JP2016040488A - clutch - Google Patents

clutch Download PDF

Info

Publication number
JP2016040488A
JP2016040488A JP2015251489A JP2015251489A JP2016040488A JP 2016040488 A JP2016040488 A JP 2016040488A JP 2015251489 A JP2015251489 A JP 2015251489A JP 2015251489 A JP2015251489 A JP 2015251489A JP 2016040488 A JP2016040488 A JP 2016040488A
Authority
JP
Japan
Prior art keywords
driven
drive
rotating body
clutch
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015251489A
Other languages
Japanese (ja)
Other versions
JP6175482B2 (en
Inventor
友騎 山下
Tomoki Yamashita
友騎 山下
国分 博
Hiroshi Kokubu
博 国分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2015251489A priority Critical patent/JP6175482B2/en
Publication of JP2016040488A publication Critical patent/JP2016040488A/en
Application granted granted Critical
Publication of JP6175482B2 publication Critical patent/JP6175482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clutch which is reducible in size in a radial direction.SOLUTION: A clutch 3 comprises: an annular clutch housing 31; a drive-side rotating body 32 which is rotationally driven; and a driven-side rotating body 35 which has a control face 73 oriented toward the outside in a radial direction at the inside of the clutch housing 31, and to which a rotating drive force of the drive-side rotating body 32 is transmitted at the rotation of the drive-side rotating body 32. Between an internal peripheral face of the clutch housing 31 and the control face 73, there is arranged a rolling body 34 which rotates together with the driven-side rotating body 35 at the rotational drive of the drive-side rotating body 32, is sandwiched by the internal peripheral face of the clutch housing 31 and the control face 73 at the non-rotational drive of the drive-side rotating body 32, and prohibits the rotation of the driven-side rotating body 35. Then, the driven-side rotating body 35 comprises a driven-side connecting part 72 which is integrally and rotationally connected to the drive-side rotating body 32, and the control face 73 and the driven-side connecting part 72 are separated in an axial direction.SELECTED DRAWING: Figure 2

Description

本発明は、駆動軸の回転駆動力を従動軸に伝達する一方で従動軸からの回転力を駆動軸に伝達しないように作動するクラッチに関する。   The present invention relates to a clutch that operates so as to transmit a rotational driving force of a driving shaft to a driven shaft while not transmitting a rotational force from the driven shaft to the driving shaft.

従来、パワーウインド装置等の駆動源に用いられるモータには、回転駆動される回転軸と、該回転軸から伝達される回転駆動力を減速する減速機構のウォーム軸とを、回転軸の回転駆動力をウォーム軸に伝達する一方、ウォーム軸からの回転力を回転軸に伝達しないように作動するクラッチを介して連結したものがある。   2. Description of the Related Art Conventionally, a motor used as a drive source for a power window device or the like includes a rotary shaft that is rotationally driven and a worm shaft of a speed reduction mechanism that decelerates the rotational driving force transmitted from the rotary shaft. Some of them are connected via a clutch that operates so as not to transmit the rotational force from the worm shaft to the rotating shaft while transmitting the force to the worm shaft.

例えば、特許文献1に記載されたモータに備えられるクラッチは、環状のクラッチハウジングの内側に、回転軸と一体回転する駆動側回転体、ウォーム軸と一体回転する従動側回転体及び転動体を配置して形成されている。従動側回転体は、軸部と該軸部から径方向外側に突出した係合凸部とを備えるとともに、係合凸部の径方向外側端面には、クラッチハウジングとの距離が回転方向に変化する制御面が形成されている。また、転動体は、クラッチハウジングと制御面の間に配置されている。そして、回転軸の回転駆動により駆動側回転体が回転されると、該駆動側回転体は係合凸部と周方向に係合する。従って、回転軸の回転駆動力は、駆動側回転体及び従動側回転体を介してウォーム軸に伝達される。一方、回転軸の非回転駆動時には、転動体が制御面とクラッチハウジングとの間に挟み込まれることにより従動側回転体の回転が阻止される。従って、ウォーム軸の回転力は回転軸に伝達されない。   For example, in a clutch provided in a motor described in Patent Document 1, a driving side rotating body that rotates integrally with a rotating shaft, a driven side rotating body that rotates integrally with a worm shaft, and a rolling element are disposed inside an annular clutch housing. Is formed. The driven-side rotator includes a shaft portion and an engagement convex portion protruding radially outward from the shaft portion, and the distance from the clutch housing changes in the rotational direction on the radially outer end surface of the engagement convex portion. A control surface is formed. The rolling elements are disposed between the clutch housing and the control surface. When the drive-side rotator is rotated by the rotational drive of the rotation shaft, the drive-side rotator is engaged with the engagement convex portion in the circumferential direction. Therefore, the rotational driving force of the rotating shaft is transmitted to the worm shaft through the driving side rotating body and the driven side rotating body. On the other hand, when the rotating shaft is non-rotatingly driven, the rolling element is sandwiched between the control surface and the clutch housing, thereby preventing the driven side rotating body from rotating. Therefore, the rotational force of the worm shaft is not transmitted to the rotational shaft.

特開2002−39223号公報JP 2002-39223 A

しかしながら、特許文献1のクラッチでは、回転軸の回転駆動時に駆動側回転体と係合し回転軸の非回転駆動時にクラッチハウジングと共に転動体を挟持する従動側回転体の係合凸部が、軸部から径方向外側に突出した形状をなしている。そして、径方向外側に突出した係合凸部によってクラッチが径方向に大型化されてしまうという問題があった。   However, in the clutch disclosed in Patent Document 1, the engagement convex portion of the driven side rotating body that engages with the driving side rotating body when the rotating shaft is driven to rotate and clamps the rolling element together with the clutch housing when the rotating shaft is not rotated is provided on the shaft. It has a shape that protrudes radially outward from the portion. And there existed a problem that a clutch will be enlarged radially by the engagement convex part which protruded to radial direction outer side.

本発明は、こうした実情に鑑みてなされたものであって、その目的は、径方向に小型化可能なクラッチを提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a clutch that can be reduced in size in the radial direction.

上記課題を解決するクラッチは、環状のクラッチハウジングと、回転駆動される駆動側回転体と、前記クラッチハウジングの内側で径方向外側を向く制御面を有し前記駆動側回転体の回転時には前記駆動側回転体の回転駆動力が伝達される従動側回転体と、前記クラッチハウジングの内周面と前記制御面との間に配置され、前記駆動側回転体の回転駆動時には前記従動側回転体と共に回転し、前記駆動側回転体の非回転駆動時には前記クラッチハウジングの内周面と前記制御面とに挟持されて前記従動側回転体の回転を阻止する転動体と、を備えたクラッチであって、前記従動側回転体は、前記駆動側回転体に一体回転可能に連結される従動側連結部を備えるとともに、前記従動側連結部には第1従動側伝達面及び第2従動側伝達面が回転方向に応じて形成されており、前記第1従動側伝達面及び前記第2従動側伝達面と前記制御面とが軸方向に連続して形成されている。   A clutch that solves the above-described problem has an annular clutch housing, a drive-side rotator that is rotationally driven, and a control surface that faces radially outward inside the clutch housing, and the drive side rotator rotates when the drive-side rotator rotates. A driven-side rotating body to which the rotational driving force of the side-rotating body is transmitted, and the inner-side surface of the clutch housing and the control surface, and when the driving-side rotating body is driven to rotate, together with the driven-side rotating body A rotating body that rotates and is held between an inner peripheral surface of the clutch housing and the control surface when the driving side rotating body is not rotated, and prevents rotation of the driven side rotating body. The driven-side rotating body includes a driven-side connecting portion that is connected to the driving-side rotating body so as to be integrally rotatable, and the driven-side connecting portion has a first driven-side transmission surface and a second driven-side transmission surface. How to rotate It is formed in accordance with, the first driven transmission surface and the second driven transmission surface and said control surface is formed continuously in the axial direction.

上記記載のクラッチにおいて、前記従動側連結部は、軸方向と直交する断面形状が略楕円形状である。
上記記載のクラッチにおいて、前記駆動側回転体は、前記従動側連結部が一体回転可能な挿入状態となる従動軸挿入孔を備え、前記従動側連結部は、前記従動軸挿入孔よりも細く形成されている。
In the clutch described above, the driven-side coupling portion has a substantially elliptical cross-sectional shape orthogonal to the axial direction.
In the clutch described above, the driving-side rotator includes a driven shaft insertion hole that is in an insertion state in which the driven-side coupling portion can integrally rotate, and the driven-side coupling portion is formed to be narrower than the driven shaft insertion hole. Has been.

本発明によれば、径方向に小型化可能なクラッチを提供することができる。   According to the present invention, it is possible to provide a clutch that can be reduced in size in the radial direction.

第1実施形態におけるモータの断面図。Sectional drawing of the motor in 1st Embodiment. 第1実施形態におけるモータの部分拡大断面図。The partial expanded sectional view of the motor in a 1st embodiment. 第1実施形態のクラッチの分解斜視図。The disassembled perspective view of the clutch of 1st Embodiment. 第1実施形態の駆動側回転体の斜視図。The perspective view of the drive side rotary body of 1st Embodiment. 第1実施形態のクラッチの部分拡大断面図。The partial expanded sectional view of the clutch of 1st Embodiment. (a)は第1実施形態のクラッチの断面図(図2におけるA−A断面図)、(b)は第1実施形態のクラッチの断面図(図2におけるB−B断面図)。(A) is sectional drawing (AA sectional drawing in FIG. 2) of the clutch of 1st Embodiment, (b) is sectional drawing (BB sectional drawing in FIG. 2) of the clutch of 1st Embodiment. (a)は第1実施形態のクラッチの断面図、(b)は第1実施形態のクラッチの断面図。(A) is sectional drawing of the clutch of 1st Embodiment, (b) is sectional drawing of the clutch of 1st Embodiment. (a)は第1実施形態のクラッチの断面図、(b)は第1実施形態のクラッチの断面図。(A) is sectional drawing of the clutch of 1st Embodiment, (b) is sectional drawing of the clutch of 1st Embodiment. 第2実施形態におけるモータの部分拡大断面図。The partial expanded sectional view of the motor in 2nd Embodiment. (a)は第2実施形態のクラッチの部分拡大図(図9におけるC−C断面図)、(b)は第2実施形態のクラッチの部分拡大図。(A) is the elements on larger scale of the clutch of 2nd Embodiment (CC sectional drawing in FIG. 9), (b) is the elements on larger scale of the clutch of 2nd Embodiment. 第2実施形態の駆動側回転体の断面図(図9におけるD−D断面図)。Sectional drawing (DD sectional drawing in FIG. 9) of the drive side rotary body of 2nd Embodiment.

(第1実施形態)
以下、本発明を具体化した第1実施形態を図面に従って説明する。
図1に示す本実施形態のモータは、例えばパワーウインド装置の駆動源として用いられるものである。このモータは、モータ部1、減速部2及びクラッチ3を備えている。
(First embodiment)
A first embodiment of the present invention will be described below with reference to the drawings.
The motor of this embodiment shown in FIG. 1 is used as a drive source of a power window device, for example. This motor includes a motor unit 1, a speed reduction unit 2, and a clutch 3.

モータ部1を構成する有底筒状のヨークハウジング(以下、単にヨークという)4の内周面には、一対のマグネット5が互いに対向するように固着されるとともに、マグネット5の内側には電機子6が配置されている。電機子6は、ヨーク4の中央部に配置される回転軸7(駆動軸)を備えている。回転軸7の基端部(図1において上側の端部)は、ヨーク4の底部中央に設けられた軸受8にて軸支されるとともに、同回転軸7の先端側の部位には、円筒状の整流子9が固定されている。また、回転軸7の先端部には、円柱形状から平行に面取りした二面幅形状の連結部7aが形成されるとともに、連結部7aの先端部は曲面状(球面の一部)をなしている。   A pair of magnets 5 are fixed to an inner peripheral surface of a bottomed cylindrical yoke housing (hereinafter simply referred to as a yoke) 4 constituting the motor unit 1 so as to face each other. A child 6 is arranged. The armature 6 includes a rotation shaft 7 (drive shaft) disposed at the center of the yoke 4. A base end portion (upper end portion in FIG. 1) of the rotating shaft 7 is pivotally supported by a bearing 8 provided at the center of the bottom of the yoke 4, and a cylindrical portion is provided at a tip side of the rotating shaft 7. A commutator 9 is fixed. In addition, a connecting portion 7a having a two-sided width shape that is chamfered in parallel from a cylindrical shape is formed at the tip of the rotating shaft 7, and the tip of the connecting portion 7a has a curved surface shape (part of a spherical surface). Yes.

ヨーク4の開口部には、外側に向かって延設されたフランジ部4aが形成されるとともに、同ヨーク4の開口部にはブラシホルダ10が嵌合されている。このブラシホルダ10は、ヨーク4の開口部を閉塞する形状のホルダ本体10aと、ヨーク4の径方向外側に突出するコネクタ部10bとが一体に形成されてなる。ホルダ本体10aは、図示しない配線でコネクタ部10bと接続され前記整流子9と摺接する一対のブラシ11を保持している。また、ホルダ本体10aの中央には軸受12が設けられるとともに、該軸受12は、回転軸7における整流子9と連結部7aとの間の部位を軸支している。そして、コネクタ部10bを介してブラシ11に供給された外部電源が、整流子9を介して電機子6に供給されると、これにより電機子6(回転軸7)が回転駆動、即ちモータ部1が回転駆動されるようになっている。   A flange portion 4 a extending outward is formed at the opening of the yoke 4, and a brush holder 10 is fitted into the opening of the yoke 4. The brush holder 10 is formed by integrally forming a holder main body 10 a having a shape for closing the opening of the yoke 4 and a connector portion 10 b protruding outward in the radial direction of the yoke 4. The holder main body 10a holds a pair of brushes 11 that are connected to the connector portion 10b by wires (not shown) and that are in sliding contact with the commutator 9. A bearing 12 is provided at the center of the holder main body 10a, and the bearing 12 pivotally supports a portion of the rotating shaft 7 between the commutator 9 and the connecting portion 7a. When the external power supplied to the brush 11 via the connector portion 10b is supplied to the armature 6 via the commutator 9, the armature 6 (rotating shaft 7) is driven to rotate, that is, the motor portion. 1 is rotationally driven.

前記減速部2は、樹脂製のギヤハウジング21内に減速機構22等を収容して形成されている。ギヤハウジング21は、モータ部1と軸方向に対向する部位(図1において上側の端部)に、該ギヤハウジング21をモータ部1に固定するための固定部21aを備えている。固定部21aは、ヨーク4のフランジ部4aの外形と同様の外形を有するとともに、同固定部21aには、ヨーク4の内側に開口する嵌合凹部21bが形成されている。そして、嵌合凹部21b内にブラシホルダ10のホルダ本体10aが嵌合された状態で、固定部21aと該固定部21aに当接したフランジ部4aとが螺子23にて固定されることにより、ギヤハウジング21にヨーク4が固定され、モータ部1と減速部2とが一体化されている。   The speed reduction portion 2 is formed by housing a speed reduction mechanism 22 and the like in a resin gear housing 21. The gear housing 21 includes a fixing portion 21 a for fixing the gear housing 21 to the motor portion 1 at a portion (an upper end portion in FIG. 1) facing the motor portion 1 in the axial direction. The fixing portion 21 a has an outer shape similar to the outer shape of the flange portion 4 a of the yoke 4, and a fitting recess 21 b that opens to the inside of the yoke 4 is formed in the fixing portion 21 a. Then, in a state where the holder main body 10a of the brush holder 10 is fitted in the fitting recess 21b, the fixing portion 21a and the flange portion 4a in contact with the fixing portion 21a are fixed by the screw 23, The yoke 4 is fixed to the gear housing 21, and the motor unit 1 and the speed reduction unit 2 are integrated.

ギヤハウジング21には、嵌合凹部21bの底部中央にクラッチ収容凹部21cが軸方向に凹設されるとともに、該クラッチ収容凹部21cの底部中央から回転軸7の軸線方向に沿って延びるウォーム軸収容部21dが凹設されている。また、ギヤハウジング21には、ウォーム軸収容部21dの側方(図1において右側)に、ホイール収容部21eが凹設されている。このホイール収容部21eと前記ウォーム軸収容部21dとは、ウォーム軸収容部21dの軸方向(長手方向)の中央部で繋がっている。   In the gear housing 21, a clutch housing recess 21c is provided in the center of the bottom of the fitting recess 21b in the axial direction, and the worm shaft housing extends along the axial direction of the rotary shaft 7 from the center of the bottom of the clutch housing recess 21c. The portion 21d is recessed. Further, in the gear housing 21, a wheel accommodating portion 21e is recessed on the side (right side in FIG. 1) of the worm shaft accommodating portion 21d. The wheel housing portion 21e and the worm shaft housing portion 21d are connected at the central portion in the axial direction (longitudinal direction) of the worm shaft housing portion 21d.

前記ウォーム軸収容部21dには、略円柱状のウォーム軸24が収容されている。ウォーム軸24は、金属材料よりなり、その軸方向の中央部には螺子歯状のウォーム部24aが形成されている。そして、ウォーム軸24は、ウォーム軸収容部21dの軸方向の両端部にそれぞれ配置された金属製で円筒状をなす一対の軸受25,26によってその軸方向の両端部が軸支されている。ウォーム軸収容部21d内のウォーム軸24は、軸受25,26にて軸支されることにより、前記回転軸7と同軸上に配置、即ち回転軸7の中心軸線L1とウォーム軸24の中心軸線L2とが一直線上となるように配置されている(図2参照)。   A substantially cylindrical worm shaft 24 is accommodated in the worm shaft accommodating portion 21d. The worm shaft 24 is made of a metal material, and a screw-like worm portion 24a is formed in the central portion in the axial direction. The worm shaft 24 is axially supported at both ends in the axial direction by a pair of metal and cylindrical bearings 25 and 26 arranged at both ends in the axial direction of the worm shaft accommodating portion 21d. The worm shaft 24 in the worm shaft housing portion 21d is supported by the bearings 25 and 26 so as to be arranged coaxially with the rotary shaft 7, that is, the central axis L1 of the rotary shaft 7 and the central axis of the worm shaft 24. It arrange | positions so that L2 may be on a straight line (refer FIG. 2).

