JP2016037986A - Method of manufacturing fiber-reinforced plastic pressure vessel - Google Patents

Method of manufacturing fiber-reinforced plastic pressure vessel Download PDF

Info

Publication number
JP2016037986A
JP2016037986A JP2014159979A JP2014159979A JP2016037986A JP 2016037986 A JP2016037986 A JP 2016037986A JP 2014159979 A JP2014159979 A JP 2014159979A JP 2014159979 A JP2014159979 A JP 2014159979A JP 2016037986 A JP2016037986 A JP 2016037986A
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
pressure vessel
reinforcing fiber
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014159979A
Other languages
Japanese (ja)
Inventor
伊藤 彰浩
Akihiro Ito
彰浩 伊藤
岸川 龍広
Tatsuhiro Kishikawa
龍広 岸川
杉浦 正行
Masayuki Sugiura
正行 杉浦
麻衣子 福島
Maiko Fukushima
麻衣子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014159979A priority Critical patent/JP2016037986A/en
Publication of JP2016037986A publication Critical patent/JP2016037986A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a fiber-reinforced plastic pressure vessel, the method achieving manufacture of a fiber-reinforced plastic pressure vessel having superior burst pressure, with high productivity.SOLUTION: The method of manufacturing a fiber-reinforced plastic pressure vessel is provided in which a filament winding is performed while epoxy resin composition is into reinforced fiber bundle 1 the monofilament of which has a denier of 1.0 dtex or more and 2.4 dtex or less and has a sectional shape perpendicular to a fiber axis having a roundness of 0.7 or more and 0.9 or less. It is preferable to use reinforced bundle composed of 14000 to 100000 monofilaments as reinforced fiber bundle or reinforced fiber bundle having a total denier of 14000 to 90000 dtex. As the reinforce fiber bundle, it is preferable to use reinforced fiber bundle in which a diameter Di of section perpendicular to a fiber axis of the reinforced fiber constituting the reinforced fiber bundle is 8 to 20 μm.SELECTED DRAWING: Figure 1

Description

本発明は、優れた破壊圧力を有する繊維強化プラスチック製圧力容器の製造を高い生産性で実現する繊維強化プラスチック製圧力容器の製造方法に関する。   The present invention relates to a method for producing a pressure vessel made of fiber reinforced plastic that realizes production of a pressure vessel made of fiber reinforced plastic having an excellent breaking pressure with high productivity.

繊維強化プラスチック製圧力容器の製造方法は、一般的にフィラメントワインディング成型(以下、単に「FW法」という。)で作製される。
FW法では、マトリックス樹脂を強化繊維に浸み込ませながら、その強化繊維をタンクライナーに巻き付ける工程が他の製造工程より時間がかかる。そのため、生産性向上のためには、この工程を迅速にする必要がある。
そこで、生産性が向上した繊維強化プラスチック製圧力容器の製造方法として、圧力容器ライナーへの強化繊維の巻付速度を早くすることが試みられている(特許文献1〜3)。しかし、FW法で単に巻付速度を早くすると、強化繊維にマトリックス樹脂が付着してから圧力容器ライナーへ巻き付けられるまでの時間が短くなり、充分にマトリックス樹脂が強化繊維に浸み込む前に圧力容器ライナーに強化繊維が巻き付けられてしまうため、場合によっては加熱硬化後も樹脂が強化繊維の内部に充分に行き渡らない個所が生じ、圧力容器の破壊圧力を低減させる要因となっていた。
A manufacturing method of a pressure vessel made of fiber reinforced plastic is generally manufactured by filament winding molding (hereinafter simply referred to as “FW method”).
In the FW method, the process of winding the reinforcing fiber around the tank liner while immersing the matrix resin in the reinforcing fiber takes more time than other manufacturing processes. Therefore, it is necessary to speed up this process in order to improve productivity.
Therefore, attempts have been made to increase the winding speed of the reinforcing fiber around the pressure vessel liner as a method for producing a pressure vessel made of fiber reinforced plastic with improved productivity (Patent Documents 1 to 3). However, if the winding speed is simply increased by the FW method, the time from when the matrix resin adheres to the reinforcing fiber until it is wound around the pressure vessel liner is shortened, and the pressure before the matrix resin sufficiently penetrates into the reinforcing fiber is reduced. Since the reinforcing fiber is wound around the container liner, a portion where the resin does not sufficiently reach the inside of the reinforcing fiber even after heat curing occurs, which is a factor for reducing the breaking pressure of the pressure vessel.

特開平8−219393号公報JP-A-8-219393 特開2012−56980号公報JP 2012-56980 A 特開2012−63015号公報JP 2012-63015 A

そこで、本発明では、優れた破壊圧力を有する繊維強化プラスチック製圧力容器の製造を高い生産性で実現する繊維強化プラスチック製圧力容器の製造方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a method for producing a fiber reinforced plastic pressure vessel that realizes the production of a fiber reinforced plastic pressure vessel having an excellent breaking pressure with high productivity.

