JP2018087686A - Heat source device with power generation function - Google Patents

Heat source device with power generation function Download PDF

Info

Publication number
JP2018087686A
JP2018087686A JP2018024062A JP2018024062A JP2018087686A JP 2018087686 A JP2018087686 A JP 2018087686A JP 2018024062 A JP2018024062 A JP 2018024062A JP 2018024062 A JP2018024062 A JP 2018024062A JP 2018087686 A JP2018087686 A JP 2018087686A
Authority
JP
Japan
Prior art keywords
hot water
air
water tank
case
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2018024062A
Other languages
Japanese (ja)
Inventor
寿久 斉藤
Toshihisa Saito
寿久 斉藤
裕介 澤中
Yusuke Sawanaka
裕介 澤中
由 玉井
Yu Tamai
由 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP2018024062A priority Critical patent/JP2018087686A/en
Publication of JP2018087686A publication Critical patent/JP2018087686A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently operate a power generator by using cooling water from a hot water storage tank.SOLUTION: Power is generated by supplying cooling water from a hot water storage tank 2 to a power generator, and by using the waste heat, hot water is stored in the hot water storage tank 2. The hot water storage tank 2 is disposed in a case 3, and air passages 8a, 8b are formed between the hot water storage tank 2 and the case 3. A pipe line 33 is connected to an air introduction section 4 of the air passages 8a, 8b and a pipe line 32 is connected to air leading-out sections 5, 6. Tips of the pipe lines 32, 33 are drawn out of the case 3, and are disposed adjacent to each other in an environment that turns into an equal wind pressure band region when a fan 10 is in a stopped state. By driving the fan 10, air outside the case 3 is introduced from the pipe line 33 into the case 3, is caused to pass through the air passages 8a, 8b to cool at least a lower side of the hot water storage tank 2, and then is discharged from the pipe line 32 to the outside.SELECTED DRAWING: Figure 2

Description

本発明は、発電装置と貯湯槽とを備えた発電機能付き熱源装置に関するものである。   The present invention relates to a heat source device with a power generation function including a power generation device and a hot water storage tank.

タンク内に湯水を収容する貯湯槽(貯湯タンク)や、その貯湯槽を備えた熱源装置が様々に提案されており(例えば特許文献1、参照)、図7には、貯湯槽を備えた熱源装置の一例が示されている。この熱源装置は、貯湯槽2と発電装置1とを有しており、貯湯槽2は例えばケース内に配置される。発電装置1は、例えば固体高分子形燃料電池(PEFC)や固体酸化物形燃料電池(SOFC)等の燃料電池(FC)や、ガスエンジン等により形成されている。燃料電池は、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。   Various hot water storage tanks (hot water storage tanks) for storing hot water in the tank and heat source devices including the hot water storage tanks have been proposed (see, for example, Patent Document 1). FIG. 7 shows a heat source including a hot water storage tank. An example of an apparatus is shown. This heat source device has a hot water tank 2 and a power generator 1, and the hot water tank 2 is disposed in a case, for example. The power generator 1 is formed by a fuel cell (FC) such as a polymer electrolyte fuel cell (PEFC) or a solid oxide fuel cell (SOFC), a gas engine, or the like. A fuel cell is a power generation device that generates electricity by reacting hydrogen extracted from a fuel such as city gas with oxygen in the air by a reverse reaction of water electrolysis.

また、この熱源装置は、給水供給源からの水を貯湯槽2の下部側から貯湯槽2に供給する給水通路20と、貯湯槽2の下部側から発電装置1に冷却用の例えば50℃以下(好ましくは45℃以下)の水を供給するための水供給通路21と、発電装置1の廃熱により加熱された湯を貯湯槽2側に送って該貯湯槽2の上部側から該貯湯槽2に導入する熱回収用通路23と、貯湯槽2の上部側から給湯先に湯を供給するための湯の通路25とを有している。湯の通路25は、接続ユニット27を介し、前記給水供給源から分岐した分岐通路29と接続されており、接続ユニット27には電磁弁26等が設けられている。   In addition, this heat source device has a water supply passage 20 for supplying water from a water supply source to the hot water tank 2 from the lower side of the hot water tank 2, and for cooling to the power generator 1 from the lower side of the hot water tank 2, for example, 50 ° C. or less. A water supply passage 21 for supplying water (preferably 45 ° C. or less) and hot water heated by the waste heat of the power generator 1 are sent to the hot water tank 2 side from the upper side of the hot water tank 2 to the hot water tank. 2 and a hot water passage 25 for supplying hot water from the upper side of the hot water storage tank 2 to the hot water supply destination. The hot water passage 25 is connected to a branch passage 29 branched from the water supply source via a connection unit 27, and the connection unit 27 is provided with an electromagnetic valve 26 and the like.

接続ユニット27には通路30が接続され、通路30を通して給湯先に湯を直接供給する熱源装置や、バーナ等を備えた給湯器等の補助熱源装置の入水側を通路30に接続して通路30を通った湯を必要に応じて補助熱源装置によって追い加熱して給湯先に給湯する熱源装置等、様々な構成が提案されている。なお、図7の図中、符号24は、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁を備えた過圧逃がし用通路を示し、符号28は排水弁を備えた排水通路をそれぞれ示している。   A passage 30 is connected to the connection unit 27, and a water inlet side of a heat source device that directly supplies hot water to a hot water supply destination through the passage 30 or a hot water heater equipped with a burner or the like is connected to the passage 30. Various configurations have been proposed, such as a heat source device that additionally heats hot water that has passed through an auxiliary heat source device as necessary and supplies hot water to a hot water supply destination. In FIG. 7, reference numeral 24 denotes an overpressure relief passage provided with an overpressure relief valve for releasing the pressure to the outside when the pressure in the hot water tank 2 exceeds the allowable pressure. Reference numeral 28 denotes a drainage passage provided with a drainage valve.

この種の熱源装置においては、例えば、発電装置1の廃熱により加熱されて貯湯槽2に貯湯された湯を、湯の通路25を通して導出し、この湯と、給水供給源から分岐通路29を通して導出される水とを必要に応じて接続ユニット27により混合し、前記の如く通路30を通して給湯先に供給することにより給湯設定温度の湯を供給することができる。また、発電装置1により発電した電力を利用者の電力負荷装置に供給することにより、電力利用もできるため、利便性と省エネ性とを備えた装置である。   In this type of heat source device, for example, hot water heated by the waste heat of the power generation device 1 and stored in the hot water storage tank 2 is led out through the hot water passage 25, and this hot water and the water supply source are passed through the branch passage 29. The extracted water is mixed by the connection unit 27 as necessary, and hot water having a hot water supply set temperature can be supplied by supplying it to the hot water supply destination through the passage 30 as described above. Moreover, since the electric power can be used by supplying the electric power generated by the electric power generation apparatus 1 to the electric power load apparatus of the user, the apparatus is provided with convenience and energy saving.

