JP2016038113A - Heat source device with electric power generating function - Google Patents

Heat source device with electric power generating function Download PDF

Info

Publication number
JP2016038113A
JP2016038113A JP2014159514A JP2014159514A JP2016038113A JP 2016038113 A JP2016038113 A JP 2016038113A JP 2014159514 A JP2014159514 A JP 2014159514A JP 2014159514 A JP2014159514 A JP 2014159514A JP 2016038113 A JP2016038113 A JP 2016038113A
Authority
JP
Japan
Prior art keywords
hot water
passage
storage tank
water storage
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014159514A
Other languages
Japanese (ja)
Other versions
JP6320233B2 (en
Inventor
寿久 斉藤
Toshihisa Saito
寿久 斉藤
裕介 澤中
Yusuke Sawanaka
裕介 澤中
由 玉井
Yu Tamai
由 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP2014159514A priority Critical patent/JP6320233B2/en
Publication of JP2016038113A publication Critical patent/JP2016038113A/en
Application granted granted Critical
Publication of JP6320233B2 publication Critical patent/JP6320233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow an electric power generating device to efficiently operate with cooling water from a hot water storage tank.SOLUTION: Water for cooling guided out of a hot water storage tank 2 is supplied to an electric power generating device through a water supply passage to generate electric power, and waste heat thereof is used to prepare hot water in the hot water storage tank 2. The hot water storage tank 2 is arranged in a case, a fan provided at an air guide-out part is driven to introduce air into the case from outside, and at least a lower side of the hot water storage tank 2 is cooled with the air. Passage type cooling means 11 with a communication passage 12 linking the lower side of the hot water storage tank 2 to the water supply passage is provided on an outer circumferential lower end side of the hot water storage tank 2 in the case (with the outer circumferential lower end side of the hot water storage tank 2 enclosed with the communication passage 12), the passage type cooling means 11 cools water running in the communication passage 12 with the air introduced into the case, and the water having been cooled is introduced into the water supply passage.SELECTED DRAWING: Figure 2

Description

本発明は、発電装置と貯湯槽とを備えた発電機能付き熱源装置に関するものである。   The present invention relates to a heat source device with a power generation function including a power generation device and a hot water storage tank.

タンク内に湯水を収容する貯湯槽(貯湯タンク)や、その貯湯槽を備えた熱源装置が様々に提案されており(例えば特許文献1、参照)、図7には、貯湯槽を備えた熱源装置の一例が示されている。この熱源装置は、貯湯槽2と発電装置1とを有しており、貯湯槽2は例えばケース内に配置される。発電装置1は、例えば固体高分子形燃料電池(PEFC)や固体酸化物形燃料電池(SOFC)等の燃料電池(FC)や、ガスエンジン等により形成されている。燃料電池は、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。   Various hot water storage tanks (hot water storage tanks) for storing hot water in the tank and heat source devices including the hot water storage tanks have been proposed (see, for example, Patent Document 1). FIG. 7 shows a heat source including a hot water storage tank. An example of an apparatus is shown. This heat source device has a hot water tank 2 and a power generator 1, and the hot water tank 2 is disposed in a case, for example. The power generator 1 is formed by a fuel cell (FC) such as a polymer electrolyte fuel cell (PEFC) or a solid oxide fuel cell (SOFC), a gas engine, or the like. A fuel cell is a power generation device that generates electricity by reacting hydrogen extracted from a fuel such as city gas with oxygen in the air by a reverse reaction of water electrolysis.

また、この熱源装置は、給水供給源からの水を貯湯槽2の下部側から貯湯槽2に供給する給水通路20と、貯湯槽2の下部側から発電装置1に冷却用の例えば50℃以下(好ましくは45℃以下)の水を供給するための水供給通路21と、発電装置1の廃熱により加熱された湯を貯湯槽2側に送って該貯湯槽2の上部側から該貯湯槽2に導入する熱回収用通路23と、貯湯槽2の上部側から給湯先に湯を供給するための湯の通路25とを有している。湯の通路25は、接続ユニット27を介し、前記給水供給源から分岐した分岐通路29と接続されており、接続ユニット27には電磁弁26等が設けられている。   In addition, this heat source device has a water supply passage 20 for supplying water from a water supply source to the hot water tank 2 from the lower side of the hot water tank 2, and for cooling to the power generator 1 from the lower side of the hot water tank 2, for example, 50 ° C. A water supply passage 21 for supplying water (preferably 45 ° C. or less) and hot water heated by the waste heat of the power generator 1 are sent to the hot water tank 2 side from the upper side of the hot water tank 2 to the hot water tank. 2 and a hot water passage 25 for supplying hot water from the upper side of the hot water storage tank 2 to the hot water supply destination. The hot water passage 25 is connected to a branch passage 29 branched from the water supply source via a connection unit 27, and the connection unit 27 is provided with an electromagnetic valve 26 and the like.

接続ユニット27には通路30が接続され、通路30を通して給湯先に湯を直接供給する熱源装置や、バーナ等を備えた給湯器等の補助熱源装置の入水側を通路30に接続して通路30を通った湯を必要に応じて補助熱源装置によって追い加熱して給湯先に給湯する熱源装置等、様々な構成が提案されている。なお、図7の図中、符号24は、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁を備えた過圧逃がし用通路を示し、符号28は排水弁を備えた排水通路をそれぞれ示している。   A passage 30 is connected to the connection unit 27, and a water inlet side of a heat source device that directly supplies hot water to a hot water supply destination through the passage 30 or a hot water heater equipped with a burner or the like is connected to the passage 30. Various configurations have been proposed, such as a heat source device that additionally heats hot water that has passed through an auxiliary heat source device as necessary and supplies hot water to a hot water supply destination. In FIG. 7, reference numeral 24 denotes an overpressure relief passage provided with an overpressure relief valve for releasing the pressure to the outside when the pressure in the hot water tank 2 exceeds the allowable pressure. Reference numeral 28 denotes a drainage passage provided with a drainage valve.

この種の熱源装置においては、例えば、発電装置1の廃熱により加熱されて貯湯槽2に貯湯された湯を、湯の通路25を通して導出し、この湯と、給水供給源から分岐通路29を通して導出される水とを必要に応じて接続ユニット27により混合し、前記の如く通路30を通して給湯先に供給することにより給湯設定温度の湯を供給することができる。また、発電装置1により発電した電力を利用者の電力負荷装置に供給することにより、電力利用もできるため、利便性と省エネ性とを備えた装置である。   In this type of heat source device, for example, hot water heated by the waste heat of the power generation device 1 and stored in the hot water storage tank 2 is led out through the hot water passage 25, and this hot water and the water supply source are passed through the branch passage 29. The extracted water is mixed by the connection unit 27 as necessary, and hot water having a hot water supply set temperature can be supplied by supplying it to the hot water supply destination through the passage 30 as described above. Moreover, since the electric power can be used by supplying the electric power generated by the electric power generation apparatus 1 to the electric power load apparatus of the user, the apparatus is provided with convenience and energy saving.

