JP2006124757A - Method for manufacturing endless metallic belt - Google Patents

Method for manufacturing endless metallic belt Download PDF

Info

Publication number
JP2006124757A
JP2006124757A JP2004312775A JP2004312775A JP2006124757A JP 2006124757 A JP2006124757 A JP 2006124757A JP 2004312775 A JP2004312775 A JP 2004312775A JP 2004312775 A JP2004312775 A JP 2004312775A JP 2006124757 A JP2006124757 A JP 2006124757A
Authority
JP
Japan
Prior art keywords
treatment
solution treatment
solution
endless metal
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004312775A
Other languages
Japanese (ja)
Inventor
Koji Nishida
幸司 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004312775A priority Critical patent/JP2006124757A/en
Publication of JP2006124757A publication Critical patent/JP2006124757A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an endless metallic belt by which the endless metallic belt having high strength can be obtained by preventing the generation of nitrogen compound on the surface after nitriding-treatment, when the endless metallic belt manufactured with a maraging steel as a base steel plate and used for power transmitting belt, such as non-stage transmission, is manufactured. <P>SOLUTION: After applying a solution-treatment to a ring-like member 12, with which the maraging steel is used as the base steel plate 11, the surface of the ring-like member 13 is polished or ground to about 0.5-3μm thickness with e.g. barrel-polishing, and an element condensed layer and an oxide layer formed at solution-treating time, are mechanically removed. In this way, in a nitriding-treatment thereafter, it can be avoided to generate the nitrogen compound on the front and the back surfaces and the endless metallic belt having high strength can be obtained. Desirably, the solution-treatment is applied by using a high frequency induction heating under inert gas atmosphere. In this way, the thickness of the surface layer to be removed can be thinned and the manufacturing cost can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は無端金属ベルトの製造方法に関し、限定されるものではないが、無段変速機などの動力伝達ベルトに用いられるマルエージング鋼を素材鋼板として作られる無端金属ベルトに関する。   The present invention relates to a method for producing an endless metal belt, and although not limited thereto, the present invention relates to an endless metal belt made of maraging steel used for a power transmission belt of a continuously variable transmission or the like as a raw steel plate.

無段変速機などの動力伝達ベルトに用いられる無端金属ベルトは過酷な使用環境におかれることから、素材鋼として、十分な靭性や疲労強度を持つマルエージング鋼のような高張力鋼が用いられる。マルエージング鋼は、極低炭素マルテンサイト鋼を溶体化熱処理後、時効析出により強靭化させた鋼であり、ベース元素であるFe,Ni中に、Co,Mo,Ti,Alなどの合金元素が多量に添加されていて、他の高張力鋼と比較して、強度−靭性バランスに優れている。   Since endless metal belts used for power transmission belts such as continuously variable transmissions are subjected to harsh usage environments, high strength steel such as maraging steel with sufficient toughness and fatigue strength is used as the material steel. . Maraging steel is a steel made by ultra-low carbon martensitic steel that has been toughened by aging precipitation after solution heat treatment. Alloy elements such as Co, Mo, Ti, and Al are contained in the base elements Fe and Ni. It is added in a large amount and has an excellent balance between strength and toughness as compared with other high-strength steels.

特許文献1や特許文献2などには、マルエージング鋼を用いて無端金属ベルトを製造する方法が記載されており、通常、素材鋼板としてのマルエージング鋼板ロールから所用大きさの鋼板を切断し、端部を溶接してリング状に形成した後、溶接部の合金組成を均質化するために溶体化処理が施され、さらに、所定幅への裁断、圧延される。圧延などによる加工応力を除去するために、再度溶体化処理を行った後、より強度を向上させるために窒化処理が施される。   Patent Document 1, Patent Document 2, and the like describe a method for producing an endless metal belt using maraging steel, and usually cuts a steel sheet of a desired size from a maraging steel sheet roll as a raw steel sheet, After the end portions are welded to form a ring shape, solution treatment is performed to homogenize the alloy composition of the welded portion, and further, cutting to a predetermined width and rolling. In order to remove the processing stress due to rolling or the like, a solution treatment is performed again, and then a nitriding treatment is performed to further improve the strength.