なお、貯湯槽2には上下方向に温度の層が形成されるものであり、貯湯槽2の上部側の層(高温層)に、発電装置1の発電時に生じる廃熱によって加熱された高温Ta(例えば80℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)には貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水され、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)が形成される。図7の破線Bは、高温層と温度中間層との境界を示しており、破線Bの上側の水(湯)が実質的に給湯に利用される温度層である。   The hot water tank 2 is formed with a temperature layer in the vertical direction, and the upper layer (high temperature layer) of the hot water tank 2 is heated to a high temperature Ta heated by waste heat generated during power generation of the power generator 1. Hot water of (for example, 80 ° C.) is stored, and water at the same temperature Tc (for example, 15 ° C.) as the water supply temperature supplied to the hot water storage tank 2 is stored in the lower layer (low temperature layer) of the hot water storage tank 2. In the meantime, a layer (temperature intermediate layer) having a steep temperature gradient from temperature Ta to temperature Tc is formed. A broken line B in FIG. 7 indicates a boundary between the high temperature layer and the temperature intermediate layer, and is a temperature layer in which water (hot water) on the upper side of the broken line B is substantially used for hot water supply.

特開2012−209173号公報JP 2012-209173 A

ところで、前記のような熱源装置において、貯湯槽2内の大部分が高温層により満たされてしまうといったように、図7の境界線Bが図に示す位置よりもずっと下側まで移動して貯湯槽2の下部側に達すると、水供給通路21を通って発電装置1に供給される水の温度が50℃より高くなり(例えば70℃程度となり)、発電装置1を稼働させることができなくなってしまうため、発電装置1の稼働による電力利用ができなくなってしまうといった問題があった。   By the way, in the heat source device as described above, the boundary line B in FIG. 7 moves to a position far below the position shown in the figure so that most of the hot water tank 2 is filled with the high temperature layer. When reaching the lower side of the tank 2, the temperature of the water supplied to the power generator 1 through the water supply passage 21 becomes higher than 50 ° C. (for example, about 70 ° C.), and the power generator 1 cannot be operated. For this reason, there is a problem that the power use due to the operation of the power generation device 1 becomes impossible.

そこで、水供給通路21にラジエータを設ける構成が提案されているが、貯湯槽2から発電装置1に供給する水を十分に冷却できる能力のラジエータは大型であるために、例えば大型のラジエータの上に、ケース内に収容された貯湯槽2を設けるには大型のラジエータの配設分だけ貯湯槽2の容量を小さくする必要が生じ、利用者に供給するに十分な量の湯を貯湯できなくなってしまうことになる。   Therefore, a configuration in which a radiator is provided in the water supply passage 21 has been proposed. However, since the radiator capable of sufficiently cooling the water supplied from the hot water storage tank 2 to the power generation device 1 is large, for example, the top of the large radiator is provided. In addition, in order to provide the hot water storage tank 2 accommodated in the case, it is necessary to reduce the capacity of the hot water storage tank 2 by the amount of the large radiator, and it becomes impossible to store a sufficient amount of hot water to supply to the user. It will end up.

本発明は、上記課題を解決するためになされたものであり、その目的は、発電装置を所望のタイミングで効率的に稼働させることができ、かつ、利用者に供給するに十分な量の湯を貯湯槽に貯湯できる発電機能付き熱源装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to efficiently operate the power generation device at a desired timing and to supply a user with a sufficient amount of hot water. Is to provide a heat source device with a power generation function that can store hot water in a hot water tank.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、発電装置と、貯湯槽と、該貯湯槽の下部側から前記発電装置に冷却用の水を供給する水供給通路と、前記発電装置の廃熱により加熱された湯を前記貯湯槽の上部側から該貯湯槽に導入し、前記貯湯槽の上部側から給湯先に湯を供給するための管路の配管構成と、を備え、前記貯湯槽は該貯湯槽の外周側を該貯湯槽と間隔を介して覆うケース内に配置されており、該ケースと前記貯湯槽との間には前記貯湯槽の少なくとも下部側を通風によって空冷するための空気通路が形成されており、前記ケースの外の空気を導入し前記空気通路を通風して前記貯湯槽の少なくとも下部側を冷却する空冷手段を備え、前記空気通路の空気導入部には空気導入用の管路が接続され、前記空気通路の空気導出部には空気導出用の管路が接続され、前記空気導入用の管路と前記空気導出用の管路のそれぞれ先端は前記ケースの外に引き出され隣接されて前記空冷手段の動作停止状態時に同圧風圧帯域となる環境下に配置される構成をもって課題を解決する手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention is a power generation apparatus, a hot water storage tank, a water supply passage for supplying cooling water to the power generation apparatus from a lower side of the hot water storage tank, and hot water heated by waste heat of the power generation apparatus. A pipe structure for introducing hot water into the hot water tank from the upper side of the hot water tank and supplying hot water to the hot water supply destination from the upper side of the hot water tank, and the hot water tank has an outer periphery of the hot water tank An air passage is formed between the case and the hot water storage tank so as to be air-cooled by at least the lower side of the hot water storage tank. And air cooling means for introducing air outside the case and ventilating the air passage to cool at least the lower side of the hot water storage tank, and a pipe for introducing air is connected to the air introduction portion of the air passage The air outlet part of the air passage has an air outlet pipe. The leading ends of the air introduction conduit and the air lead-out conduit are drawn out of the case and are adjacent to each other, and are arranged in an environment where the air-cooling means is in the same pressure wind pressure zone when the air-cooling means is stopped. It is a means to solve the problem with the configuration.

また、第2の発明は、前記第1の発明の構成に加え、前記ケースの下部には前記空気導入部と前記空気導出部とが設けられ、前記空気通路は前記空気導入部から導入される空気を前記貯湯槽に沿って上方へ立ち上げ通風するための上向き通風通路部位と該上向き通風通路部位を通過した空気を前記貯湯槽に沿って下方の前記空気導出部へ向けて下向きに通風させるための下向き通風通路部位とを有した逆U字型の空気通路と成し、前記空冷手段は貯湯槽の少なくとも下部を冷却する動作時に外部の空気を前記空気導入用の管路から導入し前記逆U字型の空気通路を通して前記空気導出用の管路から外部へ導出する構成と成したことを特徴とする。   Further, in the second invention, in addition to the configuration of the first invention, the air introducing portion and the air deriving portion are provided in a lower portion of the case, and the air passage is introduced from the air introducing portion. An upward ventilation passage part for raising air upward along the hot water storage tank and the air passing through the upward ventilation passage part are vented downward along the hot water storage tank toward the air outlet part below. And an air passage having an inverted U shape having a downward ventilation passage portion, and the air cooling means introduces external air from the air introduction pipe line during operation of cooling at least the lower part of the hot water storage tank. The structure is such that the air is led out to the outside through the inverted U-shaped air passage.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記ケースの下部の前記空気導出部と前記空気導出用の管路との接続領域には、前記空冷手段としてのファンと、空気が通風する通路の開閉を行うためのシャッタとが設けられていることを特徴とする。   Furthermore, in the third aspect of the invention, in addition to the configuration of the first or second aspect of the invention, a connection region between the air lead-out portion at the lower part of the case and the air lead-out conduit is used as the air cooling means. A fan and a shutter for opening and closing a passage through which air passes are provided.

