JP2016037422A - Joining material and use thereof - Google Patents

Joining material and use thereof Download PDF

Info

Publication number
JP2016037422A
JP2016037422A JP2014162413A JP2014162413A JP2016037422A JP 2016037422 A JP2016037422 A JP 2016037422A JP 2014162413 A JP2014162413 A JP 2014162413A JP 2014162413 A JP2014162413 A JP 2014162413A JP 2016037422 A JP2016037422 A JP 2016037422A
Authority
JP
Japan
Prior art keywords
thermal expansion
glass
ppm
expansion coefficient
glass layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014162413A
Other languages
Japanese (ja)
Other versions
JP6285318B2 (en
Inventor
高橋 洋祐
Yosuke Takahashi
洋祐 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2014162413A priority Critical patent/JP6285318B2/en
Publication of JP2016037422A publication Critical patent/JP2016037422A/en
Application granted granted Critical
Publication of JP6285318B2 publication Critical patent/JP6285318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a joining material containing no alkali component, capable of airtightly encapsulating a junction between components having different coefficients of thermal expansion (for example, between a ceramic component and a metallic component) for a long period.SOLUTION: Provided is a joining material 10 comprising a laminated glass composed of three or more glass layers and, in a direction of lamination of the glass layers, a coefficient of thermal expansion of the glass layers in a range of 30°C to 500°C increases gradually from a glass layer at one end of the glass layers (glass layer 12 having the least coefficient of thermal expansion) towards a glass layer at the other end of the glass layers (glass layer 16 having the largest coefficient of thermal expansion). A difference in coefficients of thermal expansion between neighboring glass layers of the joining material 10 in a range of 30°C to 500°C is each 1.5 ppm/K or less. Further, in each glass layer, an alkali component is not contained.SELECTED DRAWING: Figure 1

Description

本発明は、接合材に関する。詳しくは、熱膨張係数の大きく異なる部材間の接合(セラミック部材と金属部材の接合)に好適に使用することができる接合材に関する。   The present invention relates to a bonding material. Specifically, the present invention relates to a bonding material that can be suitably used for bonding between members having greatly different coefficients of thermal expansion (bonding of a ceramic member and a metal member).

車載用部品、半導体装置、環境装置等の、過酷な雰囲気(例えば100℃〜200℃程度の高温や、強酸、強アルカリの雰囲気下)に曝され得る部材については、近年、それらの部材に要求される特性(例えば耐性や耐久性)が厳化してきている。これに伴い、従来この種の用途で使用されてきたステンレス鋼や特殊合金等の金属材料が腐食されるといった状況も発生している。このため、耐熱性や化学的安定性等に優れるセラミック材料(例えばアルミナ(Al))の使用が検討されている。ただし、セラミック材料は脆性材料であり、かつ難加工性材料でもあるため、複雑な形状や大型形状の部材を作成することが困難である。このため、セラミック材料からなる部品と金属材料からなる部品とを接合して組み合わせることでかかる部材を構築することがなされている。
従来、セラミック部材の接合には、接合材として、例えば、当該セラミック部材を構成するセラミック材料と熱膨張係数が同程度(例えば、30℃〜500℃の熱膨張係数が6ppm/K〜8ppm/K程度)のガラス接合材(特許文献1参照)や、それよりも熱膨張係数が若干低い金属材料、典型的には熱膨張係数が凡そ6ppm/Kのコバール金属が用いられてきた。
In recent years, there has been a demand for members that can be exposed to harsh atmospheres (for example, high temperatures of about 100 ° C. to 200 ° C., strong acid, and strong alkali) such as automotive parts, semiconductor devices, and environmental devices. The properties to be achieved (for example, resistance and durability) are becoming stricter. In connection with this, the situation where metal materials, such as stainless steel and a special alloy which were conventionally used for this kind of application, is corroded. For this reason, use of a ceramic material (for example, alumina (Al 2 O 3 )) excellent in heat resistance, chemical stability, and the like has been studied. However, since the ceramic material is a brittle material and is also a difficult-to-process material, it is difficult to create a member having a complicated shape or a large shape. For this reason, such a member is constructed by joining and combining parts made of a ceramic material and parts made of a metal material.
Conventionally, for joining ceramic members, as a bonding material, for example, the thermal expansion coefficient is approximately the same as the ceramic material constituting the ceramic member (for example, the thermal expansion coefficient at 30 ° C. to 500 ° C. is 6 ppm / K to 8 ppm / K). Glass bonding material (see Patent Document 1), metal materials having a slightly lower thermal expansion coefficient than that, and typically Kovar metal having a thermal expansion coefficient of approximately 6 ppm / K.