前記ホイール収容部21eには、ウォーム軸24のウォーム部24aと噛合する円板状のウォームホイール27が回転可能に収容されている。ウォームホイール27は、ウォーム軸24と共に減速機構22を構成している。また、ウォームホイール27の径方向の中央部には、同ウォームホイール27の軸方向(図1において紙面垂直方向)に延び同ウォームホイール27と一体回転する一体回転する出力軸28が設けられている。この出力軸28には、車両のウインドガラスを昇降させるための公知のウインドレギュレータ(図示略)が駆動連結される。   A disc-shaped worm wheel 27 that meshes with the worm portion 24a of the worm shaft 24 is rotatably accommodated in the wheel accommodating portion 21e. The worm wheel 27 constitutes the speed reduction mechanism 22 together with the worm shaft 24. In addition, an output shaft 28 that rotates integrally with the worm wheel 27 extends in the axial direction of the worm wheel 27 (in the direction perpendicular to the paper surface in FIG. 1). . A known window regulator (not shown) for raising and lowering the window glass of the vehicle is drivingly connected to the output shaft 28.

前記クラッチ収容凹部21cの内部には、前記回転軸7とウォーム軸24とを連結するクラッチ3が収容されている。図2及び図3に示すように、クラッチ3は、クラッチハウジング31、駆動側回転体32、サポート部材33、転動体34及び従動側回転体35から構成されている。   The clutch 3 for connecting the rotary shaft 7 and the worm shaft 24 is accommodated in the clutch accommodating recess 21c. As shown in FIGS. 2 and 3, the clutch 3 includes a clutch housing 31, a driving side rotating body 32, a support member 33, a rolling element 34, and a driven side rotating body 35.

クラッチハウジング31は、円筒状をなすとともに、同クラッチハウジング31の軸方向の一端部には、径方向外側に延びる鍔状の固定フランジ部31aが形成されている。クラッチハウジング31における円筒状の部位の外径はクラッチ収容凹部21cの内径と略等しく形成されるとともに、固定フランジ部31aの外径はクラッチ収容凹部21cの内径よりも大きく形成されている。また、固定フランジ部31aには、周方向に等角度間隔となる4箇所に、固定凹部31bが形成されている。固定凹部31bは、固定フランジ部31aを軸方向に貫通して形成されるとともに、径方向外側に開口している。   The clutch housing 31 has a cylindrical shape, and a hook-shaped fixed flange portion 31 a extending radially outward is formed at one end portion in the axial direction of the clutch housing 31. The outer diameter of the cylindrical portion of the clutch housing 31 is formed substantially equal to the inner diameter of the clutch housing recess 21c, and the outer diameter of the fixed flange portion 31a is formed larger than the inner diameter of the clutch housing recess 21c. In addition, fixed recesses 31b are formed in the fixed flange portion 31a at four locations that are equiangularly spaced in the circumferential direction. The fixed concave portion 31b is formed so as to penetrate the fixed flange portion 31a in the axial direction and is opened radially outward.

図2に示すように、クラッチハウジング31は、固定フランジ部31aが嵌合凹部21bの底面に当接するまでクラッチ収容凹部21c内に挿入されるとともに、固定フランジ部31aにおいてギヤハウジング21に対して固定されている。詳述すると、嵌合凹部21bの底面であってクラッチ収容凹部21cの開口部の外周縁部には、周方向に等角度間隔となる4箇所に、軸方向に突出する固定突起21fが形成されている。これらの固定突起21fは、樹脂製のギヤハウジング21と一体に形成されるとともに、固定フランジ部31aの厚さよりも軸方向に長く形成されている。また、4つの固定突起21fは、嵌合凹部21bの底面に当接した固定フランジ部31aの4つの固定凹部31b内にそれぞれ挿入されることにより、固定フランジ部31aを軸方向に貫通するとともに、各固定突起21fの先端部は熱かしめによって加工される。加工された固定突起21fによって、クラッチハウジング31は、ギヤハウジング21に対して軸方向に移動不能且つ周方向に回転不能に固定される。尚、ギヤハウジング21に固定されたクラッチハウジング31は、回転軸7及びウォーム軸24と同軸上に配置されている。   As shown in FIG. 2, the clutch housing 31 is inserted into the clutch housing recess 21c until the fixed flange portion 31a contacts the bottom surface of the fitting recess 21b, and is fixed to the gear housing 21 at the fixed flange portion 31a. Has been. Specifically, on the outer peripheral edge of the opening of the clutch housing recess 21c on the bottom surface of the fitting recess 21b, fixed projections 21f projecting in the axial direction are formed at four positions that are equiangularly spaced in the circumferential direction. ing. These fixing protrusions 21f are formed integrally with the resin gear housing 21, and are formed longer in the axial direction than the thickness of the fixing flange portion 31a. In addition, the four fixing protrusions 21f are inserted into the four fixing recesses 31b of the fixing flange portion 31a that is in contact with the bottom surface of the fitting recess 21b, respectively, thereby passing through the fixing flange portion 31a in the axial direction. The tip of each fixing projection 21f is processed by heat caulking. The clutch housing 31 is fixed to the gear housing 21 so as not to move in the axial direction and to rotate in the circumferential direction by the processed fixing protrusion 21f. The clutch housing 31 fixed to the gear housing 21 is disposed coaxially with the rotary shaft 7 and the worm shaft 24.

前記駆動側回転体32を構成する駆動軸連結部41は、その外径が前記クラッチハウジング31の内径よりも小さい略円柱状をなすとともに、その径方向の中央部に、該駆動軸連結部41を軸方向に貫通する駆動軸挿入孔42が形成されている。駆動軸挿入孔42は、前記回転軸7の連結部7aの外径形状に対応した二面幅形状をなしている。即ち、駆動軸挿入孔42の内周面は、図6(b)に示すように、径方向に離間して互いに平行をなすとともに軸方向と平行な一対の平面42aと、これら平面42aの両端部同士を連結する2つの連結面42bとから構成されている。従って、駆動軸挿入孔42は、軸方向から見た形状が、平面42aと平行な方向が長手方向、平面42aと直交する方向が短手方向となる略トラック形状をなしている。そして、図2に示すように、この駆動軸挿入孔42に連結部7aが圧入されることにより、駆動側回転体32は回転軸7と一体回転可能に連結される。尚、回転軸7と、該回転軸7に連結された駆動側回転体32とは、同軸上となる(即ち、互いに中心軸線が一致する)。   The drive shaft connecting portion 41 constituting the drive side rotating body 32 has a substantially cylindrical shape whose outer diameter is smaller than the inner diameter of the clutch housing 31, and the drive shaft connecting portion 41 at the center in the radial direction. A drive shaft insertion hole 42 penetrating the shaft in the axial direction is formed. The drive shaft insertion hole 42 has a two-surface width shape corresponding to the outer diameter shape of the connecting portion 7a of the rotary shaft 7. That is, as shown in FIG. 6B, the inner peripheral surface of the drive shaft insertion hole 42 is a pair of flat surfaces 42a that are spaced apart in the radial direction and parallel to each other and parallel to the axial direction, and both ends of these flat surfaces 42a. It is comprised from the two connection surfaces 42b which connect parts. Therefore, the drive shaft insertion hole 42 has a substantially track shape in which the direction parallel to the plane 42a is the longitudinal direction and the direction orthogonal to the plane 42a is the short direction. As shown in FIG. 2, when the connecting portion 7 a is press-fitted into the drive shaft insertion hole 42, the drive side rotating body 32 is connected to the rotary shaft 7 so as to be integrally rotatable. The rotating shaft 7 and the drive side rotating body 32 connected to the rotating shaft 7 are coaxial (that is, the central axes coincide with each other).

また、図2及び図4に示すように、駆動軸連結部41における減速部2側の軸方向の端部(図2において下端部)には、駆動側連結部43が一体に形成されている。駆動側連結部43は、駆動軸連結部41における減速部2側の軸方向の端部から、減速部2側に軸方向に沿って突出するとともに、略四角柱状をなしている。駆動側連結部43の外形は、駆動軸挿入孔42よりも大きく形成されるとともに、該駆動側連結部43には、該駆動側連結部43を軸方向に貫通する従動軸挿入孔44が形成されている。図6(b)に示すように、従動軸挿入孔44の内周面は、径方向に離間して互いに平行をなす一対の駆動側伝達面44aと、これら駆動側伝達面44aの両端部同士を連結する2つの連結面44bとから構成されている。そして、各駆動側伝達面44aは軸方向と平行な平面状をなすとともに、各連結面44bは円弧状の曲面状をなしている。従って、従動軸挿入孔44は、軸方向から見た形状が、駆動側伝達面44aと平行な方向が長手方向、駆動側伝達面44aと直交する方向が短手方向となる略トラック形状(二面幅形状)をなしている。また、従動軸挿入孔44の中心軸線は、駆動軸挿入孔42の中心軸線と一致するとともに、従動軸挿入孔44は、駆動軸挿入孔42に対して駆動側回転体32の回転方向(即ち回転軸7の回転方向に同じ)に90°ずれている。即ち、駆動軸挿入孔42の平面42aと従動軸挿入孔44の駆動側伝達面44aとは、駆動側回転体32の中心軸線(クラッチ3がモータに組み付けられた状態において回転軸7の中心軸線L1と同じ)を中心として90°ずれている。従って、駆動側回転体32を軸方向から見ると、駆動軸挿入孔42の短手方向の中央を通り長手方向に延びる駆動軸挿入孔42の中心線M1は、従動軸挿入孔44の短手方向の中央を通り長手方向に延びる従動軸挿入孔44の中心線M2と直交している。   Further, as shown in FIGS. 2 and 4, a drive side connecting portion 43 is integrally formed at the axial end portion (lower end portion in FIG. 2) of the drive shaft connecting portion 41 on the speed reducing portion 2 side. . The drive side connecting portion 43 protrudes along the axial direction from the axial end of the drive shaft connecting portion 41 on the speed reducing portion 2 side to the speed reducing portion 2 side, and has a substantially square column shape. The outer shape of the drive side connecting portion 43 is formed larger than the drive shaft insertion hole 42, and the driven side connection portion 43 is formed with a driven shaft insertion hole 44 that penetrates the drive side connection portion 43 in the axial direction. Has been. As shown in FIG. 6B, the inner peripheral surface of the driven shaft insertion hole 44 has a pair of drive-side transmission surfaces 44a that are spaced apart from each other in the radial direction and parallel to each other, and both end portions of these drive-side transmission surfaces 44a. It is comprised from the two connection surfaces 44b which connect. Each drive-side transmission surface 44a has a flat shape parallel to the axial direction, and each connection surface 44b has an arcuate curved shape. Accordingly, the driven shaft insertion hole 44 has a substantially track shape (two directions) when viewed from the axial direction, in which the direction parallel to the drive side transmission surface 44a is the longitudinal direction and the direction orthogonal to the drive side transmission surface 44a is the short direction. (Width shape). In addition, the center axis of the driven shaft insertion hole 44 coincides with the center axis of the drive shaft insertion hole 42, and the driven shaft insertion hole 44 rotates in the rotational direction of the drive side rotating body 32 (that is, the drive shaft insertion hole 42 (ie The same as the rotation direction of the rotary shaft 7). That is, the flat surface 42a of the drive shaft insertion hole 42 and the drive side transmission surface 44a of the driven shaft insertion hole 44 are the center axis of the drive side rotating body 32 (the center axis of the rotation shaft 7 when the clutch 3 is assembled to the motor). 90 ° with respect to the same as L1). Therefore, when the drive side rotating body 32 is viewed from the axial direction, the center line M1 of the drive shaft insertion hole 42 extending in the longitudinal direction through the center in the short direction of the drive shaft insertion hole 42 is the short side of the driven shaft insertion hole 44. It is orthogonal to the center line M2 of the driven shaft insertion hole 44 extending in the longitudinal direction through the center of the direction.

また、各駆動側伝達面44aには、ゴム材料等の弾性を有する材料よりなる緩衝部材45が設けられている。緩衝部材45は、各駆動側伝達面44aにおいて従動軸挿入孔44の中心線M2方向に離間した2箇所に形成されるとともに、軸方向に沿って駆動側伝達面44aの軸方向の一端から他端まで延びている(図4参照)。また、各緩衝部材45は、駆動側伝達面44aよりも従動軸挿入孔44の内側に若干突出している。尚、各駆動側伝達面44aにおいて緩衝部材45が形成される位置は、後述の第1及び第2従動側伝達面74,75がこれら駆動側伝達面44aに当接する位置に対応した位置となっている。   Each drive-side transmission surface 44a is provided with a buffer member 45 made of an elastic material such as a rubber material. The buffer member 45 is formed at two locations spaced apart in the direction of the center line M2 of the driven shaft insertion hole 44 on each drive side transmission surface 44a, and from one end in the axial direction of the drive side transmission surface 44a along the axial direction. It extends to the end (see FIG. 4). Each buffer member 45 slightly protrudes inside the driven shaft insertion hole 44 from the drive side transmission surface 44a. In addition, the position where the buffer member 45 is formed on each driving side transmission surface 44a is a position corresponding to a position where first and second driven side transmission surfaces 74 and 75, which will be described later, come into contact with these driving side transmission surfaces 44a. ing.

また、従動軸挿入孔44の各連結面44bには、ゴム材料等の弾性を有する材料よりなる弾性部材46が設けられている。弾性部材46は、各連結面44bの周方向の中央部に形成されるとともに、軸方向に沿って連結面44bの軸方向の一端から他端まで延びている(図4参照)。そして、各弾性部材46は、連結面44bよりも従動軸挿入孔44の内側に突出している。   Each connecting surface 44b of the driven shaft insertion hole 44 is provided with an elastic member 46 made of an elastic material such as a rubber material. The elastic member 46 is formed at the center in the circumferential direction of each connecting surface 44b, and extends from one end of the connecting surface 44b in the axial direction to the other end along the axial direction (see FIG. 4). And each elastic member 46 protrudes inside the driven shaft insertion hole 44 rather than the connection surface 44b.

図2及び図4に示すように、前記駆動側連結部43の基端部であって駆動軸連結部41における減速部2側の軸方向の端部と隣り合う部位には、径方向外側に向かって延びる略円環状の鍔部47(当接部)が一体に形成されている。この鍔部47の外径は、クラッチハウジング31の内径よりも若干大きく形成されている。また、鍔部47において、従動軸挿入孔44の短手方向(図6(b)において中心線M2と直交する方向)の両側には、鍔部47を軸方向に貫通する視認孔48が形成されている。   As shown in FIG. 2 and FIG. 4, the base end portion of the drive side connecting portion 43 and the portion adjacent to the axial end portion of the drive shaft connecting portion 41 on the speed reducing portion 2 side are radially outward. A substantially annular flange 47 (abutting portion) extending in the direction is integrally formed. The outer diameter of the flange 47 is formed to be slightly larger than the inner diameter of the clutch housing 31. Further, in the flange portion 47, visual recognition holes 48 penetrating the flange portion 47 in the axial direction are formed on both sides of the driven shaft insertion hole 44 in the short direction (a direction perpendicular to the center line M2 in FIG. 6B). Has been.

図4に示すように、駆動側連結部43において従動軸挿入孔44の長手方向(図6(b)において中心線M2方向に同じ)の両側、即ち連結面44bの径方向外側には、転動体解除部49が同駆動側連結部43と一体にそれぞれ形成されている。2つの転動体解除部49は、周方向に180°間隔に形成されるとともに、軸方向に沿って駆動軸連結部41と反対側に延びている。また、各転動体解除部49の周方向の両端部には、ゴム材料等の弾性を有する材料よりなる衝撃吸収部材50が一体に設けられている。尚、この衝撃吸収部材50、前記緩衝部材45及び前記弾性部材46は、駆動側回転体32における衝撃吸収部材50、緩衝部材45及び弾性部材46以外の樹脂材料よりなる部位と一体に成形されている。   As shown in FIG. 4, on the drive-side connecting portion 43, on the both sides in the longitudinal direction of the driven shaft insertion hole 44 (same as the direction of the center line M2 in FIG. 6B), that is, on the radially outer side of the connecting surface 44b. A moving body releasing portion 49 is formed integrally with the driving side connecting portion 43, respectively. The two rolling element releasing portions 49 are formed at intervals of 180 ° in the circumferential direction, and extend to the opposite side of the drive shaft connecting portion 41 along the axial direction. Further, shock absorbing members 50 made of an elastic material such as a rubber material are integrally provided at both ends in the circumferential direction of each rolling element releasing portion 49. The shock absorbing member 50, the buffer member 45, and the elastic member 46 are integrally formed with a portion made of a resin material other than the shock absorbing member 50, the buffer member 45, and the elastic member 46 in the driving side rotating body 32. Yes.

