JP2016040494A5 - - Google Patents

Download PDF

Info

Publication number
JP2016040494A5
JP2016040494A5 JP2014164260A JP2014164260A JP2016040494A5 JP 2016040494 A5 JP2016040494 A5 JP 2016040494A5 JP 2014164260 A JP2014164260 A JP 2014164260A JP 2014164260 A JP2014164260 A JP 2014164260A JP 2016040494 A5 JP2016040494 A5 JP 2016040494A5
Authority
JP
Japan
Prior art keywords
heat exchanger
nitrogen
gas
compressor
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014164260A
Other languages
Japanese (ja)
Other versions
JP6427359B2 (en
JP2016040494A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014164260A priority Critical patent/JP6427359B2/en
Priority claimed from JP2014164260A external-priority patent/JP6427359B2/en
Publication of JP2016040494A publication Critical patent/JP2016040494A/en
Publication of JP2016040494A5 publication Critical patent/JP2016040494A5/ja
Application granted granted Critical
Publication of JP6427359B2 publication Critical patent/JP6427359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

さらに、図4における、超高純度酸素製造プロセスBの符号21は脱メタン精留塔(高沸点不純物除去手段)を示し、22は脱アルゴン精留塔(低沸点不純物除去手段)、23は循環窒素圧縮、24は循環窒素ガス熱交換器、21x,22xは凝縮器(コンデンサー)、21y,22yはリボイラーである。また、窒素液化プロセスC(寒冷供給工程)の符号31は液化熱交換器を示し、32は循環窒素圧縮機、33,34は膨張タービン、35は気液分離器である。 Further, in FIG. 4, reference numeral 21 of the ultra high purity oxygen production process B indicates a demethanization rectification column (high boiling point impurity removal means), 22 indicates a deargon rectification column (low boiling point impurity removal means), and 23 indicates circulation. nitrogen compressor, 24 is circulated nitrogen gas heat exchanger, 21x, 22x condenser (condenser), 21y, 22y are reboiler. Reference numeral 31 of the nitrogen liquefaction process C (cold supply step) denotes a liquefied heat exchanger, 32 is a circulating nitrogen compressor, 33 and 34 are expansion turbines, and 35 is a gas-liquid separator.

上記のような従来の超高純度酸素製造装置では、酸素の超高純度化の工程として、前記のような高沸点不純物除去手段(脱メタン精留塔21)と低沸点不純物除去手段(脱アルゴン精留塔22)の両方を備える製造プロセスを備えることが、一般的である。 In the conventional ultra-high purity oxygen production apparatus as described above, the high boiling point impurity removing means (demethanization rectification column 21 ) and the low boiling point impurity removing means (deargonization) as described above are used as the ultra-high purity process of oxygen. It is common to have a production process with both rectification columns 22 ).

また、本実施形態の超高純度酸素の製造方法は、上記脱メタン精留塔21の底部から空気分離プロセスAの主熱交換器13至る流路(パイプ)Fを備えており、この構成により、破棄する予定のガスの冷熱を効率的に回収している。したがって、この酸素製造方法は、原料空気の増量〔設計原料空気流量の1.13〜2.60倍の冷却圧縮原料空気を導入する〕に伴う消費電力の増大を、冷熱の回収により相殺することができ、もって、その稼働コストを低減することができる。 In addition, the method for producing ultra-high purity oxygen according to the present embodiment includes a flow path (pipe) F from the bottom of the demethanizer 21 to the main heat exchanger 13 of the air separation process A. Thus, the cold energy of the gas scheduled to be discarded is efficiently recovered. Therefore, this oxygen production method offsets the increase in power consumption associated with an increase in the amount of raw material air (introducing cooled compressed raw material air 1.13 to 2.60 times the designed raw material air flow rate) by recovering cold energy. Therefore, the operation cost can be reduced.

10 精留塔
11 高圧塔
12 低圧塔
13 主熱交換器
14 過冷却器
15 窒素昇圧圧縮機
16 気液分離器
21 脱メタン精留塔
22 脱アルゴン精留塔
23 循環窒素圧縮
24 循環窒素ガス熱交換器
31 液化熱交換器
32 循環窒素圧縮機
33,34 膨張タービン
35 気液分離器
41 原料空気圧縮機
42 吸着塔
51 アルゴン精留塔
52 ポンプ
10 fractionator 11 pressure column 12 the low-pressure column 13 main heat exchanger 14 subcooler 15 nitrogen booster compressor 16 the gas-liquid separator 21 demethanizer fractionator 22 de argon rectification column 23 circulating nitrogen compressor 24 circulates nitrogen gas Heat exchanger 31 Liquefaction heat exchanger 32 Circulating nitrogen compressor 33, 34 Expansion turbine 35 Gas-liquid separator 41 Raw air compressor 42 Adsorption tower 51 Argon rectification tower 52 Pump