窒化処理は、窒素との親和性の強い元素(Ti,Al,Co,Moなど)が窒素と結合し、その窒素化合物(TiN,AlN,MONなど)がベース元素中に超微細に析出して格子歪を生成することにより強度を向上させる処理である。しかし、窒化処理の前に、非処理物の表面にTiやAlが酸化された状態になっていると、表面から内部へ拡散していく窒素と結合する元素が乏しく、一方、ベース金属中には、窒素は多く固溶できないので、窒素が一定濃度以上になると、表面にベース元素との窒化物を形成するようになる。この窒化物は、もろく、これが生成すると、強度は極端に低下することが知られている。図4は従来法により製造した無端金属リング(素材鋼板:マルエージング鋼)を、溶体化処理後に、その表面から0.5μm研磨した場合(曲線A)と、3μmまで研磨した場合(曲線B)の一例を示しており、溶体化処理後の研磨量の少ないものでは、窒化処理後の表面に窒素化合物(例えば、Fe3N)が生成しやすいことが示される。   In nitriding treatment, elements having strong affinity with nitrogen (Ti, Al, Co, Mo, etc.) are combined with nitrogen, and the nitrogen compounds (TiN, AlN, MON, etc.) are ultrafinely precipitated in the base element. This is a process for improving the strength by generating lattice strain. However, if Ti and Al are oxidized on the surface of the non-processed material before nitriding, the element that binds to nitrogen diffusing from the surface to the inside is scarce, while the base metal contains Since a large amount of nitrogen cannot be dissolved, when the nitrogen concentration exceeds a certain level, a nitride with a base element is formed on the surface. It is known that this nitride is brittle, and when it is formed, the strength is extremely reduced. FIG. 4 shows a case where an endless metal ring (steel plate: maraging steel) manufactured by a conventional method is polished by 0.5 μm from the surface after solution treatment (curve A) and polished to 3 μm (curve B). It is shown that a nitrogen compound (for example, Fe3N) is likely to be formed on the surface after nitriding treatment when the polishing amount after solution treatment is small.

上記した無端金属ベルトの製造において、被処理物であるマルエージング鋼の表面におけるTiやAlなどの酸化物は、溶体化処理時に生成される。そのために、窒化処理前に酸洗いして酸化物を除去したり、溶体化処理を特定の窒素雰囲気下で行うこと、真空炉で行うことが提案されている。さらに、前記特許文献1には、窒化処理直前の溶体化処理を露点が0〜15℃の加湿雰囲気(窒素と水素の混合ガス)で施すことが記載されている。このような処理を行うことにより、表面にベース元素(Fe,Ni)との窒化物が形成されるのを抑制することができ、高強度の無端金属ベルトを得ることができる。   In the manufacture of the endless metal belt described above, oxides such as Ti and Al on the surface of maraging steel, which is an object to be processed, are generated during the solution treatment. For this purpose, it has been proposed to remove the oxide by pickling before the nitriding treatment, or to perform the solution treatment under a specific nitrogen atmosphere or in a vacuum furnace. Further, Patent Document 1 describes that the solution treatment immediately before the nitriding treatment is performed in a humidified atmosphere (mixed gas of nitrogen and hydrogen) having a dew point of 0 to 15 ° C. By performing such treatment, it is possible to suppress the formation of a nitride with a base element (Fe, Ni) on the surface, and to obtain a high-strength endless metal belt.

特開2004−162134号公報JP 2004-162134 A 特開2004−141877号公報JP 2004-141877 A

無端金属ベルトの製造において、溶体化処理で生成したTiやAlなどの酸化物を酸洗いする処理方法はそのための処理施設を必要とするとともに均一深さに除去することは容易でない。溶体化処理を真空炉で行う場合、酸化物生成をかなりな程度で抑制できるが、真空炉は高価であるとともに、完全に空気を排除することは容易でなく、酸化物生成を完全に抑制することはできない。さらに、高真空にするほど、表面のTiやAlの濃化が激しくなり、この元素濃化層も窒化を阻害する要因となるので、除去することが望まれる。特定の窒素雰囲気下で溶体化処理を行うことよっても、酸化物生成をかなりな程度で抑制できるが、化学的処理である以上、限界がある。そのようなことから、素材鋼板としてマルエージング鋼等を用いた無端金属ベルトの製造において、表面にベース元素との窒化物がない状態で窒化処理を施すことについて、なお課題が残されている。   In the production of an endless metal belt, a treatment method for pickling oxides such as Ti and Al generated by solution treatment requires a treatment facility for that purpose and is not easy to remove to a uniform depth. When solution treatment is performed in a vacuum furnace, oxide generation can be suppressed to a considerable extent, but the vacuum furnace is expensive and it is not easy to completely eliminate air, and oxide generation is completely suppressed. It is not possible. Further, as the vacuum is increased, the concentration of Ti and Al on the surface becomes more intense, and this element-enriched layer also becomes a factor that inhibits nitriding. Even if the solution treatment is performed under a specific nitrogen atmosphere, oxide formation can be suppressed to a considerable extent, but there is a limit as long as it is a chemical treatment. For this reason, in the production of an endless metal belt using maraging steel or the like as the raw steel plate, there is still a problem regarding performing nitriding treatment in a state where there is no nitride with the base element on the surface.