また、各転動体解除部49の先端部には、駆動側係合部51が転動体解除部49と一体に形成されている。各駆動側係合部51における径方向外側の側面は、転動体解除部49の径方向外側の側面よりも径方向内側に位置する。そして、各駆動側係合部51における径方向外側の側面には、周方向に延びる係合溝51aが形成されている。係合溝51aは、駆動側係合部51の径方向外側の側面を径方向内側に凹設して形成されるとともに、径方向外側に開口している。また、係合溝51aは、駆動側係合部51の周方向の一端から他端まで周方向に沿って延びている。更に、係合溝51aは、駆動側回転体32の中心軸線(クラッチ3がモータに組み付けられた状態において回転軸7の中心軸線L1に同じ)上に曲率中心を有する円弧状に湾曲している。また、図5に示すように、係合溝51aの長手方向と直交する断面形状において、同係合溝51aの内周面は径方向内側に膨らむ円弧状をなしている。   Further, a driving side engaging portion 51 is formed integrally with the rolling element releasing portion 49 at the tip of each rolling element releasing portion 49. The side surface on the radially outer side of each drive side engaging portion 51 is located on the radially inner side with respect to the radially outer side surface of the rolling element releasing portion 49. An engagement groove 51a extending in the circumferential direction is formed on a radially outer side surface of each drive-side engagement portion 51. The engagement groove 51a is formed by recessing the radially outer side surface of the drive-side engagement portion 51 radially inward and is open radially outward. Further, the engagement groove 51 a extends along the circumferential direction from one end to the other end in the circumferential direction of the drive side engagement portion 51. Further, the engaging groove 51a is curved in an arc shape having a center of curvature on the central axis of the driving side rotator 32 (same as the central axis L1 of the rotary shaft 7 when the clutch 3 is assembled to the motor). . As shown in FIG. 5, in the cross-sectional shape orthogonal to the longitudinal direction of the engaging groove 51a, the inner peripheral surface of the engaging groove 51a has an arc shape that swells radially inward.

図2に示すように、上記のような駆動側回転体32において、駆動軸連結部41及び駆動側連結部43は、クラッチハウジング31の外部(詳しくは、クラッチハウジング31とブラシホルダ10との間)に配置される一方、2つの転動体解除部49は、クラッチハウジング31の内部に挿入される。そして、図6(a)に示すように、クラッチハウジング31の内側に配置された各転動体解除部49は、径方向外側の側面がクラッチハウジング31の内周面と径方向に対向する。   As shown in FIG. 2, in the drive side rotating body 32 as described above, the drive shaft connecting portion 41 and the drive side connecting portion 43 are outside the clutch housing 31 (specifically, between the clutch housing 31 and the brush holder 10). The two rolling element releasing portions 49 are inserted into the clutch housing 31. Then, as shown in FIG. 6A, each rolling element release portion 49 arranged inside the clutch housing 31 has a radially outer side surface facing the inner peripheral surface of the clutch housing 31 in the radial direction.

図2及び図3に示すように、前記サポート部材33は樹脂材料にて形成されている。サポート部材33を構成する円環状のリング部61は、その外径が、前記駆動側回転体32の鍔部47の外径と等しく形成されている。このリング部61の軸方向の両端面には、軸方向に突出するとともに周方向に沿って延びる当接突条部62がそれぞれ形成されている。また、リング部61における周方向に離間した2箇所(本実施形態では、180°間隔となる2箇所)には、該リング部61から径方向内側に向かって延びる内延部63が形成されている。そして、各内延部63には、それぞれ一対のローラサポート64が一体に形成されている。各内延部63に設けられた対をなすローラサポート64は、内延部63から軸方向に沿って延びるとともに、周方向に互いに離間している。また、2対のローラサポート64の先端部は、円弧状に延びる補強部65によって連結されるとともに、各ローラサポート64の先端部には、対をなすローラサポート64間に突出(周方向に突出)した保持爪66が形成されている。   As shown in FIGS. 2 and 3, the support member 33 is formed of a resin material. The annular ring portion 61 constituting the support member 33 has an outer diameter that is equal to the outer diameter of the flange portion 47 of the drive side rotating body 32. On both end surfaces of the ring portion 61 in the axial direction, contact protrusions 62 that protrude in the axial direction and extend in the circumferential direction are formed. In addition, in the ring portion 61 at two locations spaced apart in the circumferential direction (in this embodiment, two locations having an interval of 180 °), an inwardly extending portion 63 that extends radially inward from the ring portion 61 is formed. Yes. A pair of roller supports 64 are integrally formed with each inwardly extending portion 63. The pair of roller supports 64 provided in each inward extending portion 63 extend along the axial direction from the inward extending portion 63 and are spaced apart from each other in the circumferential direction. Further, the tip portions of the two pairs of roller supports 64 are connected by a reinforcing portion 65 extending in an arc shape, and the tip portions of the roller supports 64 protrude between the pair of roller supports 64 (project in the circumferential direction). ) Holding claws 66 are formed.

更に、各補強部65の周方向の中央部には、軸方向に沿ってリング部61側に延びる延設部67が形成されている。延設部67は、補強部65に沿って湾曲した円弧状の板状をなすとともに、該延設部67には、径方向内側に突出するサポート側係合部68が該延設部67と一体に形成されている。サポート側係合部68は、補強部65に沿って円弧状に湾曲している。また、図5に示すように、サポート側係合部68の先端面は、前記駆動側回転体32に形成された係合溝51aに対応するように、サポート側係合部68の長手方向と直交する断面形状において径方向内側に膨らむ円弧状をなしている。   Furthermore, an extending portion 67 extending toward the ring portion 61 along the axial direction is formed at the central portion in the circumferential direction of each reinforcing portion 65. The extending portion 67 has an arcuate plate shape that is curved along the reinforcing portion 65, and a support-side engaging portion 68 that protrudes inward in the radial direction is formed on the extending portion 67 with the extending portion 67. It is integrally formed. The support side engaging portion 68 is curved in an arc shape along the reinforcing portion 65. Further, as shown in FIG. 5, the front end surface of the support side engaging portion 68 is in the longitudinal direction of the support side engaging portion 68 so as to correspond to the engaging groove 51 a formed in the drive side rotating body 32. It has an arc shape that swells radially inward in a cross-sectional shape that is orthogonal.

図3に示すように、サポート部材33の2対のローラサポート64には、それぞれ前記転動体34が挿入されている。各転動体34は円柱状をなしている。そして、2つの転動体34は、対をなすローラサポート64間にそれぞれ配置されることにより、サポート部材33によって、回転可能(転動体34の中心軸線を回転中心として回転可能)に且つ略平行に等角度間隔(本実施形態では180°間隔)で保持される。また、各転動体34は、内延部63と保持爪66とによってサポート部材に対する軸方向の移動が規制されている。   As shown in FIG. 3, the rolling elements 34 are inserted into the two pairs of roller supports 64 of the support member 33. Each rolling element 34 has a cylindrical shape. The two rolling elements 34 are arranged between the paired roller supports 64 so that they can be rotated by the support member 33 (rotatable with the central axis of the rolling element 34 as the center of rotation) and substantially in parallel. It is held at equiangular intervals (180 ° intervals in this embodiment). Each rolling element 34 is restricted from moving in the axial direction relative to the support member by the inwardly extending portion 63 and the holding claw 66.

2つの転動体34を保持したサポート部材33は、2つのサポート側係合部68と2つの前記駆動側係合部51との係合によって駆動側回転体32に対して組み付けられている。2つのサポート側係合部68と2つの駆動側係合部51とは、駆動側回転体32の2つの転動体解除部49をリング部61の内側に挿入した後に、2つのサポート側係合部68の先端部を2つの係合溝51aにそれぞれ係入することによって互いに係合されている(図5参照)。また、駆動側回転体32の2つの転動体解除部49をリング部61の内側に挿入することにより、2対のローラサポート64間に転動体解除部49がそれぞれ配置される(図6(a)参照)。そして、互いに係合した駆動側係合部51及びサポート側係合部68によって、サポート部材33と駆動側回転体32との軸方向の相対移動が阻止される。更に、駆動側回転体32とサポート部材33とは、サポート側係合部68の先端面と係合溝51aの内周面とを摺接させながら周方向に相対回転可能である。そして、図6(a)に示すように、サポート部材33に対して駆動側回転体32が回転すると、駆動側回転体32の回転方向から(周方向から)各転動体解除部49がその回転方向の前方側に位置するローラサポート64に当接可能である。更に、図2に示すように、駆動側回転体32にサポート部材33が組付けられた状態においては、リング部61と鍔部47とが軸方向に対向するとともに、リング部61において鍔部47と軸方向に対向する軸方向の端面に形成された当接突条部62が鍔部47に軸方向から当接する。また、鍔部47に形成された前記視認孔48から転動体34が駆動軸連結部41側に露出する。   The support member 33 holding the two rolling elements 34 is assembled to the driving side rotating body 32 by the engagement of the two support side engaging portions 68 and the two driving side engaging portions 51. The two support-side engagement portions 68 and the two drive-side engagement portions 51 are formed by inserting the two rolling element release portions 49 of the drive-side rotating body 32 into the ring portion 61 and then supporting the two support-side engagement portions. The tip portions of the portions 68 are engaged with each other by engaging with the two engaging grooves 51a (see FIG. 5). Further, by inserting the two rolling element releasing portions 49 of the driving side rotating body 32 inside the ring portion 61, the rolling element releasing portions 49 are respectively disposed between the two pairs of roller supports 64 (FIG. 6A). )reference). The drive side engagement portion 51 and the support side engagement portion 68 engaged with each other prevent relative movement in the axial direction between the support member 33 and the drive side rotating body 32. Furthermore, the drive side rotating body 32 and the support member 33 can be relatively rotated in the circumferential direction while sliding the tip end surface of the support side engaging portion 68 and the inner peripheral surface of the engaging groove 51a. Then, as shown in FIG. 6A, when the driving side rotating body 32 rotates with respect to the support member 33, each rolling element releasing portion 49 rotates from the rotating direction of the driving side rotating body 32 (from the circumferential direction). It is possible to contact the roller support 64 located on the front side in the direction. Further, as shown in FIG. 2, in the state where the support member 33 is assembled to the drive side rotating body 32, the ring portion 61 and the flange portion 47 face each other in the axial direction, and the flange portion 47 in the ring portion 61. The abutting protrusion 62 formed on the axial end surface facing the axial direction abuts the flange 47 from the axial direction. Further, the rolling element 34 is exposed to the drive shaft connecting portion 41 side from the visual recognition hole 48 formed in the flange portion 47.

そして、図2及び図6(a)に示すように、サポート部材33において、転動体34が挿入されたローラサポート64は、転動体解除部49と共にクラッチハウジング31の内部に挿入されるとともに、リング部61は、クラッチハウジング31の外部で同クラッチハウジング31と鍔部47との間に配置される。更に、リング部61においてクラッチハウジング31と軸方向に対向する軸方向の端面に形成された当接突条部62が、クラッチハウジング31におけるクラッチ収容凹部21cの開口部側の軸方向の端面に当接している。また、クラッチハウジング31の内側に配置された転動体34は、その外周面が、クラッチハウジング31の内周面に接触可能である。   2 and 6A, in the support member 33, the roller support 64 into which the rolling element 34 is inserted is inserted into the clutch housing 31 together with the rolling element releasing portion 49, and the ring The portion 61 is disposed between the clutch housing 31 and the flange portion 47 outside the clutch housing 31. Further, the contact protrusion 62 formed on the axial end surface of the ring portion 61 facing the clutch housing 31 in the axial direction is in contact with the axial end surface of the clutch housing 31 on the opening side of the clutch housing recess 21c. It touches. In addition, the outer circumferential surface of the rolling element 34 disposed inside the clutch housing 31 can contact the inner circumferential surface of the clutch housing 31.

図2に示すように、前記従動側回転体35は、前記ウォーム軸24の基端部に一体に形成されている。従動側回転体35は、軸方向に並ぶ従動側制御部71及び従動側連結部72を備えている。   As shown in FIG. 2, the driven-side rotator 35 is formed integrally with the base end portion of the worm shaft 24. The driven-side rotator 35 includes a driven-side control unit 71 and a driven-side connecting unit 72 that are arranged in the axial direction.

従動側制御部71は、ウォーム軸24の基端部に該ウォーム軸24と一体に形成されるとともに、ウォーム軸24の軸方向に延びる柱状をなしている。そして、従動側制御部71は、その中心軸線がウォーム軸24の中心軸線L2と一致しており、ウォーム軸24と同軸上に形成されている。また、従動側制御部71の外径は、ウォーム軸24の最大外径以下の値に設定されており、本実施形態では、ウォーム軸24において軸受25にて軸支された部位の外径と等しい値に設定されている。図6(a)に示すように、この従動側制御部71の外周面には、一対の制御面73が形成されている。各制御面73は、従動側制御部71の外周面において周方向に等角度間隔(本実施形態では180°間隔)となる2箇所に形成されるとともに、軸方向に平行な平面状をなしている。更に、一対の制御面73は、互いに平行をなすとともに、各制御面73の軸方向の長さは、前記転動体34の軸方向の長さよりも長い。また、2つの制御面73は、ウォーム軸24において軸受25にて軸支された部位の外径よりも内側(径方向内側)に位置する。   The driven-side control unit 71 is formed integrally with the worm shaft 24 at the base end portion of the worm shaft 24 and has a column shape extending in the axial direction of the worm shaft 24. The driven-side control unit 71 has a central axis that coincides with the central axis L2 of the worm shaft 24, and is formed coaxially with the worm shaft 24. Further, the outer diameter of the driven side control unit 71 is set to a value equal to or smaller than the maximum outer diameter of the worm shaft 24. In the present embodiment, the outer diameter of the portion of the worm shaft 24 supported by the bearing 25 is It is set to an equal value. As shown in FIG. 6A, a pair of control surfaces 73 are formed on the outer peripheral surface of the driven side control unit 71. Each control surface 73 is formed at two locations that are equiangularly spaced in the circumferential direction (180 ° intervals in the present embodiment) on the outer circumferential surface of the driven-side control unit 71 and has a planar shape that is parallel to the axial direction. Yes. Further, the pair of control surfaces 73 are parallel to each other, and the length of each control surface 73 in the axial direction is longer than the length of the rolling element 34 in the axial direction. Further, the two control surfaces 73 are positioned on the inner side (in the radial direction) of the outer diameter of the portion of the worm shaft 24 that is supported by the bearing 25.

図2に示すように、前記従動側連結部72は、従動側制御部71におけるウォーム軸24と反対側の軸方向の端部に一体に形成されている。そして、従動側連結部72と従動側制御部71とは軸方向に連続して形成されている。即ち、従動側連結部72と従動側制御部71とは、軸方向に隣り合って並ぶとともに、互いの間に別の部位が介在されず軸方向に離間していない。従動側連結部72は、ウォーム軸24の軸方向に延びる柱状をなすとともに、その中心軸線がウォーム軸24の中心軸線L2と一致しており、ウォーム軸24と同軸上に形成されている。更に、従動側連結部72の軸方向の長さは、前記駆動側連結部43に形成された従動軸挿入孔44の軸方向の長さよりも若干長い。また、従動側連結部72の外径は、ウォーム軸24の最大外径以下の値に設定されており、本実施形態では、ウォーム軸24において軸受25にて軸支された部位の外径よりも小さい値(即ち、従動側制御部71の外径よりも小さい値)に設定されている。更に、従動側連結部72は、前記従動軸挿入孔44よりも若干細く形成されている。   As shown in FIG. 2, the driven side connecting portion 72 is integrally formed at the axial end of the driven side control portion 71 opposite to the worm shaft 24. The driven side connecting portion 72 and the driven side control portion 71 are formed continuously in the axial direction. That is, the driven side connecting portion 72 and the driven side control portion 71 are arranged adjacent to each other in the axial direction, and are not spaced apart in the axial direction because no other part is interposed therebetween. The driven side connecting portion 72 has a column shape extending in the axial direction of the worm shaft 24, and its central axis coincides with the central axis L <b> 2 of the worm shaft 24, and is formed coaxially with the worm shaft 24. Further, the axial length of the driven side connecting portion 72 is slightly longer than the axial length of the driven shaft insertion hole 44 formed in the driving side connecting portion 43. Further, the outer diameter of the driven side connecting portion 72 is set to a value equal to or smaller than the maximum outer diameter of the worm shaft 24. In the present embodiment, the outer diameter of the portion of the worm shaft 24 that is supported by the bearing 25 is larger. Is set to a small value (that is, a value smaller than the outer diameter of the driven-side control unit 71). Further, the driven side connecting portion 72 is formed slightly narrower than the driven shaft insertion hole 44.

図6(a)及び図6(b)に示すように、従動側連結部72は、軸方向と直交する断面形状が略楕円形状をなすとともに、その断面形状は、軸方向に一定に形成されている。そして、従動側連結部72を軸方向から見ると、該従動側連結部72の長手方向は、制御面73と平行な方向であるとともに、該従動側連結部72の短手方向(従動側連結部72の長手方向と直交する方向)は、制御面73と直交する方向となっている。また、従動側連結部72の軸方向の長さは、前記駆動側伝達面44aの軸方向の長さよりも若干長い。   As shown in FIGS. 6A and 6B, the driven-side connecting portion 72 has a substantially elliptical cross-sectional shape orthogonal to the axial direction, and the cross-sectional shape is formed constant in the axial direction. ing. When the driven side connecting portion 72 is viewed from the axial direction, the longitudinal direction of the driven side connecting portion 72 is parallel to the control surface 73, and the short side direction of the driven side connecting portion 72 (driven side connection). The direction perpendicular to the longitudinal direction of the portion 72 is a direction perpendicular to the control surface 73. The axial length of the driven side connecting portion 72 is slightly longer than the axial length of the drive side transmission surface 44a.