さらに、第4の発明は、前記第2または第3の発明の構成に加え、前記逆U字型の空気通路を構成する上向き通風通路部位と下向き通風通路部位のうち、上向き通風通路部位は空気が前記貯湯槽の外面に直接的に接触して該貯湯槽の外面と前記ケースとの間隔空間を通風する通路構成と成し、下向き通風通路部位は前記貯湯槽の外面に断熱材が設けられて該断熱材と前記ケースとの間隔空間を通風する通路構成と成していることを特徴とする。   Further, in the fourth aspect of the invention, in addition to the configuration of the second or third aspect of the invention, the upward ventilation passage portion of the upward ventilation passage portion and the downward ventilation passage portion constituting the inverted U-shaped air passage is air. Is formed into a passage structure that directly contacts the outer surface of the hot water storage tank and passes the space between the outer surface of the hot water storage tank and the case, and the downward ventilation passage portion is provided with a heat insulating material on the outer surface of the hot water storage tank. And a passage structure for passing a space between the heat insulating material and the case.

さらに、第5の発明は、前記第1または第2または第3または第4の発明の構成に加え、前記発電装置は燃料電池としたことを特徴とする。   Further, the fifth invention is characterized in that, in addition to the configuration of the first, second, third or fourth invention, the power generation device is a fuel cell.

本発明によれば、貯湯槽の下部側から発電装置に冷却用の水を供給して発電装置を稼動させるが、貯湯槽を該貯湯槽の外周側を該貯湯槽と間隔を介して覆うケース内に配置し、空冷手段によってケースの外の空気をケース内の空気通路に導入し、該空気によって前記貯湯槽の少なくとも下部側を冷却することによって、貯湯槽の下部側に貯えられている水を冷却し、例えば燃料電池により形成されている発電装置を稼働させることによって発電することができる。   According to the present invention, the cooling water is supplied to the power generator from the lower side of the hot water tank to operate the power generator, but the hot water tank is covered with the hot water tank on the outer peripheral side with a space therebetween. Water stored in the lower part of the hot water tank by introducing air outside the case into the air passage in the case by the air cooling means and cooling at least the lower part of the hot water tank by the air. Can be generated by, for example, operating a power generation device formed of a fuel cell.

また、発電装置を燃料電池により形成することにより、燃料電池を用いて効率的な発電を行うことができる発電機能付き熱源装置を提供できる。   In addition, by forming the power generation device with a fuel cell, it is possible to provide a heat source device with a power generation function capable of performing efficient power generation using the fuel cell.

本発明に係る熱源装置の一実施例に適用されている貯湯槽の配置構造を簡略化して示す模式的な縦断面図(a)、(b)と横断面図(c)、(d)である。Schematic longitudinal sectional views (a), (b) and transverse sectional views (c), (d) showing a simplified arrangement structure of a hot water tank applied to an embodiment of a heat source device according to the present invention. is there. 実施例に適用されている貯湯槽の外部ケースへの収納態様例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of the accommodation mode to the outer case of the hot water tank applied to the Example. 実施例の熱源装置に与えられる空冷設定時間設定情報の一例を示すグラフである。It is a graph which shows an example of the air cooling setting time setting information given to the heat source apparatus of an Example. 本発明に係る熱源装置の要部制御構成を示すブロック図である。It is a block diagram which shows the principal part control structure of the heat-source apparatus which concerns on this invention. 貯湯槽のケースの外の気温が異なる場合の、空冷時間と貯湯槽内の湯水温との関係例を示すグラフである。It is a graph which shows the example of a relationship between the air cooling time and the hot water temperature in a hot water tank when the temperature outside the case of a hot water tank is different. 熱源装置の他の実施例に適用されている貯湯槽のケース内を図1(b)のA−A断面図に対応させて示す模式的な横断面説明図である。It is typical cross-sectional explanatory drawing which shows the inside of the case of the hot water tank applied to the other Example of a heat-source apparatus corresponding to AA sectional drawing of FIG.1 (b). 発電機能付き熱源装置のシステム構成例を模式的に示す説明図である。It is explanatory drawing which shows typically the system structural example of the heat-source apparatus with an electric power generation function.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same constituent elements as those in the above-described examples, and the duplicate description is omitted or simplified.

図1(a)、(b)には、それぞれ、本発明に係る熱源装置の一実施例に適用されている貯湯槽とその周辺構造を簡略化して示す模式的な縦断面図が示されており、図1(c)には、図1(b)のA−A断面図が、図1(d)には、図1(b)のB−B断面図がそれぞれ簡略化して示されている。また、図1(a)は図1(c)のC−C断面を示し、図1(b)は図1(c)のD−D断面を示す。   1 (a) and 1 (b) are schematic longitudinal sectional views schematically showing a hot water storage tank and its peripheral structure applied to an embodiment of a heat source device according to the present invention, respectively. 1C is a simplified cross-sectional view taken along line AA in FIG. 1B, and FIG. 1D is a simplified cross-sectional view taken along line BB in FIG. 1B. Yes. 1A shows a CC cross section of FIG. 1C, and FIG. 1B shows a DD cross section of FIG. 1C.

なお、本実施例は、図7に示した熱源装置と同様のシステム構成を有しており、図7と同様に、貯湯槽2には水供給通路21や熱回収用通路23、湯の通路25等が接続されているが、それらの通路の記載は、図1においては省略されている。また、本実施例においても、図7に示した通路30に接続されるシステムの構成等も適宜の構成が適用されるものであり、発電装置1は燃料電池により形成されている。   This embodiment has the same system configuration as that of the heat source device shown in FIG. 7, and similarly to FIG. 7, the hot water tank 2 has a water supply passage 21, a heat recovery passage 23, and a hot water passage. 25 etc. are connected, but description of those passages is omitted in FIG. Also in this embodiment, an appropriate configuration is applied to the configuration of the system connected to the passage 30 shown in FIG. 7, and the power generator 1 is formed of a fuel cell.

これらの図に示されるように、貯湯槽2は貯湯槽2の外周側を該貯湯槽2と間隔を介して覆うケース3内に配置されており、ケース3は、貯湯槽2の下部側に設けられる底板部17と、底板部17の上側に設けられて貯湯槽2の外周側を覆う筒状部18と、筒状部18の上側に設けられて貯湯槽2の上面側を覆うキャップ状部19とを有して構成されている。   As shown in these drawings, the hot water storage tank 2 is arranged in a case 3 that covers the outer peripheral side of the hot water storage tank 2 with a space from the hot water storage tank 2, and the case 3 is located on the lower side of the hot water storage tank 2. A bottom plate portion 17 provided, a cylindrical portion 18 provided above the bottom plate portion 17 and covering the outer peripheral side of the hot water tank 2, and a cap shape provided above the cylindrical portion 18 and covering the upper surface side of the hot water tank 2. And a portion 19.