特開平5−85844号公報JP-A-5-85844 特開2003−55034号公報JP 2003-55034 A

しかしながら、コバール金属は流通量が少なく高価格なため、特殊な用途にしか使用できない課題があった。また、金属部材の30℃〜500℃の熱膨張係数は一般に10ppm/K以上であり、セラミック部材とは熱膨張係数が大きく異なっている。このため、セラミック部材と金属部材との接合に従来の接合材を用いた場合、例えば長期にわたってヒートサイクルを繰り返すことで、クラックや剥離等の不具合を生ずることがあった。したがって、熱膨張係数の大きく異なる部材間の接合部を長期にわたって気密に保持することのできる接合材が求められている。
加えて、近年、産業界では低コスト化等により安価な金属材料(例えば、ステンレス鋼、銅、アルミニウム等)を皮膜処理(表面処理)なしで使用する取組みが進められている。これに伴って、ガラス接合材に含まれるアルカリ成分(例えばカリウム(K)やナトリウム(Na))が問題になることがあり得る。すなわち、アルカリ成分はガラスに流動性を与えて軟化点を下げたり熱膨張係数を調節したりするために有用であるが、一方で、上記安価な金属材料の接合部に使用した場合に、500℃以上の高温域において金属材料(例えばクロム(Cr)成分)と反応して、接合部の安定性低下(例えば接着性の低下や耐久性の低下)を引き起こすことがあり得る。また、上記反応によって毒性の高い6価のクロム化合物を生成することも危惧される。このような事情から、例えば被接合部材の種類や接合体の使用環境、用途等によっては、アルカリ成分を含まない(アルカリレスの)接合材が求められている。
However, Kovar metal has a problem that it can be used only for special purposes because of its low distribution and high price. In addition, the thermal expansion coefficient of the metal member at 30 ° C. to 500 ° C. is generally 10 ppm / K or more, and the thermal expansion coefficient is greatly different from that of the ceramic member. For this reason, when a conventional bonding material is used for bonding the ceramic member and the metal member, defects such as cracks and peeling may occur by repeating the heat cycle over a long period of time, for example. Accordingly, there is a demand for a bonding material that can hold a bonded portion between members having greatly different thermal expansion coefficients in an airtight manner over a long period of time.
In addition, in recent years, efforts to use inexpensive metal materials (for example, stainless steel, copper, aluminum, etc.) without film treatment (surface treatment) have been promoted in the industrial world due to cost reduction. In connection with this, the alkali component (for example, potassium (K) and sodium (Na)) contained in a glass bonding material may become a problem. That is, the alkali component is useful for imparting fluidity to the glass to lower the softening point and adjust the coefficient of thermal expansion. On the other hand, when used for a joint of the inexpensive metal material, It may react with a metal material (for example, chromium (Cr) component) in a high temperature range of not lower than 0 ° C. to cause a decrease in stability of the joint (for example, a decrease in adhesion and a decrease in durability). Moreover, it is feared that the above reaction produces a highly toxic hexavalent chromium compound. Under such circumstances, there is a demand for a bonding material that does not contain an alkali component (alkali-less) depending on, for example, the type of member to be bonded, the environment in which the bonded body is used, the application, and the like.

本発明はかかる事情を鑑みてなされたものであり、その目的は、アルカリ成分を含有しない接合材であって、熱膨張係数の異なる部材間(例えばセラミック部材と金属部材の間)を強固に接合することができ、かつ、耐久性(特には耐ヒートサイクル性)の高い接合部を実現し得るアルカリレスの接合材を提供することにある。関連する他の目的は、かかる接合材を用いてなる接合部を備えた接合体を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is a bonding material that does not contain an alkaline component, and firmly bonds between members having different thermal expansion coefficients (for example, between a ceramic member and a metal member). Another object of the present invention is to provide an alkali-less bonding material that can be used and can realize a bonded portion having high durability (particularly, heat cycle resistance). Another related object is to provide a joined body provided with a joined portion using such a joining material.