JP2014164260A 2014-08-12 2014-08-12 Method and apparatus for producing ultra-high purity oxygen Active JP6427359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164260A JP6427359B2 (en) 2014-08-12 2014-08-12 Method and apparatus for producing ultra-high purity oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164260A JP6427359B2 (en) 2014-08-12 2014-08-12 Method and apparatus for producing ultra-high purity oxygen

Publications (3)

Publication Number Publication Date
JP2016040494A JP2016040494A (en) 2016-03-24
JP2016040494A5 true JP2016040494A5 (en) 2017-07-20
JP6427359B2 JP6427359B2 (en) 2018-11-21

Family

ID=55540864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164260A Active JP6427359B2 (en) 2014-08-12 2014-08-12 Method and apparatus for producing ultra-high purity oxygen

Country Status (1)

Country Link
JP (1) JP6427359B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495675B2 (en) 2019-09-18 2024-06-05 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード High Purity Oxygen Production System
WO2023083488A1 (en) * 2021-11-10 2023-05-19 Linde Gmbh Method and arrangement for producing an argon product and an oxygen product, and method for retrofitting one or more air fractionation plants

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8828134D0 (en) * 1988-12-02 1989-01-05 Boc Group Plc Air separation
JP2693220B2 (en) * 1989-04-24 1997-12-24 テイサン株式会社 Ultra high purity oxygen production method
GB9607200D0 (en) * 1996-04-04 1996-06-12 Boc Group Plc Air separation
US5881570A (en) * 1998-04-06 1999-03-16 Praxair Technology, Inc. Cryogenic rectification apparatus for producing high purity oxygen or low purity oxygen
JP3929799B2 (en) * 2002-03-11 2007-06-13 日本エア・リキード株式会社 Method and apparatus for producing ultra high purity oxygen

Similar Documents

Publication Publication Date Title
CN103123203B (en) Method of preparing pure nitrogen by using exhaust gas with nitrogen to carry out once-more cryogenic distillation
SG10201900806PA (en) Method and apparatus for producing product nitrogen gas and product argon
KR101669729B1 (en) Air liquefaction system using lng cold energy with ejector expansion device entraining expanded vapor
US20170363351A1 (en) Method and apparatus for separating a feed gas containing at least 20 mol % of co2 and at least 20 mol % of methane, by partial condensation and/or by distillation
JP2011518307A5 (en)
RU2015126605A (en) METHOD AND DEVICE FOR LOW-TEMPERATURE AIR SEPARATION
MX2020002413A (en) Methods for providing refrigeration in natural gas liquids recovery plants.
RU2011142916A (en) METHOD FOR PROCESSING A LOADING NATURAL GAS FOR PRODUCING A PROCESSED NATURAL GAS AND A FRACTION OF C5 + HYDROCARBONS AND THE RELATED INSTALLATION
KR20130002811U (en) Apparatus for the production of pressurized purified air and a liquid product by cryogenic distillation of air
RU2014146578A (en) LNG EXTRACTION FROM SYNTHESIS GAS USING MIXED REFRIGERANT
CN102620520A (en) Process for preparing pressure oxygen and pressure nitrogen as well as by-product liquid argon through air separation
CN102538397A (en) Process for making nitrogen by air separation or making nitrogen and simultaneously producing oxygen in attached manner
WO2014146779A3 (en) Method and device for generating gaseous compressed nitrogen.
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP2016040494A5 (en)
WO2015095031A3 (en) A process for producing liquid nitrogen
WO2014154361A3 (en) Method and device for producing gaseous compressed oxygen having variable power consumption
JP5932127B2 (en) Carbon dioxide liquefaction equipment
FR2975478A1 (en) Method for liquefying gas stream rich in carbon dioxide, involves heating part of liquid flow in heat exchanger, and sending recycled molecules of refrigerant to be cooled in exchanger during partial or total failure of compressor
RU2015130628A (en) METHOD AND DEVICE FOR LOW-TEMPERATURE AIR SEPARATION
JP2010025513A (en) Method and device for manufacturing nitrogen
JP2006329615A (en) Method and device for separating air by low temperature distillation
TWI756345B (en) Nitrogen production system and nitrogen production method for producing nitrogen with different purities
EA028888B1 (en) Gas mixture separation method
US20130139542A1 (en) Method and apparatus for producing liquid carbon dioxide