また、図6(b)に示すように、従動側連結部72の外周面には、一対の第1従動側伝達面74及び一対の第2従動側伝達面75が形成されている。対をなす2つの第1従動側伝達面74のうち、一方の第1従動側伝達面74は、他方の第1従動側伝達面74に対して180°反対側に形成されている。そして、2つの第1従動側伝達面74は、それぞれ軸方向と平行な平面状をなすとともに、互いに平行をなしている。更に、2つの第1従動側伝達面74間の間隔は、駆動側回転体32の従動軸挿入孔44に設けられた一対の駆動側伝達面44a間の間隔と等しく形成されている。また、第2従動側伝達面75は、2つの第1従動側伝達面74の間にそれぞれ形成されるとともに、一方の第2従動側伝達面75は、他方の第2従動側伝達面75に対して180°反対側に形成されている。そして、2つの第2従動側伝達面75は、それぞれ軸方向と平行な平面状をなすとともに、互いに平行をなしている。また、2つの第2従動側伝達面75間の間隔は、駆動側回転体32の従動軸挿入孔44に設けられた一対の駆動側伝達面44a間の間隔と等しく形成されている。そして、第1従動側伝達面74及び第2従動側伝達面75は、軸方向には、従動側連結部72の軸方向の一端から他端に亘って形成されている。   Further, as shown in FIG. 6B, a pair of first driven side transmission surfaces 74 and a pair of second driven side transmission surfaces 75 are formed on the outer peripheral surface of the driven side coupling portion 72. Of the two first driven side transmission surfaces 74 forming a pair, one first driven side transmission surface 74 is formed on the opposite side of 180 ° with respect to the other first driven side transmission surface 74. The two first driven side transmission surfaces 74 are each parallel to the axial direction and are parallel to each other. Further, the interval between the two first driven side transmission surfaces 74 is formed to be equal to the interval between the pair of drive side transmission surfaces 44 a provided in the driven shaft insertion hole 44 of the driving side rotating body 32. The second driven side transmission surface 75 is formed between the two first driven side transmission surfaces 74, and one second driven side transmission surface 75 is formed on the other second driven side transmission surface 75. It is formed on the opposite side to 180 °. The two second driven side transmission surfaces 75 are each parallel to the axial direction and are parallel to each other. The interval between the two second driven side transmission surfaces 75 is formed to be equal to the interval between the pair of drive side transmission surfaces 44 a provided in the driven shaft insertion hole 44 of the drive side rotating body 32. The first driven side transmission surface 74 and the second driven side transmission surface 75 are formed in the axial direction from one end to the other end of the driven side connecting portion 72 in the axial direction.

図2に示すように、上記のような従動側回転体35は、駆動側回転体32と反対側からクラッチハウジング31及びサポート部材33の内側に挿入されている。そして、従動側連結部72は、駆動側連結部43の従動軸挿入孔44内に挿入されるとともに、従動側制御部71は、2つの転動体34の間に配置される。更に、従動側回転体35は、クラッチハウジング31、駆動側回転体32及びサポート部材33と同軸上に配置される。また、従動側連結部72は、駆動側回転体32の内部でその先端面(即ち従動側回転体35におけるウォーム軸24と反対側の軸方向の端面)が、駆動軸挿入孔42内に圧入された回転軸7の連結部7aの先端部と軸方向に当接している。   As shown in FIG. 2, the driven side rotating body 35 as described above is inserted into the clutch housing 31 and the support member 33 from the side opposite to the driving side rotating body 32. The driven side connecting portion 72 is inserted into the driven shaft insertion hole 44 of the driving side connecting portion 43, and the driven side control portion 71 is disposed between the two rolling elements 34. Further, the driven side rotator 35 is arranged coaxially with the clutch housing 31, the drive side rotator 32 and the support member 33. The driven side connecting portion 72 has a distal end surface (that is, an end surface in the axial direction opposite to the worm shaft 24 of the driven side rotating body 35) inside the driving side rotating body 32 and press-fitted into the driving shaft insertion hole 42. The rotating shaft 7 is in contact with the distal end portion of the connecting portion 7a in the axial direction.

また、図6(b)に示すように、従動側連結部72は、駆動側連結部43と軸方向に重なるように従動軸挿入孔44内に駆動側回転体32と一体回転可能に遊嵌されるとともに、径方向に対向する従動側連結部72の外周面と従動軸挿入孔44の内周面との間には、弾性部材46及び緩衝部材45が介在されている。一対の弾性部材46は、従動軸挿入孔44の内部で径方向の両側から従動側連結部72に接触するとともに、4つの緩衝部材45は、2つの第1従動側伝達面74及び2つの第2従動側伝達面75と駆動側伝達面44aとの間にそれぞれ介在されている。そして、従動側回転体35に対して駆動側回転体32が中心軸線回りに回転すると、駆動側回転体32の回転方向に応じて、第1従動側伝達面74及び第2従動側伝達面75の何れか一方の従動側伝達面に、対向する駆動側伝達面44aが回転方向から当接する。このとき、駆動側伝達面44aは、第1従動側伝達面74若しくは第2従動側伝達面75との間に介在された緩衝部材45を弾性変形させながら、駆動側伝達面44aの回転方向の前方側に位置する第1従動側伝達面74若しくは第2従動側伝達面75に当接する。そして、第1従動側伝達面74及び第2従動側伝達面75の何れか一方の従動側伝達面に駆動側伝達面44aが当接することにより、駆動側回転体32と従動側回転体35とが一体回転可能となる。即ち、駆動側回転体32と従動側回転体35とが回転方向に係合されて駆動側回転体32の回転駆動力が従動側回転体35に伝達されるようになる。   Further, as shown in FIG. 6B, the driven side connecting portion 72 is loosely fitted in the driven shaft insertion hole 44 so as to be integrally rotatable with the driving side rotating body 32 so as to overlap the driving side connecting portion 43 in the axial direction. In addition, an elastic member 46 and a buffer member 45 are interposed between the outer peripheral surface of the driven side coupling portion 72 and the inner peripheral surface of the driven shaft insertion hole 44 that are opposed in the radial direction. The pair of elastic members 46 come into contact with the driven side connecting portions 72 from both sides in the radial direction inside the driven shaft insertion hole 44, and the four buffer members 45 include the two first driven side transmission surfaces 74 and the two second 2 are respectively interposed between the driven side transmission surface 75 and the drive side transmission surface 44a. Then, when the drive-side rotator 32 rotates about the central axis with respect to the driven-side rotator 35, the first driven-side transmission surface 74 and the second driven-side transmission surface 75 according to the rotation direction of the drive-side rotator 32. The drive side transmission surface 44a which opposes either one of the driven side transmission surfaces from the rotation direction. At this time, the drive-side transmission surface 44a elastically deforms the buffer member 45 interposed between the first driven-side transmission surface 74 or the second driven-side transmission surface 75, and in the rotational direction of the drive-side transmission surface 44a. It abuts on the first driven side transmission surface 74 or the second driven side transmission surface 75 located on the front side. Then, the drive side transmission surface 44a comes into contact with either one of the first driven side transmission surface 74 and the second driven side transmission surface 75, so that the drive side rotation body 32, the driven side rotation body 35, and the like. Can be rotated together. That is, the driving side rotating body 32 and the driven side rotating body 35 are engaged with each other in the rotation direction, and the rotational driving force of the driving side rotating body 32 is transmitted to the driven side rotating body 35.

また、図6(a)に示すように、従動側制御部71は、各制御面73とクラッチハウジング31の内周面との間にそれぞれ転動体34が介在されるようにサポート部材33の内側に挿入されている。そして、各制御面73は、クラッチハウジング31の内周面との距離(制御面73と直交する方向の間隔)が、従動側回転体35の回転方向に変化する。本実施形態では、制御面73とクラッチハウジング31の内周面との間の距離は、各制御面73の周方向の中央において最も長く、各制御面73の周方向の中央から周方向の両端に向かうに連れて徐々に短くなる。また、制御面73の周方向の中央とクラッチハウジング31の内周面との間の距離は、前記転動体34の外径よりも長く、且つ、各制御面73の周方向の端部とクラッチハウジング31の内周面との間の距離は、転動体34の外径よりも短くなっている。   Further, as shown in FIG. 6A, the driven-side control unit 71 has an inner side of the support member 33 such that the rolling elements 34 are interposed between the control surfaces 73 and the inner peripheral surface of the clutch housing 31. Has been inserted. The distance between each control surface 73 and the inner peripheral surface of the clutch housing 31 (interval in the direction orthogonal to the control surface 73) changes in the rotational direction of the driven-side rotator 35. In this embodiment, the distance between the control surface 73 and the inner peripheral surface of the clutch housing 31 is the longest at the center in the circumferential direction of each control surface 73, and both ends in the circumferential direction from the center in the circumferential direction of each control surface 73. It gradually becomes shorter as you head toward. The distance between the circumferential center of the control surface 73 and the inner circumferential surface of the clutch housing 31 is longer than the outer diameter of the rolling element 34, and the circumferential end of each control surface 73 and the clutch. The distance from the inner peripheral surface of the housing 31 is shorter than the outer diameter of the rolling element 34.

次に、上記のように構成されたモータの動作を、クラッチ3の動作を中心に説明する。
図1に示すように、モータ部1の停止時、即ち回転軸7の非回転駆動時であって駆動側回転体32の非回転駆動時には、負荷側(即ちウインドガラス側)から出力軸28に荷重がかかると、その荷重により従動側回転体35(ウォーム軸24)が回転しようとする。すると、図6(a)に示すように、従動側回転体35の各制御面73が、各制御面73とクラッチハウジング31の内周面との間に配置された転動体34に当接するとともに、クラッチハウジング31の内周面と共に転動体34を挟持する。尚、図6(a)では、従動側回転体35が反時計方向に回転しようとした場合のクラッチ3を図示している。そして、クラッチハウジング31は周方向に回転不能であることから、クラッチハウジング31及び転動体34によって従動側回転体35のそれ以上の回転が阻止される。その結果、ウォーム軸24の回転が阻止されるため、ウォーム軸24側から回転軸7が回転されることが抑制される。尚、制御面73において転動体34に当接する部位は、制御面73の周方向の中央よりも制御面73の周方向の端部側の部位である。また、図6(a)には、従動側回転体35が反時計方向に回転しようとした場合の例を図示しているが、従動側回転体35が時計方向に回転しようとした場合であっても、同様にその回転が阻止される。
Next, the operation of the motor configured as described above will be described focusing on the operation of the clutch 3.
As shown in FIG. 1, when the motor unit 1 is stopped, that is, when the rotary shaft 7 is not rotated and when the drive side rotating body 32 is not rotated, the load side (that is, the window glass side) is changed to the output shaft 28. When a load is applied, the driven-side rotator 35 (worm shaft 24) tends to rotate due to the load. Then, as shown in FIG. 6A, each control surface 73 of the driven-side rotator 35 comes into contact with the rolling element 34 disposed between each control surface 73 and the inner peripheral surface of the clutch housing 31. The rolling element 34 is held together with the inner peripheral surface of the clutch housing 31. FIG. 6A shows the clutch 3 when the driven-side rotator 35 attempts to rotate counterclockwise. Since the clutch housing 31 is not rotatable in the circumferential direction, the clutch housing 31 and the rolling element 34 prevent further rotation of the driven side rotating body 35. As a result, since the rotation of the worm shaft 24 is prevented, the rotation of the rotating shaft 7 from the worm shaft 24 side is suppressed. The part of the control surface 73 that comes into contact with the rolling element 34 is a part of the control surface 73 on the end side in the circumferential direction with respect to the center of the control surface 73 in the circumferential direction. FIG. 6A shows an example of the case where the driven-side rotator 35 attempts to rotate counterclockwise. However, FIG. 6A illustrates the case where the driven-side rotator 35 attempts to rotate clockwise. However, the rotation is similarly prevented.

一方、モータ部1の駆動時、即ち回転軸7の回転駆動時には、図7(a)及び図7(b)に示すように、回転軸7と一体に駆動側回転体32が回転軸7の中心軸線L1を回転中心に回転駆動される(図2参照)。尚、図7(a)、図7(b)、図8(a)及び図8(b)では、回転軸7及び駆動側回転体32が反時計方向に回転駆動された場合のクラッチ3を図示している。そして、停止しているサポート部材33に対して駆動側回転体32が回転されて、駆動側回転体32の各転動体解除部49が、各転動体解除部49の回転方向の前方側に位置するローラサポート64に当接して該ローラサポート64を回転方向に押圧する。すると、ローラサポート64にて保持された転動体34は、クラッチハウジング31の内周面と制御面73との間から押し出されてクラッチハウジング31の内周面と制御面73とによる挟持が解除される。これにより、従動側回転体35のロックが解除される。尚、このとき、図7(b)に示すように、駆動側回転体32の駆動側伝達面44aは、従動側回転体35の第1従動側伝達面74には当接しておらず、従動側回転体35は停止した状態に維持されている。   On the other hand, when the motor unit 1 is driven, that is, when the rotary shaft 7 is driven to rotate, as shown in FIG. 7A and FIG. It is driven to rotate about the central axis L1 (see FIG. 2). 7 (a), 7 (b), 8 (a) and 8 (b), the clutch 3 when the rotating shaft 7 and the driving side rotating body 32 are driven to rotate counterclockwise is shown. It is shown. Then, the drive-side rotator 32 is rotated with respect to the support member 33 that is stopped, and each rolling element release portion 49 of the drive-side rotator 32 is positioned on the front side in the rotation direction of each rolling element release portion 49. The roller support 64 is pressed against the roller support 64 in the rotating direction. Then, the rolling element 34 held by the roller support 64 is pushed out between the inner peripheral surface of the clutch housing 31 and the control surface 73, and the nipping between the inner peripheral surface of the clutch housing 31 and the control surface 73 is released. The Thereby, the lock | rock of the driven side rotary body 35 is cancelled | released. At this time, as shown in FIG. 7B, the drive-side transmission surface 44a of the drive-side rotator 32 is not in contact with the first driven-side transmission surface 74 of the driven-side rotator 35. The side rotating body 35 is maintained in a stopped state.

そして、図8(b)に示すように、回転軸7によって駆動側回転体32が更に回転駆動されると、第1従動側伝達面74との間に介在された緩衝部材45を押圧して弾性変形させつつ、駆動側伝達面44aが第1従動側伝達面74に回転方向から当接する。これにより、駆動側伝達面44a及び第1従動側伝達面74を介して駆動側回転体32から従動側回転体35に回転駆動力を伝達可能となるため、駆動側回転体32と共に従動側回転体35が中心軸線(ウォーム軸24の中心軸線L2と同じ)を回転中心として回転される。このとき、図8(a)に示すように、転動体解除部49にて押圧されることによりサポート部材33が駆動側回転体32と一体的に回転するため、転動体34もサポート部材33に案内されながら従動側回転体35と共に回転する。詳しくは、転動体34は、それぞれ制御面73の周方向の中央部に配置され、クラッチハウジング31の内周面と制御面73とによって挟持されることなく、サポート部材33に保持されながら従動側回転体35と共に該従動側回転体35の中心軸線を回転中心として回転する。   Then, as shown in FIG. 8B, when the driving side rotating body 32 is further driven to rotate by the rotating shaft 7, the buffer member 45 interposed between the first driven side transmission surface 74 is pressed. While being elastically deformed, the drive side transmission surface 44a contacts the first driven side transmission surface 74 from the rotational direction. As a result, the rotational driving force can be transmitted from the driving side rotating body 32 to the driven side rotating body 35 via the driving side transmitting surface 44a and the first driven side transmitting surface 74. The body 35 is rotated about the center axis (same as the center axis L2 of the worm shaft 24) as the center of rotation. At this time, as shown in FIG. 8 (a), the support member 33 rotates integrally with the drive side rotating body 32 by being pressed by the rolling element releasing portion 49, so that the rolling element 34 also becomes the support member 33. It rotates with the driven side rotating body 35 while being guided. Specifically, the rolling elements 34 are respectively disposed in the center portion of the control surface 73 in the circumferential direction, and are not sandwiched between the inner peripheral surface of the clutch housing 31 and the control surface 73 but are held by the support member 33 while being driven. The rotating body 35 rotates together with the rotation axis about the center axis of the driven side rotating body 35.

そして、従動側回転体35の回転に伴ってウォーム軸24が回転されると、その回転は、ウォーム部24a及びウォームホイール27にて減速されて出力軸28から出力される。従って、出力軸28に駆動連結されるウインドレギュレータが作動し、ウインドガラスが開閉(昇降)される。尚、図7(a)、図7(b)、図8(a)及び図8(b)では、駆動側回転体32が反時計方向に回転された場合のクラッチ3を図示しているが、時計方向に回転された場合にも同様に駆動側回転体32から従動側回転体35に回転駆動力が伝達される。但し、図7(a)、図7(b)、図8(a)及び図8(b)において、駆動側回転体32が時計方向に回転された場合には、駆動側伝達面44aは第2従動側伝達面75に当接する。   When the worm shaft 24 is rotated along with the rotation of the driven-side rotator 35, the rotation is decelerated by the worm portion 24a and the worm wheel 27 and output from the output shaft 28. Accordingly, the window regulator that is drivingly connected to the output shaft 28 is operated, and the window glass is opened and closed (raised and lowered). 7A, 7 </ b> B, 8 </ b> A, and 8 </ b> B illustrate the clutch 3 when the drive side rotating body 32 is rotated counterclockwise. Similarly, the rotational driving force is transmitted from the driving side rotating body 32 to the driven side rotating body 35 when rotated clockwise. However, in FIGS. 7 (a), 7 (b), 8 (a), and 8 (b), when the driving side rotating body 32 is rotated clockwise, the driving side transmission surface 44a is 2 Abuts on the driven side transmission surface 75.

