JP2016044340A - Endless metal belt production method - Google Patents

Endless metal belt production method Download PDF

Info

Publication number
JP2016044340A
JP2016044340A JP2014170325A JP2014170325A JP2016044340A JP 2016044340 A JP2016044340 A JP 2016044340A JP 2014170325 A JP2014170325 A JP 2014170325A JP 2014170325 A JP2014170325 A JP 2014170325A JP 2016044340 A JP2016044340 A JP 2016044340A
Authority
JP
Japan
Prior art keywords
solution treatment
ring
shaped member
layer
endless metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014170325A
Other languages
Japanese (ja)
Other versions
JP6432213B2 (en
Inventor
幸司 西田
Koji Nishida
幸司 西田
和実 芹澤
Kazumi Serizawa
和実 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014170325A priority Critical patent/JP6432213B2/en
Publication of JP2016044340A publication Critical patent/JP2016044340A/en
Application granted granted Critical
Publication of JP6432213B2 publication Critical patent/JP6432213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an endless metal belt production method by which such a problem that a surface of it becomes too hard can be suppressed.SOLUTION: The endless metal belt production method comprises: a solution treatment step of applying solution treatment to a ring-shaped member obtained by a welding step; a removal step of polishing or grinding a surface of the ring-shaped member to which the solution treatment has been applied, thereby removing a chemical element concentrated layer and oxide layer formed during the solution treatment; and a nitration step of applying nitration to the ring-shaped member which has been subjected to the removal step. In the solution treatment step, a Ti-depletion layer having Ti concentration lower than that of the ring-shaped member before being subjected to the solution treatment, is formed. To the surface of the ring-shaped member subjected to the removal step, the Ti-depletion layer is exposed by removing the chemical element concentrated layer and oxide layer.SELECTED DRAWING: Figure 5

Description

本発明は、動力伝達ベルトなどに用いられることが可能な無端金属ベルトの製造方法に関する。   The present invention relates to a method of manufacturing an endless metal belt that can be used for a power transmission belt or the like.

無端金属ベルトは、無段変速機などに備えられ、動力伝達ベルトとして機能することができる。無端金属ベルトは、通常、マルエージング鋼のような十分な靭性および疲労強度を持つ高張力鋼から作製される。その製造方法は、たとえば次の通りである。まず、鋼板ロールから1枚の鋼板を切り出し、鋼板の両端部同士を溶接してリング状に形成する。その後、溶体化処理が実施される。裁断および圧延が行われた後、再び溶体化処理が施される。その後、窒化処理が施される。   The endless metal belt is provided in a continuously variable transmission or the like and can function as a power transmission belt. Endless metal belts are typically made from high strength steels with sufficient toughness and fatigue strength, such as maraging steels. The manufacturing method is as follows, for example. First, one steel plate is cut out from a steel plate roll, and both ends of the steel plate are welded to form a ring shape. Thereafter, a solution treatment is performed. After cutting and rolling, solution treatment is performed again. Thereafter, nitriding is performed.

マルエージング鋼のような高張力鋼は、窒素に対して強い親和性を有する元素(Ti,Alなど)を含んでいる。窒化処理の際には、これらの元素が窒素と結合する。ベース元素中に窒素化合物(TiN,AlNなど)が超微細に析出することにより格子歪が形成され、被処理物(無端金属ベルト)の強度が向上する。   High-strength steel such as maraging steel contains elements (Ti, Al, etc.) having a strong affinity for nitrogen. During the nitriding treatment, these elements are combined with nitrogen. Nitrogen compounds (TiN, AlN, etc.) are precipitated very finely in the base element, thereby forming lattice strain and improving the strength of the object to be processed (endless metal belt).

