源16によって1MHz近傍の周波数で高周波励振させられる超音波振動体12とにより構成されている。
実際の洗浄においては、超音波振動板から照射されスリット13から超音波振動を伴って噴射する噴射洗浄液14がX方向に移動する被洗浄物17に向けて流出され洗浄が行われ付着異物を除去する。
FIG. 1 is a system diagram of an ultrasonic sound pressure measuring apparatus according to the present invention.
Reference numeral 1 denotes a sound pressure detection probe, and an ultrasonic composite piezoelectric element is used for a sensor built in the probe. This ultrasonic composite piezoelectric element detects an ultrasonic sound pressure, and the ultrasonic sound pressure is converted and taken out as a change amount of voltage (current). Although not shown, it has a moving mechanism for moving the sound pressure detection probe, and can move the slit surface of the ultrasonic cleaning apparatus throughout.
Reference numeral 2 denotes a voltage measuring means, for example, an oscilloscope or a high-frequency voltmeter, which receives the voltage (Vp-p) detected by the ultrasonic composite piezoelectric element 1 and displays the change amount of this voltage as an ultrasonic sound pressure waveform. At the same time, an ultrasonic sound pressure signal is output via the GPIB interface.
3 is a personal computer, and the voltage (Vp-p) value indicating the ultrasonic sound pressure waveform output from the oscilloscope is input via the GPIB (communication) interface, and the inner wall shape information of the ultrasonic cleaning device is keyed in. The ultrasonic sound pressure data calculated and processed by the correction processing program, the absolute value conversion program, and the statistical processing program is stored and displayed.
Reference numeral 4 denotes a controller which inputs temperature information from the temperature sensor and frequency information from the excitation power source of the ultrasonic cleaning apparatus, converts this into a GPIB interface signal and transmits it to the personal computer. Here, power control of the ultrasonic sound pressure measuring device and the ultrasonic cleaning device may be performed.
Reference numeral 5 denotes a temperature sensor, which is added near the sound pressure sensor mounted on the sound pressure detection probe 1 and outputs temperature information.
The ultrasonic sound pressure measuring device of the present invention is provided with a moving mechanism for moving the ultrasonic sound pressure detecting probe 1, the oscilloscope 2, the personal computer 3, the controller 4, the temperature sensor 5, and the sound pressure detecting probe. .
10 is a jet type ultrasonic cleaning device, 11 is a cleaning liquid reservoir, 12 is an ultrasonic vibrator, 13 is a cleaning liquid injection hole (slit), 14 is a cleaning liquid, 15 is a cleaning liquid supply port, 16 is a high frequency excitation power source, and 17 is a target. It is a washed product.
The jet ultrasonic cleaning apparatus 10 is provided in a cleaning liquid reservoir 11 having a cleaning liquid injection hole (slit) 13 and a cleaning liquid supply port 15 which are holes for injecting the spray cleaning liquid 14, and in the cleaning liquid reservoir 11. The ultrasonic vibration body 12 is configured to be excited at a frequency near 1 MHz by a high-frequency excitation power source 16 for propagating ultrasonic waves.
In actual cleaning, the spray cleaning liquid 14 that is irradiated from the ultrasonic vibration plate and sprayed from the slit 13 with ultrasonic vibration flows out toward the cleaning object 17 that moves in the X direction, and cleaning is performed to remove adhered foreign matters. To do.