上記したように、本第1実施形態によれば、以下の作用効果を有する。
(1)従動側回転体35において、駆動側回転体32に一体回転可能に連結される従動側連結部72と、駆動側回転体32の非回転駆動時にクラッチハウジング31の内周面と共に転動体34を挟持する制御面73とが軸方向に分かれて形成されている。従って、従動側回転体35において、従動側連結部72及び制御面73が周方向に隣り合うことがなくなるため、従動側回転体35が径方向に突出した形状となることを抑制できる。よって、従動側回転体35が径方向に小型化されるため、クラッチ3を径方向に小型化することができる。
As described above, according to the first embodiment, the following operational effects are obtained.
(1) In the driven-side rotator 35, the driven-side connecting portion 72 connected to the drive-side rotator 32 so as to be integrally rotatable, and the inner peripheral surface of the clutch housing 31 when the drive-side rotator 32 is not rotated. And a control surface 73 that sandwiches 34 is formed separately in the axial direction. Accordingly, in the driven-side rotator 35, the driven-side connecting portion 72 and the control surface 73 are not adjacent to each other in the circumferential direction, so that the driven-side rotator 35 can be prevented from projecting in the radial direction. Therefore, since the driven-side rotator 35 is downsized in the radial direction, the clutch 3 can be downsized in the radial direction.

(2)従動側連結部72と制御面73とは、軸方向に連続して形成されているため、従動側回転体35が軸方向に長くなることが抑制される。従って、クラッチ3の軸方向の大型化が抑制される。   (2) Since the driven side connecting portion 72 and the control surface 73 are formed continuously in the axial direction, the driven side rotating body 35 is suppressed from being elongated in the axial direction. Accordingly, an increase in the size of the clutch 3 in the axial direction is suppressed.

(3)駆動側回転体32の回転駆動時に駆動側伝達面44aが第1従動側伝達面74若しくは第2従動側伝達面75に回転方向から当接することにより、駆動側回転体32の回転駆動力を従動側回転体35に効率良く伝達することができる。   (3) When the drive-side rotator 32 is rotationally driven, the drive-side transmission surface 44a comes into contact with the first driven-side transmission surface 74 or the second driven-side transmission surface 75 from the rotation direction, thereby rotating the drive-side rotator 32. The force can be efficiently transmitted to the driven side rotating body 35.

(4)駆動側伝達面44aが第1従動側伝達面74若しくは第2従動側伝達面75に当接するときの衝撃が緩衝部材45によって吸収されるため、駆動側伝達面44aと第1従動側伝達面74及び第2従動側伝達面75とが当接する際の異音の発生が抑制される。   (4) Since the shock when the driving side transmission surface 44a abuts on the first driven side transmission surface 74 or the second driven side transmission surface 75 is absorbed by the buffer member 45, the driving side transmission surface 44a and the first driven side Generation of abnormal noise when the transmission surface 74 and the second driven side transmission surface 75 come into contact with each other is suppressed.

(5)従動側連結部72は、駆動側回転体32と互いに径方向に重なるように且つ互いに径方向に重なる部位の間に弾性を有する弾性部材46が介在された状態で、駆動側回転体32に一体回転可能に遊嵌されている。従って、駆動側回転体32の中心軸線と従動側回転体35の中心軸線とにずれが生じた場合であっても、弾性部材46が弾性変形することにより当該ずれが補正(吸収)される。   (5) The driven-side connecting portion 72 is configured such that the driving-side rotating body 32 is in a state where the elastic member 46 having elasticity is interposed between the driving-side rotating body 32 and the portions that overlap each other in the radial direction. 32 is loosely fitted so as to be integrally rotatable. Therefore, even when a deviation occurs between the central axis of the driving side rotator 32 and the central axis of the driven side rotator 35, the deviation is corrected (absorbed) by elastic deformation of the elastic member 46.

(6)2つの転動体34は、サポート部材33に保持されることにより、その位置及び姿勢が安定しやすくなる。また、サポート部材33は、駆動側回転体32の鍔部47に当接することにより、当該鍔部47によってそれ以上の駆動側(即ちモータ部1側)への移動が規制される。更に、鍔部47は駆動側回転体32に一体に形成されているため、サポート部材33の駆動側への移動を規制する部品を別途用意しなくてもよい。従って、部品点数を低減することができる。   (6) Since the two rolling elements 34 are held by the support member 33, the positions and postures thereof are easily stabilized. Further, the support member 33 is brought into contact with the flange portion 47 of the drive-side rotator 32, whereby further movement to the drive side (that is, the motor portion 1 side) is restricted by the flange portion 47. Further, since the flange portion 47 is formed integrally with the driving side rotating body 32, it is not necessary to separately prepare a part for restricting the movement of the support member 33 to the driving side. Therefore, the number of parts can be reduced.

(7)転動体34の有無を視認孔48を通してクラッチ3の外部から確認することができる。そして、クラッチ3の組付け時に視認孔48を通して転動体34の有無を確認することにより、転動体34等の誤組付けを防止することができる。   (7) The presence or absence of the rolling element 34 can be confirmed from the outside of the clutch 3 through the visual recognition hole 48. Then, by checking the presence or absence of the rolling element 34 through the visual recognition hole 48 when the clutch 3 is assembled, it is possible to prevent erroneous assembly of the rolling element 34 and the like.

(8)駆動側係合部51とサポート側係合部68とを係合することにより、駆動側回転体32とサポート部材33とを一体化することができる。そして、クラッチ3の組付け時には、駆動側回転体32とサポート部材33とを一体で組み付けることができるため、クラッチ3の組付け作業が容易となる。   (8) By engaging the drive side engaging part 51 and the support side engaging part 68, the drive side rotating body 32 and the support member 33 can be integrated. When the clutch 3 is assembled, the drive side rotating body 32 and the support member 33 can be assembled together, so that the assembly work of the clutch 3 is facilitated.

(9)駆動側回転体32の回転駆動の開始時には、転動体解除部49によって(ローラサポート64を介して)転動体34がクラッチハウジング31の周方向に押圧されることにより、クラッチハウジング31の内周面と制御面73とによる転動体34の挟持が容易に解除される。また、駆動側回転体32の駆動側係合部51は、転動体解除部49に一体に形成されているため、部品点数を低減することができる。   (9) At the start of the rotational drive of the drive side rotator 32, the rolling element 34 is pressed in the circumferential direction of the clutch housing 31 by the rolling element release portion 49 (via the roller support 64). The holding of the rolling element 34 by the inner peripheral surface and the control surface 73 is easily released. Moreover, since the drive side engaging part 51 of the drive side rotating body 32 is formed integrally with the rolling element releasing part 49, the number of parts can be reduced.

(10)駆動側回転体32に形成された従動軸挿入孔44に挿入された従動側連結部72は、同じく駆動側回転体32に形成された駆動軸挿入孔42に挿入された回転軸7の連結部7aと軸方向に当接している。そのため、回転軸7と従動側回転体35との軸方向のがたつきが抑制される。   (10) The driven side connecting portion 72 inserted into the driven shaft insertion hole 44 formed in the driving side rotating body 32 is also connected to the rotating shaft 7 inserted into the driving shaft insertion hole 42 formed in the driving side rotating body 32. Are in contact with the connecting portion 7a in the axial direction. Therefore, shakiness in the axial direction between the rotating shaft 7 and the driven-side rotating body 35 is suppressed.

(11)駆動軸挿入孔42の平面42aと従動軸挿入孔44の駆動側伝達面44aとは、駆動側回転体32の中心軸線を中心として90°ずれている。そのため、駆動軸挿入孔42に挿入された回転軸7と、従動軸挿入孔44に挿入された従動側連結部72を有する従動側回転体35との軸方向に対する傾きを抑制することができる。   (11) The flat surface 42 a of the drive shaft insertion hole 42 and the drive side transmission surface 44 a of the driven shaft insertion hole 44 are shifted by 90 ° with respect to the central axis of the drive side rotating body 32. Therefore, the inclination with respect to the axial direction of the rotating shaft 7 inserted in the drive shaft insertion hole 42 and the driven side rotating body 35 having the driven side connecting portion 72 inserted in the driven shaft insertion hole 44 can be suppressed.

(12)径方向に突出した形状となることが抑制された従動側回転体35を備えた本実施形態のクラッチ3は、径方向に小型化されている。そして、径方向に小型化されたクラッチ3を備えることにより、本実施形態のモータを小型化することができる。また、従動側連結部72と制御面73とを軸方向に分けたことにより、クラッチ3をモータに組付けた際に、ウォーム軸24における従動側回転体35側の軸方向の端部を軸支する軸受25に対して制御面73を近づけることができる。従って、ウォーム軸24が傾いたとしても、制御面73の傾き(従動側回転体35における制御面73が形成された部位の軸ずれ)が抑制されるため、制御面73とクラッチハウジング31の内周面とで転動体34を確実に挟持することができる。このように、ウォーム軸24の傾きがクラッチ3の動作に影響を及ぼすことが抑制されるため、クラッチ3の動作が安定しやすい。   (12) The clutch 3 of the present embodiment including the driven-side rotator 35 that is suppressed from projecting in the radial direction is downsized in the radial direction. And the motor of this embodiment can be reduced in size by providing the clutch 3 reduced in size in the radial direction. Further, by dividing the driven side connecting portion 72 and the control surface 73 in the axial direction, when the clutch 3 is assembled to the motor, the axial end of the worm shaft 24 on the driven side rotating body 35 side is pivoted. The control surface 73 can be brought closer to the supporting bearing 25. Therefore, even if the worm shaft 24 is tilted, the tilt of the control surface 73 (the axial displacement of the portion where the control surface 73 is formed in the driven-side rotator 35) is suppressed. The rolling element 34 can be reliably clamped with the peripheral surface. In this way, since the inclination of the worm shaft 24 is suppressed from affecting the operation of the clutch 3, the operation of the clutch 3 is easily stabilized.

(13)制御面73及び従動側連結部72は、ウォーム軸24の外径よりも内側となるように形成されている。従って、従動側回転体35を径方向により確実に小型化することができる。   (13) The control surface 73 and the driven side connecting portion 72 are formed so as to be inside the outer diameter of the worm shaft 24. Therefore, the driven-side rotator 35 can be reliably reduced in size in the radial direction.

(14)転動体解除部49の周方向の両側に衝撃吸収部材50が設けられているため、駆動側回転体32の回転駆動の開始時に転動体解除部49がサポート部材33のローラサポート64に当接するときの異音の発生が当該衝撃吸収部材50によって抑制される。   (14) Since the shock absorbing members 50 are provided on both sides in the circumferential direction of the rolling element releasing portion 49, the rolling element releasing portion 49 becomes the roller support 64 of the support member 33 when the driving side rotating body 32 starts to rotate. Occurrence of abnormal noise at the time of contact is suppressed by the impact absorbing member 50.

(第2実施形態)
以下、本発明を具体化した第2実施形態を図面に従って説明する。尚、本第2実施形態では、上記第1実施形態と同一の構成には同一の符号を付してその説明を省略する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図9に示すように、上記第1実施形態のクラッチ3に代えてモータに備えられた本第2実施形態のクラッチ90は、上記第1実施形態の駆動側回転体32に代えて駆動側回転体91を備えている。駆動側回転体91は、上記第1実施形態の駆動側回転体32に、回転軸7の連結部7aと従動側連結部72とが軸方向に当接するときの衝撃を吸収する第2の緩衝部材92を設けたものである。   As shown in FIG. 9, the clutch 90 of the second embodiment provided in the motor instead of the clutch 3 of the first embodiment replaces the driving side rotating body 32 of the first embodiment with a driving side rotation. A body 91 is provided. The driving side rotating body 91 is a second buffer that absorbs an impact when the connecting portion 7a of the rotating shaft 7 and the driven side connecting portion 72 abut on the driving side rotating body 32 of the first embodiment in the axial direction. A member 92 is provided.

図10(a)に示すように、駆動側回転体91を構成する駆動軸連結部41における駆動側連結部43側の軸方向の端面41a(図10(a)において下端面)には、一対の緩衝凹部41bが形成されている。図10(a)及び図11に示すように、一対の緩衝凹部41bは、駆動軸連結部41において、駆動軸挿入孔42における従動軸挿入孔44側の開口部42dの周囲に形成されている。そして、一対の緩衝凹部41bは、駆動軸挿入孔42の開口部42dに対して、駆動軸挿入孔42の短手方向の両側となる位置にそれぞれ形成されている。各緩衝凹部41bは、軸方向に凹設されて従動軸挿入孔44側に開口している。また、各緩衝凹部41bは、駆動軸挿入孔42の開口部42dの両側でそれぞれ連結面44bに沿った円弧状をなしている。   As shown in FIG. 10 (a), a pair of axial end face 41a (the lower end face in FIG. 10 (a)) on the drive side connecting portion 43 side of the drive shaft connecting portion 41 constituting the drive side rotating body 91 is paired. The buffer recess 41b is formed. As shown in FIGS. 10A and 11, the pair of buffer recesses 41 b are formed around the opening 42 d on the driven shaft insertion hole 44 side in the drive shaft insertion hole 42 in the drive shaft coupling portion 41. . The pair of buffer recesses 41 b are respectively formed at positions on both sides of the drive shaft insertion hole 42 in the short direction with respect to the opening 42 d of the drive shaft insertion hole 42. Each buffer recess 41b is recessed in the axial direction and opens to the driven shaft insertion hole 44 side. Each buffer recess 41b has an arc shape along the connection surface 44b on both sides of the opening 42d of the drive shaft insertion hole 42.

一対の緩衝凹部41b内には、それぞれ第2の緩衝部材92が設けられている。各第2の緩衝部材92は、ゴム材料等の弾性を有する材料から形成されるとともに、本実施形態では緩衝部材45及び弾性部材46と同じ材料から形成されている。尚、図9乃至図11においては、弾性を有する材料から形成された緩衝部材45,弾性部材46及び第2の緩衝部材92を示す部分に微細なドットを付している。   A second buffer member 92 is provided in each of the pair of buffer recesses 41b. Each second buffer member 92 is formed from a material having elasticity such as a rubber material, and in the present embodiment, is formed from the same material as the buffer member 45 and the elastic member 46. In FIG. 9 to FIG. 11, fine dots are attached to portions showing the buffer member 45, the elastic member 46, and the second buffer member 92 made of an elastic material.

2つの第2の緩衝部材92は、一対の緩衝凹部41b内にそれぞれ設けられることにより、駆動軸挿入孔42の開口部42dの周囲に形成されている。そして、2つの第2の緩衝部材92は、駆動軸挿入孔42の開口部42dに対して、従動軸挿入孔44の長手方向の両側となる位置にそれぞれ形成されている。また、2つの第2の緩衝部材92は、軸方向から見た形状が、連結面44bに沿うとともに駆動軸挿入孔42の開口部42dを囲繞するような円弧状をなしている。そして、2つの第2の緩衝部材92は、従動軸挿入孔44に挿入された従動側連結部72の先端面(即ち従動側回転体35におけるウォーム軸24と反対側の軸方向の端面)とそれぞれ軸方向に対向している。   The two second buffer members 92 are provided around the opening 42d of the drive shaft insertion hole 42 by being respectively provided in the pair of buffer recesses 41b. The two second buffer members 92 are formed at positions on both sides in the longitudinal direction of the driven shaft insertion hole 44 with respect to the opening 42 d of the drive shaft insertion hole 42. In addition, the two second buffer members 92 have an arc shape such that the shape seen from the axial direction is along the connecting surface 44 b and surrounds the opening 42 d of the drive shaft insertion hole 42. The two second buffer members 92 are connected to the distal end surface of the driven side coupling portion 72 inserted into the driven shaft insertion hole 44 (that is, the axial end surface of the driven side rotating body 35 opposite to the worm shaft 24). Each is opposed in the axial direction.

また、各第2の緩衝部材92は、緩衝凹部41bの開口部から軸方向に突出しており、駆動軸連結部41の端面41aよりも従動軸挿入孔44側に突出している。そして、2つの第2の緩衝部材92は、従動軸挿入孔44に挿入された従動側連結部72の先端面にそれぞれ当接する。各第2の緩衝部材92における駆動軸連結部41の端面41aからの軸方向の突出量は、ウォームホイール27(図1参照)から受ける力によってウォーム軸24が回転軸7から離間するように最大限移動されたときの、従動側回転体35と回転軸7との間の隙間Sの幅W(軸方向の幅)と等しいか僅かに大きく形成されている。   Each of the second buffer members 92 protrudes in the axial direction from the opening of the buffer recess 41 b and protrudes toward the driven shaft insertion hole 44 from the end surface 41 a of the drive shaft connecting portion 41. The two second buffer members 92 are in contact with the distal end surfaces of the driven side connecting portions 72 inserted into the driven shaft insertion holes 44. The amount of axial protrusion from the end surface 41a of the drive shaft coupling portion 41 in each second buffer member 92 is the maximum so that the worm shaft 24 is separated from the rotary shaft 7 by the force received from the worm wheel 27 (see FIG. 1). It is formed to be equal to or slightly larger than the width W (the width in the axial direction) of the gap S between the driven-side rotator 35 and the rotating shaft 7 when it is limitedly moved.