ここに開示される接合材は、熱膨張係数の異なる部材間を接合するためのものである。かかる接合材は、3層以上のガラス層から構成され、かつ、該ガラス層の積層方向において、一方の端部のガラス層から他方の端部のガラス層に向かって30℃〜500℃の熱膨張係数が段階的に増大する積層ガラスであり、上記隣り合うガラス層間の30℃〜500℃における熱膨張係数の差がいずれも1.5ppm/K以下である。そして、いずれのガラス層にもアルカリ成分を含まない。   The bonding material disclosed here is for bonding members having different thermal expansion coefficients. Such a bonding material is composed of three or more glass layers, and heat of 30 ° C. to 500 ° C. from the glass layer at one end toward the glass layer at the other end in the stacking direction of the glass layers. It is a laminated glass whose expansion coefficient increases stepwise, and the difference in thermal expansion coefficient at 30 ° C. to 500 ° C. between the adjacent glass layers is 1.5 ppm / K or less. And neither glass layer contains an alkali component.

接合材を3層以上の積層ガラス構造とし、かつ、隣り合うガラス層間の熱膨張係数を段階的に異ならせることで、接合材(接合部)に熱膨張係数の勾配をつけることができる。これにより、熱膨張係数の異なる部材間の熱膨張係数の差を緩和することができる。その結果、これらの部材間を強固に接合することができ、なおかつ当該接合部に高い耐熱性や化学的安定性、耐久性を付与することができる。さらに、いずれのガラス層にもアルカリ成分を含まないため、例えばセラミック部材とクロム系の金属部材とを接合して高温環境下で使用する場合等においても、両部材間の接合部を長期にわたって高い気密性と機械的強度で維持することができる。すなわち、信頼性や耐久性(長期高温耐久性)に優れた接合部を安定的に実現することができる。   By making the bonding material have a laminated glass structure of three or more layers and changing the thermal expansion coefficient between adjacent glass layers in stages, the bonding material (bonding portion) can be given a gradient of thermal expansion coefficient. Thereby, the difference of the thermal expansion coefficient between the members from which a thermal expansion coefficient differs can be relieve | moderated. As a result, these members can be firmly bonded, and high heat resistance, chemical stability, and durability can be imparted to the bonded portion. Furthermore, since none of the glass layers contains an alkali component, for example, when a ceramic member and a chromium-based metal member are joined and used in a high temperature environment, the joint between both members is high for a long period of time. Airtightness and mechanical strength can be maintained. That is, it is possible to stably realize a joint having excellent reliability and durability (long-term high-temperature durability).

本明細書において「熱膨張係数」とは、30℃から500℃までの温度領域において、一般的な熱機械分析装置(Thermomechanical Analysis:TMA)で測定した平均膨張係数(平均線膨張係数)をいい、試料の初期長さに対する試料長さの変化量を温度差で割った値を指すものとする。熱膨張係数の測定は、JIS R 3102(1995)に準じて行うことができる。また、本明細書において「アルカリ成分を含まない」とは、少なくとも積極的には当該成分を添加しないことをいう。換言すれば、不可避的な不純物等として、例えば接合材(積層ガラス)全体の1質量%未満(典型的には0.1質量%以下、好ましくは0.01質量%以下)程度の割合で当該成分が混入することは許容され得る。
なお、積層構造のガラスセラミック材料に関する先行技術文献としては、特許文献2が挙げられる。
In this specification, “thermal expansion coefficient” refers to an average expansion coefficient (average linear expansion coefficient) measured in a temperature range from 30 ° C. to 500 ° C. with a general thermomechanical analyzer (TMA). The value obtained by dividing the amount of change in the sample length with respect to the initial length of the sample by the temperature difference. The measurement of the thermal expansion coefficient can be performed according to JIS R 3102 (1995). Further, in the present specification, “not containing an alkali component” means that the component is not added at least actively. In other words, as an unavoidable impurity or the like, for example, at a ratio of about 1% by mass (typically 0.1% by mass or less, preferably 0.01% by mass or less) of the entire bonding material (laminated glass). Ingredients can be allowed to enter.
Patent Document 2 is given as a prior art document regarding a laminated glass-ceramic material.

