JP2016038288A - 自己位置算出装置及び自己位置算出方法 - Google Patents

自己位置算出装置及び自己位置算出方法 Download PDF

Info

Publication number
JP2016038288A
JP2016038288A JP2014161648A JP2014161648A JP2016038288A JP 2016038288 A JP2016038288 A JP 2016038288A JP 2014161648 A JP2014161648 A JP 2014161648A JP 2014161648 A JP2014161648 A JP 2014161648A JP 2016038288 A JP2016038288 A JP 2016038288A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
pattern light
posture
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014161648A
Other languages
English (en)
Other versions
JP6369898B2 (ja
Inventor
山口 一郎
Ichiro Yamaguchi
一郎 山口
西内 秀和
Hidekazu Nishiuchi
秀和 西内
伊藤 康一
Koichi Ito
康一 伊藤
酒井 修二
Shuji Sakai
修二 酒井
孝文 青木
Takafumi Aoki
孝文 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nissan Motor Co Ltd
Original Assignee
Tohoku University NUC
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nissan Motor Co Ltd filed Critical Tohoku University NUC
Priority to JP2014161648A priority Critical patent/JP6369898B2/ja
Publication of JP2016038288A publication Critical patent/JP2016038288A/ja
Application granted granted Critical
Publication of JP6369898B2 publication Critical patent/JP6369898B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】路面の照度が高くなる晴天下の日中のような場合でも、車両の移動量を安定的、且つ高精度に推定する。【解決手段】本発明の自己位置算出装置は、車両周囲の路面にパターン光を投光する投光器11と、路面を撮像して画像を取得するカメラ12と、パターン光の位置から車両の姿勢角を算出する姿勢角算出部22と、画像から検出された特徴点の時間変化に基づいて車両の姿勢変化量を算出する姿勢変化量算出部24と、車両の初期位置及び姿勢角に姿勢変化量を加算してゆくことで車両の現在位置及び姿勢角を算出する自己位置算出部26と、車両周囲の路面の照度を検出する路面照度検出部28とを備え、路面の照度が所定の閾値以下のときに、その時の車両の現在位置及び姿勢角を、車両の初期位置及び姿勢角に設定して姿勢変化量の加算を開始する。【選択図】図1