本発明の要旨は、以下の通りである。
すなわち、単繊維繊度1.0dtex以上2.4dtex以下、単繊維の繊維軸に垂直な断面形状が真円度0.7以上0.9以下である強化繊維束にエポキシ樹脂組成物を含浸しながらフィラメントワインディングする繊維強化プラスチック製圧力容器の製造方法である。
The gist of the present invention is as follows.
That is, while impregnating an epoxy resin composition into a reinforcing fiber bundle having a single fiber fineness of 1.0 dtex or more and 2.4 dtex or less and a cross-sectional shape perpendicular to the fiber axis of the single fiber of 0.7 to 0.9 This is a method for manufacturing a fiber reinforced plastic pressure vessel for filament winding.

ここで、真円度は、下記式(1)で求められる値であり、SとLはそれぞれ、光学顕微鏡で補強繊維の単繊維の繊維軸に垂直な断面の形状を観察し画像解析から得られる単繊維の断面積と周長である。
真円度=(4πS)/L・・・・(1)
Here, the roundness is a value obtained by the following formula (1), and S and L are obtained from image analysis by observing the shape of the cross section perpendicular to the fiber axis of the single fiber of the reinforcing fiber with an optical microscope. The cross-sectional area and perimeter of the single fiber.
Roundness = (4πS) / L 2 (1)

また、強化繊維束として、14000〜100000本の単繊維からなる強化繊維束、または、総繊度が14000〜90000dtexの強化繊維束を用いることが好ましい。
そして、強化繊維束として、強化繊維束を構成する強化繊維の繊維軸に垂直な断面の直径Diが8〜20μmである強化繊維束を用いることが好ましい。
ここで、単繊維の繊維軸に垂直な断面の直径Diは、光学顕微鏡で補強繊維の単繊維の繊維軸に垂直な断面の形状を観察し画像解析から得られる、単繊維の最大フェレ径の平均値である。
In addition, it is preferable to use a reinforcing fiber bundle composed of 14,000 to 100,000 single fibers or a reinforcing fiber bundle having a total fineness of 14,000 to 90000 dtex as the reinforcing fiber bundle.
And it is preferable to use the reinforcing fiber bundle whose diameter Di of the cross section perpendicular | vertical to the fiber axis of the reinforcing fiber which comprises a reinforcing fiber bundle is 8-20 micrometers as a reinforcing fiber bundle.
Here, the diameter Di of the cross section perpendicular to the fiber axis of the single fiber is the maximum ferret diameter of the single fiber obtained from image analysis by observing the shape of the cross section perpendicular to the fiber axis of the single fiber of the reinforcing fiber with an optical microscope. Average value.

さらに、強化繊維束にエポキシ樹脂組成物を含浸しながらフィラメントワインディングするにあたって強化繊維束を45〜200m/分で移送しフィラメントワインディングすることが好ましい。   Further, when filament winding while impregnating the epoxy fiber composition into the reinforcing fiber bundle, it is preferable to transfer the reinforcing fiber bundle at 45 to 200 m / min for filament winding.

本発明では、優れた破壊圧力を有する繊維強化プラスチック製圧力容器の製造を高い生産性で実現する繊維強化プラスチック製圧力容器の製造方法を提供することができる。   The present invention can provide a method for producing a fiber reinforced plastic pressure vessel that realizes the production of a fiber reinforced plastic pressure vessel having an excellent breaking pressure with high productivity.

FWを用いた繊維強化プラスチック製圧力容器の製造の概念図である。It is a conceptual diagram of manufacture of the pressure vessel made from fiber reinforced plastics using FW. 繊維強化プラスチック製圧力容器の一例を示す断面図である。It is sectional drawing which shows an example of the pressure vessel made from fiber reinforced plastics.

(強化繊維)
本発明で使用する強化繊維は、その単繊維繊度と真円度が重要であり、従来知られているガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等の一般に強化繊維と知られているものが使用可能である。またこれらの強化繊維を組み合わせて、また、別々の層としてFW法に適用してもよい。
強化繊維の中でも炭素繊維はその比強度、比弾性が優れることから好ましい。さらにストランド強度が3000〜6500MPaの炭素繊維である繊維強化プラスチックとして高度の物性を発現できることから好ましい。ここで、炭素繊維のストランド強度とは、JIS R 7601に準拠して測定したストランド強度を指す。
(Reinforced fiber)
In the reinforcing fiber used in the present invention, the single fiber fineness and roundness are important, and conventionally known fiber fibers such as glass fiber, aramid fiber, carbon fiber, and boron fiber are known. It can be used. Further, these reinforcing fibers may be combined and applied to the FW method as separate layers.
Among the reinforcing fibers, carbon fibers are preferable because of their excellent specific strength and specific elasticity. Furthermore, it is preferable because high physical properties can be expressed as a fiber reinforced plastic which is a carbon fiber having a strand strength of 3000 to 6500 MPa. Here, the strand strength of carbon fiber refers to the strand strength measured in accordance with JIS R7601.

(強化繊維束)
本発明では、強化繊維束として、14000〜100000本の単繊維からなる強化繊維束、または、総繊度が14000〜90000dtexの強化繊維束を用いることが好ましい。これらの条件は、後述する単繊維繊度と真円度とにより発現する巻付速度を高速とできる効果を高めることができる
(Reinforced fiber bundle)
In the present invention, it is preferable to use a reinforcing fiber bundle composed of 14,000 to 100,000 single fibers or a reinforcing fiber bundle having a total fineness of 14,000 to 90000 dtex as the reinforcing fiber bundle. These conditions can enhance the effect of increasing the winding speed expressed by the single fiber fineness and roundness described later.