ここで、溶体化処理が行われる際、被処理物の表面に存在するTiやAlなどの一部は酸化する。TiやAlの多くが酸化している状態で、窒化処理が行われたとする。この場合には、窒化処理の際に(窒素が被処理物の表面から内部へ向かって拡散する際に)窒素と結合できる元素が少なくなり、窒素はベース金属中に固溶しにくくなる。窒素が拡散する際に、窒素とベース元素とからなる窒化物も被処理物の表面に形成されやすくなる。この窒化物は、被処理物の強度を低下させる原因となり得る。   Here, when the solution treatment is performed, a part of Ti, Al, etc. present on the surface of the object to be processed is oxidized. It is assumed that nitriding is performed in a state where most of Ti and Al are oxidized. In this case, during nitriding (when nitrogen diffuses inward from the surface of the object to be processed), the number of elements that can be combined with nitrogen is reduced, and nitrogen is less likely to be dissolved in the base metal. When nitrogen diffuses, nitrides composed of nitrogen and base elements are also easily formed on the surface of the object to be processed. This nitride can cause a reduction in the strength of the workpiece.

特開2006−124757号公報(特許文献1)に開示された無端金属ベルトの製造方法は、溶体化処理の際に形成された元素濃化層および酸化物層を除去するという工程を備えている。同公報は、除去工程を経ることによって元素濃化層および酸化物層を完全に除去することが可能であり、結果として、窒化後に被処理物の表面に窒化物が生成されるのを阻止することができ、高い強度を持つ無端金属ベルトを得ることができると述べている。   The manufacturing method of an endless metal belt disclosed in Japanese Patent Laid-Open No. 2006-124757 (Patent Document 1) includes a step of removing the element concentrated layer and the oxide layer formed during the solution treatment. . According to the publication, it is possible to completely remove the element concentrated layer and the oxide layer through the removal step, and as a result, the formation of nitride on the surface of the object to be processed is prevented after nitriding. It states that an endless metal belt with high strength can be obtained.

特開2006−124757号公報JP 2006-124757 A

上述の通り、溶体化処理の際、被処理物の表面に存在するTiやAlなどの一部は酸化する。溶体化処理を経ることによって、被処理物の表面には、Ti濃化層(元素濃化層)および酸化物層が形成される。この際、Tiが濃化した分だけ、Ti欠乏層も形成される。Ti欠乏層とは、溶体化処理が施される前に被処理物が有しているTi濃度よりも低いTi濃度を有する層である。Ti欠乏層は、Ti濃化層よりも深い位置に形成される。   As described above, during the solution treatment, a part of Ti, Al, etc. present on the surface of the object to be processed is oxidized. Through the solution treatment, a Ti concentrated layer (element concentrated layer) and an oxide layer are formed on the surface of the object to be processed. At this time, a Ti-deficient layer is also formed as much as Ti is concentrated. The Ti-deficient layer is a layer having a Ti concentration lower than the Ti concentration of the object to be processed before the solution treatment is performed. The Ti deficient layer is formed at a deeper position than the Ti concentrated layer.

特開2006−124757号公報(特許文献1)に開示された無端金属ベルトの製造方法は、溶体化処理の際に形成された元素濃化層および酸化物層を完全に除去すると述べている。同公報は、Ti欠乏層については特に言及していない。仮に、溶体化処理の際に生成するTi欠乏層が小さすぎたり、除去工程にてTi欠乏層の全部を除去し、その後に窒化処理を行った場合には、窒素とTiとが多く結合してしまい、必要以上に硬い窒化層が生成されることがある。硬い窒化層が生成された場合には、無端金属ベルトの表面が硬くなり過ぎてしまい、結果として無端金属ベルトがかえって脆くなるおそれがある。また、表面に必要以上の圧縮残留応力を付与することになり、内部の残留応力が引張側に大きくなり、内部から疲労破壊しやすくなる。   The manufacturing method of an endless metal belt disclosed in Japanese Patent Laid-Open No. 2006-124757 (Patent Document 1) states that the element concentrated layer and the oxide layer formed during the solution treatment are completely removed. The publication does not specifically mention the Ti-deficient layer. If the Ti-deficient layer generated during the solution treatment is too small, or if the entire Ti-deficient layer is removed in the removal process and then nitriding is performed, a large amount of nitrogen and Ti are bonded. As a result, a nitride layer that is harder than necessary may be generated. When a hard nitrided layer is formed, the surface of the endless metal belt becomes too hard, and as a result, the endless metal belt may become brittle. In addition, an excessive compressive residual stress is applied to the surface, and the internal residual stress becomes larger on the tension side, and fatigue failure is likely to occur from the inside.