Description

本発明は、自己位置算出装置及び自己位置算出方法に関するものである。
車両に搭載されたカメラにより撮像された車両の近傍の画像を取得し、画像の変化に基づいて車両の移動量を求める技術が知られている(特許文献1参照)。特許文献1では、車両の低速かつ微妙な移動においても精度よく移動量を求めるために、画像の中から特徴点を検出し、画像上の特徴点の位置を求め、特徴点の移動方向及び移動距離(移動量)から車両の移動量を求めている。
また、格子パターン(パターン光)を投光するレーザ投光器を用いて三次元計測を行う技術が知られている(特許文献2参照)。特許文献2では、パターン光の投光領域をカメラで撮像し、撮像した画像からパターン光を抽出して、パターン光の位置から車両の挙動を求めている。この2つの技術を用いれば、路面に対する距離と姿勢角をパターン光から算出し、その路面の移動量を計測することで車両の移動量を高精度に算出することができる。
特開2008−175717号公報 特開2007−278951号公報
しかしながら、上述した特許文献2に記載されたパターン光は、路面の照度が高くなる晴天下の日中では、太陽光の影響によって、撮像した画像から安定して抽出することが難しい。そのため、車両の路面に対する距離と姿勢角が求めにくくなる。すなわち車両の移動量の算出精度が低下するという問題点があった。
本発明は上記課題に鑑みて成されたものであり、その目的は、路面の照度が高い場合でも、車両の現在位置を精度良く且つ安定して算出することができる自己位置算出装置及び自己位置算出方法を提供することである。
上記目的を達成するために、本発明の一態様に係る自己位置算出装置及びその方法は、車両周囲の路面にパターン光を投光し、パターン光が投光された領域を含む車両周囲の路面を撮像して画像を取得する。そして、取得した画像におけるパターン光の位置から路面に対する車両の姿勢角を算出し、取得した画像から検出された路面上の複数の特徴点の時間変化に基づいて車両の姿勢変化量を算出する。この結果、自己位置算出装置及びその方法は、車両の初期位置及び姿勢角に姿勢変化量を加算してゆくことで、車両の現在位置及び姿勢角を算出する。ここで、自己位置算出装置及びその方法は、車両周囲の路面の照度を検出し、検出した路面の照度が所定の閾値以下のときに、その時の車両の現在位置及び姿勢角を、車両の初期位置及び姿勢角に設定して姿勢変化量の加算を開始する。
本発明によれば、路面の照度が高い場合でも、車両の移動量を安定的、且つ高精度に算出することができる。
図1は、一実施形態に係る自己位置算出装置の全体構成を示すブロック図である。 図2は、車両10への投光器11及びカメラ12の搭載例を示す外観図である。 図3(a)は、投光器11とカメラ12の間の基線長Lbと、各スポット光の画像上の座標(U、V)とから、各スポット光が照射された路面31上の位置を算出する様子を示す図である。図3(b)は、パターン光32aが照射された領域とは異なる他の領域33から検出された特徴点の時間変化から、カメラ12の移動方向34を求める様子を示す模式図である。 図4(a)及び図4(b)は、カメラ12により取得された画像に対して二値化処理を施したパターン光32aの画像を示す図であり、図4(a)はパターン光32a全体を示し、図4(b)は1つのスポット光Sを拡大して示す。図4(c)はパターン光抽出部21により抽出された各スポット光Sの重心の位置Hを示す図である。 図5は、距離及び姿勢角の変化量を算出する方法を説明するための模式図である。 図6(a)は、時刻tに取得された第1フレーム(画像)38の一例を示す。図6(b)は、時刻tから時間Δtだけ経過した時刻(t+Δt)に取得された第2フレーム38’を示す。 図7は、路面に投光したパターン光32aをカメラ12で撮像した画像の一例を示す図である。 図8は、図1の自己位置算出装置を用いた自己位置算出方法の一例を示すフローチャートである。 図9は、図8のステップS09の詳細な手順を示すフローチャートである。
以下、本発明の一実施形態について図面を参照して説明する。
(ハードウェア構成)
先ず、図1を参照して、第1実施形態に係わる自己位置算出装置のハードウェア構成を説明する。自己位置算出装置は、投光器11と、カメラ12と、エンジンコントロールユニット(ECU)13とを備える。投光器11は、車両に搭載され、車両周囲の路面にパターン光を投光する。カメラ12は、車両に搭載され、パターン光が投光された領域を含む車両周囲の路面を撮像して画像を取得する撮像部の一例である。ECU13は、投光器11を制御し、且つカメラ12により取得された画像から車両の移動量を推定する一連の情報処理サイクルを実行する制御部の一例である。
カメラ12は、固体撮像素子、例えばCCD及びCMOSを用いたデジタルカメラであって、画像処理が可能なデジタル画像を取得する。カメラ12の撮像対象は車両周囲の路面であって、車両周囲の路面には、車両の前部、後部、側部、車両底部の路面が含まれる。例えば、図2に示すように、カメラ12は、車両10の前部、具体的にはフロントバンパ上に搭載することができる。
車両10の前方の路面31上の特徴点(テクスチャ)及び投光器11により投光されたパターン光32bを撮像できるように、カメラ12が設置される高さ及び向きが調整され、且つ、カメラ12が備えるレンズのピント及び絞りが自動調整される。カメラ12は、所定の時間間隔をおいて繰り返し撮像を行い、一連の画像(フレーム)群を取得する。カメラ12により取得された画像データは、ECU13へ転送され、ECU13が備えるメモリに記憶される。
投光器11は、図2に示すように、カメラ12の撮像範囲内の路面31に向けて、正方形や長方形の格子像を含む所定の形状を有するパターン光32bを投光する。カメラ12は、路面31に照射されたパターン光を撮像する。投光器11は、例えば、レーザポインター及び回折格子を備える。レーザポインターから射出されたレーザ光を回折格子で回折することにより、投光器11は、図2〜図4に示すように、格子像、或いは行列状に配列された複数のスポット光Sからなるパターン光(32b、32a)を生成する。図3及び図4に示す例では、5×7のスポット光Sからなるパターン光32aを生成している。