(強化繊維の断面形状)
本発明で使用される強化繊維は、単繊維の繊維軸に垂直な断面の形状の真円度が0.7以上0.9以下であることが必要である。ここで真円度は、下記式(1)で求められる値であり、断面積S、周長Lは光学顕微鏡で観察した単繊維の繊維軸に垂直な断面の画像解析から得られる値である。
真円度=(4πS)/L・・・・(1)
(Cross-sectional shape of reinforcing fiber)
The reinforcing fiber used in the present invention needs to have a roundness of 0.7 to 0.9 in the shape of a cross section perpendicular to the fiber axis of a single fiber. Here, the roundness is a value obtained by the following formula (1), and the cross-sectional area S and the circumferential length L are values obtained from image analysis of a cross section perpendicular to the fiber axis of a single fiber observed with an optical microscope. .
Roundness = (4πS) / L 2 (1)

真円度が0.7以上、0.9以下とすることで繊維強化プラスチック製圧力容器中の繊維強化プラスチックの繊維含有率を高くすることができ、繊維強化プラスチック製圧力容器の力学特性を高く維持することができる。0.75以上、0.9以下がさらに好ましい。
また、繊維間の空隙の確保による良好な樹脂含浸性を得るため、単繊維の繊維軸に垂直な断面の形状は、いわゆるキドニーシェイプがより好ましい。C型や八葉形のような複雑形状では、繊維を密に詰めることが不可能となり、繊維強化プラスチック製圧力容器中の繊維強化プラスチックの繊維含有率を高くできず、力学特性を高いものとすることが困難となる。
By setting the roundness to 0.7 or more and 0.9 or less, the fiber content of the fiber reinforced plastic in the fiber reinforced plastic pressure vessel can be increased, and the mechanical properties of the fiber reinforced plastic pressure vessel are increased. Can be maintained. More preferably, it is 0.75 or more and 0.9 or less.
Further, in order to obtain good resin impregnation property by securing the voids between the fibers, the shape of the cross section perpendicular to the fiber axis of the single fiber is more preferably a so-called kidney shape. In complex shapes such as C-type and Yaba-type, it is impossible to pack the fibers closely, the fiber content of the fiber reinforced plastic in the pressure vessel made of fiber reinforced plastic cannot be increased, and the mechanical properties are high. Difficult to do.

(単繊維の真円度の測定方法)
本発明で採用する単繊維の真円度の測定方法は、以下の通りである。
1)強化繊維に市販されているエポキシ樹脂組成物を含浸後、エポキシ樹脂組成物を硬化し、硬化物を得る。
2)硬化物をさらにメタクリル樹脂にて包埋し、繊維軸に垂直方向に切断する。
3)その切断面を研磨し、サンプルを得る。
4)そのサンプルを、光学顕微鏡(ニコン社製、製品名:エクリプスLV150A)を用いて、倍率は1000倍、解像度は縦1280×横960ピクセルの条件で観察し画像を取り込む。
5)その画像を画像処理ソフトウェア(日本ローパー株式会社製、製品名:ImagePro PLUS)を用いて単繊維の断面の外形をトレースし、周長L及び面積Sを計測した。この際、1サンプルについて場所をかえて5枚の画像を得、各画像から3個以上の単繊維断面を任意に選んで、合計20本について、LおよびSの平均値を求め、前記の式(1)に従い、真円度を求める。
(Measurement method of roundness of single fiber)
The method for measuring the roundness of a single fiber employed in the present invention is as follows.
1) After impregnating the commercially available epoxy resin composition in the reinforcing fiber, the epoxy resin composition is cured to obtain a cured product.
2) The cured product is further embedded in methacrylic resin and cut in a direction perpendicular to the fiber axis.
3) The cut surface is polished to obtain a sample.
4) The sample is observed using an optical microscope (manufactured by Nikon, product name: Eclipse LV150A) under the conditions of a magnification of 1000 times and a resolution of 1280 × 960 pixels in a horizontal direction to capture an image.
5) Using the image processing software (product name: ImagePro PLUS, manufactured by Nippon Roper Co., Ltd.), the outer shape of the cross section of the single fiber was traced, and the circumference L and area S were measured. At this time, five images were obtained by changing the location for one sample, and three or more single fiber cross sections were arbitrarily selected from each image, and the average value of L and S was determined for a total of 20 samples, Obtain roundness according to (1).

(単繊維の直径Di)
本発明で使用される強化繊維は、単繊維の繊維軸に垂直な断面の直径Diが8〜20μmである強化繊維である。これにより、単繊維同士が絡み合うことが少なく、優れた破壊圧力を有する繊維強化プラスチック製圧力容器が可能となる。また、直径Diは9μm以上であることが好ましく、10μm以上であることがさらに好ましい。一般に単繊維の強度が高いものが得やすいという観点から、直径Diは17μm以下であることが好ましく、15μm以下であることがさらに好ましい。
(Single fiber diameter Di)
The reinforcing fiber used in the present invention is a reinforcing fiber having a diameter Di of 8 to 20 μm in a cross section perpendicular to the fiber axis of the single fiber. This makes it possible to provide a pressure vessel made of fiber reinforced plastic that has few entangled single fibers and has an excellent breaking pressure. Further, the diameter Di is preferably 9 μm or more, and more preferably 10 μm or more. In general, the diameter Di is preferably 17 μm or less, and more preferably 15 μm or less, from the viewpoint that it is easy to obtain a single fiber having high strength.