本発明は、上記のような事情に鑑みてなされたものであり、溶体化処理で生成される酸化物層あるいは元素濃化層を完全に除去することによって、窒化後の表面に窒素化合物が生成されるのをなくし、高い強度を持つ無端金属ベルトを得ることのできる無端金属ベルトの製造方法を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and a nitrogen compound is formed on the surface after nitriding by completely removing the oxide layer or the element concentrated layer generated by the solution treatment. An object of the present invention is to provide a method for producing an endless metal belt that can eliminate the problem and obtain an endless metal belt having high strength.

本発明による無端金属ベルトの製造方法は、素材鋼板の端部を溶接してリング状に形成する工程と、リング状部材を溶体化処理する工程と、溶体化処理後のリング状部材を窒化処理する工程とを少なくとも有する無端金属ベルトの製造方法であって、溶体化処理と窒化処理の間に、リング状部材の表面を研磨または研削して溶体化処理により形成された元素濃化層および酸化物層を除去する工程をさらに含むことを特徴とする。   The method of manufacturing an endless metal belt according to the present invention includes a step of welding end portions of a raw steel plate to form a ring, a step of solution-treating the ring-shaped member, and a nitriding treatment of the ring-shaped member after solution treatment An element-enriched layer formed by a solution treatment by polishing or grinding the surface of a ring-shaped member between a solution treatment and a nitriding treatment. The method further includes a step of removing the physical layer.

本発明では、基本的に、溶体化処理で元素濃化層および酸化物層が化学的に形成されるのは不可避なものとし、窒化処理の前に、形成された元素濃化層および酸化物層を物理的(機械的)に、すなわち研磨または研削によりリング状部材の表面から除去するようにしている。本発明によれば、表面からの除去深さを調整することにより、形成された元素濃化層および酸化物層を完全に除去することが可能であり、結果として、窒化後の表面に窒素化合物が生成されるのを阻止することができ、高い強度を持つ無端金属ベルトを得ることができる。   Basically, in the present invention, it is inevitable that the element-enriched layer and the oxide layer are chemically formed by the solution treatment, and the formed element-enriched layer and the oxide are formed before the nitriding treatment. The layer is removed from the surface of the ring-shaped member physically (mechanically), that is, by polishing or grinding. According to the present invention, by adjusting the removal depth from the surface, it is possible to completely remove the formed element concentrated layer and oxide layer, and as a result, a nitrogen compound is formed on the surface after nitriding. Can be prevented, and an endless metal belt having high strength can be obtained.

本発明による無端金属ベルトの製造方法において、溶体化処理の具体的な方法に制限はなく、従来から行われている無端金属ベルトの製造方法で採用されている溶体化処理方法を任意に採用することができる。しかし、真空炉内での溶体化処理あるいは特定の窒素雰囲気での溶体化処理等を行わずとも、形成された元素濃化層および酸化物層を完全に除去することができるので、整備全体を低コストかつ簡素化することができる。   In the method for producing an endless metal belt according to the present invention, there is no limitation on a specific method for the solution treatment, and a solution treatment method employed in a conventional method for producing an endless metal belt is arbitrarily employed. be able to. However, it is possible to completely remove the formed element concentrated layer and oxide layer without performing solution treatment in a vacuum furnace or solution treatment in a specific nitrogen atmosphere. Low cost and simplification can be achieved.

溶体化処理で形成される元素濃化層および酸化物層が薄いものであれば、研磨または研削によって除去する深さはより少ないものとなり、除去作業は容易化する。そのために、溶体化処理を不活性ガス(例えば、窒素、アルゴン等)雰囲気中において高周波誘導加熱を用いて行うこと、または、溶体化処理をメッシュベルトを備えたトンネル型加熱炉を用いて行うことは、望ましい態様となる。前者の場合は、雰囲気加熱や真空加熱処理に比べて非常に短い時間で加熱することが可能であり、必要最小限の保持時間で溶体化処理が可能となり、表面の元素濃化、酸化をきわめて小さくすることができる。後者の場合は、被処理物を重量の大きいベーストレイの上に並べて熱処理を行う通常の場合と比較して、ベーストレイの加熱を省略することができるので、被処理物の昇温が速くなり、短時間での溶体化処理が可能となる。そのために、やはり、表面の元素濃化、酸化をきわめて小さくすることができる。   If the element enriched layer and the oxide layer formed by the solution treatment are thin, the depth to be removed by polishing or grinding becomes smaller, and the removal work is facilitated. Therefore, the solution treatment is performed using high-frequency induction heating in an inert gas (eg, nitrogen, argon, etc.) atmosphere, or the solution treatment is performed using a tunnel-type heating furnace equipped with a mesh belt. Is a desirable embodiment. In the former case, it is possible to heat in a very short time compared to atmospheric heating or vacuum heat treatment, so that solution treatment can be performed with the minimum necessary holding time, and element concentration and oxidation on the surface are extremely low. Can be small. In the latter case, heating of the base tray can be omitted compared to the normal case where heat treatment is performed by arranging the objects to be processed on a heavy base tray, so that the temperature of the object to be processed increases. Thus, solution treatment can be performed in a short time. Therefore, the element concentration and oxidation on the surface can be extremely reduced.