図1に戻り、ECU13は、CPU、メモリ、及び入出力部を備えるマイクロコントローラからなり、予めインストールされたコンピュータプログラムを実行することにより、自己位置算出装置が備える複数の情報処理部を構成する。ECU13は、カメラ12により取得された画像から車両の現在位置を算出する一連の情報処理サイクルを、画像(フレーム)毎に繰り返し実行する。ECU13は、車両10にかかわる他の制御に用いるECUと兼用してもよい。
複数の情報処理部には、パターン光抽出部21と、姿勢角算出部22と、特徴点検出部23と、姿勢変化量算出部24と、自己位置算出部26と、パターン光制御部27と、照度検出部28とが含まれる。姿勢変化量算出部24には、特徴点検出部23が含まれる。
パターン光抽出部21は、カメラ12により取得された画像をメモリから読み込み、画像からパターン光の位置を抽出する。図3(a)に示すように、例えば、投光器11が、行列状に配列された複数のスポット光からなるパターン光32aを路面31に向けて投光し、路面31で反射されたパターン光32aをカメラ12で検出する。パターン光抽出部21は、カメラ12により取得された画像に対して二値化処理を施すことにより、図4(a)及び図4(b)に示すように、スポット光Sの画像のみを抽出する。パターン光抽出部21は、図4(c)に示すように、各スポット光Sの重心の位置H、即ちスポット光Sの画像上の座標(U、V)を算出することにより、パターン光32aの位置を抽出する。座標は、カメラ12の撮像素子の画素を単位とし、5×7のスポット光Sの場合、“j”は1以上35以下の自然数である。スポット光Sの画像上の座標(U、V)は、パターン光32aの位置を示すデータとしてメモリに記憶される。
姿勢角算出部22は、パターン光32aの位置を示すデータをメモリから読み込み、カメラ12により取得された画像におけるパターン光32aの位置から、路面31に対する車両10の距離及び姿勢角を算出する。例えば、図3(a)に示すように、投光器11とカメラ12の間の基線長Lbと、各スポット光の画像上の座標(U、V)とから、三角測量の原理を用いて、各スポット光が照射された路面31上の位置を、カメラ12に対する相対位置として算出する。そして、姿勢角算出部22は、カメラ12に対する各スポット光の相対位置から、パターン光32aが投光された路面31の平面式、即ち、路面31に対するカメラ12の距離及び姿勢角(法線ベクトル)を算出する。なお、車両10に対するカメラ12の搭載位置及び撮像方向は既知であるため、実施形態においては、路面31に対する車両10の距離及び姿勢角の一例として、路面31に対するカメラ12の距離及び姿勢角を算出する。以後、路面31に対するカメラ12の距離及び姿勢角を、「距離及び姿勢角」と略す。姿勢角算出部22により算出された距離及び姿勢角は、メモリに記憶される。
具体的には、カメラ12及び投光器11は車両10にそれぞれ固定されているため、パターン光32aの照射方向と、カメラ12と投光器11との距離(基線長Lb)は既知である。そこで、姿勢角算出部22は、三角測量の原理を用いて、各スポット光の画像上の座標(U、V)から各スポット光が照射された路面31上の位置を、カメラ12に対する相対位置(X,Y,Z)として求めることができる。
なお、カメラ12に対する各スポット光の相対位置(X,Y,Z)は同一平面上に存在しない場合が多い。なぜなら、路面31に表出するアスファルトの凹凸に応じて各スポット光の相対位置が変化するからである。そこで、最小二乗法を用いて、各スポット光との距離誤差の二乗和が最小となるような平面式を求めてもよい。
特徴点検出部23は、カメラ12により取得された画像をメモリから読み込み、メモリから読み込んだ画像から、路面31上の特徴点を検出する。特徴点検出部23は、路面31上の特徴点を検出するために、例えば、「D.G. Lowe,“Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis., vol.60, no.2, pp. 91-110, Nov. 200 」、或いは、「金澤 靖, 金谷健一, “コンピュータビジョンのための画像の特徴点抽出,” 信学誌, vol.87, no.12, pp.1043-1048, Dec. 2004」に記載の手法を用いることができる。
具体的には、特徴点検出部23は、例えば、ハリス(Harris)作用素又はSUSANオペレータを用いて、物体の頂点のように周囲に比べて輝度値が大きく変化する点を特徴点として検出する。或いは、特徴点検出部23は、SIFT(Scale-Invariant Feature Transform)特徴量を用いて、その周囲で輝度値がある規則性のもとで変化している点を特徴点として検出してもよい。そして、特徴点検出部23は、1つの画像から検出した特徴点の総数Nを計数し、各特徴点に識別番号(i(1≦i≦N))を付す。各特徴点の画像上の位置(U、V)は、ECU13内のメモリに記憶される。図6(a)及び図6(b)は、カメラ12により取得された画像から検出された特徴点Tの例を示す。各特徴点の画像上の位置(U、V)は、メモリに記憶される。
なお、実施形態において、路面31上の特徴点は、主に大きさが1cm以上2cm以下のアスファルト混合物の粒を想定している。この特徴点を検出するために、カメラ12の解像度はVGA(約30万画素)である。また、路面31に対するカメラ12の距離は、おおよそ70cmである。更に、カメラ12の撮像方向は、水平面から約45degだけ路面31に向けて傾斜させる。また、カメラ12により取得される画像をECU13に転送するときの輝度数値は、0〜255(0:最も暗い,255:最も明るい)の範囲内である。