(単繊維の直径Diの測定方法)
本発明で採用する単繊維の直径Diの測定方法は、以下の通りである。
1)前記の真円度の測定に用いた、それぞれの画像を用い、繊維断面の外径をトレースし、断面の長径(最大フェレ径)dを計測する。
2)長径dの平均値を求め、これを炭素繊維束の単繊維の直径Diとする。
(Measurement method of diameter Di of single fiber)
The method for measuring the diameter Di of the single fiber employed in the present invention is as follows.
1) Using each image used for the measurement of the roundness, the outer diameter of the fiber cross section is traced, and the long diameter (maximum ferret diameter) d of the cross section is measured.
2) The average value of the major axis d is obtained, and this is set as the diameter Di of the single fiber of the carbon fiber bundle.

(エポキシ樹脂硬化剤)
本発明では、繊維強化プラスチック製圧力容器のマトリックス樹脂として、FW法に一般に用いられるエポキシ樹脂組成物を採用する。強化繊維束にエポキシ樹脂組成物を含浸する際に、エポキシ樹脂組成物の粘度が50℃で45ポイズ以下であることが、上述の強化繊維を用いても高速で巻き付ける際に稀にエポキシ樹脂組成物が強化繊維束への含浸が完全でない部分が生じる可能性を下げる上で好ましい。含浸時には、エポキシ樹脂組成物の粘度が極端に上昇しない範囲で加熱しても良い。
本発明のエポキシ樹脂は、2種類以上のエポキシ樹脂を混合して使用しても構わない。
(Epoxy resin curing agent)
In this invention, the epoxy resin composition generally used for FW method is employ | adopted as matrix resin of a pressure vessel made from a fiber reinforced plastic. When the reinforcing fiber bundle is impregnated with the epoxy resin composition, the viscosity of the epoxy resin composition is 45 poise or less at 50 ° C. It is preferable to reduce the possibility that the product will have a portion where the reinforcing fiber bundle is not completely impregnated. At the time of impregnation, the epoxy resin composition may be heated within a range in which the viscosity does not extremely increase.
The epoxy resin of the present invention may be used by mixing two or more types of epoxy resins.

また、室温で非常に粘稠もしくは固形のエポキシ樹脂を液状のエポキシ樹脂に分散・溶解して用いることも可能である。
本発明で用いることができるエポキシ樹脂の硬化剤としては、ポリアミド、脂肪族および脂環式アミン、芳香族アミン、フェノール、酸無水物、有機酸、三級アミン、ルイス酸錯体などが挙げられる。特にFW成形では、ポリアミド、酸無水物、三級アミン、ルイス酸錯体が好適に用いられる。本発明のエポキシ樹脂に適用する硬化剤は、上記の群のうち、1種類でも構わないが、必要に応じて2種類以上の硬化剤を混合して使用しても構わない。
It is also possible to use a very viscous or solid epoxy resin dispersed and dissolved in a liquid epoxy resin at room temperature.
Examples of the epoxy resin curing agent that can be used in the present invention include polyamides, aliphatic and alicyclic amines, aromatic amines, phenols, acid anhydrides, organic acids, tertiary amines, and Lewis acid complexes. Particularly in FW molding, polyamide, acid anhydride, tertiary amine, and Lewis acid complex are preferably used. The curing agent applied to the epoxy resin of the present invention may be one type in the above group, but two or more types of curing agents may be mixed and used as necessary.

(硬化促進剤)
本発明で使用するエポキシ樹脂には硬化促進剤を併用しても構わない。具体的にはジシアンジアミドにはウレア化合物、酸無水物類にはイミダゾール類、3級アミン類、有機ホスフィン化合物類またはこれらの塩類などがあげられる。硬化剤促進剤の添加量としてはエポキシ樹脂組成物に対して0.5〜5質量%の範囲であることが好ましく、0.5〜3質量%であることが更に好ましい。
(Curing accelerator)
A curing accelerator may be used in combination with the epoxy resin used in the present invention. Specific examples include urea compounds for dicyandiamide, imidazoles, tertiary amines, organic phosphine compounds or salts thereof for acid anhydrides. The addition amount of the curing agent accelerator is preferably in the range of 0.5 to 5% by mass, more preferably 0.5 to 3% by mass with respect to the epoxy resin composition.

(添加剤)
本発明で使用するエポキシ樹脂組成物には、圧力容器の破壊圧力を著しく低下させない範囲で添加剤を配合しても構わない。具体的には、靱性を付与するために熱可塑性樹脂を分散もしくは溶解しても構わない。また、難燃性を向上するため水酸化アルミニウムなどの金属水酸化物、アルミナ、酸化チタンや酸化マグネシウムなどの金属酸化物、リン化合物、三酸化アンチモンなどの難燃剤を加えることもできる。1種類でも構わないが、必要に応じて2種類以上の硬化剤を混合して使用しても構わない。
(Additive)
In the epoxy resin composition used in the present invention, an additive may be blended within a range that does not significantly reduce the breaking pressure of the pressure vessel. Specifically, a thermoplastic resin may be dispersed or dissolved in order to impart toughness. In addition, in order to improve flame retardancy, a metal hydroxide such as aluminum hydroxide, a metal oxide such as alumina, titanium oxide or magnesium oxide, a flame retardant such as phosphorus compound or antimony trioxide can be added. One type may be used, but two or more types of curing agents may be mixed and used as necessary.