また、例えば図2に示されるように、ケース3に収納されている貯湯槽2は、貯湯槽2に接続されている空気導入用の管路33や空気導出用の管路32と共に、外部ケース31内に収納することができ、本実施例ではこのような構成が適用されている。なお、図2は、説明を分かりやすくするために、管路32,33の径を大きく示し、外部ケース31の幅をケース3の幅よりもかなり広めに示しているが、これらの大きさ(径や幅)は実際には同図に示される態様よりも小さく形成することもでき、また、必ずしも図2に示される態様が適用されるとは限らず、この構成は限定されるものではない。   Further, for example, as shown in FIG. 2, the hot water tank 2 housed in the case 3 includes an air introduction pipe line 33 and an air outlet pipe line 32 connected to the hot water tank 2 and an external case. In this embodiment, such a configuration is applied. 2 shows the diameters of the pipes 32 and 33 to make the explanation easy to understand and the width of the outer case 31 is considerably wider than the width of the case 3, but these sizes ( (Diameter and width) can actually be formed smaller than the mode shown in the figure, and the mode shown in FIG. 2 is not necessarily applied, and this configuration is not limited. .

図1(a)、(b)に示されるように、底板部17の底面側には空気導入部4が設けられており、図1(b)、(d)に示されるように、筒状部18の下部側位置には空気導出部5,6が設けられている。この空気導出部5,6の形成部には、ケース3の外部側にファン10が設けられており、ファン10は該ファン10の吸引力によってケース3の外の空気を空気導入部4からケース3内に導入し、該空気によって貯湯槽2の少なくとも下部側を冷却する空冷手段として機能する。   As shown in FIGS. 1A and 1B, an air introduction part 4 is provided on the bottom surface side of the bottom plate part 17, and as shown in FIGS. 1B and 1D, a cylindrical shape is provided. Air outlets 5 and 6 are provided at the lower side of the part 18. A fan 10 is provided on the outside of the case 3 at the formation part of the air outlets 5 and 6, and the fan 10 draws air outside the case 3 from the air introduction part 4 to the case by the suction force of the fan 10. 3 and functions as an air cooling means for cooling at least the lower side of the hot water tank 2 with the air.

図1(d)に示されるように、ファン10の配設部の外側にはシャッタ35が設けられており、このシャッタ35は複数のルーバ(図示せず)を有し、シャッタ35の開動作時にはルーバが開き、シャッタ35の閉動作時にはルーバが閉じるように形成されている。なお、シャッタ35の図示は、図1(a)〜(c)においては省略している。   As shown in FIG. 1 (d), a shutter 35 is provided outside the arrangement portion of the fan 10, and this shutter 35 has a plurality of louvers (not shown) and opens the shutter 35. The louver is sometimes opened, and the louver is closed when the shutter 35 is closed. The illustration of the shutter 35 is omitted in FIGS. 1 (a) to 1 (c).

ケース3内には、筒状部18の内側に断熱材7が設けられており、その断熱材7が貯湯槽2の外周壁と間隔を介して設けられているところと貯湯槽2の外周壁に近接して設けられているところとがケース3内に形成されている。断熱材7が貯湯槽2の外周壁と間隔を介している部位には、貯湯槽2の外周壁と断熱材7との間隔によって空気通路8(8a)が複数形成されており、これらの空気通路8(8a)は貯湯槽2の外周方向に互いに間隔を介して形成されている。   In the case 3, a heat insulating material 7 is provided inside the cylindrical portion 18, and the heat insulating material 7 is provided with a space between the outer peripheral wall of the hot water tank 2 and the outer peripheral wall of the hot water tank 2. Is formed in the case 3 in the vicinity of the. A plurality of air passages 8 (8 a) are formed in the portion where the heat insulating material 7 is spaced from the outer peripheral wall of the hot water tank 2 depending on the distance between the outer peripheral wall of the hot water tank 2 and the heat insulating material 7. The passage 8 (8a) is formed in the outer peripheral direction of the hot water tank 2 with a space between each other.

また、図1(b)〜(d)に示されるように、ケース3内には空気通路8(8b)が貯湯槽2を断熱材7を介して両側から挟む態様で形成されており、これらの空気通路8bの上端側は筒状部18の上側の位置で空気通路8aと連通している(連通部は図示せず)。また、空気通路8(8b)の下端側は空気導出部5,6に連通している。   Moreover, as shown in FIGS. 1B to 1D, an air passage 8 (8 b) is formed in the case 3 in such a manner that the hot water tank 2 is sandwiched from both sides via a heat insulating material 7. The upper end side of the air passage 8b communicates with the air passage 8a at a position above the cylindrical portion 18 (the communication portion is not shown). The lower end side of the air passage 8 (8b) communicates with the air outlets 5 and 6.

図2に示されるように、空気導出部5は管路32を介して外部ケース31の外部に導通しており、空気導入部4が管路33を介して外部ケース31の外部に導通しており、管路32,33の一端側は共に外部ケース31の外側において同圧同風帯と成している。なお、図2には、空気導出部6に接続されている管路についての記載がないが、空気導出部6にも空気導出部5と同様に管路が接続されて、その一端側(空気導出部6との接続側と反対側)が外部ケース31の外側において管路32,33と同圧同風帯と成している。   As shown in FIG. 2, the air outlet 5 is electrically connected to the outside of the outer case 31 via the conduit 32, and the air introduction portion 4 is electrically connected to the outside of the outer case 31 via the conduit 33. In addition, both ends of the pipes 32 and 33 form the same pressure and same wind zone outside the outer case 31. In FIG. 2, there is no description about the pipe connected to the air outlet 6, but a pipe is connected to the air outlet 6 similarly to the air outlet 5, and one end side (air The side opposite to the connection side with the lead-out portion 6) forms the same pressure and same wind zone as the ducts 32 and 33 outside the outer case 31.