本発明は、表面が硬くなり過ぎることを抑制し、内部の残留応力が引張側に大きくなりすぎることを抑制可能な無端金属ベルトの製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the endless metal belt which can suppress that the surface becomes hard too much and can suppress that an internal residual stress becomes large too much to a tension | pulling side.

無端金属ベルトの製造方法は、円筒状に曲げた鋼板の端部同士を溶接してリング状部材を形成する溶接工程と、上記溶接工程により得られた上記リング状部材に溶体化処理を施す溶体化処理工程と、上記溶体化処理が施された上記リング状部材の表面を研磨または研削することにより、上記溶体化処理の際に形成された元素濃化層および酸化物層を除去する除去工程と、上記除去工程を経た上記リング状部材に窒化処理を施す窒化処理工程と、を備え、上記溶体化処理工程においては、上記溶体化処理が施される前の上記リング状部材が有しているTi濃度よりも低いTi濃度を有するTi欠乏層が形成され、上記除去工程を経た上記リング状部材の表面には、上記元素濃化層および上記酸化物層が除去されることにより上記Ti欠乏層が露出している。   The manufacturing method of the endless metal belt includes a welding process in which ends of steel plates bent into a cylindrical shape are welded together to form a ring-shaped member, and a solution for subjecting the ring-shaped member obtained by the welding process to a solution treatment And a removal step of removing the element concentrated layer and the oxide layer formed during the solution treatment by polishing or grinding the surface of the ring-shaped member subjected to the solution treatment. And a nitriding treatment step for nitriding the ring-shaped member that has undergone the removing step, and in the solution treatment step, the ring-shaped member before the solution treatment is provided has A Ti-deficient layer having a Ti concentration lower than the Ti concentration is formed, and the Ti-deficient layer is removed by removing the element-enriched layer and the oxide layer on the surface of the ring-shaped member after the removal step. Layer is dew It is.

上記の構成によれば、溶体化処理の際に形成されたTi欠乏層が、除去工程を経ることによってリング状部材の表面に露出する。Ti欠乏層の存在によって、窒化処理の際に窒素とTiとが多く結合してしまうことを抑制できるため、無端金属ベルトの表面が必要以上に硬くなり過ぎることもほとんどないため、無端金属ベルトが脆くなるおそれも少なく、表面が必要以上に窒化されないため、内部に発生する引張残留応力を小さくできる。   According to said structure, Ti deficient layer formed in the case of solution treatment is exposed to the surface of a ring-shaped member through a removal process. Since the presence of the Ti-deficient layer can suppress a large amount of binding of nitrogen and Ti during nitriding treatment, the surface of the endless metal belt is hardly hardened more than necessary. There is little possibility of becoming brittle, and the surface is not nitrided more than necessary, so that the tensile residual stress generated inside can be reduced.

実施の形態における無端金属ベルトの製造方法の準備工程を示す斜視図である。It is a perspective view which shows the preparation process of the manufacturing method of the endless metal belt in embodiment. 実施の形態における無端金属ベルトの製造方法の溶接工程を示す斜視図である。It is a perspective view which shows the welding process of the manufacturing method of the endless metal belt in embodiment. 実施の形態における無端金属ベルトの製造方法の溶体化処理工程(1次溶体化処理)を示す斜視図である。It is a perspective view which shows the solution treatment process (primary solution treatment) of the manufacturing method of the endless metal belt in embodiment. 実施の形態における無端金属ベルトの製造方法の溶体化処理工程(1次溶体化処理)を示す模式図である。It is a schematic diagram which shows the solution treatment process (primary solution treatment) of the manufacturing method of the endless metal belt in embodiment. 特定の処理条件下で行われた溶体化処理により得られたリング状部材のTi濃度分布を示すグラフである。It is a graph which shows Ti concentration distribution of the ring-shaped member obtained by the solution treatment performed on specific process conditions. 実施の形態における無端金属ベルトの製造方法の裁断工程を示す斜視図である。It is a perspective view which shows the cutting process of the manufacturing method of the endless metal belt in embodiment. 実施の形態における無端金属ベルトの製造方法の圧延工程を示す斜視図である。It is a perspective view which shows the rolling process of the manufacturing method of the endless metal belt in embodiment. 実施の形態における無端金属ベルトの製造方法の周長調整工程を示す斜視図である。It is a perspective view which shows the circumference adjustment process of the manufacturing method of the endless metal belt in embodiment. 実施例および比較例に関する窒化処理後の窒素濃度の分布を示すグラフである。It is a graph which shows distribution of the nitrogen concentration after the nitriding process regarding an Example and a comparative example. 実施例および比較例に関する窒化処理後の残留応力の分布を示すグラフである。It is a graph which shows distribution of the residual stress after the nitriding process regarding an Example and a comparative example.