(粘度測定)
本発明で採用するエポキシ樹脂組成物の粘度の測定方法は、以下の通りである。
平板―平板型回転粘度計を使用し、エポキシ樹脂組成物の50℃の粘度を測定した。測定装置はティー・エイ・インスツルメント・ジャパン(株)製のAR−G2を用いた。測定にはφ34のパラレルプレートを使用し、平板―平板間ギャップは0.5mmとする。
(Viscosity measurement)
The method for measuring the viscosity of the epoxy resin composition employed in the present invention is as follows.
Using a flat plate-flat plate viscometer, the viscosity of the epoxy resin composition at 50 ° C. was measured. AR-G2 made by TA Instruments Japan Co., Ltd. was used as a measuring device. A φ34 parallel plate is used for the measurement, and the gap between the flat plates is 0.5 mm.

(FW法)
本発明では、上述の強化繊維を使用することにより、エポキシ樹脂組成物を強化繊維に浸み込ませながら、その強化繊維をタンクライナーに高速度で巻き付けることが可能で、この工程を迅速に終わらせることができる。本発明では、繊維強化プラスチック製圧力容器のタンクライナーとして樹脂性ライナー、金属性ライナーのいずれも使用することが可能である。
(FW method)
In the present invention, by using the above-mentioned reinforcing fiber, the reinforcing fiber can be wound around the tank liner at a high speed while the epoxy resin composition is immersed in the reinforcing fiber, and this process is completed quickly. Can be made. In the present invention, either a resinous liner or a metallic liner can be used as a tank liner of a pressure vessel made of fiber reinforced plastic.

本発明で「高速度」と称するのは、強化繊維を45〜200m/分で移送しタンクライナーに巻き付けることをいう。
本発明では、タンクライナー上に未硬化の繊維強化プラスチック層を任意に形成したのち、公知の方法で硬化して繊維強化プラスチック製圧力容器を得る。
In the present invention, the term “high speed” means that the reinforcing fiber is transferred at 45 to 200 m / min and wound around the tank liner.
In the present invention, an uncured fiber reinforced plastic layer is optionally formed on the tank liner and then cured by a known method to obtain a fiber reinforced plastic pressure vessel.

以下、実施例により本発明をより具体的に説明する。
<エポキシ樹脂組成物>
以下の主剤、硬化剤および硬化助剤を混合して、エポキシ樹脂組成物を得た。
樹脂組成物には以下の原料を用いた。
(主剤)jER828(製品名、ビスフェノールA型エポキシ樹脂):三菱化学(株)
(硬化剤)HN2200(製品名、酸無水物硬化剤):日立化成(株)
(硬化助剤)キュアゾール2E4MZ(製品名、イミダゾール):四国化成
Hereinafter, the present invention will be described more specifically with reference to examples.
<Epoxy resin composition>
The following main agent, curing agent and curing aid were mixed to obtain an epoxy resin composition.
The following raw materials were used for the resin composition.
(Main agent) jER828 (product name, bisphenol A type epoxy resin): Mitsubishi Chemical Corporation
(Curing agent) HN2200 (Product name, acid anhydride curing agent): Hitachi Chemical Co., Ltd.
(Curing aid) Curesol 2E4MZ (product name, imidazole): Shikoku Chemicals

<強化繊維束>
強化繊維束として、以下の炭素繊維を用意した。
炭素繊維束1
単繊維繊度: 2.5dtex
真円度: 0.85
単繊維直径Di: 13.3μm
単繊維数: 24000本
ストランド引張強度: 4000MPa
ストランド引張弾性率: 230GPa
<Reinforced fiber bundle>
The following carbon fibers were prepared as reinforcing fiber bundles.
Carbon fiber bundle 1
Single fiber fineness: 2.5 dtex
Roundness: 0.85
Single fiber diameter Di: 13.3 μm
Number of single fibers: 24,000 Strand tensile strength: 4000 MPa
Strand tensile modulus: 230 GPa

炭素繊維束2
単繊維繊度: 2.0dtex
真円度: 0.85
単繊維直径Di: 10.6μm
単繊維数: 30000本
ストランド引張強度: 4600MPa
ストランド引張弾性率: 240GPa
Carbon fiber bundle 2
Single fiber fineness: 2.0 dtex
Roundness: 0.85
Single fiber diameter Di: 10.6 μm
Number of single fibers: 30000 Strand tensile strength: 4600 MPa
Strand tensile modulus: 240 GPa

炭素繊維束3
単繊維繊度: 0.67dtex
真円度: 0.98
単繊維直径Di: 7.0μm
単繊維数: 12000本
ストランド引張強度: 4900MPa
ストランド引張弾性: 240GPa
Carbon fiber bundle 3
Single fiber fineness: 0.67 dtex
Roundness: 0.98
Single fiber diameter Di: 7.0 μm
Number of single fibers: 12,000 Strand tensile strength: 4900 MPa
Strand tensile elasticity: 240 GPa