ここに開示される接合材の好適な一態様では、上記積層ガラス全体の30℃〜500℃における熱膨張係数が、5ppm/K以上20ppm/K以下である。
これにより、例えば、30℃〜500℃の熱膨張係数が凡そ6ppm/K以上8ppm/K以下の部材と、30℃〜500℃の熱膨張係数が凡そ10ppm/K以上23ppm/K以下の部材と、を好適に接合することができる。
In a preferred embodiment of the bonding material disclosed herein, the thermal expansion coefficient of the entire laminated glass at 30 ° C. to 500 ° C. is 5 ppm / K or more and 20 ppm / K or less.
Thereby, for example, a member having a thermal expansion coefficient of 30 to 500 ° C. of about 6 ppm / K to 8 ppm / K and a member having a thermal expansion coefficient of 30 to 500 ° C. of about 10 ppm / K to 23 ppm / K Can be suitably joined.

ここに開示される接合材の好適な一態様では、上記3層以上のガラス層が、それぞれ独立して、Ba、Si、Al、Ti、Zn、B、Caのうちの1種または2種以上の元素の酸化物を含んでいる。
これら元素の酸化物は、各ガラス層の熱膨張係数を調整したり、安定性等の諸特性を制御したりするために役立ち得る。したがって、本発明の効果をより高いレベルで発揮することができる。
In a preferred embodiment of the bonding material disclosed herein, the three or more glass layers are each independently one or more of Ba, Si, Al, Ti, Zn, B, and Ca. Contains oxides of the elements.
The oxides of these elements can be useful for adjusting the thermal expansion coefficient of each glass layer and controlling various properties such as stability. Therefore, the effect of the present invention can be exhibited at a higher level.

ここに開示される接合材の好適な一態様では、上記積層ガラス全体が、酸化物換算の質量比で、BaO:50〜65質量%、SiO:20〜35質量%、Al:5〜15質量%、TiO:1〜10質量%、ZnO:0〜5質量%、B:1〜5質量%、MgO、CaOおよびSrOのうちの少なくとも1種:1〜5質量%、の成分を含んでいる。
このような組成とすることで、耐熱性、化学的安定性、耐久性のうち少なくとも1つを向上させることができる。さらには、上記熱膨張係数の範囲を好適に実現し得、本発明の効果を一層高いレベルで発揮することができる。
In one preferred embodiment of the bonding material disclosed herein, overall the laminated glass, the mass ratio of the oxide conversion, BaO: 50-65 wt%, SiO 2: 20 to 35 wt%, Al 2 O 3: 5-15 wt%, TiO 2: 1~10 wt%, ZnO: 0 to 5 wt%, B 2 O 3: 1~5 wt%, MgO, CaO and at least one of SrO: 1 to 5 mass % Component.
By setting it as such a composition, at least 1 can be improved among heat resistance, chemical stability, and durability. Furthermore, the range of the thermal expansion coefficient can be suitably realized, and the effects of the present invention can be exhibited at a higher level.

ここに開示される接合材の好適な一態様では、上記一方の端部のガラス層の30℃〜500℃における熱膨張係数が6ppm/K以上8ppm/K以下であり、且つ、上記他方の端部のガラス層の30℃〜500℃における熱膨張係数が10ppm/K以上16ppm/K以下である。
これにより、例えば30℃〜500℃の熱膨張係数が凡そ6ppm/K〜8ppm/Kと、30℃〜500℃の熱膨張係数が凡そ10ppm/K〜15ppm/Kの部材と、を強固に接合することができ、耐久性に優れた接合部を形成することができる。
In a preferred aspect of the bonding material disclosed herein, the glass layer at the one end has a thermal expansion coefficient at 30 ° C. to 500 ° C. of 6 ppm / K or more and 8 ppm / K or less, and the other end. The thermal expansion coefficient at 30 ° C. to 500 ° C. of the glass layer is 10 ppm / K or more and 16 ppm / K or less.
Thereby, for example, a member having a thermal expansion coefficient of about 6 ppm / K to 8 ppm / K at 30 ° C. to 500 ° C. and a member having a thermal expansion coefficient of about 10 ppm / K to 15 ppm / K at 30 ° C. to 500 ° C. is firmly joined. It is possible to form a joint having excellent durability.