本発明者らの実験では、素材鋼板がマルエージング鋼の場合に、溶体化処理を高周波誘導加熱で行うか、メッシュベルトを備えたトンネル型加熱炉を用いて行うことにより、除去すべき膜厚をきわめて薄くすることができた。通常の溶体化処理を行った場合には、表面からの除去厚さを、1.5μm以上、より好ましくは3μm以上程度とすることにより、窒化後の表面に窒素化合物が生成されることのない、高い強度を持つ無端金属ベルトを得ることがでるが、高周波誘導加熱やトンネル型加熱炉での短時間での溶体化処理により、0.5〜1mmの除去厚さで高強度のベルトを得ることができた。   In our experiments, when the material steel plate is maraging steel, the solution treatment is performed by high-frequency induction heating or by using a tunnel-type heating furnace equipped with a mesh belt to remove the film thickness to be removed. Can be made extremely thin. When a normal solution treatment is performed, the removal thickness from the surface is set to 1.5 μm or more, more preferably about 3 μm or more, so that a nitrogen compound is not generated on the surface after nitriding. An endless metal belt with high strength can be obtained, but a high strength belt with a removal thickness of 0.5 to 1 mm is obtained by high-frequency induction heating or solution treatment in a short time in a tunnel-type heating furnace. I was able to.

本発明により、無段変速機などの動力伝達ベルトに用いるのに好適な強度の強い無端金属ベルトを製造することができる。   According to the present invention, a strong endless metal belt suitable for use in a power transmission belt such as a continuously variable transmission can be manufactured.

以下、本発明による無端金属ベルトの製造方法を1つの実施の形態に基づき説明する。図1は、本発明により無端金属ベルトが製造されるまでの主要工程を示している。この例において、素材はマルエージング鋼であり、一般的なマルエージング鋼は、Ni:17〜19%、Co:7〜13%、Mo:4〜5%、Ti:0.3〜1%、Al:0.05〜0.15%、C:0.03%以下、残り:Feである。   Hereinafter, an endless metal belt manufacturing method according to the present invention will be described based on one embodiment. FIG. 1 shows the main steps until an endless metal belt is manufactured according to the present invention. In this example, the material is maraging steel, and general maraging steel is Ni: 17-19%, Co: 7-13%, Mo: 4-5%, Ti: 0.3-1%, Al: 0.05 to 0.15%, C: 0.03% or less, the rest: Fe.

マルエージング鋼板のロール10から所要大きさの鋼板11が切断され(図1a)、端部同士を溶接して筒状のドラム12とされる(図1b)。該ドラム12に対して、溶接部の合金組成を均質化するために1次溶体化処理が施され(図1c)、溶体化処理後のドラム11は所定幅に裁断されてリング状部材13とされる(図1d)。上記した理由により、この溶体化処理の過程でドラム12の表面(表裏面)には、TiやAlなどの酸化物層および元素濃化層(以下、単に酸化物層という)が形成される。また、微量ではあるが、窒素の拡散層が形成されることもある。図2は、窒素雰囲気下でマルエージング鋼板からなるドラム12を溶体化処理したときの表面状態を示しており、TiとAlの酸化物層とともに、3μm程度の深さまで窒素(N)の拡散層が形成されていることがわかる。   A steel plate 11 having a required size is cut from a roll 10 of a maraging steel plate (FIG. 1a), and ends thereof are welded to form a cylindrical drum 12 (FIG. 1b). The drum 12 is subjected to a primary solution treatment in order to homogenize the alloy composition of the welded portion (FIG. 1c), and the drum 11 after the solution treatment is cut into a predetermined width to form the ring-shaped member 13 and the drum 12. (FIG. 1d). For the reasons described above, an oxide layer such as Ti or Al and an element concentrated layer (hereinafter simply referred to as an oxide layer) are formed on the surface (front and back surfaces) of the drum 12 during the solution treatment. Moreover, although it is trace amount, the diffused layer of nitrogen may be formed. FIG. 2 shows a surface state when a drum 12 made of a maraging steel plate is subjected to a solution treatment under a nitrogen atmosphere, and a diffusion layer of nitrogen (N) to a depth of about 3 μm together with an oxide layer of Ti and Al. It can be seen that is formed.