<タンクライナー>
タンクライナーとして、外径 160mm、長さ 515mmで容量9リットルのアルミニウム製ライナーを用意した。このライナーは、JIS H 4040のA6061−T6に規定されるアルミニウム素材に熱処理を施した材料でできており、胴部の厚みが約3.3mmであった。
<Tank liner>
As a tank liner, an aluminum liner having an outer diameter of 160 mm, a length of 515 mm and a capacity of 9 liters was prepared. This liner was made of a material obtained by heat-treating an aluminum material specified in A6061-T6 of JIS H 4040, and the thickness of the body portion was about 3.3 mm.

<繊維強化プラスチック製圧力容器の作製>
評価用の繊維強化プラスチック製圧力容器を以下の手順で作製した。
1)FW装置(図1)を用いて、強化繊維(1)にエポキシ樹脂組成物(2)を樹脂含有率24質量%となるように付着させ、ガイドロール(3)を介して、タンクライナー(4)に巻き付けた。
2)タンクライナー上に構成した強化プラスチック層の構成を図2に示した。アルミニウム製ライナーの胴部に接する第一層目として、胴部上にライナーの長手方向(回転軸方向)に対し88.6°をなすフープ層をその厚みが0.63mmになるように形成した。その後、ライナーの長手方向(回転軸方向)に対し14°の角度でライナーの鏡部を補強するヘリカル層を積層し、胴部の繊維強化樹脂層の厚みが2.5mmとなるように巻き付けた。
3)なお、繊維強化樹脂層の厚みはノギスで外径を測定することにより求めた。
4)この際、巻付速度は、アルミニウム製ライナーにフープ層を巻き付ける際の強化繊維束の移送速度(m/分)である。
5)上記の手順で繊維強化プラスチック層(未硬化)を形成したライナーを、FW装置から外して熱風炉内に吊り下げ、炉内の温度を130℃まで2℃/分間で昇温させた。繊維強化プラスチック層の表面温度が130℃に到達したことを確認した後、2時間、炉内の温度を130℃に保ち、繊維強化プラスチック層を硬化した。その後、炉内温度を1℃/分間で60℃まで冷却し、繊維強化プラスチック製圧力容器(9Lタンク)を得た。
<Production of pressure vessel made of fiber reinforced plastic>
A fiber reinforced plastic pressure vessel for evaluation was prepared by the following procedure.
1) Using an FW device (FIG. 1), the epoxy resin composition (2) is adhered to the reinforcing fiber (1) so as to have a resin content of 24% by mass, and the tank liner is passed through the guide roll (3). Wound around (4).
2) The structure of the reinforced plastic layer formed on the tank liner is shown in FIG. As a first layer in contact with the body of the aluminum liner, a hoop layer having an angle of 88.6 ° with respect to the longitudinal direction (rotation axis direction) of the liner was formed on the body so as to have a thickness of 0.63 mm. . Thereafter, a helical layer that reinforces the mirror part of the liner at an angle of 14 ° with respect to the longitudinal direction (rotation axis direction) of the liner was laminated, and wound so that the thickness of the fiber reinforced resin layer of the body part was 2.5 mm. .
3) The thickness of the fiber reinforced resin layer was determined by measuring the outer diameter with a caliper.
4) At this time, the winding speed is the transfer speed (m / min) of the reinforcing fiber bundle when the hoop layer is wound around the aluminum liner.
5) The liner on which the fiber reinforced plastic layer (uncured) was formed by the above procedure was removed from the FW apparatus and suspended in the hot air furnace, and the temperature in the furnace was raised to 130 ° C. at 2 ° C./min. After confirming that the surface temperature of the fiber reinforced plastic layer reached 130 ° C., the temperature in the furnace was maintained at 130 ° C. for 2 hours to cure the fiber reinforced plastic layer. Thereafter, the furnace temperature was cooled to 60 ° C. at 1 ° C./min to obtain a fiber reinforced plastic pressure vessel (9 L tank).

<破裂圧力の測定方法>
水圧破壊試験機に繊維強化プラスチック製圧力容器をセットし、圧力容器内に水を満たした後、昇圧速度15MPa/分間で繊維強化プラスチック製圧力容器に水圧を負荷し、繊維強化プラスチック製圧力容器が破裂したときの水圧を記録して繊維強化プラスチック製圧力容器の実測の破裂圧力とした。破裂圧力が繊維強化プラスチック製圧力容器(9Lタンク)の仕様である20MPaに安全率4倍をかけた80MPaを超える場合を合格と判定した。
<Method of measuring burst pressure>
After setting the fiber reinforced plastic pressure vessel in the water pressure fracture tester and filling the pressure vessel with water, the fiber reinforced plastic pressure vessel is loaded with water pressure at a pressure increase rate of 15 MPa / min. The water pressure at the time of rupture was recorded and used as the actual rupture pressure of the fiber reinforced plastic pressure vessel. A case where the burst pressure exceeded 80 MPa, which was a specification of the fiber reinforced plastic pressure vessel (9 L tank), 20 MPa multiplied by 4 times the safety factor, was determined to be acceptable.