実施の形態における無端金属ベルトの製造方法について、以下、図1〜図8を参照しながら説明する。以下の説明において、同一の部品および相当部品には同一の参照番号を付し、重複する説明は繰り返さない場合がある。図1〜図8は、無端金属ベルトの製造方法の主要な工程を示している。   Hereinafter, a method for manufacturing an endless metal belt in the embodiment will be described with reference to FIGS. In the following description, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. FIGS. 1-8 has shown the main processes of the manufacturing method of an endless metal belt.

図1を参照して、まず、マルエージング鋼板からなるロール10が準備される。ロール10の素材はマルエージング鋼であり、その組成はたとえば、Ni:17〜19%、Co:7〜13%、Mo:4〜5%、Ti:0.3〜1%、Al:0.05〜0.15%、C:0.03%以下、残り:Feである。ロール10から、鋼板11が切断される。図2を参照して、次に、鋼板11を円筒状に曲げる(図中矢印参照)。円筒状に曲げた鋼板11の端部同士を溶接し、リング状部材12を形成する(溶接工程)。   With reference to FIG. 1, first, a roll 10 made of a maraging steel plate is prepared. The material of the roll 10 is maraging steel, and its composition is, for example, Ni: 17-19%, Co: 7-13%, Mo: 4-5%, Ti: 0.3-1%, Al: 0.00. 05-0.15%, C: 0.03% or less, the rest: Fe. The steel plate 11 is cut from the roll 10. Next, referring to FIG. 2, the steel plate 11 is bent into a cylindrical shape (see the arrow in the figure). The ends of the steel plate 11 bent into a cylindrical shape are welded together to form the ring-shaped member 12 (welding process).

図3および図4を参照して、上記の溶接工程により得られたリング状部材12をトレイ20の上に並べて、反応室21(図4)の中に配置する。反応室21の中で、リング状部材12に1次溶体化処理を施す(溶体化処理工程)。処理温度は、820℃〜900℃程度に設定する。処理雰囲気は、減圧(真空)に設定してもよいし、窒素等の不活性ガスを主成分とする雰囲気に設定してもよい。   Referring to FIGS. 3 and 4, ring-shaped members 12 obtained by the above welding process are arranged on tray 20 and arranged in reaction chamber 21 (FIG. 4). In the reaction chamber 21, the ring-shaped member 12 is subjected to a primary solution treatment (solution treatment step). The processing temperature is set to about 820 ° C to 900 ° C. The treatment atmosphere may be set to a reduced pressure (vacuum) or an atmosphere containing an inert gas such as nitrogen as a main component.

反応室21の中では、Ti、Al、Crなどの窒素(酸素)と親和性の強い元素がリング状部材12の表面に濃化する(酸化により元素濃化層が形成される)。酸素分圧が高すぎると酸素が金属内部へ拡散してしまい、Ti、Al、Crは表面に濃化しにくくなるため、反応室21内の処理雰囲気は、Ti、Al、Crがリング状部材12の表層に濃化するような適切な酸素分圧に設定される。後に実施される除去工程で元素濃化層(Ti,Al,Cr等の酸化物層)を除去するため、この溶体化処理工程で形成される元素濃化層は、2μm程度以下の厚さを有していることが望ましい。   In the reaction chamber 21, an element having a strong affinity for nitrogen (oxygen) such as Ti, Al, and Cr is concentrated on the surface of the ring-shaped member 12 (an element concentrated layer is formed by oxidation). If the oxygen partial pressure is too high, oxygen diffuses into the metal and Ti, Al, and Cr are difficult to concentrate on the surface. Therefore, the treatment atmosphere in the reaction chamber 21 is such that Ti, Al, and Cr are ring-shaped members 12. An appropriate oxygen partial pressure is set so as to concentrate on the surface layer. In order to remove the element enriched layer (oxide layer of Ti, Al, Cr, etc.) in a removal process performed later, the element enriched layer formed in this solution treatment process has a thickness of about 2 μm or less. It is desirable to have.