本発明による製造方法では、前記ドラム12または所定幅に裁断されたリング状部材13に対して、表面の研磨または研削を行い、所定深さまで除去する工程が行われる。図1に示す例では、バレル研磨により、必要な表面除去を行っている(図1e)。なお、バレル研磨自体は従来行われている方法であり、詳細な説明は省略する。バレル研磨に代えて棒状の砥石等を用いて、表面を研削するような方法を採用することもできる。   In the manufacturing method according to the present invention, a step of polishing or grinding the surface of the drum 12 or the ring-shaped member 13 cut to a predetermined width and removing it to a predetermined depth is performed. In the example shown in FIG. 1, necessary surface removal is performed by barrel polishing (FIG. 1e). The barrel polishing itself is a conventional method, and detailed description thereof is omitted. A method of grinding the surface using a rod-shaped grindstone or the like instead of barrel polishing can also be employed.

表面(表裏面)を1.5μm〜3μmをやや超える程度まで研磨あるいは研削して表層を除去したリング状部材13に対して、必要な場合には、圧延(図1f)が行われ、圧延などによる加工応力を除去するために、2次溶体化処理が行われる(図1g)。2次溶体化処理においても、必要な場合には、研磨または研削による表面除去工程を行うようにする。上記のように、表面(表裏面)を一例として1.5μm〜3μmの深さで機械的に除去することにより、図2に一例を示すように溶体化処理で形成された酸化物層や3μm程度の深さまで窒素(N)の拡散層は、ほぼ完全に除去される。もちろん、酸化物層等がより深いところにまで形成されている場合には、除去厚みはより厚いものとされる。   If necessary, the ring-shaped member 13 whose surface (front and back surfaces) is polished or ground to a degree slightly exceeding 1.5 μm to 3 μm to remove the surface layer is subjected to rolling (FIG. 1 f), rolling, etc. In order to remove the processing stress due to, secondary solution treatment is performed (FIG. 1g). Also in the secondary solution treatment, if necessary, a surface removal step by polishing or grinding is performed. As described above, by removing the front surface (front and back surfaces) as an example at a depth of 1.5 μm to 3 μm, an oxide layer or 3 μm formed by solution treatment as shown in FIG. 2 as an example. The diffusion layer of nitrogen (N) is almost completely removed to a certain depth. Of course, when the oxide layer or the like is formed deeper, the removal thickness is made thicker.

その後、周超調整等の処理(図1h)が行われたリング状部材13に対して、従来と同様にして、時効・窒化処理を施し(図1i)、無端金属リングが完成する。前記のように、窒化処理が施される段階で、リング状部材13の表面には酸化物層が存在しないので、窒化後の表面に窒素化合物が生成されるのを回避することができ、高い強度を持つ無端金属ベルトを得ることができる。   Thereafter, the ring-shaped member 13 that has been subjected to processing such as super-adjustment (FIG. 1h) is subjected to aging and nitriding treatment (FIG. 1i) in the same manner as in the prior art to complete an endless metal ring. As described above, since no oxide layer is present on the surface of the ring-shaped member 13 when the nitriding treatment is performed, generation of nitrogen compounds on the surface after nitriding can be avoided, which is high. An endless metal belt having strength can be obtained.

図3は、本発明の方法において好ましくは用いられる溶体化処理の一態様を示している。図3で、12はマルエージング鋼板11の端部同士を溶接して形成された筒状ドラムであり、例えば窒素のような不活性ガス雰囲気にあるチャンバー(不図示)内に筒状ドラム12を配置し、その上下端を、回転駆動する固定具21、22により固定する。環状の高周波コイル23が回転する筒状ドラム12に対して上下方向に移動するようにされており、高周波誘導加熱によって筒状ドラム12を例えば840℃〜880℃に加熱する。加熱後、例えば雰囲気ガスと同じガスを高圧でノズルから吹き付ける等の手段により冷却し、200℃程度以下になってから、不活性ガス雰囲気から大気に取り出す。雰囲気への出し入れは、チャンバーを真空排気した後、不活性ガスで置換する等の方法で行うことが望ましい。   FIG. 3 shows one embodiment of the solution treatment preferably used in the method of the present invention. In FIG. 3, 12 is a cylindrical drum formed by welding end portions of the maraging steel plate 11, and the cylindrical drum 12 is placed in a chamber (not shown) in an inert gas atmosphere such as nitrogen, for example. It arrange | positions and the upper and lower ends are fixed with the fixing tools 21 and 22 which rotationally drive. The annular high-frequency coil 23 moves vertically with respect to the rotating cylindrical drum 12, and the cylindrical drum 12 is heated to, for example, 840 ° C. to 880 ° C. by high-frequency induction heating. After heating, for example, the same gas as the atmosphere gas is cooled by means such as spraying from a nozzle at a high pressure, and after being reduced to about 200 ° C. or lower, the gas is taken out from the inert gas atmosphere to the atmosphere. It is desirable to put in and out the atmosphere by a method such as evacuating the chamber and replacing with an inert gas.