(実施例1)
炭素繊維束1を用い、フープ層の巻付速度を50m/分として、繊維強化プラスチック製圧力容器を作製した。その繊維強化プラスチック製圧力容器の破壊圧力を表1に示した。
Example 1
A fiber reinforced plastic pressure vessel was prepared using the carbon fiber bundle 1 and a hoop layer winding speed of 50 m / min. The breaking pressure of the pressure vessel made of fiber reinforced plastic is shown in Table 1.

(実施例2)
炭素繊維束2を使用する以外は実施例1と同様に繊維強化プラスチック製圧力容器を得た。その繊維強化プラスチック製圧力容器の破壊圧力を表1に示した。
(Example 2)
A pressure vessel made of fiber reinforced plastic was obtained in the same manner as in Example 1 except that the carbon fiber bundle 2 was used. The breaking pressure of the pressure vessel made of fiber reinforced plastic is shown in Table 1.

(比較例2)
炭素繊維束3を使用する以外は実施例1と同様に繊維強化プラスチック製圧力容器を得た。その繊維強化プラスチック製圧力容器の破壊圧力を表1に示した。
(Comparative Example 2)
A fiber reinforced plastic pressure vessel was obtained in the same manner as in Example 1 except that the carbon fiber bundle 3 was used. The breaking pressure of the pressure vessel made of fiber reinforced plastic is shown in Table 1.

(比較例2)
フープ層の巻付速度を10m/分とする以外は比較例3と同様に繊維強化プラスチック製圧力容器を得た。その繊維強化プラスチック製圧力容器の破壊圧力を表1に示した。
(Comparative Example 2)
A fiber reinforced plastic pressure vessel was obtained in the same manner as in Comparative Example 3 except that the hoop layer winding speed was 10 m / min. The breaking pressure of the pressure vessel made of fiber reinforced plastic is shown in Table 1.

(結果のまとめ)
実施例は、いずれも強化繊維を50m/分の巻き速度で巻付けても、80MPaを超える優れた破壊圧力の繊維強化プラスチック製圧力容器が得られた。一方、比較例では60MPaは超えたものの、ストランド強度から予想される破壊圧力には達しないものであった。巻付速度を10m/分に下げた参考例では、80MPaを超える優れた破壊圧力を有する繊維強化プラスチック製圧力容器が得られた。これから本発明の製造方法で使用する強化繊維束を選ぶことにより生産性よく繊維強化プラスチック製圧力容器を製造しても優れた破壊圧力のものが得られることが判った。
(Summary of results)
In each of the examples, even when the reinforcing fiber was wound at a winding speed of 50 m / min, a fiber reinforced plastic pressure vessel having an excellent breaking pressure exceeding 80 MPa was obtained. On the other hand, in the comparative example, although it exceeded 60 MPa, it did not reach the breaking pressure expected from the strand strength. In the reference example in which the winding speed was lowered to 10 m / min, a fiber reinforced plastic pressure vessel having an excellent breaking pressure exceeding 80 MPa was obtained. From this, it has been found that by selecting the reinforcing fiber bundle used in the manufacturing method of the present invention, even if a pressure vessel made of fiber reinforced plastic is manufactured with high productivity, an excellent breaking pressure can be obtained.

1 強化繊維、2 エポキシ樹脂組成物を入れたレジンバス、3 ガイドロール、4 タンクライナー
1 Reinforcing fiber, 2 Resin bath containing epoxy resin composition, 3 Guide roll, 4 Tank liner

Claims (4)