上記本発明の実施例の超音波音圧測定装置のシステムの動作概要を説明する。
先ず超音波洗浄装置10での通常の洗浄動作を説明する。洗浄液供給口15から水圧を加えられた洗浄液が供給され、洗浄液溜槽11に洗浄液が溜められ、超音波振動体12を形成している超音波振動素子が発振した振動を共振させる振動板を介して超音波振動が洗浄液に伝搬され、超音波振動を伴った加圧された噴射洗浄液14がスリット13から噴射し、この噴射洗浄液が被洗浄物17の洗浄面に対し放射され、このことによって被洗浄物17がスリット形状に洗浄が行われ、被洗浄物17がX方向(スリット方向に直角方向)に移動することによって被洗浄物17が面に対しての洗浄が行われ、洗浄物の全面をくまなく洗浄し、付着異物を除去する動作である。
次に、本発明の超音波音圧測定装置の超音波音圧測定の動作を説明する。
超音波音圧測定は、スリット13から噴射される噴霧洗浄液14の超音波音圧を測定するために被洗浄物17に換え、超音波複合圧電素子等が組み込まれた音圧検出プローブ1を噴射される噴霧洗浄液14に充て、スリット13方向およびスリット13と交差する方向に移動させながら超音波音圧を検出する。
音圧検出プローブ1に有する音圧センサー(超音波複合圧電素子等)の検出電流(電圧)オシロスコープ2に入力され、ここで電圧値(Vp−p)の指示値で超音波音圧波形が表示され、目視で超音波音圧波形から超音波音圧値の変化量として電圧値で読み取ることができる。同時に電圧値(Vp−p)の指示値で超音波音圧波形を表わす超音波音圧波形信号がオシロスコープ2に有するGPIBインタフェースから出力されパソコンに入力される。
パソコンは、超音波振動の周波数の所望の範囲における超音波振動の音圧値を周波数(音圧検出プローブの周波数感度)パラメータ表にし、プローブの先端の温度の所望の範囲における超音波振動の音圧値を温度(音圧検出プローブの温度感度)パラメータ表にし、必要により超音波洗浄装置の内壁形状の所望の形状種類における超音波振動の音圧値を内壁形状パラメータ表にし、および電圧値・パスカル値変換表にした各表を予めメモリに記憶しておき、この各表を用いて、入力された超音波音圧の電圧値に対して補正と変換の計算処理を行うことにより、音圧測定時の音圧プローブの周波数感度や、温度感度に起因した誤差の生じない絶対値単位の超音波音圧測定値を得て正確な出力・表示するものである。
補正処理プログラムの処理動作により、温度パラメータ表と温度情報による補正、周波数パラメータ表と周波数情報による補正、内壁形状パラメータ表と内壁形状情報によって槽内反射による補正および水圧による補正等の各種の補正処理を行う。
次に、絶対値換算プログラムの処理動作により、補正された超音波音圧波形信号は電圧値(Vp−p)から超音波音圧値(SI単位kPa;圧力パスカル)に換算するための絶対値計算が行われ、これを記憶し、表示する。
更に、統計処理プログラムの処理動作により、メモリに記憶された時系列の絶対値となった超音波音圧データを用いて統計処理の計算が行われ、その結果の記憶、表示が行われる。
補正処理プログラムには、音圧検出プローブの検出された超音波音圧が超音波振動の周波数変化および温度変化に対してどのように変化するか、これを補正データとして、予め校正された周波数パラメータ表、温度パラメータ表、内壁形状パラメータ表、電圧・パスカル変換表の4つの表(テーブル)テーブルが補正・変換のために備えられている。
このようにしてスリット13から噴射される超音波洗浄液における圧力の絶対値単位とした超音波音圧測定が行える構成とし、スリット形状全面の音圧の分布状況をパソコンの表示またはプリントにて認識し、超音波洗浄装置10の洗浄特性が高精度にて評価される。