この方法によって、溶体化処理された筒状ドラム12の表面のTi、Alの酸化物層の厚さは、通常の雰囲気熱処理で行ったものよりも、きわめて薄く、0.5μm以下にすることができる。また、上記のように窒素雰囲気で処理した場合でも、前記した窒素の拡散層は1μm以下にできる。従って、後工程での表面の取りしろ(研磨または研削で除去する表面からの厚さ)を小さくすることができ、製造コストを大幅に削減できる。   By this method, the thickness of the oxide layer of Ti and Al on the surface of the cylindrical drum 12 subjected to the solution treatment should be much thinner than that performed by normal atmospheric heat treatment, and should be 0.5 μm or less. it can. Further, even when the treatment is performed in a nitrogen atmosphere as described above, the above-described nitrogen diffusion layer can be 1 μm or less. Therefore, the margin of the surface in the subsequent process (thickness from the surface to be removed by polishing or grinding) can be reduced, and the manufacturing cost can be greatly reduced.

[実施例]
素材として、マルエージング鋼(Ni:17〜19%、Co:7〜13%、Mo:4〜5%、Ti:0.3〜1%、Al:0.05〜0.15%、C:0.03%以下、残り:Fe)を用いた。図1cで説明したドラム12の1次溶体化処理を、窒素+水素(5〜10%)雰囲気中、880℃で10分間保持で行った。表面には、約1μmの厚さのTiの酸化物層、約0.5μmの厚さのAlの酸化物層が生成された。また、微量であるが表面から約3μmの深さまで窒素の拡散層が生成された。
[Example]
As a material, maraging steel (Ni: 17 to 19%, Co: 7-13%, Mo: 4 to 5%, Ti: 0.3 to 1%, Al: 0.05 to 0.15%, C: 0.03% or less, the remainder: Fe) was used. The primary solution treatment of the drum 12 described in FIG. 1c was performed by holding at 880 ° C. for 10 minutes in a nitrogen + hydrogen (5 to 10%) atmosphere. A Ti oxide layer having a thickness of about 1 μm and an Al oxide layer having a thickness of about 0.5 μm were formed on the surface. Further, a nitrogen diffusion layer was formed to a depth of about 3 μm from the surface though it was a small amount.

溶体化処理後のドラム12を切断してリング状部材13とし、バレル研磨で、切断時の端面バリを除去して端面にR付けを実施するとともに、表面および裏面を(1)1.5μmの厚さで除去した。また、(2)窒素の拡散層を除去すべく、3μmを超える程度まで除去した。それらを圧延処理した後、再度、2次溶体化処理を行った。(1)と(2)のリング状部材に対して、定法による窒化処理を行った。窒化後の表面には窒素化合物の生成はなく、高い強度の無端金属ベルトが得られた。   The drum 12 after the solution treatment is cut into a ring-shaped member 13 and barrel burrs are used to remove end surface burrs at the time of cutting and apply R to the end surface. Removed by thickness. (2) In order to remove the nitrogen diffusion layer, it was removed to a degree exceeding 3 μm. After rolling them, the secondary solution treatment was performed again. The ring-shaped members (1) and (2) were subjected to nitriding treatment by a usual method. There was no formation of nitrogen compounds on the surface after nitriding, and a high-strength endless metal belt was obtained.

[比較例]
(1)バレル研磨で切断時の端面バリを除去して端面にR付けを実施しただけで、表裏面の研削処理は積極的には行わなかった点を除き、他の工程は、実施例と同様にして無端金属ベルトを製造した。また、(2)切削時の端面バリをバレル研磨または砥石によって除去し、表面、裏面の研削処理を行わずに、他の工程は実施例と同様にして無端金属ベルトを製造した。これらを実施例と同様にして強度試験を行ったところ、疲労試験の寿命は1/10以下であり、十分な強度が得られなかった。
[Comparative example]
(1) Except for the fact that the end surface burrs were removed by barrel polishing and the end surface was just rounded, and the front and back surfaces were not actively ground. An endless metal belt was produced in the same manner. Further, (2) end face burrs at the time of cutting were removed by barrel polishing or a grindstone, and endless metal belts were manufactured in the same manner as in the examples except that the front and back surfaces were not ground. When these were subjected to a strength test in the same manner as in the Examples, the fatigue test life was 1/10 or less, and sufficient strength was not obtained.