ここに開示される接合材は、特に熱膨張係数の大きく異なる(例えば熱膨張係数が4ppm/K以上異なる)異種部材間の接合部、例えばセラミック部材と金属部材との接合に好適に用いることができ、かつ高温域においても当該接合部を長期にわたり安定して高い気密状態に維持することができるものである。したがって、本発明の他の側面として、セラミック部材と金属部材と両部材間を接合する接合部とを備える接合体が提供される。   The bonding material disclosed herein is preferably used particularly for bonding between different parts having different thermal expansion coefficients (for example, different thermal expansion coefficients of 4 ppm / K or more), for example, bonding between a ceramic member and a metal member. In addition, the joint can be stably maintained in a high airtight state for a long time even in a high temperature range. Therefore, as another aspect of the present invention, there is provided a joined body including a ceramic member, a metal member, and a joint portion that joins the two members.

ここに開示される接合体の好適な一態様では、上記セラミック部材は、30℃〜500℃の熱膨張係数が6ppm/K以上8ppm/K以下のセラミック材料によって構成されている。このようなセラミック部材としては、例えばアルミナ系セラミックスが挙げられる。また、上記金属部材は、30℃〜500℃の熱膨張係数が10ppm/K以上23ppm/K以下の金属材料によって構成されている。このような金属部材としては、例えばステンレス鋼が挙げられる。   In a preferred aspect of the joined body disclosed herein, the ceramic member is made of a ceramic material having a thermal expansion coefficient of 30 ppm to 500 ° C. of 6 ppm / K or more and 8 ppm / K or less. Examples of such a ceramic member include alumina-based ceramics. Moreover, the said metal member is comprised with the metal material whose thermal expansion coefficient of 30 to 500 degreeC is 10 ppm / K or more and 23 ppm / K or less. An example of such a metal member is stainless steel.

接合材(積層ガラス)の一形態を模式的に示す断面図である。It is sectional drawing which shows typically one form of joining material (laminated glass).

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

≪接合材≫
ここに開示される接合材(ガラス接合材)は、熱膨張係数の異なる2つ以上の部材間、例えば、セラミック部材同士、金属部材同士、あるいはセラミック部材−金属部材間を接合するための接合材である。かかる接合材は、熱膨張係数が段階的に(典型的には階段状に)異なる3層以上のガラス層から構成される積層ガラスである。換言すれば、3層以上のガラス層から構成され、かつ、該ガラス層の積層方向において、一方の端部のガラス層から他方の端部のガラス層に向かって熱膨張係数が段階的に増大する積層ガラスである。そして、隣り合う2つのガラス層間の熱膨張係数の差(以下、「隣り合う2つのガラス層間の熱膨張係数の差」を、単に「熱膨張係数の差」ということがある。)が、いずれも1.5ppm/K以下である。
かかる構成によれば、例えば熱膨張係数が相対的に最も小さなガラス層(熱膨張係数小ガラス層)から、熱膨張係数が相対的に最も大きなガラス層(熱膨張係数大ガラス層)へと、熱膨張係数を徐々に変化(増大)させることができる。そして、接合材の熱膨張係数大ガラス層の側を相対的に熱膨張係数の大きな被接合部材(例えば金属部材)と接触させ、接合材の熱膨張係数小ガラス層の側を相対的に熱膨張係数の小さな被接合部材(例えばセラミック部材)と接触させて両部材間の接合に供することにより、熱膨張係数の小さな部材と熱膨張係数の大きな部材との熱膨張係数の整合をとることができる。その結果、例えば常温域〜高温域でヒートサイクルを繰り返した場合であっても接合部に熱応力が生じ難くなり、残留応力の発生を抑えることができる。つまり、耐ヒートサイクル性に優れた接合部を実現することができる。
≪Bonding material≫
The bonding material (glass bonding material) disclosed herein is a bonding material for bonding two or more members having different thermal expansion coefficients, for example, between ceramic members, between metal members, or between a ceramic member and a metal member. It is. Such a bonding material is a laminated glass composed of three or more glass layers having different thermal expansion coefficients in stages (typically in steps). In other words, it is composed of three or more glass layers, and in the stacking direction of the glass layers, the thermal expansion coefficient increases stepwise from the glass layer at one end toward the glass layer at the other end. Laminated glass. A difference in thermal expansion coefficient between two adjacent glass layers (hereinafter, “difference in thermal expansion coefficient between two adjacent glass layers” may be simply referred to as “difference in thermal expansion coefficient”). Is also 1.5 ppm / K or less.
According to such a configuration, for example, from a glass layer having a relatively small thermal expansion coefficient (a glass layer having a small thermal expansion coefficient) to a glass layer having a relatively large thermal expansion coefficient (a glass layer having a large thermal expansion coefficient), The thermal expansion coefficient can be gradually changed (increased). Then, the glass material side of the bonding material having a large thermal expansion coefficient is brought into contact with a member to be bonded (for example, a metal member) having a relatively large coefficient of thermal expansion, and the glass material side of the bonding material having a small coefficient of thermal expansion is relatively heated. It is possible to match the thermal expansion coefficient of a member having a small thermal expansion coefficient and a member having a large thermal expansion coefficient by bringing the member into contact with a member to be joined (for example, a ceramic member) having a small expansion coefficient and joining the two members. it can. As a result, even when the heat cycle is repeated in a normal temperature range to a high temperature range, for example, it is difficult for thermal stress to be generated in the joint portion, and generation of residual stress can be suppressed. That is, a joint having excellent heat cycle resistance can be realized.