なお、貯湯槽2には上下方向に温度の層が形成されるものであり、貯湯槽2の上部側の層(高温層)に、発電装置1の発電時に生じる廃熱によって加熱された高温Ta(例えば80℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)には貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水され、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)が形成される。図7の破線Bは、高温層と温度中間層との境界を示しており、破線Bの上側の水(湯)が実質的に給湯に利用される温度層である。   The hot water tank 2 is formed with a temperature layer in the vertical direction, and the upper layer (high temperature layer) of the hot water tank 2 is heated to a high temperature Ta heated by waste heat generated during power generation of the power generator 1. Hot water of (for example, 80 ° C.) is stored, and water at the same temperature Tc (for example, 15 ° C.) as the water supply temperature supplied to the hot water storage tank 2 is stored in the lower layer (low temperature layer) of the hot water storage tank 2. In the meantime, a layer (temperature intermediate layer) having a steep temperature gradient from temperature Ta to temperature Tc is formed. A broken line B in FIG. 7 indicates a boundary between the high temperature layer and the temperature intermediate layer, and is a temperature layer in which water (hot water) on the upper side of the broken line B is substantially used for hot water supply.

特開2012−209173号公報JP 2012-209173 A 特開2012−154554号公報JP 2012-154554 A

ところで、前記のような熱源装置において、貯湯槽2内の大部分が高温層により満たされてしまうといったように、図7の境界線Bが図に示す位置よりもずっと下側まで移動して貯湯槽2の下部側に達すると、水供給通路21を通って発電装置1に供給される水の温度が50℃より高くなり(例えば70℃程度となり)、発電装置1を稼働させることができなくなってしまうため、発電装置1の稼働による電力利用ができなくなってしまうといった問題があった   By the way, in the heat source device as described above, the boundary line B in FIG. 7 moves to a position far below the position shown in the figure so that most of the hot water tank 2 is filled with the high temperature layer. When reaching the lower side of the tank 2, the temperature of the water supplied to the power generator 1 through the water supply passage 21 becomes higher than 50 ° C. (for example, about 70 ° C.), and the power generator 1 cannot be operated. As a result, there is a problem that the power can not be used due to the operation of the power generator 1.

そこで、水供給通路21にラジエータを設ける構成が提案されているが、ラジエータは放熱のための機械であるから、冬等に放熱しなくてもよいときに放熱を行って放熱しすぎることにより、水供給通路21を通る水が凍結してしまうといった不具合が生じるおそれがある。   Then, although the structure which provides a radiator in the water supply passage 21 is proposed, since a radiator is a machine for heat dissipation, when it does not need to radiate heat in winter etc., by performing heat radiation and radiating too much, There is a risk that the water passing through the water supply passage 21 will freeze.

また、貯湯槽2から発電装置1に供給する水を十分に冷却できる能力のラジエータは大型であり、熱源装置の配設場所を広くとれないといった制限状の問題によって、例えば大型のラジエータを配置した上に、ケース内に収容された貯湯槽2を設けることになることが多く、そうなると、大型のラジエータの配設分だけ貯湯槽2の容量を小さくする必要が生じ、利用者に供給するに十分な量の湯を貯湯できなくなってしまうことになる。   Moreover, the radiator of the capacity | capacitance which can fully cool the water supplied to the electric power generating apparatus 1 from the hot water storage tank 2 is large, For example, the large radiator was arrange | positioned by the problem of the restriction state that the arrangement | positioning place of a heat-source apparatus cannot be taken large. On top of that, a hot water storage tank 2 housed in the case is often provided, and in that case, it is necessary to reduce the capacity of the hot water storage tank 2 by the amount of the large radiator, which is sufficient for supplying to the user. You will not be able to store a large amount of hot water.

また、特許文献2に提案されているように、貯湯槽2の下部側外壁面に放熱フィンを設ける構成も提案されているが、この構成においては、通常はステンレス製の貯湯槽2の外壁面に銅製の放熱フィンを溶接等により固定して設けなければならず、そのような放熱フィンの配設固定は非常に難しいため、コストアップを招くといった問題がある。   In addition, as proposed in Patent Document 2, a configuration in which heat dissipating fins are provided on the lower outer wall surface of the hot water tank 2 has also been proposed. In this configuration, the outer wall surface of the stainless steel hot water tank 2 is usually used. In addition, copper radiating fins must be fixed by welding or the like, and it is very difficult to arrange and fix such radiating fins.

本発明は、上記課題を解決するためになされたものであり、その目的は、貯湯槽からの冷却用の水によって発電装置を効率的に稼働させることができ、かつ、利用者に供給するに十分な量の湯を貯湯槽に貯湯できる低コストの発電機能付き熱源装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to efficiently operate a power generation device by cooling water from a hot water tank and to supply it to a user. An object is to provide a low-cost heat source device with a power generation function capable of storing a sufficient amount of hot water in a hot water storage tank.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、発電装置と、貯湯槽と、該貯湯槽の下部側から導出される冷却用の水を前記発電装置に供給する水供給通路と、前記発電装置の廃熱により加熱された湯を前記貯湯槽の上部側から該貯湯槽に導入する熱回収用通路と、前記貯湯槽の上部側から給湯先に湯を供給するための湯の通路とを備え、前記貯湯槽は該貯湯槽の外周側を該貯湯槽と間隔を介して覆うケース内に配置され、該ケースの下端部側から該ケースの外の空気をケース内に導入し該空気によって前記貯湯槽の少なくとも下部側を冷却する空冷手段を有し、前記貯湯槽の下部側と前記水供給通路とを連通する連通通路を備えた通路型冷却手段が前記ケース内における前記貯湯槽の下部側と該貯湯槽の外周下端側の少なくとも一方に設けられており、前記通路型冷却手段は前記空冷手段の動作時に前記ケース内に導入される空気によって前記連通通路を通る水を冷却し該冷却された水を前記水供給通路に導入する構成をもって課題を解決する手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention is a power generator, a hot water storage tank, a water supply passage for supplying cooling water derived from the lower side of the hot water tank to the power generator, and heating by waste heat of the power generator. A heat recovery passage for introducing the hot water into the hot water storage tank from the upper side of the hot water storage tank, and a hot water passage for supplying hot water to the hot water supply destination from the upper side of the hot water storage tank, Arranged in a case that covers the outer peripheral side of the hot water tank with a space from the hot water tank, air outside the case is introduced into the case from the lower end side of the case, and at least the lower part of the hot water tank is introduced by the air Air-cooling means for cooling the side, and a passage-type cooling means having a communication passage communicating the lower side of the hot water storage tank and the water supply passage is provided on the lower side of the hot water storage tank and the hot water storage tank in the case. Provided in at least one of the outer peripheral lower end side, the passage Cooling means is a means for solving the problems with the arrangement for introducing water which has been cooled by the cooling water passing through the communication passage by the air introduced into the casing during operation of the cooling means to the water supply passage.