姿勢変化量算出部24は、一定の情報処理サイクル毎に撮像されるフレームのうち、前回フレームに含まれる複数の特徴点の画像上の位置(U、V)をメモリから読み込む。更に、今回フレームに含まれる複数の特徴点の画像上の位置(U、V)をメモリから読み込む。そして、複数の特徴点の画像上での位置変化に基づいて、車両の姿勢変化量を求める。ここで、「車両の姿勢変化量」とは、路面31に対する「距離及び姿勢角」の変化量、及び路面上での「車両(カメラ12)の移動量」の双方を含んでいる。以下、距離及び姿勢角の変化量及び車両の移動量の算出方法について説明する。
図6(a)は、時刻tに取得された第1フレーム(画像)38の一例を示す。図5或いは図6(a)に示すように、第1フレーム38において、例えば3つの特徴点Te1、Te2、Te3の相対位置(X,Y,Z)がそれぞれ算出されている場合を考える。この場合、特徴点Te1、Te2、Te3によって特定される平面Gを路面と見なすことができる。よって、姿勢変化量算出部24は、相対位置(X,Y,Z)から、路面(平面G)に対するカメラ12の距離及び姿勢角(法線ベクトル)を求めることができる。更に、姿勢変化量算出部24は、既知のカメラモデルによって、各特徴点Te1、Te2、Te3の間の距離(l、l、l)及び夫々の特徴点Te1、Te2、Te3を結ぶ直線が成す角度を求めることができる。図5のカメラ12は、第1フレームにおけるカメラの位置を示す。
なお、カメラ12に対する相対位置を示す3次元座標(X,Y,Z)として、カメラ12の撮像方向をZ軸に設定し、撮像方向を法線とし且つカメラ12を含む平面内に、互いに直交するX軸及びY軸を設定する。一方、画像38上の座標として、水平方向及び垂直方向をそれぞれV軸及びU軸に設定する。
図6(b)は、時刻tから時間Δtだけ経過した時刻(t+Δt)に取得された第2フレームを示す。図5のカメラ12’は、第2フレーム38’を撮像したときのカメラの位置を示す。図5或いは図6(b)に示すように、第2フレーム38’において、カメラ12’が特徴点Te1、Te2、Te3を撮像し、特徴点検出部23が特徴点Te1、Te2、Te3を検出する。この場合、姿勢変化量算出部24は、時刻tにおける各特徴点Te1、Te2、Te3の相対位置(X,Y,Z)と、各特徴点の第2フレーム38’上の位置P(U、V)と、カメラ12のカメラモデルとから、時間Δtにおけるカメラ12の移動量(ΔL)だけでなく、距離及び姿勢角の変化量も算出することができる。例えば、以下の式(1)からなる連立方程式をR、Tについて解くことにより、姿勢変化量算出部24は、カメラ12(車両)の移動量(ΔL)、及び距離及び姿勢角の変化量を算出することができる。ここで、Rはカメラの姿勢角変化量を表す3次元回転行列であり、Tはカメラの移動方向を表す3次元並進ベクトルである。なお、(1)式はカメラ12が歪みや光軸ずれのない理想的なピンホールカメラとしてモデル化したものであり、λiは定数、fは焦点距離である。カメラモデルのパラメータは、予めキャリブレーションをしておけばよい。
図3(b)は、カメラ12の撮像範囲のうち、パターン光32aが照射された領域とは異なる他の領域33から検出された特徴点の時間変化から、カメラ12の移動方向34を求める様子を模式的に示す。また、図6(a)及び図6(b)には、各特徴点Tの位置の変化方向及び変化量を示すベクトルDteを画像に重畳して示す。姿勢変化量算出部24は、時間Δtにおけるカメラ12の移動量(ΔL)だけでなく、距離及び姿勢角の変化量も同時に算出することができる。よって、姿勢変化量算出部24は、距離及び姿勢角の変化量を考慮して、6自由度の移動量(ΔL)を精度よく算出することができる。すなわち、車両10の旋回や加減速によるロール運動或いはピッチ運動によって距離や姿勢角が変化しても、移動量(ΔL)の推定誤差を抑制することができる。
なお、姿勢変化量算出部24は、相対位置が算出された特徴点すべてを用いるのではなく、特徴点同士の位置関係に基づいて最適な特徴点を選定してもよい。選定方法としては、例えば、エピポーラ幾何(エピ極線幾何,R.I. Hartley: “A linear method for reconstruction from lines and points,” Proc. 5th International Conference on Computer Vision, Cambridge, Massachusetts, pp.882-887(1995))を用いることができる。
前後フレーム間で特徴点を対応付けるには、例えば、検出した特徴点の周辺の小領域の画像をメモリに記録しておき、輝度や色情報の類似度から判断すればよい。具体的には、ECU13は、検出した特徴点を中心とする5×5(水平×垂直)画素分の画像をメモリに記録する。姿勢変化量算出部24は、例えば、輝度情報が20画素以上で誤差1%以下に収まっていれば、前後フレーム間で対応関係が取れる特徴点であると判断する。
このように、相対位置(X,Y,Z)が算出された特徴点Te1、Te2、Te3が、後のタイミングで取得された画像38’からも検出された場合に、姿勢変化量算出部24は、路面上の複数の特徴点の時間変化に基づいて、「車両の姿勢変化量」を算出することができる。
自己位置算出部26は、姿勢変化量算出部24で算出された「距離及び姿勢角の変化量」から距離及び姿勢角を算出する。更に、姿勢変化量算出部24で算出された「車両の移動量」から車両の現在位置を算出する。
具体的には、姿勢角算出部22(図1参照)にて算出された距離及び姿勢角が起点として設定された場合、この起点(距離及び姿勢角)に対して、姿勢変化量算出部24で算出された各フレーム毎の距離及び姿勢角の変化量を逐次加算する(積分演算する)ことにより、距離及び姿勢角を最新の数値に更新する。また、姿勢角算出部22にて距離及び姿勢角が算出された際の車両位置が起点(車両の初期位置)として設定され、この初期位置から車両の移動量を逐次加算する(積分演算する)ことにより、車両の現在位置を算出する。例えば、地図上の位置と照合された起点(車両の初期位置)を設定することで、地図上の車両の現在位置を逐次算出することができる。