ここで、隙間Sについて説明する。図9及び図10に示すように、クラッチ90は、駆動側回転体91の内側で、従動側連結部72の先端面と、駆動軸挿入孔42内に圧入された回転軸7の連結部7aの先端部とが軸方向に当接するように形成されている。その一方で、モータは、ウォームホイール27が噛合するウォーム部24aを備えたウォーム軸24の変形を抑制しつつウォーム部24aからウォームホイール27への回転駆動力の伝達を円滑に行うために、従動側連結部72が一体に形成されたウォーム軸24の僅かな軸方向の移動を許容するように構成されている。従って、クラッチ90を備えたモータは、ウォームホイール27からウォーム部24aに、ウォーム軸24を回転軸7と反対方向に移動させる力が加わると、ウォーム軸24が回転軸7から離間するように軸方向に沿って僅かに移動して、従動側連結部72と連結部7aとの間に僅かな隙間Sが生じる構成となっている。   Here, the gap S will be described. As shown in FIGS. 9 and 10, the clutch 90 includes a connecting portion 7 a of the rotating shaft 7 press-fitted in the driving shaft insertion hole 42 inside the driving-side rotating body 91 and the distal end surface of the driven-side connecting portion 72. Is formed so as to abut against the tip of the shaft in the axial direction. On the other hand, the motor is driven in order to smoothly transmit the rotational driving force from the worm portion 24a to the worm wheel 27 while suppressing deformation of the worm shaft 24 provided with the worm portion 24a with which the worm wheel 27 meshes. The side connecting portion 72 is configured to allow a slight axial movement of the worm shaft 24 formed integrally. Therefore, the motor including the clutch 90 is arranged so that the worm shaft 24 is separated from the rotation shaft 7 when a force for moving the worm shaft 24 in the direction opposite to the rotation shaft 7 is applied from the worm wheel 27 to the worm portion 24a. It moves slightly along the direction, and a slight gap S is generated between the driven side connecting portion 72 and the connecting portion 7a.

図10(a)及び図11に示すように、各第2の緩衝部材92は、該第2の緩衝部材92と軸方向に隣り合う緩衝部材45及び弾性部材46と一体に形成されて繋がっている。詳しくは、各第2の緩衝部材92は、各第2の緩衝部材92と軸方向に隣り合う緩衝部材45及び弾性部材46における駆動軸連結部41側の軸方向の端部に繋がっている。また、各第2の緩衝部材92は、駆動側回転体91における緩衝部材45、弾性部材46及び衝撃吸収部材50以外の樹脂材料よりなる部位と一体に成形されている。そして、第2の緩衝部材92は、緩衝部材45、弾性部材46及び衝撃吸収部材50を形成する際に同時に形成される。   As shown in FIG. 10A and FIG. 11, each second buffer member 92 is integrally formed with and connected to the second buffer member 92 and the buffer member 45 and the elastic member 46 that are axially adjacent to each other. Yes. Specifically, each second buffer member 92 is connected to an axial end portion on the drive shaft connecting portion 41 side of the buffer member 45 and the elastic member 46 adjacent to each second buffer member 92 in the axial direction. Each second buffer member 92 is formed integrally with a portion made of a resin material other than the buffer member 45, the elastic member 46, and the impact absorbing member 50 in the driving side rotating body 91. The second buffer member 92 is formed at the same time when the buffer member 45, the elastic member 46, and the shock absorbing member 50 are formed.

次に、本第2実施形態のクラッチ90の作用を説明する。クラッチ90は、回転軸7の非駆動時における従動側回転体35の回転の阻止、並びに回転軸7の駆動時における従動側回転体35への回転駆動力の伝達は、上記第1実施形態のクラッチ3と同様に行う。   Next, the operation of the clutch 90 of the second embodiment will be described. The clutch 90 prevents rotation of the driven-side rotator 35 when the rotating shaft 7 is not driven, and transmits rotational driving force to the driven-side rotator 35 when driving the rotating shaft 7 according to the first embodiment. The same as the clutch 3 is performed.

図9に示すように、本実施形態のモータでは、モータ部1の停止時、即ち回転軸7の非回転駆動時であって駆動側回転体91の非回転駆動時には、ウォーム軸24は、ウォームホイール27によって回転軸7から離間する方向に押されている。従って、図10(a)に示すように、従動側連結部72の先端面と連結部7aの先端部との間に隙間Sが形成されるとともに、従動側回転体35及びウォーム軸24は、従動側連結部72の先端面に当接した第2の緩衝部材92によって回転軸7から離間する方向に押圧されている。   As shown in FIG. 9, in the motor of the present embodiment, when the motor unit 1 is stopped, that is, when the rotating shaft 7 is non-rotating and the driving side rotating body 91 is not rotating, the worm shaft 24 is The wheel 27 is pushed away from the rotary shaft 7. Accordingly, as shown in FIG. 10A, a gap S is formed between the distal end surface of the driven side connecting portion 72 and the distal end portion of the connecting portion 7a, and the driven side rotating body 35 and the worm shaft 24 are The second buffer member 92 that is in contact with the distal end surface of the driven side connecting portion 72 is pressed in a direction away from the rotary shaft 7.

そして、モータ部1の停止時に出力軸28に加わる負荷によってウォームホイール27が回転しようとする方向と反対方向に同ウォームホイール27を回転させるようにモータ部1が起動されると、回転軸7の回転駆動の開始時には、ウォーム部24aがウォームホイール27から受ける抗力によって従動側回転体35及びウォーム軸24が回転軸7の方へ移動する。このとき、従動側回転体35及びウォーム軸24は、従動側連結部72と駆動軸連結部41との間で第2の緩衝部材92を変形させながら回転軸7の方へ緩やかに移動する。従って、回転軸7の連結部7aと従動側連結部72とが当接するときの衝撃が第2の緩衝部材92によって吸収されるため、連結部7aと従動側連結部72とは緩やかに当接する。   When the motor unit 1 is activated to rotate the worm wheel 27 in a direction opposite to the direction in which the worm wheel 27 tries to rotate due to a load applied to the output shaft 28 when the motor unit 1 is stopped, At the start of the rotation drive, the driven-side rotator 35 and the worm shaft 24 move toward the rotation shaft 7 due to the drag that the worm portion 24 a receives from the worm wheel 27. At this time, the driven-side rotating body 35 and the worm shaft 24 move gently toward the rotating shaft 7 while deforming the second buffer member 92 between the driven-side connecting portion 72 and the drive shaft connecting portion 41. Accordingly, since the shock when the connecting portion 7a of the rotating shaft 7 and the driven side connecting portion 72 come into contact with each other is absorbed by the second buffer member 92, the connecting portion 7a and the driven side connecting portion 72 come into gentle contact. .

上記したように、本第2実施形態によれば、上記第1実施形態の(1)〜(14)の作用効果に加えて、以下の作用効果を有する。
(15)回転軸7の連結部7aと従動側連結部72とが当接するときの衝撃が第2の緩衝部材92によって吸収されるため、回転軸7の連結部7aと従動側連結部72とが当接する際の異音の発生が抑制される。
As described above, according to the second embodiment, the following functions and effects are provided in addition to the functions and effects (1) to (14) of the first embodiment.
(15) Since the shock when the connecting portion 7a of the rotating shaft 7 and the driven side connecting portion 72 contact each other is absorbed by the second buffer member 92, the connecting portion 7a of the rotating shaft 7 and the driven side connecting portion 72 Occurrence of abnormal noise at the time of contact is suppressed.

(16)第2の緩衝部材92は、駆動側回転体91において、駆動軸挿入孔42の開口部42dの周囲に形成されている。従って、回転軸7と従動側連結部72との当接を可能としつつ、回転軸7と従動側連結部72とが当接する際の異音の発生を抑制することができる。   (16) The second buffer member 92 is formed around the opening 42 d of the drive shaft insertion hole 42 in the drive-side rotator 91. Therefore, it is possible to suppress the generation of noise when the rotating shaft 7 and the driven side connecting portion 72 are in contact with each other while allowing the rotating shaft 7 and the driven side connecting portion 72 to be in contact with each other.

(17)第2の緩衝部材92は、該第2の緩衝部材92と軸方向に隣り合う緩衝部材45及び弾性部材46と一体に形成されて繋がっている。従って、緩衝部材45及び弾性部材46を形成する際に、同時に第2の緩衝部材92を形成することができる。   (17) The second buffer member 92 is integrally formed and connected to the buffer member 45 and the elastic member 46 that are adjacent to the second buffer member 92 in the axial direction. Therefore, when the buffer member 45 and the elastic member 46 are formed, the second buffer member 92 can be formed at the same time.

尚、本発明の各実施形態は、以下のように変更してもよい。
・上記各実施形態では、クラッチ3,90は、モータに備えられて同軸上に配置された回転軸7とウォーム軸24との間に配置されている。しかしながら、クラッチ3,90は、同軸上に配置される駆動軸と従動軸との間に配置されて駆動軸の回転駆動力を従動軸に伝達する一方で従動軸から駆動軸への回転力の伝達を阻止するように作動するのであれば、モータ以外の装置に設けられてもよい。
Each embodiment of the present invention may be modified as follows.
In each of the above-described embodiments, the clutches 3 and 90 are disposed between the rotary shaft 7 and the worm shaft 24 that are provided on the motor and disposed coaxially. However, the clutches 3, 90 are disposed between the drive shaft and the driven shaft that are arranged on the same axis, and transmit the rotational driving force of the driving shaft to the driven shaft, while the rotational force from the driven shaft to the driving shaft is reduced. It may be provided in a device other than the motor as long as it operates to prevent transmission.

・上記第2実施形態では、各第2の緩衝部材92における駆動軸連結部41の軸方向の端面41aからの軸方向の突出量は、隙間Sの幅Wと等しいか僅かに大きく形成されているが、隙間Sより小さくてもよい。   In the second embodiment, the protruding amount in the axial direction from the axial end surface 41a of the drive shaft coupling portion 41 in each second buffer member 92 is formed to be equal to or slightly larger than the width W of the gap S. However, it may be smaller than the gap S.

・第2の緩衝部材92の形成位置及び形状は、上記第2実施形態の形成位置及び形状に限らない。第2の緩衝部材92は、駆動側回転体91において、従動側連結部72の先端面が軸方向から当接可能な位置及び形状に形成されていればよい。例えば、第2の緩衝部材92は、駆動側回転体91に1つのみ形成され、駆動軸挿入孔42の開口部42dの周囲に、該開口部42dを囲繞する環状をなすように形成されてもよい。また、第2の緩衝部材92は、駆動側回転体91において、駆動軸挿入孔42の周囲に、周方向に沿って断続的に複数個形成されてもよい。   -The formation position and shape of the 2nd buffer member 92 are not restricted to the formation position and shape of the said 2nd Embodiment. The second buffer member 92 only needs to be formed in a position and a shape in which the distal end surface of the driven side connecting portion 72 can abut on the driving side rotating body 91 from the axial direction. For example, only one second buffer member 92 is formed on the drive side rotating body 91, and is formed around the opening 42d of the drive shaft insertion hole 42 so as to form an annular shape surrounding the opening 42d. Also good. Further, a plurality of second buffer members 92 may be formed intermittently along the circumferential direction around the drive shaft insertion hole 42 in the drive side rotator 91.

・上記第2実施形態では、第2の緩衝部材92は、駆動側回転体91のみに設けられている。しかし、第2の緩衝部材92は、従動側連結部72の先端面に、駆動軸連結部41の軸方向の端面41aに当接可能に設けられてもよい。また、第2の緩衝部材92は、駆動側回転体91と従動側連結部72の先端面との両方に設けられてもよい。   In the second embodiment, the second buffer member 92 is provided only on the drive side rotating body 91. However, the second buffer member 92 may be provided on the distal end surface of the driven side coupling portion 72 so as to be able to contact the end surface 41 a in the axial direction of the drive shaft coupling portion 41. Further, the second buffer member 92 may be provided on both the driving side rotating body 91 and the distal end surface of the driven side connecting portion 72.

・上記第2実施形態では、第2の緩衝部材92は、該第2の緩衝部材92と軸方向に隣り合う緩衝部材45及び弾性部材46と一体に形成されて繋がっているが、必ずしも緩衝部材45及び弾性部材46と一体に形成されなくてもよい。   In the second embodiment, the second buffer member 92 is integrally formed and connected to the second buffer member 92 and the buffer member 45 and the elastic member 46 that are adjacent to each other in the axial direction. 45 and the elastic member 46 may not be formed integrally.

・上記第2実施形態では、モータ部1の停止時には、ウォーム軸24は、ウォームホイール27によって回転軸7から離間する方向に押されている。しかしながら、モータは、モータ部1の停止時に、ウォームホイール27によってウォーム軸24が回転軸7側に押されるように構成してもよい。このようにすると、モータ部1の停止時には、図10(b)に示すように、従動側回転体35及びウォーム軸24は、従動側連結部72と駆動軸連結部41との間で第2の緩衝部材92を変形させながら回転軸7の方へ移動した状態となる。従って、モータ部1の停止時には、連結部7aと従動側連結部72とが当接する。そして、モータ部1が駆動されると、回転軸7の回転方向に応じて、ウォームホイール27から受ける力によって従動側回転体35及びウォーム軸24が回転軸7から離間する方向に移動される。その後、モータ部1が停止されると、ウォームホイール27に押されて従動側回転体35及びウォーム軸24が回転軸7の方へ移動する。このとき、従動側回転体35及びウォーム軸24は、従動側連結部72と駆動軸連結部41との間で第2の緩衝部材92を変形させながら回転軸7の方へ緩やかに移動する。従って、回転軸7の連結部7aと従動側連結部72とが当接するときの衝撃が第2の緩衝部材92によって吸収されるため、連結部7aと従動側連結部72とは緩やかに当接する。よって、上記2実施形態の(15)と同様の効果を得ることができる。   In the second embodiment, when the motor unit 1 is stopped, the worm shaft 24 is pushed away from the rotating shaft 7 by the worm wheel 27. However, the motor may be configured such that the worm shaft 24 is pushed toward the rotating shaft 7 by the worm wheel 27 when the motor unit 1 is stopped. In this way, when the motor unit 1 is stopped, the driven-side rotating body 35 and the worm shaft 24 are second between the driven-side connecting portion 72 and the drive shaft connecting portion 41 as shown in FIG. The buffer member 92 is moved toward the rotary shaft 7 while being deformed. Therefore, when the motor unit 1 is stopped, the connecting part 7a and the driven side connecting part 72 come into contact with each other. When the motor unit 1 is driven, the driven-side rotating body 35 and the worm shaft 24 are moved away from the rotating shaft 7 by the force received from the worm wheel 27 according to the rotating direction of the rotating shaft 7. Thereafter, when the motor unit 1 is stopped, the driven rotator 35 and the worm shaft 24 are moved toward the rotating shaft 7 by being pushed by the worm wheel 27. At this time, the driven-side rotating body 35 and the worm shaft 24 move gently toward the rotating shaft 7 while deforming the second buffer member 92 between the driven-side connecting portion 72 and the drive shaft connecting portion 41. Accordingly, since the shock when the connecting portion 7a of the rotating shaft 7 and the driven side connecting portion 72 come into contact with each other is absorbed by the second buffer member 92, the connecting portion 7a and the driven side connecting portion 72 come into gentle contact. . Therefore, the same effect as (15) of the two embodiments can be obtained.

・上記各実施形態では、駆動軸挿入孔42及び従動軸挿入孔44は、駆動軸挿入孔42の平面42aと従動軸挿入孔44の駆動側伝達面44aとが駆動側回転体32(若しくは駆動側回転体91)の中心軸線を中心として90°ずれるように形成されている。しかしながら、駆動軸挿入孔42及び従動軸挿入孔44は、駆動軸挿入孔42の平面42aと従動軸挿入孔44の駆動側伝達面44aとが駆動側回転体32(若しくは駆動側回転体91)の中心軸線を中心として90°以外の角度でずれるように形成されてもよい。また、駆動軸挿入孔42及び従動軸挿入孔44は、駆動軸挿入孔42の平面42aと従動軸挿入孔44の駆動側伝達面44aとが平行をなすように形成されてもよい。   In each of the above embodiments, the drive shaft insertion hole 42 and the driven shaft insertion hole 44 are configured such that the flat surface 42a of the drive shaft insertion hole 42 and the drive side transmission surface 44a of the driven shaft insertion hole 44 are the drive side rotating body 32 (or drive). It is formed so as to be shifted by 90 ° about the central axis of the side rotating body 91). However, in the drive shaft insertion hole 42 and the driven shaft insertion hole 44, the plane 42a of the drive shaft insertion hole 42 and the drive side transmission surface 44a of the driven shaft insertion hole 44 are the drive side rotating body 32 (or the drive side rotating body 91). It may be formed so as to deviate at an angle other than 90 ° around the central axis of the. The drive shaft insertion hole 42 and the driven shaft insertion hole 44 may be formed so that the flat surface 42a of the drive shaft insertion hole 42 and the drive side transmission surface 44a of the driven shaft insertion hole 44 are parallel to each other.

・駆動軸挿入孔42の形状は、上記各実施形態の形状に限らない。駆動軸挿入孔42は、回転軸7と駆動側回転体32(若しくは駆動側回転体91)とを一体回転可能に連結できる形状であればよい。また、従動軸挿入孔44は、上記各実施形態の形状に限らない。従動軸挿入孔44は、駆動側回転体32(若しくは駆動側回転体91)に従動側回転体35を一体回転可能に連結できる形状であればよい。   The shape of the drive shaft insertion hole 42 is not limited to the shape of each of the above embodiments. The drive shaft insertion hole 42 only needs to have a shape that allows the rotation shaft 7 and the drive-side rotator 32 (or the drive-side rotator 91) to be coupled so as to be integrally rotatable. Further, the driven shaft insertion hole 44 is not limited to the shape of each of the above embodiments. The driven shaft insertion hole 44 only needs to have a shape that allows the driven side rotating body 35 (or the driving side rotating body 91) to be connected to the driven side rotating body 35 so as to be integrally rotatable.