また、第2の発明は、前記第1の発明の構成に加え、前記通路型冷却手段の連通通路は旋回状または螺旋状または蛇行状に配置されていることを特徴とする。   In addition to the configuration of the first invention, the second invention is characterized in that the communication passage of the passage-type cooling means is arranged in a swirling shape, a spiral shape, or a meandering shape.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記通路型冷却手段は、連通通路の外周側に互いに間隔を介して複数の放熱用のフィンを設けて形成されていることを特徴とする。   Further, in the third invention, in addition to the structure of the first or second invention, the passage-type cooling means is formed by providing a plurality of heat radiation fins on the outer peripheral side of the communication passage with a space therebetween. It is characterized by.

さらに、第4の発明は、前記第1または第2または第3の発明の構成に加え、前記発電装置は燃料電池としたことを特徴とする。   Further, the fourth invention is characterized in that, in addition to the configuration of the first, second, or third invention, the power generation device is a fuel cell.

本発明によれば、貯湯槽の下部側から発電装置に冷却用の水を供給して発電装置を稼動させるが、貯湯槽を該貯湯槽の外周側を該貯湯槽と間隔を介して覆うケース内に配置し、空冷手段によってケースの外の空気をケース内に導入し、該空気によって前記貯湯槽の少なくとも下部側を冷却することによって、貯湯槽の下部側に貯えられている水を冷却することができる。   According to the present invention, the cooling water is supplied to the power generator from the lower side of the hot water tank to operate the power generator, but the hot water tank is covered with the hot water tank on the outer peripheral side with a space therebetween. The water stored in the lower part of the hot water tank is cooled by introducing air outside the case into the case by air cooling means and cooling at least the lower part of the hot water tank with the air. be able to.

なお、空冷手段によって導入される空気によって貯湯槽内の湯水は貯湯槽の内壁を介して熱を奪われて冷却され、その冷却効果は主に貯湯槽の内壁に沿った内胴側面に得られるが、その冷却された水が貯湯槽の内壁側に沿って下部側に移動して沈降して貯留されるまでの間に、貯湯槽の中心部側から熱が伝わることから湯水の対流が生じ、貯湯槽内の湯水はゆっくりと時間をかけて冷却されることになる。   The hot water in the hot water tank is cooled by the air introduced by the air cooling means through the inner wall of the hot water tank, and the cooling effect is obtained mainly on the inner trunk side surface along the inner wall of the hot water tank. However, since the cooled water moves to the lower side along the inner wall side of the hot water tank and settles and is stored, convection of hot water occurs because heat is transferred from the central side of the hot water tank. The hot water in the hot water tank is slowly cooled over time.

それに対し、本発明においては、貯湯槽から発電装置に冷却用の水を供給する水供給通路と貯湯槽の下部側とを連通する連通通路を備えた通路型冷却手段が、ケース内における貯湯槽の下部側と該貯湯槽の外周下端側の少なくとも一方に設けられており、前記通路型冷却手段は、前記空冷手段の動作時に貯湯槽のケース内に導入される空気によって前記連通通路を通る水を冷却するので、前記の如く空冷手段によってケース内に導入された空気により冷却された貯湯槽内の水が通路型冷却手段の連通通路を通るときにさらに冷却されることから、水の冷却を迅速に行うことができて、その水を水供給通路を通して発電装置に供給することができる。   On the other hand, in the present invention, the passage-type cooling means including a water supply passage for supplying cooling water from the hot water storage tank to the power generation device and a lower passage side of the hot water storage tank includes a hot water storage tank in the case. The passage-type cooling means is water that passes through the communication passage by the air introduced into the case of the hot water tank when the air cooling means is operated. Since the water in the hot water storage tank cooled by the air introduced into the case by the air cooling means as described above is further cooled when passing through the communication passage of the passage type cooling means, the water is cooled. This can be done quickly, and the water can be supplied to the power generator through the water supply passage.

つまり、通路型冷却手段は、貯湯槽の下部側に貯えられて空冷手段によりケース内に導入する空気によって冷却されることにより温めの温度となった水を、さらに冷却するものであるから、小型のものでも、水の冷却を迅速、かつ、十分に行うことができるので、通路型冷却手段を貯湯槽のケース内に容易に設けることができる。そして、通路型冷却手段は小型のものとすることができることから、ケース内に通路型冷却手段を設けることによって貯湯槽の容量を小さくする必要もないために、十分な容量の貯湯槽を設けて熱源装置を形成できる。   In other words, the passage-type cooling means further cools the water that has been warmed by being stored in the lower part of the hot water tank and cooled by the air introduced into the case by the air cooling means. However, since the water can be quickly and sufficiently cooled, the passage-type cooling means can be easily provided in the case of the hot water tank. Since the passage type cooling means can be made small, it is not necessary to reduce the capacity of the hot water storage tank by providing the passage type cooling means in the case. A heat source device can be formed.

なお、前記の如く通路型冷却手段は小型であることから、ケース内に通常設けられる断熱材と貯湯槽との間に容易に設けることができるため、ケース外部に大型のラジエータを設けた従来の提案と異なり、通路型冷却手段を通る水の凍結を確実に防ぐことができるものであり、水の凍結による不具合が生じることを防ぐことができる。   Since the passage-type cooling means is small as described above, it can be easily provided between the heat insulating material normally provided in the case and the hot water storage tank, so that a conventional radiator having a large radiator outside the case is provided. Unlike the proposal, it is possible to reliably prevent freezing of water passing through the passage-type cooling means, and it is possible to prevent problems caused by freezing of water.

さらに、通路型冷却手段は、貯湯槽の外壁にフィンを溶接等によって設ける構成と異なり、水供給通路と貯湯槽とを連通する連通通路(管路)を設けて容易に形成できるので、低コストで熱源装置を実現できる。   Furthermore, unlike the configuration in which the fins are provided on the outer wall of the hot water tank by welding or the like, the passage type cooling means can be easily formed by providing a communication path (pipe) that communicates the water supply passage and the hot water tank. A heat source device can be realized.

さらに、通路型冷却手段の連通通路を、旋回状または螺旋状または蛇行状に配置することによって、効率的に冷却が可能な通路型冷却手段を容易に形成できる。   Furthermore, by arranging the communication passages of the passage-type cooling means in a swirling shape, a spiral shape, or a meandering shape, a passage-type cooling means capable of efficient cooling can be easily formed.