An outline of the operation of the system of the ultrasonic sound pressure measuring apparatus according to the embodiment of the present invention will be described.
First, a normal cleaning operation in the ultrasonic cleaning apparatus 10 will be described. A cleaning liquid to which water pressure is applied is supplied from the cleaning liquid supply port 15 , the cleaning liquid is stored in the cleaning liquid reservoir 11, and a vibration plate that resonates vibrations oscillated by the ultrasonic vibration element forming the ultrasonic vibrator 12. The ultrasonic vibration is propagated to the cleaning liquid, and the pressurized jet cleaning liquid 14 accompanied by the ultrasonic vibration is jetted from the slit 13, and this jet cleaning liquid is radiated to the cleaning surface of the object 17 to be cleaned. The object 17 is cleaned in a slit shape, and the object 17 is cleaned in the X direction (perpendicular to the slit direction) so that the object 17 is cleaned with respect to the surface. This is an operation of cleaning all over and removing adhering foreign matter.
Next, the operation of ultrasonic sound pressure measurement of the ultrasonic sound pressure measurement apparatus of the present invention will be described.
In the ultrasonic sound pressure measurement, in order to measure the ultrasonic sound pressure of the spray cleaning liquid 14 sprayed from the slit 13, the sound pressure detection probe 1 in which an ultrasonic composite piezoelectric element or the like is incorporated is used instead of the cleaning object 17. The ultrasonic sound pressure is detected while moving in the direction of the slit 13 and the direction crossing the slit 13 while being applied to the spray cleaning liquid 14 to be applied .
A detection current (voltage) of a sound pressure sensor (such as an ultrasonic composite piezoelectric element) included in the sound pressure detection probe 1 is input to an oscilloscope 2, where an ultrasonic sound pressure waveform is displayed with an indication value of a voltage value (Vp-p). Then, it can be visually read as a change amount of the ultrasonic sound pressure value from the ultrasonic sound pressure waveform. At the same time, an ultrasonic sound pressure waveform signal representing the ultrasonic sound pressure waveform with the indicated value of the voltage value (Vp-p) is output from the GPIB interface of the oscilloscope 2 and input to the personal computer.
The personal computer converts the sound pressure value of the ultrasonic vibration in a desired range of the ultrasonic vibration frequency into a frequency (frequency sensitivity of the sound pressure detection probe) parameter table, and the sound of the ultrasonic vibration in the desired range of the probe tip temperature. The pressure value is a temperature (temperature sensitivity of the sound pressure detection probe) parameter table, and if necessary, the sound pressure value of ultrasonic vibration in the desired shape type of the inner wall shape of the ultrasonic cleaning device is changed to the inner wall shape parameter table. Each table converted to a Pascal value conversion table is stored in advance in a memory, and by using each table, a calculation process for correction and conversion is performed on the voltage value of the input ultrasonic sound pressure. An ultrasonic sound pressure measurement value in absolute value units that does not cause an error due to the frequency sensitivity of the sound pressure probe at the time of measurement or temperature sensitivity is obtained and output and displayed accurately.
Various correction processes such as correction by temperature parameter table and temperature information, correction by frequency parameter table and frequency information, correction by tank reflection by inner wall shape parameter table and inner wall shape information, and correction by water pressure by processing operation of correction processing program I do.
Next, the absolute value for converting the corrected ultrasonic sound pressure waveform signal from the voltage value (Vp-p) to the ultrasonic sound pressure value (SI unit kPa; pressure Pascal) by the processing operation of the absolute value conversion program. Calculations are made and stored and displayed.
Further, statistical processing is calculated by using the ultrasonic sound pressure data, which is the time-series absolute value stored in the memory, by the processing operation of the statistical processing program, and the result is stored and displayed.
In the correction processing program, how the ultrasonic sound pressure detected by the sound pressure detection probe changes with respect to the frequency change and temperature change of the ultrasonic vibration, this is used as correction data, and the frequency parameter is calibrated in advance. Four tables (tables) including a table, a temperature parameter table, an inner wall shape parameter table, and a voltage / pascal conversion table are provided for correction and conversion.
In this way, the ultrasonic sound pressure can be measured in the absolute value unit of the pressure in the ultrasonic cleaning liquid ejected from the slit 13, and the distribution of the sound pressure over the entire slit shape is recognized on the display or print of a personal computer. The cleaning characteristics of the ultrasonic cleaning apparatus 10 are evaluated with high accuracy.