本発明により無端金属ベルトが製造されるまでの主要工程を示す図。The figure which shows the main processes until an endless metal belt is manufactured by this invention. 窒素雰囲気下でマルエージング鋼板からなるドラムを溶体化処理したときの表面状態を示すグラフ。The graph which shows the surface state when solution-treating the drum which consists of a maraging steel plate in nitrogen atmosphere. 本発明の方法において好ましくは用いられる高周波コイルを用いて溶体化処理する態様を説明する図。The figure explaining the aspect which carries out solution treatment using the high frequency coil used preferably in the method of this invention. 従来法により製造した無端金属リング(素材鋼板:マルエージング鋼)を、その表面から0.5μm研磨した場合(曲線A)と、3μmまで研磨した場合(曲線B)の一例を示すグラフ。The graph which shows an example when the endless metal ring (material steel plate: maraging steel) manufactured by the conventional method is grind | polished from the surface by 0.5 micrometer (curve A), and when grind | polished to 3 micrometers (curve B).

符号の説明Explanation of symbols

10…マルエージング鋼板ロール、11…所要大きさの鋼板、12…端部同士を溶接して得られた筒状のドラム、13…溶体化処理後のドラムを所定幅に裁断されて得られたリング状部材、21、22…固定冶具、23…環状の高周波コイル   DESCRIPTION OF SYMBOLS 10 ... Maraging steel plate roll, 11 ... Steel plate of required size, 12 ... Cylindrical drum obtained by welding end part, 13 ... Obtained by cutting the drum after solution treatment to predetermined width Ring-shaped member, 21, 22 ... Fixing jig, 23 ... Annular high-frequency coil

Claims (4)

素材鋼板の端部を溶接してリング状に形成する工程と、リング状部材を溶体化処理する工程と、溶体化処理後のリング状部材を窒化処理する工程とを少なくとも有する無端金属ベルトの製造方法であって、溶体化処理と窒化処理の間に、リング状部材の表面を研磨または研削して溶体化処理により形成された元素濃化層および酸化物層を除去する工程をさらに含むことを特徴とする無端金属ベルトの製造方法。   Manufacture of an endless metal belt having at least a step of welding end portions of a raw steel plate into a ring shape, a step of solution-treating the ring-shaped member, and a step of nitriding the ring-shaped member after solution treatment The method further includes a step of polishing or grinding the surface of the ring-shaped member between the solution treatment and the nitriding treatment to remove the element concentrated layer and the oxide layer formed by the solution treatment. A method for producing an endless metal belt, which is characterized. 溶体化処理を不活性ガス雰囲気中において高周波誘導加熱を用いて行うことを特徴とする請求項1に記載の無端金属ベルトの製造方法。   The method for producing an endless metal belt according to claim 1, wherein the solution treatment is performed using high-frequency induction heating in an inert gas atmosphere. 溶体化処理をメッシュベルトを備えたトンネル型加熱炉を用いて行うことを特徴とする請求項1に記載の無端金属ベルトの製造方法。   The method for producing an endless metal belt according to claim 1, wherein the solution treatment is performed using a tunnel-type heating furnace provided with a mesh belt. 素材鋼板がマルエージング鋼であり、表面を除去する厚さが1.5μm以上、より好ましくは3μm以上、であることを特徴とする請求項2または3に記載の無端金属ベルトの製造方法。   The method for producing an endless metal belt according to claim 2 or 3, wherein the material steel plate is maraging steel and the thickness for removing the surface is 1.5 µm or more, more preferably 3 µm or more.
JP2004312775A 2004-10-27 2004-10-27 Method for manufacturing endless metallic belt Pending JP2006124757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312775A JP2006124757A (en) 2004-10-27 2004-10-27 Method for manufacturing endless metallic belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312775A JP2006124757A (en) 2004-10-27 2004-10-27 Method for manufacturing endless metallic belt

Publications (1)

Publication Number Publication Date
JP2006124757A true JP2006124757A (en) 2006-05-18

Family

ID=36719777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312775A Pending JP2006124757A (en) 2004-10-27 2004-10-27 Method for manufacturing endless metallic belt

Country Status (1)