ここに開示される技術において、接合材(積層ガラス)の隣り合う2つのガラス層間の熱膨張係数の差は1.5ppm/K以下であり、典型的には1.4ppm/K以下、例えば0.5ppm/K以上1.4ppm/K以下であるとよい。熱膨張係数の差を1.4ppm/K以下とすることで、一層高い耐ヒートサイクル性を実現することができる。また、熱膨張係数の差を0.5ppm/K以上とすれば、積層するガラス層の数を少なくすることができるため、作業性やコストの観点から好ましい。   In the technique disclosed herein, the difference in thermal expansion coefficient between two adjacent glass layers of the bonding material (laminated glass) is 1.5 ppm / K or less, typically 1.4 ppm / K or less, for example, 0 It is good that they are 5 ppm / K or more and 1.4 ppm / K or less. By setting the difference in thermal expansion coefficient to 1.4 ppm / K or less, higher heat cycle resistance can be realized. Further, if the difference in thermal expansion coefficient is 0.5 ppm / K or more, the number of glass layers to be laminated can be reduced, which is preferable from the viewpoint of workability and cost.

接合材(積層ガラス)を構成する各ガラス層の具体的な熱膨張係数については、被接合部材の熱膨張係数によっても異なり得るため、特に限定されない。典型的には、各ガラス層の熱膨張係数が、一の被接合部材の熱膨張係数以上(例えば凡そ5ppm/K以上)であって、他の一の被接合部材の熱膨張係数以下(例えば凡そ23ppm/K以下)であるとよい。
好適な一態様では、一方の端部のガラス層(熱膨張係数小ガラス層)の熱膨張係数がセラミック部材の熱膨張係数と同程度かそれより若干低く、かつ、他方の端部のガラス層(熱膨張係数大ガラス層)の熱膨張係数が金属部材の熱膨張係数と同程度かそれより若干低い。例えば、熱膨張係数小ガラス層の熱膨張係数が6ppm/K以上8ppm/K以下(例えば6.0ppm/K以上7.9ppm/K以下)であって、熱膨張係数大ガラス層の熱膨張係数が10ppm/K以上16ppm/K以下(例えば11.6ppm/K以上15.0ppm/K以下)であるとよい。かかる態様によれば、例えばアルミナ系のセラミック部材(熱膨張係数が凡そ10ppm/K〜15ppm/K)と、金属部材として汎用なステンレス鋼(熱膨張係数が凡そ6ppm/K〜8ppm/K)とを強固に接合することができ、物理的安定性や耐久性に優れた接合部を実現することができる。
好適な他の一態様では、接合材(積層ガラス)全体の熱膨張係数が、5ppm/K以上20ppm/K以下である。かかる接合材は、熱膨張係数が6ppm/K以上8ppm/K以下の部材と、熱膨張係数が10ppm/K以上23ppm/K以下の部材と(例えば、上記セラミック部材と金属部材と)を接合するために好適に用いることができる。
The specific thermal expansion coefficient of each glass layer constituting the bonding material (laminated glass) is not particularly limited because it may vary depending on the thermal expansion coefficient of the members to be bonded. Typically, the thermal expansion coefficient of each glass layer is equal to or higher than the thermal expansion coefficient of one bonded member (for example, approximately 5 ppm / K or higher) and is equal to or lower than the thermal expansion coefficient of the other bonded member (for example, About 23 ppm / K or less).
In a preferred embodiment, the glass layer at one end (the small thermal expansion coefficient glass layer) has a thermal expansion coefficient comparable to or slightly lower than that of the ceramic member, and the glass layer at the other end. The thermal expansion coefficient of the (thermal expansion coefficient large glass layer) is the same as or slightly lower than the thermal expansion coefficient of the metal member. For example, the thermal expansion coefficient of the glass layer having a small thermal expansion coefficient is 6 ppm / K or more and 8 ppm / K or less (for example, 6.0 ppm / K or more and 7.9 ppm / K or less), Is 10 ppm / K or more and 16 ppm / K or less (for example, 11.6 ppm / K or more and 15.0 ppm / K or less). According to this aspect, for example, an alumina-based ceramic member (thermal expansion coefficient is approximately 10 ppm / K to 15 ppm / K) and a general-purpose stainless steel (thermal expansion coefficient is approximately 6 ppm / K to 8 ppm / K) as a metal member, Can be bonded firmly, and a bonded portion with excellent physical stability and durability can be realized.
In another preferred embodiment, the thermal expansion coefficient of the entire bonding material (laminated glass) is 5 ppm / K or more and 20 ppm / K or less. Such a joining material joins a member having a thermal expansion coefficient of 6 ppm / K to 8 ppm / K and a member having a thermal expansion coefficient of 10 ppm / K to 23 ppm / K (for example, the ceramic member and the metal member). Therefore, it can be used suitably.