本実施例において、空気導出部5,6に設けたファン10を駆動させると、図2に示した通路33を介し、図1(a)の矢印に示されるように、空気導入部4からケース3内に空気が導入されて空気通路8(8a)を通り貯湯槽2の外周側に沿って上側に進みながら貯湯槽2の熱を吸熱して貯湯槽2内を冷やす。また、この貯湯槽2の熱の吸熱によって暖められた空気は、図1(b)に示されるように、空気通路8(8b)を通り、貯湯槽2とは間隔を介しながら貯湯槽2の外周側に沿って下側に進み、空気導出部5,6からケース3外に導出される。そして、この空気は、管路32を通り、外部ケース31の外に導出される。なお、空気通路8(8b)は、貯湯槽2とは断熱材7を介して配置されていることから、暖かい空気から貯湯槽2側に熱が伝わることを防ぐ構成と成している。   In this embodiment, when the fan 10 provided in the air outlets 5 and 6 is driven, as shown by the arrow in FIG. 1A through the passage 33 shown in FIG. The air is introduced into 3 and passes through the air passage 8 (8 a) and proceeds upward along the outer peripheral side of the hot water tank 2 to absorb the heat of the hot water tank 2 to cool the hot water tank 2. In addition, as shown in FIG. 1 (b), the air heated by the heat absorption of the hot water tank 2 passes through the air passage 8 (8 b), and the hot water tank 2 is spaced from the hot water tank 2. Proceeding downward along the outer peripheral side, the air is led out of the case 3 from the air outlets 5 and 6. The air passes through the pipe line 32 and is led out of the outer case 31. In addition, since the air passage 8 (8b) is arrange | positioned through the heat insulating material 7 with the hot water storage tank 2, it has comprised the structure which prevents that heat is transmitted to the hot water storage tank 2 side from warm air.

このような空気の流れによって、貯湯槽2内の湯水は貯湯槽2の内壁を介して熱を奪われて(貯湯槽2の内壁が放熱面となって)冷却され、その冷却された水は貯湯槽2の内壁側に沿って下部側に移動して沈降し、貯留される。なお、このように、貯湯槽2の筒壁が放熱面となることから、その放熱面を大きく取るためには貯湯槽2の上側の方まで空気を送る方がよい。   By such an air flow, the hot water in the hot water tank 2 is cooled by taking heat away from the inner wall of the hot water tank 2 (the inner wall of the hot water tank 2 becomes a heat radiating surface), and the cooled water is It moves to the lower side along the inner wall side of the hot water tank 2 and settles and is stored. In addition, since the cylindrical wall of the hot water tank 2 becomes a heat radiating surface in this way, it is better to send air to the upper side of the hot water tank 2 in order to make the heat radiating surface large.

ところで、本実施例においては、空気導出部5,6にはファン10の外側にシャッタ35が設けられているので、シャッタ35が閉じているときには空気導出部5,6から空気が入ろうとしても入らないはずではあるが、強い風が吹くと、シャッタ35を形成するルーバ間の隙間から空気が入ろうとする方向に空気が流れようとする(前記風による空気が入り込もうとする)ことがある。   By the way, in the present embodiment, since the air outlets 5 and 6 are provided with the shutter 35 outside the fan 10, even when air is about to enter from the air outlets 5 and 6 when the shutter 35 is closed. Although it should not be, when a strong wind blows, air may try to flow in a direction in which air enters from a gap between the louvers forming the shutter 35 (air from the wind tends to enter).

しかしながら、ケース3は、空気導出部5,6の形成位置に対して逆U字型であり、たとえ前記ルーバ間の隙間から空風が入ったとしても、貯湯槽2の下部側に貯留されている水は冷たいので空気と貯湯槽内の水との熱交換は生じないし、外から入る冷たい風は空気導出部5,6の形成位置に対して逆U字型のケース3において空気通路8bを図1(b)の矢印とは逆方向に進んで上側に上ることはなく、その結果、ファン10を止めると熱がこもり、放熱しない(ファン10を駆動させれば、前記の如く、空気導入部4から入る空気が上側に向かって空気通路8aを進み、その後、空気通路8bを通って下側に向かって空気導出部5,6から出ていく)。   However, the case 3 has an inverted U shape with respect to the formation positions of the air outlets 5 and 6, and is stored on the lower side of the hot water tank 2 even if air blows from the gap between the louvers. Since the water is cold, heat exchange between the air and the water in the hot water tank does not occur, and the cold wind entering from the outside passes through the air passage 8b in the inverted U-shaped case 3 with respect to the formation position of the air outlets 5 and 6. As a result, when the fan 10 is stopped, heat is trapped and no heat is dissipated (if the fan 10 is driven, air is introduced as described above). The air entering from the portion 4 travels upward in the air passage 8a and then exits from the air outlets 5 and 6 through the air passage 8b downward).

また、本実施例においては、空気導出部5,6と空気導入部4に、図2に示したように管路32,33を接続し、その一端側(管路32,33の空気導出部5,6や空気導入部4との接続側と反対側)を同圧同風帯とすることにより、空気が入ろうとする力と出ようとする力とが均衡するために、例え強い風が吹いても、空気導出部5,6から空気が導入されることはなく、より一層確実に、ファン10の駆動停止時には空気の出入りがないようにできる。   Further, in this embodiment, the pipes 32 and 33 are connected to the air outlets 5 and 6 and the air introduction part 4 as shown in FIG. 2, and one end side thereof (the air outlet part of the pipes 32 and 33). 5 and 6 and the side opposite to the connection side with the air introduction part 4) have the same pressure and same wind zone, so that the force to enter the air and the force to get out are balanced. Even if it blows, air is not introduced from the air outlets 5 and 6, and it is possible to more reliably prevent air from entering and exiting when the fan 10 is stopped.

また、図1、図2には図示されていないが、本実施例において、ケース3の外(例えば外部ケース31の外)には、ケース3が設けられている領域の外気温を検出する外気温検出センサが設けられており、図4に示されるような制御構成を有する制御装置11に信号接続されている。なお、図4においては、外気温検出センサには符号12が付してある。   Although not shown in FIGS. 1 and 2, in this embodiment, outside the case 3 (for example, outside the external case 31), an outside air temperature in an area where the case 3 is provided is detected. An air temperature detection sensor is provided and is signal-connected to a control device 11 having a control configuration as shown in FIG. In FIG. 4, reference numeral 12 is attached to the outside air temperature detection sensor.

同図に示されるように、制御装置11は貯湯槽空冷制御手段13とメモリ部14、ファン駆動手段15を有しており、ファン10と、貯湯槽内湯水温検出手段16に接続されている。貯湯槽内湯水温検出手段16は貯湯槽2内の湯水の温度を検出するものであり、貯湯槽2内または貯湯槽2の外壁側等において上下方向に互いに間隔を介した複数箇所に設けられている。   As shown in the figure, the control device 11 has a hot water tank air cooling control means 13, a memory unit 14, and a fan driving means 15, and is connected to the fan 10 and hot water temperature detection means 16 in the hot water tank. The hot water temperature detection means 16 in the hot water tank detects the temperature of the hot water in the hot water tank 2, and is provided at a plurality of locations in the hot water tank 2 or on the outer wall side of the hot water tank 2 at intervals in the vertical direction. Yes.