さらに、通路型冷却手段を、連通通路の外周側に互いに間隔を介して複数の放熱用のフィンを設けて形成することによって、より一層冷却効率を向上可能な通路型冷却手段を形成できる。   Furthermore, the passage-type cooling means that can further improve the cooling efficiency can be formed by forming the passage-type cooling means by providing a plurality of heat-dissipating fins on the outer peripheral side of the communication passage at intervals.

さらに、発電装置を燃料電池により形成することにより、燃料電池を用いて効率的な発電を行うことができる発電機能付き熱源装置を提供できる。   Furthermore, by forming the power generation device with a fuel cell, it is possible to provide a heat source device with a power generation function capable of performing efficient power generation using the fuel cell.

本発明に係る熱源装置に適用されている貯湯槽とその周辺構造を簡略化して示す模式的な縦断面図(a)、(b)と横断面図(c)、(d)である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic longitudinal sectional view (a), (b) and a transverse sectional view (c), (d) schematically showing a hot water storage tank and its peripheral structure applied to a heat source device according to the present invention. 実施例の熱源装置に適用されている貯湯槽の下部側構成を説明するための模式図(a)と、貯湯槽の下部側に設けられている通路型冷却手段の連通通路を示す模式図(b)である。The schematic diagram (a) for demonstrating the lower part side structure of the hot water tank applied to the heat source apparatus of an Example, and the schematic diagram which shows the communicating path of the channel | path type cooling means provided in the lower part side of the hot water tank ( b). 実施例に適用されている貯湯槽の外部ケースへの収納態様例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of the accommodation mode to the outer case of the hot water tank applied to the Example. 本発明に係る熱源装置に適用される通路型冷却手段の別の例を示す模式的な斜視図(a)と、その取り付け位置の説明図(b)である。It is the typical perspective view (a) which shows another example of the channel | path type cooling means applied to the heat source apparatus which concerns on this invention, and explanatory drawing (b) of the attachment position. 本発明に係る熱源装置に適用される通路型冷却手段のさらに別の例を示す模式的な斜視図である。It is a typical perspective view which shows another example of the channel | path type cooling means applied to the heat-source apparatus which concerns on this invention. 熱源装置の他の実施例に適用されている貯湯槽のケース内を図1(b)のA−A断面図に対応させて示す模式的な横断面説明図である。It is typical cross-sectional explanatory drawing which shows the inside of the case of the hot water tank applied to the other Example of a heat-source apparatus corresponding to AA sectional drawing of FIG.1 (b). 発電機能付き熱源装置のシステム構成例を模式的に示す説明図である。It is explanatory drawing which shows typically the system structural example of the heat-source apparatus with an electric power generation function.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same constituent elements as those in the above-described examples, and the duplicate description is omitted or simplified.

図1(a)、(b)には、それぞれ、本発明に係る熱源装置の一実施例に適用されている貯湯槽とその周辺構造を簡略化して示す模式的な縦断面図が示されており、図1(c)には、図1(b)のA−A断面図が、図1(d)には、図1(b)のB−B断面図がそれぞれ簡略化して示されている。また、図1(a)は図1(c)のC−C断面を示し、図1(b)は図1(c)のD−D断面を示す。   1 (a) and 1 (b) are schematic longitudinal sectional views schematically showing a hot water storage tank and its peripheral structure applied to an embodiment of a heat source device according to the present invention, respectively. 1C is a simplified cross-sectional view taken along line AA in FIG. 1B, and FIG. 1D is a simplified cross-sectional view taken along line BB in FIG. 1B. Yes. 1A shows a CC cross section of FIG. 1C, and FIG. 1B shows a DD cross section of FIG. 1C.

なお、本実施例は、図7に示した熱源装置と同様のシステム構成を有しており、図7と同様に、貯湯槽2には水供給通路21や熱回収用通路23、湯の通路25等が接続されているが、それらの通路の記載は、図1においては省略されている。また、本実施例においても、図7に示した通路30に接続されるシステムの構成等も適宜の構成が適用されるものであり、発電装置1は燃料電池により形成されている。   This embodiment has the same system configuration as that of the heat source device shown in FIG. 7, and similarly to FIG. 7, the hot water tank 2 has a water supply passage 21, a heat recovery passage 23, and a hot water passage. 25 etc. are connected, but description of those passages is omitted in FIG. Also in this embodiment, an appropriate configuration is applied to the configuration of the system connected to the passage 30 shown in FIG. 7, and the power generator 1 is formed of a fuel cell.

これらの図に示されるように、貯湯槽2は貯湯槽2の外周側を該貯湯槽2と間隔を介して覆うケース3内に配置されており、ケース3は、貯湯槽2の下部側に設けられる底板部17と、底板部17の上側に設けられて貯湯槽2の外周側を覆う筒状部18と、筒状部18の上側に設けられて貯湯槽2の上面側を覆うキャップ状部19とを有して構成されている。   As shown in these drawings, the hot water storage tank 2 is arranged in a case 3 that covers the outer peripheral side of the hot water storage tank 2 with a space from the hot water storage tank 2, and the case 3 is located on the lower side of the hot water storage tank 2. A bottom plate portion 17 provided, a cylindrical portion 18 provided above the bottom plate portion 17 and covering the outer peripheral side of the hot water tank 2, and a cap shape provided above the cylindrical portion 18 and covering the upper surface side of the hot water tank 2. And a portion 19.

また、例えば図3に示されるように、ケース3に収納されている貯湯槽2は、貯湯槽2に接続されている空気導入用の管路33や空気導出用の管路32と共に、外部ケース31内に収納することができ、本実施例ではこのような構成が適用されている。なお、図3は、説明を分かりやすくするために、管路32,33の径を大きく示し、外部ケース31の幅をケース3の幅よりもかなり広めに示しているが、これらの大きさ(径や幅)は実際には同図に示される態様よりも小さく形成することもでき、また、必ずしも図3に示される態様が適用されるとは限らず、この構成は限定されるものではない。   For example, as shown in FIG. 3, the hot water storage tank 2 accommodated in the case 3 includes an air introduction pipe 33 connected to the hot water storage tank 2 and an air lead-out pipe 32 together with an external case. In this embodiment, such a configuration is applied. 3 shows the diameters of the pipes 32 and 33 to make the explanation easy to understand and the width of the outer case 31 is considerably wider than the width of the case 3, but these sizes ( (Diameter and width) can actually be formed smaller than the mode shown in the figure, and the mode shown in FIG. 3 is not necessarily applied, and this configuration is not limited. .