図2は本発明の超音波音圧測定装置の超音波音圧分布特性図である。
横軸が測定位置(単位mm)を表わし、超音波音圧検出プローブ1の移動方向(Y)の距離である。例示の測定位置はスタート(0mm)から終点(110mm)であり、超音波洗浄装置10のスリット13の長さ方向の距離である。
縦軸が測定された超音波音圧値(単位kPa)を表わし、超音波音圧の絶対値として測定された値である。
本発明の超音波音圧測定装置から得られる超音波音圧分布特性曲線は実線で示されるA特性曲線および点線で示されるB特性曲線がある。
A特性曲線は速い超音波音圧変化を捉えることができるように、超音波音圧の瞬間最大値(ピーク検出)を求めた特性曲線である。このA特性曲線からは、測定対象である超音波洗浄装置10の超音波音圧が瞬時低下して超音波音圧むらを起こすような位置を評価でき、および超音波音圧が瞬時高騰して被洗浄物にダメージを与えるような位置を評価できる。A特性曲線は、温度および周波数の補正処理と超音波音圧の電圧値から超音波音圧のパスカル圧力値へ変換する絶対値換算処理とが行われたものとしてパソコンから表示およびプリント出力されたものである。
B特性曲線は比較的遅い超音波音圧変化となる平均値を捉えることができるように、超音波音圧の平均値を求めた特性曲線である。このB特性曲線からは、測定対象である超音波洗浄装置10の超音波音圧測定位置全体の超音波音圧分布状況を概念的に把握する評価ができる。図示はしていないが、標準偏差の把握、上限規定値・下限規定値を逸脱する超音波音圧値となる位置の把握などの統計量が得られ品質・信頼性の評価が行われる。B特性曲線は、温度および周波数の補正処理と超音波音圧の電圧値から超音波音圧のパスカル圧力値へ変換する絶対値換算処理と統計処理とが行われたものとしてパソコンから表示およびプリント出力されたものである。
A特性曲線およぶB特性曲線ともに、音圧検出プローブ1をわずかにX軸方向に移動させて、再びY軸方向に移動させながら測定位置を変えて測定する繰り返しにより、図示してはいないが3次元の超音波音圧分布特性図を得ることもできる。それによって、スリット13から噴射される洗浄液全面の超音波音圧分布特性図が表示される。
FIG. 2 is an ultrasonic sound pressure distribution characteristic diagram of the ultrasonic sound pressure measuring apparatus of the present invention.
The horizontal axis represents the measurement position (unit: mm) and is the distance in the moving direction (Y) of the ultrasonic sound pressure detection probe 1. An exemplary measurement position is from the start (0 mm) to the end point (110 mm), and is the distance in the length direction of the slit 13 of the ultrasonic cleaning device 10.
The vertical axis represents the measured ultrasonic sound pressure value (unit: kPa), which is a value measured as the absolute value of the ultrasonic sound pressure.
The ultrasonic sound pressure distribution characteristic curve obtained from the ultrasonic sound pressure measuring apparatus of the present invention includes an A characteristic curve indicated by a solid line and a B characteristic curve indicated by a dotted line.
The A characteristic curve is a characteristic curve obtained by obtaining an instantaneous maximum value (peak detection) of the ultrasonic sound pressure so that a rapid change in the ultrasonic sound pressure can be captured. From this A characteristic curve, it is possible to evaluate a position where the ultrasonic sound pressure of the ultrasonic cleaning apparatus 10 to be measured instantaneously decreases and causes the ultrasonic sound pressure unevenness, and the ultrasonic sound pressure increases instantaneously. A position that damages the object to be cleaned can be evaluated. The A characteristic curve was displayed and printed out from a personal computer as a result of temperature and frequency correction processing and absolute value conversion processing for converting the ultrasonic sound pressure voltage value to the ultrasonic sound pressure Pascal pressure value. Is.
The B characteristic curve is a characteristic curve obtained by obtaining the average value of the ultrasonic sound pressure so that the average value resulting in a relatively slow change in the ultrasonic sound pressure can be captured. From this B characteristic curve, it is possible to evaluate by conceptually grasping the ultrasonic sound pressure distribution state of the entire ultrasonic sound pressure measurement position of the ultrasonic cleaning apparatus 10 as the measurement object. Although not shown, statistical quantities such as grasping the standard deviation and grasping the position where the ultrasonic sound pressure value deviates from the upper limit specified value / lower limit specified value are obtained, and the quality and reliability are evaluated. The B characteristic curve is displayed and printed from a personal computer as a result of temperature and frequency correction processing, absolute value conversion processing that converts the voltage value of ultrasonic sound pressure into Pascal pressure value of ultrasonic sound pressure, and statistical processing. Is the output.
Both the A characteristic curve and the B characteristic curve are not shown by repeating the measurement by changing the measurement position while moving the sound pressure detection probe 1 slightly in the X-axis direction and again moving in the Y-axis direction. It is also possible to obtain a three-dimensional ultrasonic sound pressure distribution characteristic diagram. Thereby, an ultrasonic sound pressure distribution characteristic diagram of the entire surface of the cleaning liquid ejected from the slit 13 is displayed.