図4および図5を参照して、溶体化処理工程における反応室21内の処理温度および処理雰囲気に関する一例について説明する。反応室21内の雰囲気は、窒素100%でも構わないが、その場合には、品質を一定に管理するために微量な酸素を導入するとよい。一方で、微量(3%以下)の水素を入れ、さらに、湿らせた窒素(たとえば、液体窒素を気化させた露点−40℃以下のもの)を導入することにより露点を制御すれば、容易に品質を一定に管理できる。   With reference to FIG. 4 and FIG. 5, an example regarding the process temperature and process atmosphere in the reaction chamber 21 in a solution treatment process is demonstrated. The atmosphere in the reaction chamber 21 may be 100% nitrogen, but in that case, a small amount of oxygen may be introduced in order to keep the quality constant. On the other hand, if a dew point is controlled by introducing a small amount (less than 3%) of hydrogen and introducing wet nitrogen (for example, a dew point of −40 ° C. or less in which liquid nitrogen is vaporized), Quality can be controlled to a certain level.

反応室21内の処理温度を880℃に設定し、処理時間を60分に設定し、処理雰囲気を窒素98%、水素2%に設定し、露点を−20℃に設定した場合には、たとえば図5に示すようなTi濃度分布が形成される。図5中の線CAは、溶体化処理が施される前に被処理物が有しているTi濃度を示している。   When the processing temperature in the reaction chamber 21 is set to 880 ° C., the processing time is set to 60 minutes, the processing atmosphere is set to 98% nitrogen and 2% hydrogen, and the dew point is set to −20 ° C. A Ti concentration distribution as shown in FIG. 5 is formed. A line CA in FIG. 5 indicates the Ti concentration of the workpiece before the solution treatment is performed.

図5に示すように、溶体化処理を経たリング状部材12については、表面および裏面の双方における表層付近でTiが濃化しており、それより少し深い部分ではTi濃度が急峻に減少している(図5は表面側のTi濃度分布のみを示し、裏面側については記載していない)。深さ約2.5μmの付近(線DAに示す深さ)でTi欠乏層が形成され、Ti欠乏層のTi濃度は、深さDAから深さ約5μmまでの間は減少しており、深さ約5μmから10μmまでの間は略一定であり、深さ約10μmから20μmまでの間では徐々に上昇している。詳細は後述するが、図5に示すようなTi濃度分布を有するリング状部材12が得られた場合には、深さ0から深さDAまでの間の部分が、のちの除去工程において除去される。   As shown in FIG. 5, in the ring-shaped member 12 that has undergone the solution treatment, Ti is concentrated in the vicinity of the surface layer on both the front surface and the back surface, and the Ti concentration sharply decreases in a portion slightly deeper than that. (FIG. 5 shows only the Ti concentration distribution on the front surface side and does not describe the back surface side). A Ti-deficient layer is formed in the vicinity of a depth of about 2.5 μm (the depth indicated by the line DA), and the Ti concentration of the Ti-deficient layer decreases between the depth DA and the depth of about 5 μm. It is substantially constant between about 5 μm and 10 μm, and gradually increases between about 10 μm and 20 μm in depth. Although details will be described later, when the ring-shaped member 12 having a Ti concentration distribution as shown in FIG. 5 is obtained, the portion between the depth 0 and the depth DA is removed in a later removal step. The

図6を参照して、溶体化処理を経たリング状部材12は、裁断により、複数のリング状部材13に分けられる。ここで、裁断により得られたリング状部材13の表層部分に対して研磨または研削を行い、溶体化処理の際に形成された元素濃化層および酸化物層を除去する(除去工程)。この際、好適にはバレル研磨が実施される。バレル研磨に代えて棒状の砥石等を用いて、表面を研削するような方法を採用することもできる。   Referring to FIG. 6, the ring-shaped member 12 that has undergone the solution treatment is divided into a plurality of ring-shaped members 13 by cutting. Here, the surface layer portion of the ring-shaped member 13 obtained by cutting is polished or ground to remove the element concentrated layer and the oxide layer formed during the solution treatment (removal step). At this time, barrel polishing is preferably performed. A method of grinding the surface using a rod-shaped grindstone or the like instead of barrel polishing can also be employed.