このように、前後フレーム間で対応関係が取れる3点以上の特徴点を検出し続けることができれば、距離及び姿勢角の変化量を加算する処理(積分演算)を継続することにより、パターン光32aを用いることなく、距離や姿勢角を最新の数値に更新し続けることができる。ただし、最初の情報処理サイクルにおいては、パターン光32aを用いて算出された距離及び姿勢角、或いは所定の初期距離及び初期姿勢角を用いてもよい。つまり、積分演算の起点となる距離及び姿勢角は、パターン光32aを用いて算出しても、或いは、所定の初期値を用いても構わない。所定の初期距離及び初期姿勢角は、少なくとも車両10への乗員及び搭載物を考慮した距離及び姿勢角であることが望ましい。例えば、車両10のイグニションスイッチがオン状態であって、且つシフトポジションがパーキングから他のポジションへ移動した時に、パターン光32aを投光し、パターン光32aから算出された距離及び姿勢角を、所定の初期距離及び初期姿勢角として用いればよい。これにより、車両10の旋回や加減速によるロール運動或いはピッチ運動が発生していない時の距離や姿勢角を求めることができる。
なお、実施形態では、距離及び姿勢角の変化量を算出し、距離及び姿勢角の変化量を逐次加算することにより、距離及び姿勢角を最新の数値に更新した。しかし、路面31に対するカメラ12の姿勢角だけをその変化量の算出及び更新の対象としても構わない。この場合、路面31に対するカメラ12の距離は一定と仮定すればよい。これにより、姿勢角の変化量を考慮して、移動量(ΔL)の推定誤差を抑制しつつ、ECU13の演算負荷を軽減し、且つ演算速度を向上させることもできる。
照度検出部28は、パターン光32aが投光された領域を含む車両周囲の路面31の照度を検出し、車両周囲の路面31の照度が所定の閾値以下となる暗い状態であるか否かを判断する。例えば、晴天下の日向のように、路面の照度が高くてパターン光32aを抽出することが困難な場合には、パターン光32aを用いて算出した距離及び姿勢角を、積分演算の基点に設定することは難しい。
そこで、照度検出部28は、カメラ12により取得された画像の輝度数値の画素平均が、所定の閾値より大きい場合には、路面の照度が高いと判断する。そして、この場合にはパターン光32aを用いて算出した距離及び姿勢角を、積分演算の基点に設定するのではなく、現在設定されている積分演算の基点を維持する。
ここで、図7を参照して、路面の照度が高い場合の具体例を説明する。図7は、パターン光32a(5×7のスポット光Sp)を路面に投光したときに撮像した画像の一例であり、図7(a)は晴天下の日向、図7(b)は屋内で撮像したものである。図7(a)に示すように、路面の照度が高い晴天下の日向ではパターン光を視認できないので、パターン光の抽出は難しいことが分かる。したがって、このような場合には、現在設定されている積分演算の基点を維持する。
一方、図7(b)に示すように、屋内で撮像して照度が低い場合には、パターン光32aを視認することができ、パターン光32aを抽出できることが分かる。したがって、このような場合には、パターン光32aを用いて算出した距離及び姿勢角を、積分演算の基点に設定する。
尚、所定の閾値としては、予め実験等によってパターン光32aを抽出可能な輝度数値の画素平均を求めておけばよい。具体的には、全画素の80%以上の画素における輝度数値が画素平均の±30%以内となる条件において、99%以上の確率で35個のスポット光を抽出できる輝度数値の画素平均を設定することができる。
自己位置算出部26は、照度検出部28によって車両周囲の路面31の照度が所定の閾値より大きいと判断された場合には、上述したように積分演算の起点を維持する。一方、照度検出部28によって車両周囲の路面31の照度が所定の閾値以下となる暗い状態であると判断された場合には、自己位置算出部26は、新たな基点を設定する。すなわち、同じ情報サイクルにおいて、姿勢角算出部22(図1参照)で算出された距離及び姿勢角、及びその時の車両位置を新たな起点(車両の姿勢角及び初期位置)に設定し、当該起点から車両の姿勢変化量の加算を開始する。
パターン光制御部27は、投光器11によるパターン光32aの投光を制御する。例えば、車両10のイグニションスイッチがオン状態となり、自己位置算出装置が起動すると同時に、パターン光制御部27は、パターン光32aの投光を開始する。その後、パターン光制御部27は、自己位置算出装置が停止するまで、パターン光32aを連続して投光する。
(情報処理サイクル)
次に、カメラ12により取得された画像38から車両10の移動量を推定する自己位置算出方法の一例として、ECU13により繰り返し実行される情報処理サイクルを、図8及び図9を参照しながら説明する。図8のフローチャートに示す情報処理サイクルは、車両10のイグニションスイッチがオン状態となり、自己位置算出装置が起動すると同時に開始され、自己位置算出装置が停止するまで、繰り返し実行される。
図8のステップS01において、パターン光制御部27は、投光器11を制御して、車両周囲の路面31にパターン光32aを投光する。図8のフローチャートでは、パターン光32aを連続して投光する例を説明する。
ステップS03に進み、ECU13は、カメラ12を制御して、パターン光32aが投光された領域を含む車両周囲の路面31を撮像して画像38を取得する。ECU13は、カメラ12により取得された画像データを、メモリに記憶する。
なお、ECU13はカメラ12の絞りを自動制御できる。前の情報処理サイクルで取得した画像38の平均輝度から、輝度値の最大値と最小値の中間値になるようにカメラ12の絞りをフィードバック制御してもよい。また、パターン光32aが投光されている領域は輝度値が高いため、パターン光32aを抽出した部分を除いた領域から、平均輝度値を求めてもよい。