図1(a)、(b)に示されるように、底板部17の底面側には空気導入部4が設けられており、図1(b)、(d)に示されるように、筒状部18の下部側位置には空気導出部5,6が設けられている。この空気導出部5,6の形成部には、ケース3の外部側にファン10が設けられており、ファン10は該ファン10の吸引力によってケース3の外の空気を空気導入部4からケース3内に導入し、該空気によって貯湯槽2の少なくとも下部側を冷却する空冷手段として機能する。   As shown in FIGS. 1A and 1B, an air introduction part 4 is provided on the bottom surface side of the bottom plate part 17, and as shown in FIGS. 1B and 1D, a cylindrical shape is provided. Air outlets 5 and 6 are provided at the lower side of the part 18. A fan 10 is provided on the outside of the case 3 at the formation part of the air outlets 5 and 6, and the fan 10 draws air outside the case 3 from the air introduction part 4 to the case by the suction force of the fan 10. 3 and functions as an air cooling means for cooling at least the lower side of the hot water tank 2 with the air.

ケース3内には、筒状部18の内側に断熱材7が設けられており、その断熱材7が貯湯槽2の外周壁と間隔を介して設けられているところと貯湯槽2の外周壁に近接して設けられているところとがケース3内に形成されている。断熱材7が貯湯槽2の外周壁と間隔を介している部位には、貯湯槽2の外周壁と断熱材7との間隔によって空気通路8(8a)が複数形成されており、これらの空気通路8(8a)は貯湯槽2の外周方向に互いに間隔を介して形成されている。   In the case 3, a heat insulating material 7 is provided inside the cylindrical portion 18, and the heat insulating material 7 is provided with a space between the outer peripheral wall of the hot water tank 2 and the outer peripheral wall of the hot water tank 2. Is formed in the case 3 in the vicinity of the. A plurality of air passages 8 (8 a) are formed in the portion where the heat insulating material 7 is spaced from the outer peripheral wall of the hot water tank 2 depending on the distance between the outer peripheral wall of the hot water tank 2 and the heat insulating material 7. The passage 8 (8a) is formed in the outer peripheral direction of the hot water tank 2 with a space between each other.

また、図1(b)〜(d)に示されるように、ケース3内には空気通路8(8b)が貯湯槽2を断熱材7を介して両側から挟む態様で形成されており、これらの空気通路8bの上端側は筒状部18の上側の位置で空気通路8aと連通している(連通部は図示せず)。また、空気通路8(8b)の下端側は空気導出部5,6に連通している。   Moreover, as shown in FIGS. 1B to 1D, an air passage 8 (8 b) is formed in the case 3 in such a manner that the hot water tank 2 is sandwiched from both sides via a heat insulating material 7. The upper end side of the air passage 8b communicates with the air passage 8a at a position above the cylindrical portion 18 (the communication portion is not shown). The lower end side of the air passage 8 (8b) communicates with the air outlets 5 and 6.

図3に示されるように、空気導出部5は管路32を介して外部ケース31の外部に導通しており、空気導入部4が管路33を介して外部ケース31の外部に導通しており、管路32,33の一端側は共に外部ケース31の外側において同圧同風帯と成している。なお、図3には、空気導出部6に接続されている管路についての記載がないが、空気導出部6にも空気導出部5と同様に管路が接続されて、その一端側(空気導出部6との接続側と反対側)が外部ケース31の外側において管路32,33と同圧同風帯と成している。   As shown in FIG. 3, the air outlet 5 is electrically connected to the outside of the outer case 31 via the conduit 32, and the air introduction portion 4 is electrically connected to the outside of the outer case 31 via the conduit 33. In addition, both ends of the pipes 32 and 33 form the same pressure and same wind zone outside the outer case 31. In FIG. 3, there is no description about the pipe connected to the air outlet 6, but a pipe is connected to the air outlet 6 similarly to the air outlet 5, and one end side (air The side opposite to the connection side with the lead-out portion 6) forms the same pressure and same wind zone as the ducts 32 and 33 outside the outer case 31.

本実施例において、空気導出部5,6に設けたファン10を駆動させると、図3に示した通路33を介し、図1(a)の矢印に示されるように、空気導入部4からケース3内に空気が導入されて空気通路8(8a)を通り貯湯槽2の外周側に沿って上側に進みながら貯湯槽2の熱を吸熱して貯湯槽2内を冷やす。また、この貯湯槽2の熱の吸熱によって暖められた空気は、図1(b)に示されるように、空気通路8(8b)を通り、貯湯槽2とは間隔を介しながら貯湯槽2の外周側に沿って下側に進み、空気導出部5,6からケース3外に導出される。そして、この空気は、図3に示した管路32を通り、外部ケース31の外に導出される。なお、空気通路8(8b)は、貯湯槽2とは断熱材7を介して配置されていることから、暖かい空気から貯湯槽2側に熱が伝わることを防ぐ構成と成している。   In this embodiment, when the fan 10 provided in the air outlets 5 and 6 is driven, the air introduction unit 4 moves to the case through the passage 33 shown in FIG. 3 as indicated by the arrow in FIG. The air is introduced into 3 and passes through the air passage 8 (8 a) and proceeds upward along the outer peripheral side of the hot water tank 2 to absorb the heat of the hot water tank 2 to cool the hot water tank 2. In addition, as shown in FIG. 1 (b), the air heated by the heat absorption of the hot water tank 2 passes through the air passage 8 (8 b), and the hot water tank 2 is spaced from the hot water tank 2. Proceeding downward along the outer peripheral side, the air is led out of the case 3 from the air outlets 5 and 6. Then, this air passes through the pipe line 32 shown in FIG. 3 and is led out of the outer case 31. In addition, since the air passage 8 (8b) is arrange | positioned through the heat insulating material 7 with the hot water storage tank 2, it has comprised the structure which prevents that heat is transmitted from the warm air to the hot water storage tank 2 side.

このような空気の流れによって、貯湯槽2内の湯水は貯湯槽2の内壁を介して熱を奪われて(貯湯槽2の内壁が放熱面となって)冷却され、その冷却された水は貯湯槽2の内壁側に沿って下部側に移動して沈降し、貯留される。なお、このように、貯湯槽2の筒壁が放熱面となることから、その放熱面を大きく取るためには貯湯槽2の上側の方まで空気を送る方がよい。   By such an air flow, the hot water in the hot water tank 2 is cooled by taking heat away from the inner wall of the hot water tank 2 (the inner wall of the hot water tank 2 becomes a heat radiating surface), and the cooled water is It moves to the lower side along the inner wall side of the hot water tank 2 and settles and is stored. In addition, since the cylindrical wall of the hot water tank 2 becomes a heat radiating surface in this way, it is better to send air to the upper side of the hot water tank 2 in order to make the heat radiating surface large.