・駆動側回転体32において、駆動軸挿入孔42と従動軸挿入孔44とは必ずしも軸方向に連続して形成されなくてもよい。また、従動軸挿入孔44に挿入された従動側連結部72は、駆動軸挿入孔42に挿入された回転軸7の連結部7aと必ずしも軸方向に当接しなくてもよい。   In the drive side rotator 32, the drive shaft insertion hole 42 and the driven shaft insertion hole 44 are not necessarily formed continuously in the axial direction. Further, the driven side connecting portion 72 inserted into the driven shaft insertion hole 44 may not necessarily contact the connecting portion 7a of the rotating shaft 7 inserted into the drive shaft insertion hole 42 in the axial direction.

・上記第1実施形態では、駆動側係合部51は、転動体解除部49に一体に形成されている。しかしながら、駆動側係合部51は、駆動側回転体32において転動体解除部49とは別の部位に一体に形成されてもよい。また、駆動側回転体32とサポート部材33とを軸方向に互いに係合する一方で、駆動側回転体32とサポート部材33との駆動側回転体32の中心軸線回りの相対回転を許容する係合部を、駆動側回転体32及びサポート部材33とは別の部品で設けてもよい。また、クラッチ3は、係合部(駆動側係合部51及びサポート側係合部68)を必ずしも備えなくてもよい。このことは、上記第2実施形態のクラッチ90についても同様である。   In the first embodiment, the driving side engaging portion 51 is integrally formed with the rolling element releasing portion 49. However, the driving side engaging portion 51 may be integrally formed in a portion different from the rolling element releasing portion 49 in the driving side rotating body 32. Further, the drive-side rotator 32 and the support member 33 are engaged with each other in the axial direction, and the drive-side rotator 32 and the support member 33 are allowed to rotate relative to each other around the central axis of the drive-side rotator 32. The joint portion may be provided as a component different from the drive side rotating body 32 and the support member 33. Further, the clutch 3 does not necessarily have to include the engaging portions (the driving side engaging portion 51 and the support side engaging portion 68). The same applies to the clutch 90 of the second embodiment.

・クラッチ3,90は、必ずしもサポート部材33を備えなくてもよい。
・上記各実施形態では、駆動側回転体32,91の鍔部47には、視認孔48が形成されている。しかし、鍔部47は、視認孔48を備えない構成であってもよい。
-The clutches 3 and 90 do not necessarily need to be provided with the support member 33.
In each of the above-described embodiments, the visual recognition hole 48 is formed in the flange portion 47 of the drive side rotator 32, 91. However, the collar portion 47 may be configured not to include the visual recognition hole 48.

・上記各実施形態では、サポート部材33が軸方向から当接する当接部として、円環状の鍔部47を駆動側回転体32,91に設けている。しかしながら、この当接部は、該当接部に軸方向から当接したサポート部材33のそれ以上の駆動側(モータ部1側)への移動を規制可能な形状であれば、必ずしも円環状でなくてもよい。例えば、鍔部47に代えて、径方向外側に延びる棒状の当接部を駆動側回転体32,91に設けてもよい。また、駆動側回転体32,91は、鍔部47を備えない構成であってもよい。   In each of the above embodiments, the ring-shaped flange portion 47 is provided on the drive-side rotating bodies 32 and 91 as the contact portion with which the support member 33 contacts in the axial direction. However, the abutting portion is not necessarily an annular shape as long as it can regulate the movement of the support member 33 that abuts the corresponding contacting portion in the axial direction to the further drive side (motor unit 1 side). May be. For example, instead of the flange portion 47, rod-like contact portions extending radially outward may be provided on the driving side rotating bodies 32 and 91. Further, the drive side rotators 32 and 91 may be configured not to include the flange portion 47.

・上記各実施形態では、従動側連結部72は、互いに径方向に重なるように且つ互いに径方向に重なる部位の間に弾性部材46が介在された状態で駆動側回転体32,91の駆動側連結部43に一体回転可能に遊嵌されている。しかしながら、駆動側回転体32,91から弾性部材46を省略し、従動軸挿入孔44に従動側連結部72を嵌入してもよい。   In each of the above-described embodiments, the driven side connecting portion 72 has the elastic member 46 interposed between the portions that overlap each other in the radial direction and the driving side of the driving side rotating bodies 32 and 91. The connecting portion 43 is loosely fitted so as to be integrally rotatable. However, the elastic member 46 may be omitted from the driving side rotating bodies 32 and 91 and the driven side connecting portion 72 may be inserted.

・上記第1実施形態では、駆動側回転体32の従動軸挿入孔44に、従動側回転体35の従動側連結部72を挿入することにより、駆動側回転体32と従動側回転体35とを一体回転可能に連結している。しかしながら、駆動側回転体32と従動側回転体35とを一体回転可能に連結する構成は、これに限らない。例えば、従動側連結部72に挿入凹部を設け、該挿入凹部に柱状の駆動側連結部43を挿入することにより、駆動側回転体32と従動側回転体35とを一体回転可能に連結してもよい。このとき、径方向に重なる従動側連結部72と駆動側連結部43との間に、弾性部材46を介在させた状態で、従動側連結部72の挿入凹部に柱状の駆動側連結部43を遊嵌してもよい。このようにすると、上記第1実施形態の(5)と同様の作用効果を得ることができる。   In the first embodiment, by inserting the driven side connecting portion 72 of the driven side rotating body 35 into the driven shaft insertion hole 44 of the driving side rotating body 32, the driving side rotating body 32, the driven side rotating body 35, and Are connected so that they can rotate together. However, the structure which connects the drive side rotary body 32 and the driven side rotary body 35 so that integral rotation is possible is not restricted to this. For example, by providing an insertion recess in the driven side connecting portion 72 and inserting a columnar drive side connecting portion 43 in the insertion recess, the driving side rotating body 32 and the driven side rotating body 35 are connected so as to be integrally rotatable. Also good. At this time, with the elastic member 46 interposed between the driven side connecting portion 72 and the driving side connecting portion 43 that overlap in the radial direction, the columnar driving side connecting portion 43 is inserted into the insertion recess of the driven side connecting portion 72. You may loose-fit. If it does in this way, the effect similar to (5) of the said 1st Embodiment can be acquired.

・駆動側回転体32,91は、必ずしも緩衝部材45を備えなくてもよい。
・上記各実施形態では、駆動側回転体32,91の回転駆動時には、駆動側伝達面44aが従動側連結部72の第1従動側伝達面74若しくは第2従動側伝達面75に回転方向から当接する。しかしながら、駆動側回転体32,91及び従動側連結部72において、駆動側回転体32,91の回転駆動時に互いに当接する部位は、必ずしも平面状でなくてもよい。
-The drive side rotary bodies 32 and 91 do not necessarily need to be provided with the buffer member 45.
In each of the above-described embodiments, when the drive side rotating bodies 32 and 91 are rotationally driven, the drive side transmission surface 44 a moves from the rotation direction to the first driven side transmission surface 74 or the second driven side transmission surface 75 of the driven side coupling portion 72. Abut. However, in the driving side rotating bodies 32 and 91 and the driven side connecting portion 72, the portions that are in contact with each other when the driving side rotating bodies 32 and 91 are rotationally driven are not necessarily flat.

・上記各実施形態では、従動側回転体35において、従動側連結部72と制御面73とは軸方向に連続して形成されている。しかしながら、従動側連結部72と制御面73とは、軸方向に分かれて形成されるのであれば、軸方向に離間して形成されてもよい。   In each of the above embodiments, in the driven side rotating body 35, the driven side connecting portion 72 and the control surface 73 are formed continuously in the axial direction. However, if the driven side connecting portion 72 and the control surface 73 are formed separately in the axial direction, they may be formed apart from each other in the axial direction.

・上記各実施形態では、クラッチ3,90は、転動体34を2つ備えた構成となっている。しかしながら、クラッチ3,90は、転動体34を少なくとも1つ備えた構成であればよい。この場合、転動体34の数に応じて、制御面73の数、サポート部材33のローラサポート64の数、転動体解除部49の数、視認孔48の数が変更される。   In each of the above embodiments, the clutches 3 and 90 are configured to include two rolling elements 34. However, the clutches 3 and 90 may be configured to include at least one rolling element 34. In this case, according to the number of rolling elements 34, the number of control surfaces 73, the number of roller supports 64 of the support member 33, the number of rolling element release portions 49, and the number of viewing holes 48 are changed.

・上記各実施形態では、転動体34は、円柱状をなしているが、必ずしも円柱状でなくてもよい。例えば、転動体34は球体状であってもよい。
・上記各実施形態では、駆動側回転体32,91は、回転軸7と別体に形成されているが、一体に形成されてもよい。また、上記各実施形態では、従動側回転体35は、ウォーム軸24と一体に形成されているが、ウォーム軸24とは別体で一体回転可能に連結できるように形成されてもよい。
-In each above-mentioned embodiment, although rolling element 34 has constituted the column shape, it does not necessarily need to be a column shape. For example, the rolling element 34 may be spherical.
In each of the above embodiments, the driving side rotating bodies 32 and 91 are formed separately from the rotating shaft 7, but may be formed integrally. In each of the above embodiments, the driven-side rotator 35 is formed integrally with the worm shaft 24. However, the driven-side rotator 35 may be formed separately from the worm shaft 24 so as to be integrally rotatable.

上記実施形態及び上記各変更例から把握できる技術的思想を以下に記載する。
(イ)クラッチにおいて、前記制御面及び前記従動側連結部は、前記従動側回転体と一体回転する従動軸の外径よりも内側に形成されることを特徴とするクラッチ。同構成によれば、従動側回転体を径方向により確実に小型化することができる。
The technical idea that can be grasped from the above embodiment and each of the above modifications will be described below.
(A) In the clutch, the control surface and the driven side connecting portion are formed inside an outer diameter of a driven shaft that rotates integrally with the driven side rotating body. According to this configuration, the driven-side rotator can be reliably reduced in size in the radial direction.

以下、他の技術的思想を記載する。
(付記1)環状のクラッチハウジングと、回転駆動される駆動側回転体と、前記クラッチハウジングの内側で径方向外側を向く制御面を有し前記駆動側回転体の回転時には前記駆動側回転体の回転駆動力が伝達される従動側回転体と、前記クラッチハウジングの内周面と前記制御面との間に配置され、前記駆動側回転体の回転駆動時には前記従動側回転体と共に回転し、前記駆動側回転体の非回転駆動時には前記クラッチハウジングの内周面と前記制御面とに挟持されて前記従動側回転体の回転を阻止する転動体と、を備えたクラッチであって、前記従動側回転体は、前記駆動側回転体に一体回転可能に連結される従動側連結部を備えるとともに、前記制御面と前記従動側連結部とは、軸方向に分かれていることをその要旨としている。
Other technical ideas will be described below.
(Appendix 1) An annular clutch housing, a drive-side rotator that is driven to rotate, and a control surface that faces radially outwardly inside the clutch housing, and the drive-side rotator is rotated when the drive-side rotator rotates. A driven-side rotating body to which a rotational driving force is transmitted, and disposed between an inner peripheral surface of the clutch housing and the control surface, and rotates with the driven-side rotating body when the driving-side rotating body is driven to rotate; And a rolling element that is sandwiched between an inner peripheral surface of the clutch housing and the control surface to prevent rotation of the driven-side rotating body when the driving-side rotating body is not rotated. The rotating body includes a driven side connecting portion connected to the driving side rotating body so as to be integrally rotatable, and the control surface and the driven side connecting portion are separated in the axial direction.

同構成によれば、従動側回転体において、従動側連結部及び制御面が周方向に隣り合うことがなくなるため、従動側回転体が径方向に突出した形状となることを抑制できる。その結果、クラッチの径方向の小型化が可能となる。   According to this configuration, in the driven-side rotator, the driven-side connecting portion and the control surface are not adjacent to each other in the circumferential direction, so that the driven-side rotator can be prevented from having a shape protruding in the radial direction. As a result, the size of the clutch in the radial direction can be reduced.

(付記2)上記記載のクラッチにおいて、前記従動側連結部と前記制御面とは、軸方向に連続して形成されていることをその要旨としている。
同構成によれば、従動側回転体が軸方向に長くなることが抑制されるため、クラッチの軸方向の大型化が抑制される。
(Supplementary Note 2) In the clutch described above, the driven side coupling portion and the control surface are formed continuously in the axial direction.
According to this configuration, since the driven-side rotator is suppressed from being elongated in the axial direction, an increase in the size of the clutch in the axial direction is suppressed.

(付記3)上記記載のクラッチにおいて、前記従動側連結部は、前記駆動側回転体に形成された駆動側伝達面が前記駆動側回転体の回転駆動時に前記駆動側回転体の回転方向から当接する従動側伝達面を有することをその要旨としている。   (Supplementary note 3) In the clutch described above, the driven side connecting portion is configured such that a driving side transmission surface formed on the driving side rotating body is contacted from a rotation direction of the driving side rotating body when the driving side rotating body is driven to rotate. The gist is to have a driven side transmission surface in contact.

同構成によれば、駆動側回転体の回転駆動時に駆動側伝達面が従動側伝達面に回転方向から当接することにより、駆動側回転体の回転駆動力を従動側回転体に効率良く伝達することができる。   According to this configuration, when the driving side rotating body is driven to rotate, the driving side transmission surface abuts on the driven side transmission surface from the rotation direction, thereby efficiently transmitting the rotational driving force of the driving side rotating body to the driven side rotating body. be able to.

(付記4)上記記載のクラッチにおいて、前記駆動側伝達面及び前記従動側伝達面の少なくとも一方には、前記駆動側伝達面が前記従動側伝達面に当接するときの衝撃を吸収する緩衝部材が設けられていることをその要旨としている。   (Appendix 4) In the clutch described above, at least one of the drive side transmission surface and the driven side transmission surface has a buffer member that absorbs an impact when the drive side transmission surface abuts on the driven side transmission surface. The gist is that it is provided.

同構成によれば、駆動側伝達面が従動側伝達面に当接するときの衝撃が緩衝部材によって吸収されるため、駆動側伝達面と従動側伝達面とが当接する際の異音の発生が抑制される。   According to this configuration, since the shock when the driving side transmission surface comes into contact with the driven side transmission surface is absorbed by the buffer member, the generation of noise when the driving side transmission surface and the driven side transmission surface come into contact with each other is generated. It is suppressed.

(付記5)上記記載のクラッチにおいて、前記駆動側回転体及び前記従動側回転体は同軸上に配置され、前記駆動側回転体及び前記従動側連結部の何れか一方は、互いに径方向に重なるように且つ互いに径方向に重なる部位の間に弾性を有する弾性部材が介在された状態で何れか他方に一体回転可能に遊嵌されていることをその要旨としている。   (Supplementary Note 5) In the clutch described above, the driving-side rotator and the driven-side rotator are arranged coaxially, and either one of the driving-side rotator and the driven-side connecting portion overlaps each other in the radial direction. Thus, the gist is that the elastic member having elasticity is interposed between the portions overlapping each other in the radial direction, and is loosely fitted to one of the other so as to be integrally rotatable.

同構成によれば、駆動側回転体の中心軸線と従動側回転体の中心軸線とにずれが生じた場合であっても、弾性部材が弾性変形することにより当該ずれが補正(吸収)される。
(付記6)上記記載のクラッチにおいて、前記転動体を複数備えるとともに、複数の前記転動体を保持するサポート部材を備え、前記駆動側回転体は、前記サポート部材が軸方向から当接可能な当接部を有することをその要旨としている。
According to this configuration, even when a deviation occurs between the central axis of the driving-side rotator and the central axis of the driven-side rotator, the deviation is corrected (absorbed) by elastic deformation of the elastic member. .
(Appendix 6) In the clutch described above, a plurality of the rolling elements are provided and a support member that holds the plurality of rolling elements is provided. The gist is to have a contact portion.

同構成によれば、複数の転動体は、サポート部材に保持されることにより、その位置及び姿勢が安定しやすくなる。また、サポート部材は、駆動側回転体の当接部に当接することにより、当該当接部によってそれ以上の駆動側への移動が規制される。更に、当接部は駆動側回転体に形成されているため、サポート部材の駆動側への移動を規制する部品を別途用意しなくてもよい。従って、部品点数を低減することができる。   According to this configuration, the plurality of rolling elements are held by the support member, so that their positions and postures are easily stabilized. Further, when the support member comes into contact with the contact portion of the drive side rotating body, further movement to the drive side is restricted by the contact portion. Furthermore, since the contact portion is formed on the driving side rotating body, it is not necessary to separately prepare a part for restricting the movement of the support member to the driving side. Therefore, the number of parts can be reduced.

(付記7)上記記載のクラッチにおいて、前記駆動側回転体は、前記サポート部材における前記駆動側回転体側の軸方向の端部を覆うように径方向に延設された鍔部を備えるとともに、前記鍔部には、前記サポート部材と反対側から前記転動体を視認可能な視認孔が形成されていることをその要旨としている。   (Supplementary note 7) In the clutch described above, the drive-side rotator includes a flange portion extending in a radial direction so as to cover an end portion in the axial direction of the support member on the drive-side rotator side, and The gist of the present invention is that a visual recognition hole is formed in the collar portion so that the rolling element can be visually recognized from the side opposite to the support member.

同構成によれば、転動体の有無を視認孔を通して確認することができる。従って、転動体等の誤組付けを防止することができる。
(付記8)上記記載のクラッチにおいて、前記転動体を複数備えるとともに、複数の前記転動体を保持するサポート部材を備え、前記駆動側回転体及び前記サポート部材には、前記駆動側回転体及び前記サポート部材を軸方向に係合する一方で、前記駆動側回転体と前記サポート部材との前記駆動側回転体の中心軸線回りの相対回転を許容する係合部が形成されていることをその要旨といている。
According to this configuration, the presence or absence of rolling elements can be confirmed through the visual recognition hole. Therefore, it is possible to prevent erroneous assembly of rolling elements and the like.
(Appendix 8) In the clutch described above, a plurality of the rolling elements and a support member that holds the plurality of rolling elements are provided, and the driving side rotating body and the support member include the driving side rotating body and the The gist of the present invention is that an engaging portion is formed that allows the drive-side rotator and the support member to rotate relative to each other around the central axis of the drive-side rotator while engaging the support member in the axial direction. It is said.