ステップS05に進み、先ず、パターン光抽出部21は、カメラ12により取得された画像38をメモリから読み込み、図4(c)に示すように、画像38からパターン光32aの位置を抽出する。パターン光抽出部21は、パターン光32aの位置を示すデータとして算出されたスポット光Sの画像上の座標(U、V)をメモリに記憶する。
ステップS05において、姿勢角算出部22は、パターン光32aの位置を示すデータをメモリから読み込み、パターン光32aの位置から、距離及び姿勢角を算出し、メモリに記憶する。
ステップS07に進み、ECU13は、画像38から特徴点を検出し、前後の情報処理サイクルの間で対応関係が取れる特徴点を抽出し、特徴点の画像上の位置(U、V)から、距離及び姿勢角の変化量、及び車両の移動量を算出する。
具体的に、先ず、特徴点検出部23は、カメラ12により取得された画像38をメモリから読み込み、画像38から路面31上の特徴点を検出し、各特徴点の画像上の位置(U、V)をメモリに記憶する。姿勢変化量算出部24は、各特徴点の画像上の位置(U、V)をメモリから読み込み、距離及び姿勢角と、特徴点の画像上の位置(U、V)とから、カメラ12に対する特徴点の相対位置(X,Y,Z)を算出する。なお、姿勢変化量算出部24は、前の情報処理サイクルのステップS09において設定された距離及び姿勢角を用いる。姿勢変化量算出部24は、カメラ12に対する特徴点の相対位置(X,Y,Z)を、メモリに記憶する。
そして、姿勢変化量算出部24は、特徴点の画像上の位置(U、V)と、前の情報処理サイクルのステップS07において算出された特徴点の相対位置(X,Y,Z)をメモリから読み込む。姿勢変化量算出部24は、前後の情報処理サイクルの間で対応関係が取れる特徴点の相対位置(X,Y,Z)及び画像上の位置(U、V)を用いて、距離及び姿勢角の変化量を算出する。更に、前回の情報処理サイクルにおける特徴点の相対位置(X,Y,Z)と今回の情報処理サイクルにおける特徴点の相対位置(X,Y,Z)とから、車両の移動量を算出する。ステップS07で算出された「距離及び姿勢角の変化量」及び「車両の移動量」は、ステップS11の処理で用いられる。
ステップS09に進み、ECU13は、路面の照度に応じて、積分演算の起点を設定する。詳細は、図9を参照して、後述する。
ステップS11に進み、自己位置算出部26は、ステップS09の処理で設定された積分演算の起点、及びステップS07の処理で算出された車両の移動量から、車両の現在位置を算出する。
こうして、本実施形態に係る自己位置算出装置は、上記した一連の情報処理サイクルを繰り返し実行して車両10の移動量を積算することにより、車両10の現在位置を算出することができる。
次に、図9のフローチャートを参照して、図8のステップS09の詳細な手順を説明する。ステップS900において、ECU13は、今回の情報処理サイクルが初回であるか否かを判断する。そして、初回である場合、即ち、前回の情報処理サイクルのデータが無い場合にはステップS905に処理を進め、初回でない場合にはステップS901に処理を進める。
ステップS901において、照度検出部28は、車両周囲の路面31の照度が所定の閾値以下となる暗い状態であるか否かを判断する。照度が閾値以下となる暗い状態であると判断した場合(ステップS901でYES)、ステップS905へ進み、照度が閾値より大きく明るいと判断した場合(ステップS901でNO)、ステップS909へ進む。
ステップS909で、ECU13は、現在設定されている積分演算の起点を維持する。
ステップS905で、ECU13は、車両の現在位置を起点として設定し、更に、同じ情報処理サイクルのステップS05で算出された距離及び姿勢角を積分演算の起点として設定する。この距離及び姿勢角を起点として新たな積分演算が開始される。また、車両の現在位置を起点として新たに車両の移動量の積分演算を開始する。
以上説明したように、本実施形態に係る自己位置算出装置によれば、以下の作用効果が得られる。
路面の照度が高い晴天下の日向等のシーンでは、パターン光32aを画像から抽出することができないので、パターン光32aから路面に対する距離や姿勢角を算出することは困難である。このとき、前後のフレーム間で対応関係が取れる3点以上の特徴点を検出し続けることができれば、路面に対する距離及び姿勢角を最新の数値に更新し続けることは可能である。すなわち、姿勢変化量算出部24で算出された「距離及び姿勢角の変化量」を加算する処理(積分演算)を継続することにより、パターン光32aを用いることなく、路面に対する距離及び姿勢角を最新の数値に更新し続けることができる。しかし、この場合に積分を継続すれば、積分誤差が蓄積するため、姿勢変化量算出部24による距離及び姿勢角の算出精度が低下し、車両10の移動量の算出誤差が大きくなる。
そこで、本実施形態では、車両周囲の路面31の照度が所定の閾値より大きく、明るい状態である場合には、現在設定されている積分演算の基点を維持する。一方、車両周囲の路面31の照度が所定の閾値以下となる暗い状態である場合には、パターン光32aから算出された誤差の小さい距離及び姿勢角を基点として新たに積分演算を開始する。これにより、路面の照度が高い場合でも、車両の移動量を安定的、且つ高精度に算出することができる。
上記のように、本発明の1つの実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
なお、図2は、カメラ12と投光器11を車両10の前面に取り付けた例を示したが、車両10の側方,後方,真下に向けて設置してもよい。また、本実施形態では車両10の一例として、四輪の乗用自動車を図2に示したが、オートバイ、貨物自動車、或いは例えば建設機械を運搬する特殊車両など、道路の路面或いは壁面上の特徴点を撮像することが可能な移動体(車両)すべてに適用可能である。
10 車両
11 投光器
12 カメラ(撮像部)
21 パターン光抽出部
22 姿勢角算出部
23 特徴点検出部
24 姿勢変化量算出部
26 自己位置算出部
28 照度検出部
31 路面
32a、32b パターン光
Te 特徴点