また、図2(a)には、貯湯槽2の下部側の構成が斜視図により示されており、この図に示されるように、本実施例では、貯湯槽2の外周下端側を巻回する通路型冷却手段11が設けられて、通路型冷却装置11が貯湯槽2と共にケース3内に収納されている。この通路型冷却手段11は、貯湯槽2の下部側と水供給通路(同図には図示されていないが、貯湯槽2から発電装置1に冷却用の水を供給する水供給通路21)とを連通する連通通路12を備えており、ファン10の動作時に貯湯槽2のケース3内に導入される空気によって連通通路12を通る水を冷却し、該冷却された水を水供給通路に導入する。   Further, FIG. 2 (a) shows the configuration of the lower side of the hot water tank 2 in a perspective view. As shown in this figure, in the present embodiment, the outer peripheral lower end side of the hot water tank 2 is wound. The passage type cooling means 11 is provided, and the passage type cooling device 11 is housed in the case 3 together with the hot water tank 2. This passage-type cooling means 11 includes a lower side of the hot water tank 2 and a water supply passage (not shown in the figure, but a water supply passage 21 for supplying cooling water from the hot water tank 2 to the power generator 1). The communication passage 12 is provided, and the water passing through the communication passage 12 is cooled by the air introduced into the case 3 of the hot water tank 2 when the fan 10 is operated, and the cooled water is introduced into the water supply passage. To do.

連通通路12と貯湯槽2の外壁とは空気が通る間隔を介して設けられており(図1(a),(b)を参照)、連通通路12は、例えば図2(b)に示す一端側13が水供給通路21側に接続され、他端側14が貯湯槽2の下部側に接続され、貯湯槽2の外周側を旋回し(旋回状に形成され)ている。連通通路12の長さや通路径等は特に限定されるものでなく適宜設定されるであるが、例えば通路径を10mmφ、長さを貯湯槽2の外周長さの5倍程度に形成することができる。また、連通通路12の周りや連通通路12が配設されている貯湯槽2の外壁に、断熱材を設けてもよい。   The communication passage 12 and the outer wall of the hot water tank 2 are provided through an interval through which air passes (see FIGS. 1A and 1B). The communication passage 12 is, for example, one end shown in FIG. The side 13 is connected to the water supply passage 21 side, the other end side 14 is connected to the lower side of the hot water tank 2, and the outer peripheral side of the hot water tank 2 is swung (formed in a swirling shape). The length and the diameter of the communication passage 12 are not particularly limited and may be set as appropriate. For example, the passage diameter may be 10 mmφ and the length may be approximately five times the outer peripheral length of the hot water tank 2. it can. Further, a heat insulating material may be provided around the communication passage 12 or on the outer wall of the hot water tank 2 in which the communication passage 12 is disposed.

本実施例は以上のように構成されており、ケース3内に収容される貯湯槽2の空冷手段としてのファン10と通路型冷却手段11とを設けることにより、小型で簡単な構成で効率良く貯湯槽2から発電装置1に供給する水を冷却できるので、発電装置1の発電時の廃熱を利用する湯の貯湯と、貯湯槽2から発電装置1に供給される冷却用の水を利用しての発電装置1による発電とを効率的に良好に行うことができる装置を実現できる。   The present embodiment is configured as described above, and by providing the fan 10 and the passage-type cooling means 11 as the air cooling means of the hot water tank 2 accommodated in the case 3, it is efficient with a small and simple structure. Since the water supplied from the hot water storage tank 2 to the power generation device 1 can be cooled, the hot water storage using the waste heat generated during the power generation of the power generation device 1 and the cooling water supplied from the hot water storage tank 2 to the power generation device 1 are used. Thus, it is possible to realize a device that can efficiently and satisfactorily generate power by the power generation device 1.

なお、本実施例においては、図1(d)に示されるように、空気導出部5,6にはファン10の外側にシャッタ35が設けられているので、シャッタ35が閉じているときには空気導出部5,6から空気が入ろうとしても入らないはずではあるが、強い風が吹くと、シャッタ35を形成するルーバ間の隙間から空気が入ろうとする方向に空気が流れようとする(前記風による空気が入り込もうとする)ことがある。   In this embodiment, as shown in FIG. 1 (d), the air outlets 5 and 6 are provided with a shutter 35 outside the fan 10, so that when the shutter 35 is closed, the air is led out. Although air should not enter even if air enters from the parts 5 and 6, when a strong wind blows, the air tends to flow in the direction in which the air enters from the gap between the louvers forming the shutter 35 (according to the wind). Air may try to get in).

しかしながら、ケース3は、空気導出部5,6の形成位置に対して逆U字型であり、たとえ前記ルーバ間の隙間から空風が入ったとしても、貯湯槽2の下部側に貯留されている水は冷たいので空気と貯湯槽内の水との熱交換は生じないし、外から入る冷たい風は空気導出部5,6の形成位置に対し逆U字型のケース3において空気通路8bを図1(b)の矢印とは逆方向に進んで上側に上ることはなく、その結果、ファン10を止めると熱がこもり、放熱しない(ファン10を駆動させれば、前記の如く、空気導入部4から入る空気が上側に向かって空気通路8aを進み、その後、空気通路8bを通って下側に向かって空気導出部5,6から出ていく)。   However, the case 3 has an inverted U shape with respect to the formation positions of the air outlets 5 and 6, and is stored on the lower side of the hot water tank 2 even if air blows from the gap between the louvers. Since the water is cold, heat exchange between the air and the water in the hot water tank does not occur, and the cold wind entering from outside shows the air passage 8b in the inverted U-shaped case 3 with respect to the position where the air outlets 5 and 6 are formed. As a result, when the fan 10 is stopped, heat is trapped and no heat is dissipated (if the fan 10 is driven, as described above, the air introduction portion does not go up. 4), air entering from 4 travels upward in the air passage 8a and then exits from the air outlets 5 and 6 through the air passage 8b downward.

また、本実施例においては、空気導出部5,6と空気導入部4に、図3に示したように管路32,33を接続し、その一端側(管路32,33の空気導出部5,6や空気導入部4との接続側と反対側)を同圧同風帯とすることにより、空気が入ろうとする力と出ようとする力とが均衡するために、例え強い風が吹いても、空気導出部5,6から空気が導入されることはなく、より一層確実に、ファン10の駆動停止時には空気の出入りがないようにできる。   Further, in this embodiment, the pipes 32 and 33 are connected to the air outlets 5 and 6 and the air introduction part 4 as shown in FIG. 3, and one end side thereof (the air outlet part of the pipes 32 and 33). 5 and 6 and the side opposite to the connection side with the air introduction part 4) have the same pressure and same wind zone, so that the force to enter the air and the force to get out are balanced. Even if it blows, air is not introduced from the air outlets 5 and 6, and it is possible to more reliably prevent air from entering and exiting when the fan 10 is stopped.