貯湯槽空冷制御手段13は、貯湯槽の湯が予め定められる冷却基準温度(例えば70℃)以上の湯で満たされる(貯湯槽2内が満蓄となる)と予想される予想時刻に対応させて、該予想時刻よりも予め定められる空冷設定時間だけ早めにファン10を作動させて貯湯槽2の空冷を行う制御手段である。この制御に際し、メモリ部14に、例えば図3に示されるような制御データが格納されている。   The hot water tank air cooling control means 13 makes the hot water in the hot water tank correspond to an expected time when it is expected to be filled with hot water having a predetermined cooling reference temperature (for example, 70 ° C.) or higher (the hot water tank 2 is fully stored). Thus, the control unit performs air cooling of the hot water tank 2 by operating the fan 10 earlier than the predicted time by a predetermined air cooling set time. At the time of this control, for example, control data as shown in FIG.

図3に示される制御データは、例えば図5に示されるように、ファン10の駆動による空冷時間と貯湯槽2内の湯水温との関係を求めた実験データ等に基づいて与えられるものである。このデータは、貯湯槽2のケース3の外の温度(外気温であり、ここでは外気温検出センサ12の検出温度)を様々に変えて求めており、図5において、特性線aは外気温が35℃の場合の実験データ、特性線bは外気温が20℃の場合の実験データ、特性線cは外気温が0℃の場合の実験データをそれぞれ示す。   The control data shown in FIG. 3 is given based on, for example, experimental data obtained from the relationship between the air cooling time by driving the fan 10 and the hot water temperature in the hot water tank 2, as shown in FIG. . This data is obtained by variously changing the temperature outside the case 3 of the hot water tank 2 (the outside air temperature, here the temperature detected by the outside air temperature detection sensor 12). In FIG. Is the experimental data when the outside air temperature is 20 ° C, and the characteristic line c is the experimental data when the outside air temperature is 0 ° C.

これらの特性線a〜cからも明らかなように、外気温が高くなるにつれて貯湯槽2内の湯水温が低下するまでの空冷時間は長くかかるものである。例えば、貯湯槽2内の湯水温が50℃まで低下するまでに、外気温が35℃の場合は約3時間かかり(特性線a、参照)、外気温が0℃の場合は30分程度である(特性線c、参照)。このような実験データに基づいて設定された図3に示される制御データは、ケース3の外の気温に基づく温度(ここではケース3の外の気温)が高くなるにつれて前記空冷設定時間が長くなるように設定された空冷設定時間設定情報となる。   As is clear from these characteristic lines a to c, it takes a long time for the air to cool until the hot water temperature in the hot water tank 2 decreases as the outside air temperature increases. For example, it takes about 3 hours for the hot water temperature in the hot water tank 2 to drop to 50 ° C. when the outside air temperature is 35 ° C. (see characteristic line a), and about 30 minutes when the outside air temperature is 0 ° C. Yes (see characteristic line c). The control data shown in FIG. 3 set based on such experimental data has a longer air cooling set time as the temperature based on the temperature outside the case 3 (here, the temperature outside the case 3) becomes higher. The air cooling set time setting information is set as follows.

貯湯槽空冷制御手段13は、貯湯槽2の湯が前記冷却基準温度以上の湯で満たされると予想される予想時刻を、貯湯槽内湯水温検出手段16の検出温度に基づいて求め、図3に示したような空冷設定時間設定情報とケース3の外の気温に基づく温度(ここではケース3の外であり、例えば外部ケース31の外の気温)とに基づいて、前記予想時刻よりも前記空冷設定時間だけ早く空冷を開始するようにファン駆動手段15に指令を加える。ファン駆動手段15は、この指令に基づいてファン10を駆動させる。   The hot water tank air cooling control means 13 obtains an expected time when the hot water in the hot water tank 2 is expected to be filled with hot water having a temperature equal to or higher than the cooling reference temperature based on the detected temperature of the hot water temperature detection means 16 in the hot water tank. Based on the air cooling set time setting information as shown and the temperature based on the temperature outside the case 3 (here, the temperature outside the case 3, for example, the temperature outside the external case 31), the air cooling is performed more than the expected time. A command is given to the fan driving means 15 so as to start the air cooling earlier by the set time. The fan driving means 15 drives the fan 10 based on this command.

なお、貯湯槽空冷制御手段13は、貯湯槽2の湯が予め定められる冷却基準温度以上の湯で満たされると予想される予想時刻を求める際に、例えば利用者の生活態様に基づく発電装置1の稼働状況や給湯利用状況を予め学習し、その学習データや外気温検出センサ12の検出温度等を考慮して求めてもよい。このようにすると前記予想時刻をより正確に求めることができる。   The hot water tank air cooling control means 13 determines the expected time when the hot water in the hot water tank 2 is expected to be filled with hot water equal to or higher than a predetermined cooling reference temperature, for example, the power generator 1 based on the lifestyle of the user. May be obtained in consideration of the learning data, the detection temperature of the outside air temperature detection sensor 12, and the like. In this way, the predicted time can be obtained more accurately.

本実施例は以上のように構成されており、例えば図5の特性線cに示したように、貯湯槽2のケース3の外の気温が低ければ短時間で貯湯槽2内の湯水を冷却することができ、逆に、図5の特性線aに示したように、貯湯槽2のケース3の外の気温が高いときには貯湯槽2内の湯水を冷却するための時間が長くかかるが、このような特性に対応させて、図3に示したような、貯湯槽2のケース3の外の気温が高くなるにつれて空冷設定時間が長くなるように設定された空冷設定時間設定情報が与えられる。   This embodiment is configured as described above. For example, as shown by the characteristic line c in FIG. 5, if the temperature outside the case 3 of the hot water tank 2 is low, the hot water in the hot water tank 2 is cooled in a short time. On the contrary, as shown by the characteristic line a in FIG. 5, it takes a long time to cool the hot water in the hot water tank 2 when the temperature outside the case 3 of the hot water tank 2 is high. Corresponding to such characteristics, air cooling set time setting information set such that the air cooling set time becomes longer as the temperature outside the case 3 of the hot water tank 2 increases as shown in FIG. .

そして、このような空冷設定時間設定情報とケース3の外の気温とに基づいて、貯湯槽2の湯が前記冷却基準温度以上の湯で満たされると予想される予想時刻よりも前記空冷設定時間だけ早く貯湯槽の空冷を開始することによって、ケース3の外の気温が高くても低くても適切に空冷を開始して貯湯槽2内の湯水を冷却し、発電装置1の冷却水として利用することができる。   And based on such air cooling set time setting information and the temperature outside the case 3, the air cooling set time is longer than the expected time when the hot water in the hot water tank 2 is expected to be filled with hot water having the cooling reference temperature or higher. By starting the air cooling of the hot water tank as soon as possible, the hot water in the hot water tank 2 is appropriately cooled to cool the hot water in the hot water tank 2 regardless of whether the temperature outside the case 3 is high or low, and used as cooling water for the power generator 1 can do.

そのため、発電装置1の発電時の廃熱を利用する湯の貯湯と、貯湯槽2から発電装置1に供給される冷却用の水を利用しての発電装置1による発電とを効率的に良好に行うことができる装置を実現できる。   Therefore, the hot water storage using the waste heat at the time of power generation of the power generation apparatus 1 and the power generation by the power generation apparatus 1 using the cooling water supplied from the hot water tank 2 to the power generation apparatus 1 are efficiently improved. It is possible to realize an apparatus that can be performed in a simple manner.