Claims (2)

  1. 車両周囲の路面にパターン光を投光する投光器と、
    前記車両に搭載され、前記パターン光が投光された領域を含む車両周囲の路面を撮像して画像を取得する撮像部と、
    前記撮像部により取得された画像における前記パターン光の位置から、前記路面に対する車両の姿勢角を算出する姿勢角算出部と、
    前記撮像部により取得された画像から検出された前記路面上の複数の特徴点の時間変化に基づいて、前記車両の姿勢変化量を算出する姿勢変化量算出部と、
    前記車両の初期位置および姿勢角に、前記姿勢変化量を加算してゆくことで、前記車両の現在位置および姿勢角を算出する自己位置算出部と、
    前記パターン光が投光された領域を含む車両周囲の路面の照度を検出する照度検出部と、を備え、
    前記自己位置算出部は、前記路面の照度が所定の閾値以下のときに、その時の前記車両の現在位置および前記姿勢角算出部による車両の姿勢角を、前記車両の初期位置および姿勢角に設定し、前記姿勢変化量の加算を開始する
    ことを特徴とする自己位置算出装置。
  2. 車両に搭載された投光器から車両周囲の路面にパターン光を投光する手順と、
    前記車両に搭載された撮像部によって、前記パターン光が投光された領域を含む車両周囲の路面を撮像して画像を取得する手順と、
    前記車両の制御部が、前記画像における前記パターン光の位置から、前記路面に対する車両の姿勢角を算出する手順と、
    前記制御部が、前記画像から検出された前記路面上の複数の特徴点の時間変化に基づいて、前記車両の姿勢変化量を算出する手順と、
    前記制御部が、前記車両の初期位置および姿勢角に、前記姿勢変化量を加算してゆくことで、前記車両の現在位置および姿勢角を算出する自己位置算出手順と、
    前記制御部が、前記パターン光が投光された領域を含む車両周囲の路面の照度を検出する手順と、を含み、
    前記自己位置算出手順では、前記路面の照度が所定の閾値以下のときに、その時の前記車両の現在位置および前記パターン光の位置から算出された車両の姿勢角を、前記車両の初期位置および姿勢角に設定し、前記姿勢変化量の加算を開始する
    ことを特徴とする自己位置算出方法。
JP2014161648A 2014-08-07 2014-08-07 自己位置算出装置及び自己位置算出方法 Active JP6369898B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014161648A JP6369898B2 (ja) 2014-08-07 2014-08-07 自己位置算出装置及び自己位置算出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161648A JP6369898B2 (ja) 2014-08-07 2014-08-07 自己位置算出装置及び自己位置算出方法