ここに開示される接合材(積層ガラス)の各ガラス層を構成するガラスマトリックス(ガラス組成物)は、実質的にアルカリ成分を含まないこと以外は特に限定されず、種々の用途に応じて任意に決定することができる。
好適な一態様では、各ガラス層に、バリウム成分とケイ素成分とアルミニウム成分とを含んでいる。全てのガラス層にこの3成分を含むことで、積層ガラスとしての一体性や物理的安定性を高める効果がある。かかる観点から、特には、各ガラス層のガラスマトリックスに占めるバリウム成分とケイ素成分とアルミニウム成分との総和が80質量%以上(例えば85質量%以上)であるとよい。
The glass matrix (glass composition) constituting each glass layer of the bonding material (laminated glass) disclosed herein is not particularly limited except that it does not substantially contain an alkali component, and is optional according to various applications. Can be determined.
In a preferred embodiment, each glass layer contains a barium component, a silicon component, and an aluminum component. By including these three components in all the glass layers, there is an effect of improving the integrity and physical stability as laminated glass. From such a viewpoint, in particular, the total of the barium component, silicon component, and aluminum component in the glass matrix of each glass layer is preferably 80% by mass or more (for example, 85% by mass or more).

バリウム成分(典型的には、酸化バリウム(BaO))は、各ガラス層の熱膨張係数を調整し、ガラスマトリックスの熱的安定性を向上させるための成分である。各ガラス層のガラスマトリックスに占めるバリウム成分の割合は、上記熱膨張係数の差の範囲を実現する限りにおいて特に限定されないが、酸化物換算の質量比で、凡そ20質量%以上(例えば25質量%以上)であって、85質量%以下(例えば83質量%以下)であるとよい。   The barium component (typically, barium oxide (BaO)) is a component for adjusting the thermal expansion coefficient of each glass layer and improving the thermal stability of the glass matrix. The ratio of the barium component in the glass matrix of each glass layer is not particularly limited as long as the range of the difference in thermal expansion coefficient is realized, but is approximately 20% by mass or more (for example, 25% by mass) in terms of an oxide-converted mass ratio. Or more) and 85% by mass or less (for example, 83% by mass or less).