なお、本発明は、前記実施例に限定されるものでなく、適宜設定されるものである。例えば、前記実施例ではケース3内に空気を導入する空気導入部4を1つ設け、ケース3内から空気を導出する空気導出部を符号5,6で示すように2つ設けたが、これらの個数や配置位置、大きさ等の配設態様は特に限定されるものでなく適宜設定されるものであり、ケース3内に配置される貯湯槽2の少なくとも下部側を空冷できるように形成されればよい。また、ファン10の配設態様や管路32,33の接続態様等も特に限定されるものでなく適宜設定されるものである。   In addition, this invention is not limited to the said Example, It sets suitably. For example, in the above-described embodiment, one air introduction part 4 for introducing air into the case 3 is provided, and two air outlet parts for deriving air from the case 3 are provided as indicated by reference numerals 5 and 6. Arrangement modes such as the number, arrangement position, size, etc. are not particularly limited and are appropriately set, and are formed so that at least the lower side of the hot water tank 2 arranged in the case 3 can be air-cooled. Just do it. Moreover, the arrangement | positioning aspect of the fan 10, the connection aspect of the pipe lines 32 and 33, etc. are not specifically limited, It sets suitably.

また、前記実施例では、図2(b)に示されるような連通通路12を有する通路型冷却手段11を、図2(a)に示したように貯湯槽2の外周側を巻く態様で設けたが、通路型冷却手段11の連通通路12の形態や配置態様は特に限定されるものでなく適宜設定されるものであり、ケース3内における貯湯槽2の下部側と外周下端側の少なくとも一方に設けられればよい。   Moreover, in the said Example, the channel | path type cooling means 11 which has the communicating channel | path 12 as shown in FIG.2 (b) is provided in the aspect wound around the outer peripheral side of the hot water tank 2 as shown in Fig.2 (a). However, the form and arrangement of the communication passage 12 of the passage-type cooling means 11 are not particularly limited and are appropriately set. At least one of the lower side of the hot water tank 2 and the lower end of the outer periphery in the case 3 It may be provided in.

例えば、通路型冷却手段11は、図4(a)に示されるように、連通通路12の外周側に互いに間隔を介して複数の放熱用のフィン15を設けて形成してもよい。通路型冷却手段11をこのような放熱用のフィン15を備えた構成とすると非常に冷却効率を高くできるので、通路型冷却手段11をより一層小型化できる。このような通路型冷却手段11は、例えば図4(b)に示されるように、貯湯槽2の下部側に設けることができ、この場合も、通路型冷却手段11が配設されている領域を空気が通るように空気の通路を形成することにより、貯湯槽2から発電装置1に供給する水を効率的に冷却することができる。   For example, as shown in FIG. 4A, the passage-type cooling means 11 may be formed by providing a plurality of heat radiation fins 15 at intervals on the outer peripheral side of the communication passage 12. If the passage-type cooling means 11 is provided with such a heat dissipating fin 15, the cooling efficiency can be very high, so that the passage-type cooling means 11 can be further downsized. Such a passage-type cooling means 11 can be provided on the lower side of the hot water tank 2, for example, as shown in FIG. 4B, and in this case also, the region where the passage-type cooling means 11 is disposed. By forming the air passage so that the air passes through the water, the water supplied from the hot water tank 2 to the power generation device 1 can be efficiently cooled.

また、例えば図5(a)に示されるような螺旋状の連通通路12や図5(b)に示されるような蛇行状の連通通路12を、その一端側13を水供給通路21に接続して他端側14を貯湯槽2の下部側に接続して通路型冷却手段11を形成し、図4(b)に示した通路型冷却手段11の配設位置と同様に、貯湯槽2の下部側に設けてもよい。   Further, for example, a spiral communication passage 12 as shown in FIG. 5A or a meandering communication passage 12 as shown in FIG. 5B is connected to one end side 13 of the water supply passage 21. Then, the other end side 14 is connected to the lower side of the hot water tank 2 to form the passage-type cooling means 11, and, similar to the position of the passage-type cooling means 11 shown in FIG. It may be provided on the lower side.

さらに、前記の如く、空気の流れによって、貯湯槽2内の湯水は貯湯槽2の内壁を介して熱を奪われて冷却され、その冷却効果は主に貯湯槽2の内壁に沿った内胴側面に得られるが、その冷却された水が貯湯槽2の内壁側に沿って下部側に移動して沈降し、貯留されるまでの間に貯湯槽2の中心部側から熱が伝わることから貯湯槽2の中心部側も多少冷却されることになる。そこで、空冷により冷却された貯湯槽2の内壁に沿った内胴側面の水が貯湯槽2の中心部側からの熱を受けにくくなるように、貯湯槽2の内側に、貯湯槽2の内壁と間隔を介した筒体を配設してもよい。このようにすることによって、貯湯槽2の中心部からの熱の伝達を受けにくくでき、対流を抑制できる。   Further, as described above, the hot water in the hot water tank 2 is cooled by taking heat through the inner wall of the hot water tank 2 due to the air flow, and the cooling effect is mainly due to the inner cylinder along the inner wall of the hot water tank 2. Although it is obtained on the side surface, the cooled water moves to the lower side along the inner wall side of the hot water tank 2 and settles, and heat is transferred from the central side of the hot water tank 2 until it is stored. The center part side of the hot water tank 2 is also cooled somewhat. Therefore, the inner wall of the hot water tank 2 is placed inside the hot water tank 2 so that the water on the inner body side along the inner wall of the hot water tank 2 cooled by air cooling is less likely to receive heat from the center side of the hot water tank 2. A cylindrical body may be disposed with a gap therebetween. By doing in this way, it can become difficult to receive the heat transmission from the center part of the hot water tank 2, and a convection can be suppressed.

さらに、空気通路8(8b)の形成位置は前記実施例のように限定されるものではなく、例えば図6に示されるような位置に形成されていてもよい。なお、図6には、空気導出部5,6は図示されていないが、空気導出部5,6も空気通路8bの形成位置に対応する位置に形成する。   Furthermore, the formation position of the air passage 8 (8b) is not limited as in the above embodiment, and may be formed at a position as shown in FIG. 6, for example. In addition, although the air derivation | leading-out parts 5 and 6 are not illustrated in FIG. 6, the air derivation | leading-out parts 5 and 6 are also formed in the position corresponding to the formation position of the air channel | path 8b.

さらに、発電装置1はガスエンジンによっても形成することができる。   Furthermore, the power generator 1 can also be formed by a gas engine.

本発明の熱源装置は、発電装置を稼働と貯湯槽への貯湯とを効率的に行うことができるので、使い勝手が良好であり、例えば家庭用の熱源装置として利用できる。   Since the heat source device of the present invention can efficiently operate the power generation device and store hot water in a hot water storage tank, it is easy to use and can be used as, for example, a household heat source device.