Publications (2)

Publication Number Publication Date
JP2016038288A true JP2016038288A (ja) 2016-03-22
JP6369898B2 JP6369898B2 (ja) 2018-08-08

Family

ID=55529472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161648A Active JP6369898B2 (ja) 2014-08-07 2014-08-07 自己位置算出装置及び自己位置算出方法

Country Status (1)

Country Link
JP (1) JP6369898B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048513A (ja) * 2000-05-26 2002-02-15 Honda Motor Co Ltd 位置検出装置、位置検出方法、及び位置検出プログラム
US20030021445A1 (en) * 1999-12-23 2003-01-30 Markus Larice Method for optically monitoring the environment of a moving vehicle to determine an inclination angle
JP2011022157A (ja) * 2000-05-26 2011-02-03 Honda Motor Co Ltd 位置検出装置、位置検出方法、及び位置検出プログラム
JP2012242263A (ja) * 2011-05-20 2012-12-10 Mazda Motor Corp 移動体位置検出装置
JP2013104660A (ja) * 2011-11-10 2013-05-30 Toyota Motor Corp 単眼カメラ画像によるステレオ視に基づく運動量推定方法、及び当該方法を使用する運動量推定装置
JP2013186816A (ja) * 2012-03-09 2013-09-19 Topcon Corp 動画処理装置、動画処理方法および動画処理用のプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021445A1 (en) * 1999-12-23 2003-01-30 Markus Larice Method for optically monitoring the environment of a moving vehicle to determine an inclination angle
JP2002048513A (ja) * 2000-05-26 2002-02-15 Honda Motor Co Ltd 位置検出装置、位置検出方法、及び位置検出プログラム
JP2011022157A (ja) * 2000-05-26 2011-02-03 Honda Motor Co Ltd 位置検出装置、位置検出方法、及び位置検出プログラム
JP2012242263A (ja) * 2011-05-20 2012-12-10 Mazda Motor Corp 移動体位置検出装置
JP2013104660A (ja) * 2011-11-10 2013-05-30 Toyota Motor Corp 単眼カメラ画像によるステレオ視に基づく運動量推定方法、及び当該方法を使用する運動量推定装置
JP2013186816A (ja) * 2012-03-09 2013-09-19 Topcon Corp 動画処理装置、動画処理方法および動画処理用のプログラム

Also Published As

Publication number Publication date
JP6369898B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6269838B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6237876B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6237875B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6237874B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6187671B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6187672B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6176387B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6547362B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6398218B2 (ja) 自己位置算出装置及び自己位置算出方法
JP2013257244A (ja) 距離測定装置、距離測定方法、及び距離測定プログラム
JP6369897B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6299319B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6398217B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6492974B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6369898B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6459745B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6459701B2 (ja) 自己位置算出装置及び自己位置算出方法
JP6398219B2 (ja) 自己位置算出装置及び自己位置算出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6369898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250