なお、本発明は、前記実施例に限定されるものでなく、適宜設定されるものである。例えば、前記実施例ではケース3内に空気を導入する空気導入部4を1つ設け、ケース3内から空気を導出する空気導出部を符号5,6で示すように2つ設けたが、これらの個数や配置位置、大きさ等の配設態様は特に限定されるものでなく適宜設定されるものであり、ケース3内に配置される貯湯槽2の少なくとも下部側を空冷できるように形成されればよい。また、ファン10の配設態様や管路32,33の接続態様等も特に限定されるものでなく適宜設定されるものである。   In addition, this invention is not limited to the said Example, It sets suitably. For example, in the above-described embodiment, one air introduction part 4 for introducing air into the case 3 is provided, and two air outlet parts for deriving air from the case 3 are provided as indicated by reference numerals 5 and 6. Arrangement modes such as the number, arrangement position, size, etc. are not particularly limited and are appropriately set, and are formed so that at least the lower side of the hot water tank 2 arranged in the case 3 can be air-cooled. Just do it. Moreover, the arrangement | positioning aspect of the fan 10, the connection aspect of the pipe lines 32 and 33, etc. are not specifically limited, It sets suitably.

また、前記実施例では、ケース3の外の気温として外部ケース31の外の気温を用いて制御を行ったが、外部ケース31内の気温を検出して用いてもよい。   Moreover, in the said Example, although control was performed using the temperature outside the outer case 31 as the temperature outside the case 3, the temperature inside the outer case 31 may be detected and used.

さらに、前記実施例では、ケース3の外の気温に基づく空冷設定時間設定情報として、ケース3の外の気温とが高くなるにつれて空冷設定時間が長くなるように設定された空冷設定時間設定情報を与え、この情報とケース3の外の気温とに基づいて貯湯槽空冷制御手段13が空冷開始のタイミングを制御したが、例えばケース3の外の気温に基づく温度を給水温度とし、給水温度に基づく空冷設定時間設定情報を与え、この情報と給水温度とに基づいて貯湯槽2の空冷開始のタイミングを制御してもよい。つまり、ケース3の外の気温である外気温が低いと給水温度も低く、外気温が高いと給水温度も高くなるため、給水温度もケース3の外の気温に基づく温度とすることができる。   Further, in the embodiment, as the air cooling set time setting information based on the temperature outside the case 3, the air cooling set time setting information set so that the air cooling set time becomes longer as the temperature outside the case 3 becomes higher. Based on this information and the temperature outside the case 3, the hot water tank air cooling control means 13 controls the start timing of the air cooling. For example, the temperature based on the temperature outside the case 3 is set as the feed water temperature, and based on the feed water temperature. Air cooling set time setting information may be given, and the start timing of air cooling of the hot water tank 2 may be controlled based on this information and the feed water temperature. That is, when the outside air temperature, which is the temperature outside the case 3, is low, the feed water temperature is low, and when the outside air temperature is high, the feed water temperature is also high, so that the feed water temperature can also be a temperature based on the outside air temperature.

さらに、ケース3の外の気温(外気温)と給水温度の両方をケース3の外の気温に基づく温度とし、外気温と給水温度に基づく空冷設定時間設定情報と、外気温と給水温度とに基づいて貯湯槽2の空冷開始のタイミングを制御してもよい。   Further, the temperature outside the case 3 (outside air temperature) and the water supply temperature are both set based on the temperature outside the case 3, and the air cooling setting time setting information based on the outside air temperature and the water supply temperature, and the outside air temperature and the water supply temperature. Based on this, the start timing of the air cooling of the hot water tank 2 may be controlled.

また、季節に応じて外気温も変化するものであるので、季節情報をケース3の外の気温に基づく温度とし、季節情報に基づく空冷設定時間設定情報と季節情報とに基づいて貯湯槽2の空冷開始のタイミングを制御してもよい。この場合は、制御装置11にカレンダー機能を持たせることによって、外気温検出センサ12等のセンサを設けなくても貯湯槽2の冷却開始タイミングを制御できるので、その分だけコストを安くできる。   Moreover, since the outside temperature also changes according to the season, the season information is set to a temperature based on the temperature outside the case 3, and the hot water tank 2 is set based on the air cooling set time setting information based on the season information and the season information. The timing of starting the air cooling may be controlled. In this case, by providing the control device 11 with a calendar function, the cooling start timing of the hot water tank 2 can be controlled without providing a sensor such as the outside air temperature detection sensor 12, so that the cost can be reduced accordingly.

さらに、空気通路8(8b)の形成位置は前記実施例のように限定されるものではなく、例えば図6に示されるような位置に形成されていてもよい。なお、図6には、空気導出部5,6は図示されていないが、空気導出部5,6も空気通路8bの形成位置に対応する位置に形成する。   Furthermore, the formation position of the air passage 8 (8b) is not limited as in the above embodiment, and may be formed at a position as shown in FIG. 6, for example. In addition, although the air derivation | leading-out parts 5 and 6 are not illustrated in FIG. 6, the air derivation | leading-out parts 5 and 6 are also formed in the position corresponding to the formation position of the air channel | path 8b.

さらに、発電装置1はガスエンジンによっても形成することができる。   Furthermore, the power generator 1 can also be formed by a gas engine.

本発明の熱源装置は、発電装置を稼働と貯湯槽への貯湯とを効率的に行うことができるので、使い勝手が良好であり、例えば家庭用の熱源装置として利用できる。   Since the heat source device of the present invention can efficiently operate the power generation device and store hot water in a hot water storage tank, it is easy to use and can be used as, for example, a household heat source device.

1 発電装置
2 貯湯槽
3 ケース
4 空気導入部
5,6 空気導出部
7 断熱材
8 空気通路
10 ファン
11 制御装置
12 外気温検出センサ
13 貯湯槽空冷制御手段
14 メモリ部
15 ファン駆動手段
16 貯湯槽内湯水温検出手段
21 水供給通路
DESCRIPTION OF SYMBOLS 1 Power generator 2 Hot water storage tank 3 Case 4 Air introduction part 5,6 Air derivation part 7 Heat insulating material 8 Air passage 10 Fan 11 Control apparatus 12 Outside temperature detection sensor 13 Hot water tank air cooling control means 14 Memory part 15 Fan drive means 16 Hot water storage tank Inner water temperature detection means 21 Water supply passage

Claims (5)