Country Link
JP (1) JP2006124757A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145502A1 (en) * 2006-06-12 2007-12-21 Robert Bosch Gmbh Manufacturing method for making thin metal rings
WO2009090552A1 (en) 2008-01-18 2009-07-23 Toyota Jidosha Kabushiki Kaisya Method of producing ring member
WO2009134119A1 (en) 2008-04-28 2009-11-05 Robert Bosch Gmbh Drive belt ring component and manufacturing method and maraging steel base material therefor
JP2010514570A (en) * 2006-12-28 2010-05-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for treating metal strip, continuous metal strip, and push belt using metal strip
WO2011077945A1 (en) * 2009-12-25 2011-06-30 本田技研工業株式会社 Nitriding process for maraging steel
WO2012111213A1 (en) * 2011-02-14 2012-08-23 本田技研工業株式会社 Method and apparatus for manufacturing metal ring
JP2016044340A (en) * 2014-08-25 2016-04-04 トヨタ自動車株式会社 Endless metal belt production method
JP2018051720A (en) * 2016-09-30 2018-04-05 アイシン・エィ・ダブリュ株式会社 Method for manufacturing ring and ring polishing device
JP2018054081A (en) * 2016-09-30 2018-04-05 アイシン・エィ・ダブリュ株式会社 Ring manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145502A1 (en) * 2006-06-12 2007-12-21 Robert Bosch Gmbh Manufacturing method for making thin metal rings
JP2010514570A (en) * 2006-12-28 2010-05-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for treating metal strip, continuous metal strip, and push belt using metal strip
JP2017052008A (en) * 2006-12-28 2017-03-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for processing metal strip, continuous metal strip, and push belt using metal strip
US8281629B2 (en) 2008-01-18 2012-10-09 Toyota Jidosha Kabushiki Kaisha Method of producing ring member
WO2009090552A1 (en) 2008-01-18 2009-07-23 Toyota Jidosha Kabushiki Kaisya Method of producing ring member
CN101918172B (en) * 2008-01-18 2012-06-06 丰田自动车株式会社 Method of producing ring member
WO2009134119A1 (en) 2008-04-28 2009-11-05 Robert Bosch Gmbh Drive belt ring component and manufacturing method and maraging steel base material therefor
WO2011077945A1 (en) * 2009-12-25 2011-06-30 本田技研工業株式会社 Nitriding process for maraging steel
CN102666907A (en) * 2009-12-25 2012-09-12 本田技研工业株式会社 Nitriding process for maraging steel
EP2518177A1 (en) * 2009-12-25 2012-10-31 Honda Motor Co., Ltd. Nitriding process for maraging steel
EP2518177A4 (en) * 2009-12-25 2014-03-19 Honda Motor Co Ltd Nitriding process for maraging steel
JP5606453B2 (en) * 2009-12-25 2014-10-15 本田技研工業株式会社 Method for nitriding maraging steel
JP5615943B2 (en) * 2011-02-14 2014-10-29 本田技研工業株式会社 Metal ring manufacturing method and apparatus
US9266208B2 (en) 2011-02-14 2016-02-23 Honda Motor Co., Ltd. Metal ring manufacture method and metal ring manufacture device
WO2012111213A1 (en) * 2011-02-14 2012-08-23 本田技研工業株式会社 Method and apparatus for manufacturing metal ring
JP2016044340A (en) * 2014-08-25 2016-04-04 トヨタ自動車株式会社 Endless metal belt production method
JP2018051720A (en) * 2016-09-30 2018-04-05 アイシン・エィ・ダブリュ株式会社 Method for manufacturing ring and ring polishing device
JP2018054081A (en) * 2016-09-30 2018-04-05 アイシン・エィ・ダブリュ株式会社 Ring manufacturing method
CN109789522A (en) * 2016-09-30 2019-05-21 爱信艾达株式会社 The manufacturing method of ring

Similar Documents

Publication Publication Date Title
KR100898679B1 (en) High-concentration carburized/low-strain quenched member and process for producing the same
JP4386152B2 (en) Shot peening projection material, finish line, manufacturing method, and shot peening projection material
CN113862610B (en) Pretreatment method for improving corrosion resistance of carburized layer
JP2006124757A (en) Method for manufacturing endless metallic belt
JP5093410B2 (en) High carbon chromium bearing steel and manufacturing method thereof
JP2004043962A (en) Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method
JP5405325B2 (en) Differential gear and manufacturing method thereof
JP5606453B2 (en) Method for nitriding maraging steel
KR100333199B1 (en) Carburizing Treatment Method
US20160305007A1 (en) Method of manufacturing ferrous metal component
JP3823875B2 (en) Nitriding method for maraging steel and belt for belt-type continuously variable transmission nitrided by the method
JP5701193B2 (en) CVT ring member manufacturing method, CVT ring member and CVT belt
JP6759842B2 (en) Steel manufacturing method
JP2010196129A (en) Method of manufacturing steel material
JP2016098426A (en) Case hardened steel for mechanical structure excellent in pitching resistance used for carburization case
JPH11269630A (en) Surface treated steel member
JP6432213B2 (en) Manufacturing method of endless metal belt
JP3842193B2 (en) Nitriding method
JP2005330565A (en) Surface hardening treatment method for malaging steel
JP2006002194A (en) Method for manufacturing shaft
JP2007152358A (en) Method for manufacturing steel belt
JP2019119899A (en) Cvt ring raw material, cvt ring member, and manufacturing method therefor
JP2020084216A (en) Cyclic steel raw material and manufacturing method therefor
JP2019119898A (en) Cvt ring raw material, cvt ring member, and manufacturing method therefor
JP5633466B2 (en) Continuously variable transmission belt and manufacturing method thereof