元素濃化層および酸化物層の除去の程度については、除去工程が完了した時点でリング状部材13の表面(表層部分)にTi欠乏層が露出するような程度にまで元素濃化層(Ti濃化層)および酸化物層が除去される。すなわち、除去工程を経たリング状部材13の表面(表層)には、元素濃化層および酸化物層が除去されることによりTi欠乏層が露出する。上述の通り、図5に示すようなTi濃度分布を有するリング状部材12が得られた場合には、深さ0から深さDAまでの間の部分が除去工程において除去される。たとえば、10μm〜15μmの深さを有するTi欠乏層が形成された場合には、表面から3μm程度を研磨することによって、表層のTi濃化層を除去し、7μm〜12μmの深さを有するTi欠乏層を残すことが可能となる。本実施の形態では、裁断により得られたリング状部材13に対して除去工程を実施しているが、除去工程は、裁断前のリング状部材12(溶体化処理が完了した後のもの)について実施されてもよい。   The degree of removal of the element enriched layer and the oxide layer is such that the Ti enriched layer (Ti is exposed to the surface (surface layer portion) of the ring-shaped member 13 when the removal step is completed). Concentrated layer) and oxide layer are removed. That is, the Ti-deficient layer is exposed on the surface (surface layer) of the ring-shaped member 13 that has been subjected to the removing step, by removing the element concentrated layer and the oxide layer. As described above, when the ring-shaped member 12 having the Ti concentration distribution as shown in FIG. 5 is obtained, the portion between the depth 0 and the depth DA is removed in the removal step. For example, when a Ti-deficient layer having a depth of 10 μm to 15 μm is formed, the Ti concentrated layer on the surface layer is removed by polishing about 3 μm from the surface, and Ti having a depth of 7 μm to 12 μm. It becomes possible to leave a deficient layer. In the present embodiment, the removing step is performed on the ring-shaped member 13 obtained by cutting. However, the removing step is performed on the ring-shaped member 12 (after the solution treatment is completed) before cutting. May be implemented.

図7を参照して、Ti欠乏層が露出するように表層を除去したリング状部材13に対して、必要な場合には、圧延処理を施す。圧延処理を経ることによって、リング状部材13Aが得られる。圧延などによる加工応力を除去するために、2次溶体化処理が行われる(溶体化処理工程)。2次溶体化処理においても、必要な場合には、研磨または研削による除去工程を行うようにする。   Referring to FIG. 7, if necessary, the ring-shaped member 13 from which the surface layer is removed so that the Ti-deficient layer is exposed is subjected to a rolling process. The ring-shaped member 13A is obtained through the rolling process. In order to remove processing stress due to rolling or the like, a secondary solution treatment is performed (solution treatment step). Also in the secondary solution treatment, if necessary, a removal step by polishing or grinding is performed.

図8を参照して、その後、ローラー22などを用いた周長調整の処理が行われ、リング状部材13Aに対して時効および窒化処理を施す。これにより、無端金属ベルト13Bが完成する。本実施の形態においては、溶体化処理の際に形成されたTi欠乏層が、除去工程を経ることによってリング状部材の表面に露出する。Ti欠乏層が表面に存在しない場合には、窒化工程で窒素がTiに多く結合した結果、硬い窒化層を生成し、窒化層が脆くなる場合がある。   With reference to FIG. 8, thereafter, circumferential length adjustment processing using a roller 22 or the like is performed, and aging and nitriding processing are performed on the ring-shaped member 13 </ b> A. Thereby, the endless metal belt 13B is completed. In the present embodiment, the Ti-deficient layer formed during the solution treatment is exposed on the surface of the ring-shaped member through the removal process. When the Ti-deficient layer does not exist on the surface, a large amount of nitrogen is bonded to Ti in the nitriding step, and as a result, a hard nitrided layer is generated and the nitrided layer may become brittle.