図3は本発明の超音波音圧測定装置の超音波音圧の周波数特性図である。
図3のC特性曲線は、音圧検出プローブ1の出力がオシロスコープ2に入力されて、オシロスコープ2で測定、表示されたmVを単位とした直接の超音波音圧対周波数特性である。周波数の値によって、基準値pに比べ大きく変動していることが分かる。この各周波数に対する変動分qを周波数パラメータ表(周波数補正テーブル)として予め備える。
図3のD特性曲線は、周波数補正テーブルによって補正された実測の超音波音圧(単位kPa)−周波数特性曲線である。ほぼ基準値pに沿った値であることが示されている。
図示してはいないが音圧検出プローブ1の温度に対する変動についても、各温度に対する変動分を温度補正テーブルとして予め備える。
図示してはいないが、同様にして温度パラメータ表、内壁形状パラメータ表が得られる。
FIG. 3 is a frequency characteristic diagram of ultrasonic sound pressure of the ultrasonic sound pressure measuring apparatus of the present invention.
The C characteristic curve in FIG. 3 is a direct ultrasonic sound pressure versus frequency characteristic in units of mV measured and displayed by the oscilloscope 2 when the output of the sound pressure detection probe 1 is input to the oscilloscope 2. It can be seen that the frequency value fluctuates greatly compared to the reference value p. The variation q for each frequency is prepared in advance as a frequency parameter table (frequency correction table).
The D characteristic curve in FIG. 3 is an actually measured ultrasonic sound pressure (unit: kPa) -frequency characteristic curve corrected by the frequency correction table. It is shown that the value is substantially along the reference value p.
Although not shown in the drawing, the fluctuation with respect to the temperature of the sound pressure detection probe 1 is also provided in advance as a temperature correction table.
Although not shown, a temperature parameter table and an inner wall shape parameter table are obtained in the same manner.

本発明は、半導体ウエハー、ガラスマスク、液晶ガラス基板、ハードディスク盤など精密加工品の製造ラインにおける精密洗浄を必要とされる製造業に主として利用することができる。   The present invention can be mainly used in manufacturing industries that require precision cleaning in a production line for precision processed products such as semiconductor wafers, glass masks, liquid crystal glass substrates, and hard disk boards.

本発明の超音波音圧測定装置のシステム系統図である。1 is a system diagram of an ultrasonic sound pressure measuring apparatus according to the present invention. 本発明の超音波音圧測定装置の超音波音圧分布特性図である。It is an ultrasonic sound pressure distribution characteristic figure of the ultrasonic sound pressure measuring device of the present invention. 本発明の超音波音圧測定装置の超音波音圧の周波数特性図である。It is a frequency characteristic figure of the ultrasonic sound pressure of the ultrasonic sound pressure measuring device of the present invention. 従来の超音波音圧測定装置のシステム系統図である。It is a system block diagram of the conventional ultrasonic sound pressure measuring device. 従来の超音波音圧測定装置で測定された測定位置対音圧特性図である。It is a measurement position versus sound pressure characteristic figure measured with the conventional ultrasonic sound pressure measuring device.