同構成によれば、駆動側回転体とサポート部材とを係合部で係合することにより、一体化することができる。そして、クラッチの組付け時には、駆動側回転体とサポート部材とを一体で組み付けることができるため、クラッチの組付け作業が容易となる。   According to this configuration, the driving side rotating body and the support member can be integrated by engaging with the engaging portion. When the clutch is assembled, the drive side rotating body and the support member can be assembled together, so that the clutch can be assembled easily.

(付記9)上記記載のクラッチにおいて、前記駆動側回転体は、前記駆動側回転体の回転駆動の開始時に、前記転動体を押圧して前記クラッチハウジングの内周面と前記制御面とによる前記転動体の挟持を解除する転動体解除部を備え、前記駆動側回転体側の前記係合部は、前記転動体解除部に一体に形成されていることをその要旨としている。   (Supplementary note 9) In the clutch according to the above, the driving-side rotator presses the rolling element at the start of rotation driving of the driving-side rotator, and the inner surface of the clutch housing and the control surface The gist of the invention is that it includes a rolling element releasing portion that releases the rolling element, and the engagement portion on the drive side rotating body is formed integrally with the rolling element releasing portion.

同構成によれば、駆動側回転体の回転駆動の開始時には、転動体解除部によって転動体が押圧されることにより、クラッチハウジングの内周面と制御面とによる転動体の挟持が容易に解除される。また、駆動側回転体の係合部は、転動体解除部に形成されているため、部品点数を低減することができる。   According to this configuration, at the start of the rotational drive of the drive-side rotator, the rolling element is pressed by the rolling element release portion, so that the rolling element can be easily held between the inner peripheral surface and the control surface of the clutch housing. Is done. Moreover, since the engaging part of the drive side rotating body is formed in the rolling element releasing part, the number of parts can be reduced.

(付記10)上記記載のクラッチにおいて、前記駆動側回転体は、回転駆動される駆動軸が一体回転可能に挿入される駆動軸挿入孔と、前記駆動軸挿入孔と軸方向に連続して形成され前記従動側連結部が一体回転可能に挿入される従動軸挿入孔とを備え、前記従動軸挿入孔に挿入された前記従動側連結部は、前記駆動軸挿入孔に挿入された前記駆動軸と軸方向に当接することをその要旨としている。   (Supplementary note 10) In the clutch described above, the drive-side rotator is continuously formed in the axial direction with a drive shaft insertion hole into which a rotationally driven drive shaft is inserted so as to be integrally rotatable. A driven shaft insertion hole into which the driven side coupling portion is inserted so as to be integrally rotatable, and the driven side coupling portion inserted into the driven shaft insertion hole is inserted into the drive shaft insertion hole. The gist of this is that they are in contact with each other in the axial direction.

同構成によれば、駆動軸と従動側回転体との軸方向のがたつきが抑制される。尚、本発明において、「挿入」には、遊嵌及び圧入をも含む。
(付記11)上記記載のクラッチにおいて、前記駆動軸挿入孔及び前記従動軸挿入孔は、径方向に離間し互いに平行をなす一対の平面と該平面同士を連結する連結面とからなる筒状の内周面を備え、前記駆動軸挿入孔の前記平面と前記従動軸挿入孔の前記平面とが、前記駆動側回転体の中心軸線を中心として90°ずれるように形成されていることをその要旨としている。
According to this configuration, shakiness in the axial direction between the drive shaft and the driven-side rotator is suppressed. In the present invention, “insertion” includes loose fitting and press-fitting.
(Supplementary Note 11) In the clutch described above, the drive shaft insertion hole and the driven shaft insertion hole are formed in a cylindrical shape including a pair of planes that are spaced apart from each other in the radial direction and parallel to each other, and a connection surface that connects the planes. The gist of the invention is that an inner peripheral surface is provided, and the plane of the drive shaft insertion hole and the plane of the driven shaft insertion hole are formed so as to be shifted by 90 ° about the center axis of the drive side rotating body. It is said.

同構成によれば、駆動軸挿入孔に挿入された駆動軸と、従動軸挿入孔に挿入された従動側連結部を有する従動側回転体との軸方向に対する傾きを抑制することができる。
(付記12)上記記載のクラッチにおいて、前記駆動側回転体及び前記従動側回転体の少なくとも一方には、前記駆動軸と前記従動側連結部とが当接するときの衝撃を吸収する第2の緩衝部材が設けられていることをその要旨としている。
According to this configuration, it is possible to suppress the inclination of the drive shaft inserted into the drive shaft insertion hole and the driven-side rotating body having the driven-side coupling portion inserted into the driven shaft insertion hole with respect to the axial direction.
(Supplementary Note 12) In the clutch described above, a second buffer that absorbs an impact when the drive shaft and the driven side connecting portion abut at least one of the drive side rotary body and the driven side rotary body. The gist is that the member is provided.

同構成によれば、駆動軸と従動側連結部とが当接するときの衝撃が第2の緩衝部材によって吸収されるため、駆動軸と従動側連結部とが当接する際の異音の発生が抑制される。
(付記13)上記記載のクラッチにおいて、前記第2の緩衝部材は、前記駆動側回転体における前記駆動軸挿入孔の周囲に設けられていることをその要旨としている。
According to this configuration, since the impact when the drive shaft and the driven side connecting portion come into contact with each other is absorbed by the second buffer member, the generation of noise when the drive shaft and the driven side connecting portion come into contact with each other is generated. It is suppressed.
(Additional remark 13) The above-mentioned clutch WHEREIN: The said 2nd buffer member makes it the summary that it is provided around the said drive shaft insertion hole in the said drive side rotary body.

同構成によれば、駆動軸と従動側連結部との当接を可能としつつ、駆動軸と従動側連結部とが当接する際の異音の発生を抑制することができる。
(付記14)回転駆動される駆動軸を有するモータ部と、前記駆動軸と同軸上に配置され前記駆動軸の回転駆動力が伝達される従動軸を有し前記従動軸に伝達された回転駆動力を減速して出力する減速部と、前記駆動軸と前記従動軸との間に設けられた上記記載のクラッチと、を備え、前記駆動側回転体は前記駆動軸と一体回転可能に設けられ、前記従動側回転体は前記従動軸と一体回転可能に設けられているモータとしたことをその要旨としている。
According to this configuration, it is possible to suppress the generation of noise when the drive shaft and the driven side connecting portion come into contact while enabling the drive shaft and the driven side connecting portion to contact each other.
(Supplementary Note 14) Rotation drive having a motor unit having a drive shaft that is driven to rotate and a driven shaft that is arranged coaxially with the drive shaft and to which the rotational drive force of the drive shaft is transmitted and transmitted to the driven shaft A speed reduction unit that decelerates and outputs a force, and the above-described clutch provided between the drive shaft and the driven shaft, and the drive-side rotator is provided to rotate integrally with the drive shaft. The gist of the invention is that the driven-side rotating body is a motor provided to be rotatable integrally with the driven shaft.

同構成によれば、径方向に突出した形状となることが抑制された従動側回転体を備えたクラッチは、その径方向の小型化が可能である。そして、径方向に小型化されたクラッチを備えることにより、本発明のモータを小型化することができる。また、従動側連結部と制御面とを軸方向に分けたことにより、クラッチをモータに組付けた際に、従動軸における従動側回転体側の軸方向の端部を軸支する軸受に対して制御面を近づけることができる。従って、従動軸が傾いたとしても、制御面の傾きが抑えられるため、従動軸の傾きがクラッチの動作に影響を及ぼすことが抑制される。その結果、クラッチの動作が安定しやすい。   According to this configuration, the clutch including the driven-side rotator that is prevented from having a shape protruding in the radial direction can be downsized in the radial direction. And the motor of this invention can be reduced in size by providing the clutch reduced in size in radial direction. In addition, by dividing the driven side connecting portion and the control surface in the axial direction, when the clutch is assembled to the motor, the axial end of the driven side of the driven side of the driven shaft is supported with respect to the bearing that supports the shaft. The control surface can be brought closer. Therefore, even if the driven shaft is tilted, the tilt of the control surface is suppressed, so that the tilt of the driven shaft is suppressed from affecting the operation of the clutch. As a result, the operation of the clutch tends to be stable.

(付記15)上記記載のモータにおいて、前記伝達面及び前記従動側連結部は、前記従動軸の外径よりも内側に設けられていることをその要旨としている。
同構成によれば、従動側回転体を径方向により確実に小型化することができる。
(Additional remark 15) The above-mentioned motor WHEREIN: The said transmission surface and the said driven side connection part make it the summary to be provided inside the outer diameter of the said driven shaft.
According to this configuration, the driven-side rotator can be reliably reduced in size in the radial direction.

1…モータ部、2…減速部、3,90…クラッチ、7…駆動軸としての回転軸、24…従動軸としてのウォーム軸、31…クラッチハウジング、32,91…駆動側回転体、33…サポート部材、34…転動体、35…従動側回転体、42…駆動軸挿入孔、42a…平面、42b…連結面、44…従動軸挿入孔、44a…平面としての駆動側伝達面、44b…連結面、45…緩衝部材、46…弾性部材、47…当接部としての鍔部、48…視認孔、49…転動体解除部、51…係合部としての駆動側係合部、68…係合部としてのサポート側係合部、72…従動側連結部、73…制御面、74…従動側伝達面としての第1従動側伝達面、75…従動側伝達面としての第2従動側伝達面、92…第2の緩衝部材。   DESCRIPTION OF SYMBOLS 1 ... Motor part, 2 ... Deceleration part, 3,90 ... Clutch, 7 ... Rotary shaft as a drive shaft, 24 ... Worm shaft as a driven shaft, 31 ... Clutch housing, 32, 91 ... Drive side rotary body, 33 ... Support member, 34 ... rolling element, 35 ... driven side rotating body, 42 ... drive shaft insertion hole, 42a ... flat surface, 42b ... coupling surface, 44 ... driven shaft insertion hole, 44a ... drive side transmission surface as a plane, 44b ... Connection surface, 45 ... buffer member, 46 ... elastic member, 47 ... collar as a contact portion, 48 ... visual recognition hole, 49 ... rolling element release portion, 51 ... drive side engagement portion as engagement portion, 68 ... Support side engaging portion as an engaging portion, 72 ... driven side connecting portion, 73 ... control surface, 74 ... first driven side transmitting surface as driven side transmitting surface, 75 ... second driven side as driven side transmitting surface Transmission surface, 92 ... second buffer member.

Claims (3)

環状のクラッチハウジングと、
回転駆動される駆動側回転体と、
前記クラッチハウジングの内側で径方向外側を向く制御面を有し前記駆動側回転体の回転時には前記駆動側回転体の回転駆動力が伝達される従動側回転体と、
前記クラッチハウジングの内周面と前記制御面との間に配置され、前記駆動側回転体の回転駆動時には前記従動側回転体と共に回転し、前記駆動側回転体の非回転駆動時には前記クラッチハウジングの内周面と前記制御面とに挟持されて前記従動側回転体の回転を阻止する転動体と、
を備えたクラッチであって、
前記従動側回転体は、前記駆動側回転体に一体回転可能に連結される従動側連結部を備えるとともに、前記従動側連結部には第1従動側伝達面及び第2従動側伝達面が回転方向に応じて形成されており、前記第1従動側伝達面及び前記第2従動側伝達面と前記制御面とが軸方向に連続して形成されていることを特徴とするクラッチ。
An annular clutch housing;
A drive-side rotating body that is rotationally driven;
A driven-side rotator that has a control surface facing radially outward inside the clutch housing and to which the rotational driving force of the drive-side rotator is transmitted during rotation of the drive-side rotator;
The clutch housing is disposed between an inner peripheral surface of the clutch housing and the control surface, and rotates with the driven side rotating body when the driving side rotating body is driven to rotate. A rolling element that is sandwiched between an inner peripheral surface and the control surface and prevents rotation of the driven side rotating body;
A clutch with
The driven-side rotating body includes a driven-side connecting portion that is connected to the driving-side rotating body so as to be integrally rotatable, and a first driven-side transmission surface and a second driven-side transmission surface are rotated in the driven-side connecting portion. The clutch is formed according to a direction, and the first driven side transmission surface, the second driven side transmission surface, and the control surface are formed continuously in the axial direction.
請求項1に記載のクラッチにおいて、
前記従動側連結部は、軸方向と直交する断面形状が略楕円形状であることを特徴とするクラッチ。
The clutch according to claim 1, wherein
The driven side coupling portion has a substantially elliptical cross-sectional shape orthogonal to the axial direction.
請求項1又は請求項2に記載のクラッチにおいて、
前記駆動側回転体は、前記従動側連結部が一体回転可能な挿入状態となる従動軸挿入孔を備え、
前記従動側連結部は、前記従動軸挿入孔よりも細く形成されていることを特徴とするクラッチ。
In the clutch according to claim 1 or 2,
The drive-side rotating body includes a driven shaft insertion hole that is in an insertion state in which the driven-side coupling portion can rotate integrally,
The clutch, wherein the driven side connecting portion is formed narrower than the driven shaft insertion hole.
JP2015251489A 2010-09-15 2015-12-24 motor Active JP6175482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015251489A JP6175482B2 (en) 2010-09-15 2015-12-24 motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010206720 2010-09-15
JP2010206720 2010-09-15
JP2015251489A JP6175482B2 (en) 2010-09-15 2015-12-24 motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011171163A Division JP5885959B2 (en) 2010-09-15 2011-08-04 motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017133319A Division JP6428867B2 (en) 2010-09-15 2017-07-07 motor

Publications (2)

Publication Number Publication Date
JP2016040488A true JP2016040488A (en) 2016-03-24
JP6175482B2 JP6175482B2 (en) 2017-08-02

Family

ID=55540859

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015251489A Active JP6175482B2 (en) 2010-09-15 2015-12-24 motor
JP2017133319A Active JP6428867B2 (en) 2010-09-15 2017-07-07 motor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017133319A Active JP6428867B2 (en) 2010-09-15 2017-07-07 motor

Country Status (1)

Country Link
JP (2) JP6175482B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061802A1 (en) * 2016-09-30 2018-04-05 アスモ 株式会社 Clutch and motor
JP2018059622A (en) * 2016-09-30 2018-04-12 アスモ株式会社 Clutch and motor
CN109844344A (en) * 2016-09-30 2019-06-04 株式会社电装 Clutch and motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851127B2 (en) * 2017-10-30 2021-03-31 株式会社大一商会 Game machine
JP6851124B2 (en) * 2017-10-30 2021-03-31 株式会社大一商会 Game machine
JP6851126B2 (en) * 2017-10-30 2021-03-31 株式会社大一商会 Game machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671667A (en) * 1979-11-12 1981-06-15 Honda Motor Co Ltd Steering device for vehicle
JP2001140949A (en) * 1999-11-17 2001-05-22 Ntn Corp Reverse input prevention clutch
JP2001336550A (en) * 2000-05-30 2001-12-07 Asmo Co Ltd Clutch and motor
JP2007040343A (en) * 2005-08-01 2007-02-15 Ntn Corp Electric linear actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3928762B2 (en) * 1999-07-13 2007-06-13 アスモ株式会社 motor
JP3592618B2 (en) * 2000-07-28 2004-11-24 アスモ株式会社 motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671667A (en) * 1979-11-12 1981-06-15 Honda Motor Co Ltd Steering device for vehicle
JP2001140949A (en) * 1999-11-17 2001-05-22 Ntn Corp Reverse input prevention clutch
JP2001336550A (en) * 2000-05-30 2001-12-07 Asmo Co Ltd Clutch and motor
JP2007040343A (en) * 2005-08-01 2007-02-15 Ntn Corp Electric linear actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061802A1 (en) * 2016-09-30 2018-04-05 アスモ 株式会社 Clutch and motor
JP2018059622A (en) * 2016-09-30 2018-04-12 アスモ株式会社 Clutch and motor
CN109844344A (en) * 2016-09-30 2019-06-04 株式会社电装 Clutch and motor
US11002322B2 (en) 2016-09-30 2021-05-11 Denso Corporation Clutch and motor

Also Published As

Publication number Publication date
JP2017209007A (en) 2017-11-24
JP6175482B2 (en) 2017-08-02
JP6428867B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP5885959B2 (en) motor
JP6428867B2 (en) motor
JP5297993B2 (en) Clutch and motor
JP6536015B2 (en) Joint structure, clutch and motor
JP6330218B2 (en) Joint device and motor
US11002322B2 (en) Clutch and motor
JP2007221910A (en) Motor
US11047433B2 (en) Clutch and motor
JP6583075B2 (en) Clutch, motor and power window device
JP5480080B2 (en) Clutch and motor
JP6838513B2 (en) Clutch and motor
JP6828537B2 (en) Clutch and motor
JP6493035B2 (en) motor
JP4137866B2 (en) motor
WO2020022043A1 (en) Clutch and motor
JP6828535B2 (en) Clutch and motor
JP6728819B2 (en) Clutch, motor and power window device
JP6828536B2 (en) Clutch and motor
JP7215374B2 (en) motor
JP6601287B2 (en) Clutch, motor and power window device
WO2018061802A1 (en) Clutch and motor
JP2015152089A (en) reverse input prevention clutch
JP6809102B2 (en) Clutch and motor
JP3626386B2 (en) Clutch and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6175482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250