本実施の形態においては、Ti欠乏層の存在によって、窒化処理の際に窒素とTiとが多く結合してしまうことを抑制できるため、無端金属ベルト13Bの表面が必要以上に硬くなり過ぎることもほとんどなく、無端金属ベルト13Bが脆くなるおそれも少ない。したがって、高い強度を持つ無端金属ベルト13Bを得ることができる。   In the present embodiment, the presence of the Ti-deficient layer can suppress a large amount of nitrogen and Ti from being bonded during the nitriding process, so that the surface of the endless metal belt 13B may become excessively hard. There is almost no possibility that the endless metal belt 13B becomes brittle. Therefore, endless metal belt 13B having high strength can be obtained.

[実施例および比較例]
図9および図10を参照して、窒化処理後の窒素濃度分布(図9)と残留応力分布(図10)との関係について説明する。図9,図10中において「実施例」として示すグラフは、上述の実施の形態に基づく無端金属ベルトの製造方法により得られたものである。「比較例」として示すグラフは、公知の無端金属ベルトの製造方法により得られたものである。図9中に示す窒素濃度は、グロー放電発光分析装置で分析した値である。図10中に示す残留応力は、X線残留応力測定装置で測定した値である。
[Examples and Comparative Examples]
With reference to FIGS. 9 and 10, the relationship between the nitrogen concentration distribution after nitriding (FIG. 9) and the residual stress distribution (FIG. 10) will be described. The graph shown as “Example” in FIGS. 9 and 10 is obtained by the endless metal belt manufacturing method based on the above-described embodiment. The graph shown as “Comparative Example” is obtained by a known method for producing an endless metal belt. The nitrogen concentration shown in FIG. 9 is a value analyzed by a glow discharge emission spectrometer. The residual stress shown in FIG. 10 is a value measured with an X-ray residual stress measuring apparatus.

図9に示すように、実施例の場合には、表面(深さ=0μm)から10μm程度までの範囲における窒素濃度が、比較例の場合に比べて低くなっている。図10に示すように、実施例の場合には、無端金属ベルトの表面付近に残留している内部応力(残留応力)も、比較例の場合に比べて絶対値で小さくなっていることがわかる。したがって、上述の実施の形態の構成によれば、最弱部位の残留応力を小さくでき、内部に発生する引張残留応力を小さくすることができるため、最弱部位の残留応力を圧縮方向へシフトさせることが可能となる(すなわち、引張を小さく、圧縮を大きくすることが可能となる)。無端金属ベルト13Bの表面が必要以上に硬くなり過ぎることもなく、無端金属ベルト13Bが脆くなるおそれも少ない。したがって、高い強度を持つ無端金属ベルト13Bを得ることができると言える。   As shown in FIG. 9, in the case of the example, the nitrogen concentration in the range from the surface (depth = 0 μm) to about 10 μm is lower than in the case of the comparative example. As shown in FIG. 10, in the case of the example, it can be seen that the internal stress (residual stress) remaining near the surface of the endless metal belt is also smaller in absolute value than in the case of the comparative example. . Therefore, according to the configuration of the above-described embodiment, the residual stress at the weakest part can be reduced, and the tensile residual stress generated inside can be reduced, so that the residual stress at the weakest part is shifted in the compression direction. (Ie, it is possible to reduce tension and increase compression). The surface of the endless metal belt 13B does not become excessively hard, and the endless metal belt 13B is less likely to become brittle. Therefore, it can be said that an endless metal belt 13B having high strength can be obtained.

以上、実施の形態および実施例について説明したが、上記の開示内容はすべての点で例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the embodiments and examples have been described above, the above disclosure is illustrative in all respects and not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10 ロール、11 鋼板、12,13,13A リング状部材、13B 無端金属ベルト、20 トレイ、21 反応室、22 ローラー。   10 rolls, 11 steel plates, 12, 13, 13A ring-shaped members, 13B endless metal belts, 20 trays, 21 reaction chambers, 22 rollers.