符号の説明Explanation of symbols

1、21 音圧検出プローブ
2 オシロスコープ
3 パソコン
4 制御器
5 温度センサー
10 噴射形超音波洗浄装置
11 洗浄液溜槽
12 超音波振動体
13 洗浄液噴射孔(スリット)
14 噴射洗浄液
15 洗浄液供給口
16 高周波励振電源
17 被洗浄物
20 超音波音圧計
DESCRIPTION OF SYMBOLS 1, 21 Sound pressure detection probe 2 Oscilloscope 3 Personal computer 4 Controller 5 Temperature sensor 10 Injection type ultrasonic cleaning apparatus 11 Cleaning liquid reservoir 12 Ultrasonic vibrator 13 Cleaning liquid injection hole (slit)
14 Injected cleaning liquid 15 Cleaning liquid supply port 16 High frequency excitation power supply 17 Object to be cleaned 20 Ultrasonic sound pressure gauge

Claims (3)

超音波洗浄装置に備えられた超音波振動板から照射される超音波振動の洗浄液内の音圧を測定する超音波音圧測定装置であって、
音圧検出プローブと、
該音圧検出プローブが検出した検出電圧値を入力とする電圧測定手段と、
該電圧測定手段の出力および所定のパラメータ情報から必要な計算、表示および記録を行うパソコンと、
前記音圧検出プローブの先端の温度を温度情報として検出する温度センサーと、
前記超音波洗浄装置の前記超音波振動の周波数情報および前記温度センサーによって検出された前記温度情報を前記所定のパラメータ情報として前記パソコンへ伝達する制御器と、を備え、
前記パソコンは、前記入力された超音波音圧の電圧値に対して補正と変換の計算処理を行うことにより、絶対値単位の超音波音圧測定値を前記音圧検出プローブの移動方向の距離に応じたピーク値と平均値で表示することを特徴とした超音波音圧測定装置。
An ultrasonic sound pressure measuring device for measuring the sound pressure in a cleaning liquid of ultrasonic vibration irradiated from an ultrasonic vibration plate provided in the ultrasonic cleaning device,
A sound pressure detection probe;
Voltage measuring means for receiving the detected voltage value detected by the sound pressure detecting probe; and
A personal computer that performs necessary calculations, display and recording from the output of the voltage measuring means and predetermined parameter information;
A temperature sensor that detects the temperature of the tip of the sound pressure detection probe as temperature information;
A controller for transmitting the frequency information of the ultrasonic vibration of the ultrasonic cleaning device and the temperature information detected by the temperature sensor to the personal computer as the predetermined parameter information,
The personal computer performs a calculation process of correction and conversion on the voltage value of the input ultrasonic sound pressure, thereby converting the ultrasonic sound pressure measurement value in absolute value units in the moving direction of the sound pressure detection probe. An ultrasonic sound pressure measuring device that displays a peak value and an average value according to the frequency .
前記電圧測定手段はオシロスコープ又は高周波電圧計である請求項1に記載の超音波音圧測定装置。   The ultrasonic sound pressure measuring apparatus according to claim 1, wherein the voltage measuring means is an oscilloscope or a high-frequency voltmeter. 前記パソコンは、前記超音波音圧測定値の時間的変化を記録し、一定時間内の変化を統計的手法にて解析する構成とした請求項1または請求項2に記載の超音波音圧測定装置。   The ultrasonic sound pressure measurement according to claim 1 or 2, wherein the personal computer is configured to record a temporal change of the ultrasonic sound pressure measurement value and analyze a change within a predetermined time by a statistical method. apparatus.
JP2006121568A 2006-04-26 2006-04-26 Ultrasonic sound pressure measuring device Active JP4813961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121568A JP4813961B2 (en) 2006-04-26 2006-04-26 Ultrasonic sound pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121568A JP4813961B2 (en) 2006-04-26 2006-04-26 Ultrasonic sound pressure measuring device