発電装置と、貯湯槽と、該貯湯槽の下部側から前記発電装置に冷却用の水を供給する水供給通路と、前記発電装置の廃熱により加熱された湯を前記貯湯槽の上部側から該貯湯槽に導入し、前記貯湯槽の上部側から給湯先に湯を供給するための管路の配管構成と、を備え、前記貯湯槽は該貯湯槽の外周側を該貯湯槽と間隔を介して覆うケース内に配置されており、該ケースと前記貯湯槽との間には前記貯湯槽の少なくとも下部側を通風によって空冷するための空気通路が形成されており、前記ケースの外の空気を導入し前記空気通路を通風して前記貯湯槽の少なくとも下部側を冷却する空冷手段を備え、前記空気通路の空気導入部には空気導入用の管路が接続され、前記空気通路の空気導出部には空気導出用の管路が接続され、前記空気導入用の管路と前記空気導出用の管路のそれぞれ先端は前記ケースの外に引き出され隣接されて前記空冷手段の動作停止状態時に同圧風圧帯域となる環境下に配置される構成としたことを特徴とする発電機能付き熱源装置。   A power generator, a hot water tank, a water supply passage for supplying cooling water to the power generator from the lower side of the hot water tank, and hot water heated by waste heat of the power generator from the upper side of the hot water tank A pipe structure for introducing hot water into the hot water tank and supplying hot water from the upper side of the hot water tank to the hot water destination, and the hot water tank has an outer peripheral side of the hot water tank spaced from the hot water tank. And an air passage is formed between the case and the hot water storage tank so as to cool the air by at least the lower side of the hot water storage tank. And air cooling means for cooling at least the lower side of the hot water storage tank by ventilating the air passage, and an air introduction pipe is connected to the air introduction portion of the air passage, and air is led out of the air passage. An air outlet conduit is connected to the section for introducing the air. Each of the ends of the pipe and the air outlet pipe is drawn out of the case and adjacent to the pipe and is arranged in an environment where the air cooling means is in the same pressure wind pressure zone when the air cooling means is stopped. A heat source device with a power generation function. 前記ケースの下部には前記空気導入部と前記空気導出部とが設けられ、前記空気通路は前記空気導入部から導入される空気を前記貯湯槽に沿って上方へ立ち上げ通風するための上向き通風通路部位と該上向き通風通路部位を通過した空気を前記貯湯槽に沿って下方の前記空気導出部へ向けて下向きに通風させるための下向き通風通路部位とを有した逆U字型の空気通路と成し、前記空冷手段は貯湯槽の少なくとも下部を冷却する動作時に外部の空気を前記空気導入用の管路から導入し前記逆U字型の空気通路を通して前記空気導出用の管路から外部へ導出する構成と成したことを特徴とする請求項1記載の発電機能付き熱源装置。   The air introduction part and the air lead-out part are provided in the lower part of the case, and the air passage is upwardly ventilated for raising the air introduced from the air introduction part upward along the hot water storage tank An inverted U-shaped air passage having a passage portion and a downward ventilation passage portion for allowing the air passing through the upward ventilation passage portion to flow downward along the hot water storage tank toward the lower air outlet portion; The air cooling means is configured to introduce external air from the air introduction pipe during the operation of cooling at least the lower part of the hot water tank, and to the outside from the air lead-out pipe through the inverted U-shaped air passage. The heat source device with a power generation function according to claim 1, wherein the heat source device is configured to be derived. 前記ケースの下部の前記空気導出部と前記空気導出用の管路との接続領域には、前記空冷手段としてのファンと、空気が通風する通路の開閉を行うためのシャッタとが設けられていることを特徴とする請求項1または請求項2記載の発電機能付き熱源装置。   A fan as the air cooling means and a shutter for opening and closing a passage through which air flows are provided in a connection region between the air outlet and the air outlet pipe at the lower part of the case. The heat source device with a power generation function according to claim 1 or 2. 前記逆U字型の空気通路を構成する上向き通風通路部位と下向き通風通路部位のうち、上向き通風通路部位は空気が前記貯湯槽の外面に直接的に接触して該貯湯槽の外面と前記ケースとの間隔空間を通風する通路構成と成し、下向き通風通路部位は前記貯湯槽の外面に断熱材が設けられて該断熱材と前記ケースとの間隔空間を通風する通路構成と成していることを特徴とする請求項2または請求項3記載の発電機能付き熱源装置。   Of the upward ventilation passage portion and the downward ventilation passage portion constituting the inverted U-shaped air passage, the upward ventilation passage portion is such that air directly contacts the outer surface of the hot water tank and the outer surface of the hot water tank and the case. And a downward ventilation passage portion has a passage configuration in which a heat insulating material is provided on the outer surface of the hot water storage tank to vent the space between the heat insulating material and the case. The heat source device with a power generation function according to claim 2 or claim 3, wherein 前記発電装置は燃料電池としたことを特徴とする請求項1または請求項2または請求項3または請求項4記載の発電機能付き熱源装置。   5. The heat source device with a power generation function according to claim 1, wherein the power generation device is a fuel cell.
JP2018024062A 2018-02-14 2018-02-14 Heat source device with power generation function Ceased JP2018087686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018024062A JP2018087686A (en) 2018-02-14 2018-02-14 Heat source device with power generation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018024062A JP2018087686A (en) 2018-02-14 2018-02-14 Heat source device with power generation function

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014159513A Division JP6293609B2 (en) 2014-08-05 2014-08-05 Heat source device with power generation function

Publications (1)

Publication Number Publication Date
JP2018087686A true JP2018087686A (en) 2018-06-07

Family

ID=62493854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024062A Ceased JP2018087686A (en) 2018-02-14 2018-02-14 Heat source device with power generation function

Country Status (1)

Country Link
JP (1) JP2018087686A (en)

Similar Documents

Publication Publication Date Title
KR101843380B1 (en) Cooling and heating device
JP4661063B2 (en) Fuel cell cogeneration system
CN100397695C (en) Fuel cell device and related control method
JP7149806B2 (en) Cold air or hot air supply system for hydrogen storage alloy tank storage equipment and equipment used therefor
JP2018087686A (en) Heat source device with power generation function
JP4919854B2 (en) Hot water system
JP6293609B2 (en) Heat source device with power generation function
JP5388463B2 (en) Fuel cell device
JP5245290B2 (en) Fuel cell power generator
JP2019203650A (en) Fuel battery cogeneration system
JP5305689B2 (en) Fuel cell device
KR20130017921A (en) Heating system for electric vehicle using air flow control and method therefor
JP6400524B2 (en) Fuel cell cogeneration system
JP6472588B1 (en) Fuel cell device
JP6320233B2 (en) Heat source device with power generation function
JP7096687B2 (en) Fuel cell system
JP5219712B2 (en) Fuel cell device
JP5251390B2 (en) Fuel cell power generator
KR101393165B1 (en) Ion filter embedded type coolant tank and fuel cell system including the same
JP6820497B2 (en) Fuel cell system
KR101675675B1 (en) Fuel cell system with excellent cooling efficiency and method of operating the same
JP4408770B2 (en) Hot water storage heat recovery system
JP2013057436A (en) Heat supply system
JP2018014233A (en) Fuel cell system
WO2017168770A1 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20200331