Claims (1)

円筒状に曲げた鋼板の端部同士を溶接してリング状部材を形成する溶接工程と、
前記溶接工程により得られた前記リング状部材に溶体化処理を施す溶体化処理工程と、
前記溶体化処理が施された前記リング状部材の表面を研磨または研削することにより、前記溶体化処理の際に形成された元素濃化層および酸化物層を除去する除去工程と、
前記除去工程を経た前記リング状部材に窒化処理を施す窒化処理工程と、を備え、
前記溶体化処理工程においては、前記溶体化処理が施される前の前記リング状部材が有しているTi濃度よりも低いTi濃度を有するTi欠乏層が形成され、
前記除去工程を経た前記リング状部材の表面には、前記元素濃化層および前記酸化物層が除去されることにより前記Ti欠乏層が露出している、
無端金属ベルトの製造方法。
A welding process in which ends of steel plates bent into a cylindrical shape are welded together to form a ring-shaped member;
A solution treatment step for subjecting the ring-shaped member obtained by the welding step to a solution treatment;
Removing the element-concentrated layer and the oxide layer formed during the solution treatment by polishing or grinding the surface of the ring-shaped member subjected to the solution treatment;
A nitriding treatment step of nitriding the ring-shaped member that has undergone the removing step,
In the solution treatment step, a Ti-deficient layer having a Ti concentration lower than the Ti concentration of the ring-shaped member before the solution treatment is performed is formed,
The Ti-deficient layer is exposed by removing the element concentrated layer and the oxide layer on the surface of the ring-shaped member that has undergone the removing step,
A method for producing an endless metal belt.
JP2014170325A 2014-08-25 2014-08-25 Manufacturing method of endless metal belt Active JP6432213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014170325A JP6432213B2 (en) 2014-08-25 2014-08-25 Manufacturing method of endless metal belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170325A JP6432213B2 (en) 2014-08-25 2014-08-25 Manufacturing method of endless metal belt

Publications (2)

Publication Number Publication Date
JP2016044340A true JP2016044340A (en) 2016-04-04
JP6432213B2 JP6432213B2 (en) 2018-12-05

Family

ID=55635185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170325A Active JP6432213B2 (en) 2014-08-25 2014-08-25 Manufacturing method of endless metal belt

Country Status (1)

Country Link
JP (1) JP6432213B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124757A (en) * 2004-10-27 2006-05-18 Toyota Motor Corp Method for manufacturing endless metallic belt
WO2011135624A1 (en) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 Metal ring and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124757A (en) * 2004-10-27 2006-05-18 Toyota Motor Corp Method for manufacturing endless metallic belt
WO2011135624A1 (en) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 Metal ring and method for producing same

Also Published As

Publication number Publication date
JP6432213B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US10634216B2 (en) Metal ring and manufacturing method for metal ring
US9453277B2 (en) Method of heat treatment and the directions for use of furnace of heat treatment
JP6432213B2 (en) Manufacturing method of endless metal belt
JP2006124757A (en) Method for manufacturing endless metallic belt
JP3114973B1 (en) Gas nitriding method for maraging steel
JP5593717B2 (en) Heat treatment method for steel
JP2004043962A (en) Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method
JP3996482B2 (en) Vacuum carburizing method
MX2021011756A (en) Carburized part and method for manufacturing same.
JP5784144B2 (en) Heat treatment process for manufacturing process of drive belt metal ring components
JP5606453B2 (en) Method for nitriding maraging steel
US20160305007A1 (en) Method of manufacturing ferrous metal component
JP6759842B2 (en) Steel manufacturing method
JP3823875B2 (en) Nitriding method for maraging steel and belt for belt-type continuously variable transmission nitrided by the method
JP5882357B2 (en) Heat treatment process for manufacturing drive belt metal ring components
JP3986996B2 (en) Method for nitriding metal ring
JP3842193B2 (en) Nitriding method
JP2012250266A (en) Method for manufacturing metal ring
JPH11200010A (en) Surface treatment of metallic multilayered belt for automobile
JP2005330565A (en) Surface hardening treatment method for malaging steel
JP4327812B2 (en) Manufacturing method of carburized parts
JP6008976B2 (en) Heat treatment process in manufacturing method of drive belt metal ring element
JP5633466B2 (en) Continuously variable transmission belt and manufacturing method thereof
JP2019119899A (en) Cvt ring raw material, cvt ring member, and manufacturing method therefor
JP2014189857A (en) Method of producing composite part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R151 Written notification of patent or utility model registration

Ref document number: 6432213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151