Publications (3)

Publication Number Publication Date
JP2007292625A JP2007292625A (en) 2007-11-08
JP2007292625A5 JP2007292625A5 (en) 2008-10-16
JP4813961B2 true JP4813961B2 (en) 2011-11-09

Family

ID=38763373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121568A Active JP4813961B2 (en) 2006-04-26 2006-04-26 Ultrasonic sound pressure measuring device

Country Status (1)

Country Link
JP (1) JP4813961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125084A (en) * 2019-06-22 2019-08-16 佛山市顺德区雅仕特厨卫制品有限公司 A kind of supersonic wave cleaning machine and its cleaning control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226141B1 (en) * 2012-01-30 2013-07-03 株式会社カイジョー Ultrasonic cleaning device and power control method thereof
WO2017212786A1 (en) * 2016-06-07 2017-12-14 株式会社テイエルブイ Sensor device and method for correcting sensor
CN106885625B (en) * 2017-03-14 2023-10-13 杭州电子科技大学 Ultrasonic sound pressure and frequency measuring circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235303A (en) * 1997-02-28 1998-09-08 Shibaura Eng Works Co Ltd Ultrasonic washing apparatus
JP2004049975A (en) * 2002-07-17 2004-02-19 Star Cluster:Kk Washing method and washing device in ultrasonic cleaning apparatus
JP3998589B2 (en) * 2003-02-21 2007-10-31 株式会社東芝 Sound pressure measuring device and pressure measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125084A (en) * 2019-06-22 2019-08-16 佛山市顺德区雅仕特厨卫制品有限公司 A kind of supersonic wave cleaning machine and its cleaning control method
CN110125084B (en) * 2019-06-22 2021-10-12 佛山市顺德区雅仕特厨卫制品有限公司 Cleaning control method of ultrasonic cleaning machine

Also Published As

Publication number Publication date
JP2007292625A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US8091426B2 (en) Ultrasonic wave measuring method and apparatus
US9933699B2 (en) Pellicle aging estimation and particle removal from pellicle via acoustic waves
JP4813961B2 (en) Ultrasonic sound pressure measuring device
JP2014144528A (en) Method for machining series of workpieces by means of at least one machining jet
CN103676240B (en) Surface detection apparatus
US20080174627A1 (en) Method for controlling droplet discharge head, drawing method, and droplet discharge device
CN106546368A (en) A kind of method for characterizing film residual stress
JP7001264B2 (en) Nozzle clogging detection method and detection device
TWI479120B (en) Surface shape measuring device
US9234788B2 (en) Method of and apparatus for measuring strength of ultrasonic waves
Gorham et al. An empirical method for correcting dispersion in pressure bar measurements of impact stress
JP5124249B2 (en) Level difference measuring method and apparatus using stylus type level difference meter for surface shape measurement
CN207197465U (en) A kind of screen plate for screen printing detection means
US8746826B2 (en) Device and method for managing piezo inkjet head
KR20080018596A (en) Thickness measurement instrumentation and method using ultrasonic longitudinal wave and shear wave
CN104075797A (en) Method for measuring output amplitude of power ultrasound equipment under loading condition
JP6335070B2 (en) Injection measurement device and injection measurement method
Liu et al. Improvement of the fidelity of surface measurement by active damping control
JP6764271B2 (en) Axial force measuring device, axial force measuring method, ultrasonic inspection device, ultrasonic inspection method and vertical probe fixing jig used for this
JP3998589B2 (en) Sound pressure measuring device and pressure measuring method
JP2008233053A (en) Method of measuring frequency characteristic of piezo-electric vibrating element
US7111517B2 (en) Apparatus and method for in-situ measuring of vibrational energy in a process bath of a vibrational cleaning system
CN104950142A (en) Method for measuring vibration characteristic of cantilever and device for measuring vibration characteristic of cantilever
JP4080191B2 (en) Substrate processing equipment
KR100866932B1 (en) Method for monitoring of megasonic apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4813961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250