単繊維繊度1.0dtex以上2.4dtex以下、単繊維の繊維軸に垂直な断面形状が真円度0.7以上0.9以下である強化繊維束にエポキシ樹脂組成物を含浸しながらフィラメントワインディングする繊維強化プラスチック製圧力容器の製造方法。
ここで、真円度は、下記式(1)で求められる値であり、SとLはそれぞれ、光学顕微鏡で補強繊維の単繊維の繊維軸に垂直な断面の形状を観察し画像解析から得られる単繊維の断面積と周長である。
真円度=(4πS)/L・・・・(1)
Filament winding while impregnating an epoxy resin composition into a reinforcing fiber bundle having a single fiber fineness of 1.0 dtex or more and 2.4 dtex or less and a cross-sectional shape perpendicular to the fiber axis of the single fiber of 0.7 to 0.9 To manufacture a pressure vessel made of fiber reinforced plastic.
Here, the roundness is a value obtained by the following formula (1), and S and L are obtained from image analysis by observing the shape of the cross section perpendicular to the fiber axis of the single fiber of the reinforcing fiber with an optical microscope. The cross-sectional area and perimeter of the single fiber.
Roundness = (4πS) / L 2 (1)
強化繊維束として、14000〜100000本の単繊維からなる強化繊維束、または、総繊度が14000〜90000dtexの強化繊維束を用いる、請求項1に記載の繊維強化プラスチック製圧力容器の製造方法。   The method for producing a pressure vessel made of fiber reinforced plastic according to claim 1, wherein a reinforcing fiber bundle comprising 14,000 to 100,000 single fibers or a reinforcing fiber bundle having a total fineness of 14,000 to 90000 dtex is used as the reinforcing fiber bundle. 強化繊維束として、強化繊維束を構成する強化繊維の繊維軸に垂直な断面の直径Diが8〜20μmである強化繊維束を用いる、請求項1または2に記載の繊維強化プラスチック製圧力容器の製造方法。
ここで、単繊維の繊維軸に垂直な断面の直径Diは、光学顕微鏡で補強繊維の単繊維の繊維軸に垂直な断面の形状を観察し画像解析から得られる、単繊維の最大フェレ径の平均値である。
The fiber reinforced plastic pressure vessel according to claim 1 or 2, wherein a reinforcing fiber bundle having a diameter Di of a cross section perpendicular to the fiber axis of the reinforcing fiber constituting the reinforcing fiber bundle is 8 to 20 µm is used as the reinforcing fiber bundle. Production method.
Here, the diameter Di of the cross section perpendicular to the fiber axis of the single fiber is the maximum ferret diameter of the single fiber obtained from image analysis by observing the shape of the cross section perpendicular to the fiber axis of the single fiber of the reinforcing fiber with an optical microscope. Average value.
強化繊維束にエポキシ樹脂組成物を含浸しながらフィラメントワインディングするにあたって強化繊維束を45〜200m/分で移送しフィラメントワインディングする、請求項1〜3のいずれか一項に記載の繊維強化プラスチック製圧力容器の製造方法。   The fiber-reinforced plastic pressure according to any one of claims 1 to 3, wherein the reinforcing fiber bundle is wound while impregnating the epoxy resin composition with the reinforcing fiber bundle to transfer the reinforcing fiber bundle at 45 to 200 m / min for filament winding. Container manufacturing method.
JP2014159979A 2014-08-06 2014-08-06 Method of manufacturing fiber-reinforced plastic pressure vessel Pending JP2016037986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014159979A JP2016037986A (en) 2014-08-06 2014-08-06 Method of manufacturing fiber-reinforced plastic pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014159979A JP2016037986A (en) 2014-08-06 2014-08-06 Method of manufacturing fiber-reinforced plastic pressure vessel

Publications (1)

Publication Number Publication Date
JP2016037986A true JP2016037986A (en) 2016-03-22

Family

ID=55529241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014159979A Pending JP2016037986A (en) 2014-08-06 2014-08-06 Method of manufacturing fiber-reinforced plastic pressure vessel

Country Status (1)

Country Link
JP (1) JP2016037986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107139502A (en) * 2017-07-04 2017-09-08 湖北山叶环保科技股份有限公司 A kind of fiberglass tank body winding die body and fiberglass tank body fiber winding method
CN111070720A (en) * 2019-12-31 2020-04-28 中国人民解放军国防科技大学 Fiber position control device and method for fiber reinforced composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107139502A (en) * 2017-07-04 2017-09-08 湖北山叶环保科技股份有限公司 A kind of fiberglass tank body winding die body and fiberglass tank body fiber winding method
CN111070720A (en) * 2019-12-31 2020-04-28 中国人民解放军国防科技大学 Fiber position control device and method for fiber reinforced composite material
CN111070720B (en) * 2019-12-31 2021-12-17 中国人民解放军国防科技大学 Fiber position control device and method for fiber reinforced composite material

Similar Documents

Publication Publication Date Title
US10316158B2 (en) Production method for fibre-reinforced composite material, prepreg, particle-containing resin composition, and fibre-reinforced composite material
KR20130131391A (en) Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
EP2810987A1 (en) Epoxy resin composition and fiber-reinforced composite material
KR101898394B1 (en) Towpreg including epoxy resin composition
US20210115208A1 (en) Prepreg and carbon fiber reinforced material
JP2010057462A (en) Prepreg for fishing rod tip, fiber-reinforced composite material for fishing rod tip, solid body for fishing rod tip, tubular body for fishing rod tip, and fishing rod tip
JP7206910B2 (en) Prepregs and carbon fiber reinforced composites
JP6895682B2 (en) Manufacturing method of unidirectional prepreg, fiber reinforced thermoplastic resin sheet, unidirectional prepreg and fiber reinforced thermoplastic resin sheet, and molded article
JP2016190920A (en) Epoxy resin composition for tow prepreg and tow prepreg
JP2016037986A (en) Method of manufacturing fiber-reinforced plastic pressure vessel
JP7255493B2 (en) Fiber reinforced composite material and cured product using the same
JP2008095222A (en) Carbon fiber strand and prepreg
JP2007016364A (en) Carbon fiber bundle
JP2014145003A (en) Prepreg and fiber reinforced composite material
JP5059579B2 (en) Sizing agent and sizing treated carbon fiber bundle
US20150005458A1 (en) Matrix material
JP2014173053A (en) Prepreg for press molding and fiber reinforced composite material
JP6384121B2 (en) Prepreg, method for producing the same, and carbon fiber reinforced composite material
US9999995B2 (en) Method for producing molded article of fiber-reinforced plastic
JP3480769B2 (en) Epoxy resin composition for tow prepreg
US9670356B2 (en) Matrix material
JP2015193713A (en) Epoxy resin composition and fiber reinforced composite material
JP7287171B2 (en) Prepregs and carbon fiber reinforced composites
JP6575516B2 (en) tire
JP2011140966A (en) Composite vessel