1 発電装置
2 貯湯槽
3 ケース
4 空気導入部
5,6 空気導出部
7 断熱材
8 空気通路
10 ファン
11 通路型冷却手段
12 連通通路
15 フィン
21 水供給通路
DESCRIPTION OF SYMBOLS 1 Power generator 2 Hot water storage tank 3 Case 4 Air introduction part 5,6 Air derivation part 7 Heat insulating material 8 Air passage 10 Fan 11 Passage type cooling means 12 Communication passage 15 Fin 21 Water supply passage

Claims (4)

発電装置と、貯湯槽と、該貯湯槽の下部側から導出される冷却用の水を前記発電装置に供給する水供給通路と、前記発電装置の廃熱により加熱された湯を前記貯湯槽の上部側から該貯湯槽に導入する熱回収用通路と、前記貯湯槽の上部側から給湯先に湯を供給するための湯の通路とを備え、前記貯湯槽は該貯湯槽の外周側を該貯湯槽と間隔を介して覆うケース内に配置され、該ケースの下端部側から該ケースの外の空気をケース内に導入し該空気によって前記貯湯槽の少なくとも下部側を冷却する空冷手段を有し、前記貯湯槽の下部側と前記水供給通路とを連通する連通通路を備えた通路型冷却手段が前記ケース内における前記貯湯槽の下部側と該貯湯槽の外周下端側の少なくとも一方に設けられており、前記通路型冷却手段は前記空冷手段の動作時に前記ケース内に導入される空気によって前記連通通路を通る水を冷却し該冷却された水を前記水供給通路に導入する構成としたことを特徴とする発電機能付き熱源装置。   A power generation device, a hot water storage tank, a water supply passage for supplying cooling water derived from the lower side of the hot water storage tank to the power generation device, and hot water heated by the waste heat of the power generation device. A heat recovery passage to be introduced into the hot water storage tank from the upper side, and a hot water passage for supplying hot water to the hot water supply from the upper side of the hot water storage tank, and the hot water storage tank has an outer peripheral side of the hot water storage tank. An air cooling means is provided in the case that covers the hot water storage tank with a space therebetween, and introduces air outside the case into the case from the lower end side of the case and cools at least the lower side of the hot water storage tank with the air. And a passage-type cooling means having a communication passage communicating the lower side of the hot water storage tank and the water supply passage is provided on at least one of the lower side of the hot water storage tank and the outer peripheral lower end side of the hot water storage tank. The passage type cooling means is the air cooling means. With the power generation function heat source device, wherein a water cooling the cooling water passing through the communication passage and configured to be introduced into the water supply passage by the air introduced into the casing during operation. 通路型冷却手段の連通通路は旋回状または螺旋状または蛇行状に配置されていることを特徴とする請求項1記載の発電機能付き熱源装置。   2. The heat source device with a power generation function according to claim 1, wherein the communication passage of the passage-type cooling means is arranged in a swirling shape, a spiral shape, or a meandering shape. 通路型冷却手段は、連通通路の外周側に互いに間隔を介して複数の放熱用のフィンを設けて形成されていることを特徴とする請求項1または請求項2記載の発電機能付き熱源装置。   3. The heat source device with a power generation function according to claim 1, wherein the passage-type cooling means is formed by providing a plurality of heat radiation fins at intervals on the outer peripheral side of the communication passage. 発電装置は燃料電池としたことを特徴とする請求項1または請求項2または請求項3記載の発電機能付き熱源装置。   4. The heat source device with a power generation function according to claim 1, wherein the power generation device is a fuel cell.
JP2014159514A 2014-08-05 2014-08-05 Heat source device with power generation function Active JP6320233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014159514A JP6320233B2 (en) 2014-08-05 2014-08-05 Heat source device with power generation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014159514A JP6320233B2 (en) 2014-08-05 2014-08-05 Heat source device with power generation function

Publications (2)

Publication Number Publication Date
JP2016038113A true JP2016038113A (en) 2016-03-22
JP6320233B2 JP6320233B2 (en) 2018-05-09

Family

ID=55529333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014159514A Active JP6320233B2 (en) 2014-08-05 2014-08-05 Heat source device with power generation function

Country Status (1)

Country Link
JP (1) JP6320233B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325982A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Combined system of fuel cell apparatus and hot-water supply equipment
JP2007010177A (en) * 2005-06-28 2007-01-18 Noritz Corp Heat recovery device and cogeneration system
JP2012154554A (en) * 2011-01-25 2012-08-16 Noritz Corp Cogeneration system
JP2013249972A (en) * 2012-05-30 2013-12-12 Noritz Corp Cogeneration system and hot water storage tank unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325982A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Combined system of fuel cell apparatus and hot-water supply equipment
JP2007010177A (en) * 2005-06-28 2007-01-18 Noritz Corp Heat recovery device and cogeneration system
JP2012154554A (en) * 2011-01-25 2012-08-16 Noritz Corp Cogeneration system
JP2013249972A (en) * 2012-05-30 2013-12-12 Noritz Corp Cogeneration system and hot water storage tank unit

Also Published As

Publication number Publication date
JP6320233B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
ES2784185T3 (en) Heat absorption or dissipation device with temperature difference fluids transported inversely in multiple pipes
KR101843380B1 (en) Cooling and heating device
JP5941148B2 (en) Hybrid system
KR20110090491A (en) Cooling and heating system of large battery for electric vehicle using oscillating heat pipe
KR200465728Y1 (en) Improved radiate heat efficiency, the transformer housing
JP4316527B2 (en) Regenerative heat supply device
KR101668017B1 (en) Instant hot and cold water device of water purifier
KR101362444B1 (en) Fuel cell system for easy heat emission
JP2012154554A (en) Cogeneration system
KR200473452Y1 (en) Electric boiler using heat medium oil
JP6320233B2 (en) Heat source device with power generation function
JP6304601B2 (en) Fuel cell cogeneration system
CN203871119U (en) Heat dissipating device for oil-immersed transformer
JP2016173954A5 (en)
JP6293609B2 (en) Heat source device with power generation function
JP2012243619A (en) Capacitor
JP5972750B2 (en) Transformer
JP6478208B2 (en) Fuel cell cogeneration system
JP5854369B2 (en) Cogeneration system
KR101041276B1 (en) Cool and warm purifier
JP2018087686A (en) Heat source device with power generation function
JP2013024529A (en) Heat storage hot water supply device
JP6356480B2 (en) Hot module
JP2019075881A (en) Power generation system for floating body structure, power generation method in floating body structure, and piping for power generation
JP5749999B2 (en) Heat storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150