ケイ素成分(典型的には、酸化ケイ素(SiO))は、ガラスの骨格を構成する成分である。各ガラス層のガラスマトリックスに占めるケイ素成分の割合は、上記熱膨張係数の差の範囲を実現する限りにおいて特に限定されないが、酸化物換算の質量比で、凡そ5質量%以上(例えば10質量%以上)であって、55質量%以下(例えば53質量%以下)であるとよい。これにより、各ガラス層の軟化点が高くなりすぎることを防止することができ、比較的低い温度で接合を行うことができる。さらに、当該接合材を用いてなる接合部の耐水性、耐薬品性、耐熱衝撃性のうちの少なくとも1つを向上させることができる。 A silicon component (typically, silicon oxide (SiO 2 )) is a component constituting a skeleton of glass. The ratio of the silicon component in the glass matrix of each glass layer is not particularly limited as long as the range of the difference in thermal expansion coefficient is realized, but is approximately 5% by mass or more (for example, 10% by mass) in terms of an oxide-converted mass ratio. Or more) and may be 55% by mass or less (for example, 53% by mass or less). Thereby, it can prevent that the softening point of each glass layer becomes high too much, and it can join at a comparatively low temperature. Furthermore, at least one of water resistance, chemical resistance, and thermal shock resistance of a joint portion using the bonding material can be improved.

アルミニウム成分(典型的には、酸化アルミニウム(Al))は、ガラスマトリックス溶融時の流動性を制御し、付着安定性に関与する成分である。各ガラス層のガラスマトリックスに占めるアルミニウム成分の割合は、上記熱膨張係数の差の範囲を実現する限りにおいて特に限定されないが、酸化物換算の質量比で、凡そ1質量%以上(例えば2質量%以上)であって、15質量%以下(例えば13質量%以下)であるとよい。これにより、各ガラス層の軟化点が高くなりすぎることを防止することができ、比較的低い温度で接合を行うことができる。また、被接合部材を安定的に(均質に)接合することができる。さらに、当該接合材を用いてなる接合部の耐薬品性を向上させることができる。 An aluminum component (typically aluminum oxide (Al 2 O 3 )) is a component that controls fluidity during melting of the glass matrix and participates in adhesion stability. The proportion of the aluminum component in the glass matrix of each glass layer is not particularly limited as long as the range of the difference in thermal expansion coefficient is realized, but is approximately 1% by mass or more (for example, 2% by mass) in terms of a mass ratio in terms of oxide. Or more) and may be 15% by mass or less (for example, 13% by mass or less). Thereby, it can prevent that the softening point of each glass layer becomes high too much, and it can join at a comparatively low temperature. Further, the members to be joined can be joined stably (homogeneously). Furthermore, the chemical resistance of the joint part using the said joining material can be improved.

各ガラス層を構成するガラスマトリックス(ガラス組成物)は、上記バリウム成分とケイ素成分とアルミニウム成分に加えて、典型的には1種以上の任意の添加成分を含んでいる。そのような添加成分としては、例えば、Ba以外の広義のアルカリ土類金属成分(例えば、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)。特にはカルシウム。)、亜鉛(Zn)、チタン(Ti)、ホウ素(B)、ジルコニウム(Zr)、バナジウム(V)、ニオブ(Nb)、鉄(Fe)、銅(Cu)、スズ(Sn)、リン(P)、ランタン(La)、セリウム(Ce)等が挙げられる。   The glass matrix (glass composition) constituting each glass layer typically contains one or more optional additive components in addition to the barium component, silicon component, and aluminum component. Examples of such additive components include alkaline earth metal components in a broad sense other than Ba (for example, magnesium (Mg), calcium (Ca), strontium (Sr). In particular, calcium.), Zinc (Zn), titanium (Ti), boron (B), zirconium (Zr), vanadium (V), niobium (Nb), iron (Fe), copper (Cu), tin (Sn), phosphorus (P), lanthanum (La), cerium (Ce) and the like.

好適な一態様では、各ガラス層を構成するガラスマトリックスが、それぞれ独立して、Ba、Si、Alに加えて、Ti、Zn、B、Caのうちの1種または2種以上の元素の酸化物を含んでいる。
例えば、チタン成分(典型的には、酸化チタン(TiO))は熱膨張係数を高め得る成分である。これにより、ガラス層の熱膨張係数を比較的高い値に維持することができる。
また、亜鉛成分(典型的には酸化亜鉛(ZnO))は、ガラスフリットの熱的安定性を向上させる効果が高い成分である。さらに、熱衝撃性が高く水に侵され難い等、化学的に安定した性質および耐久性を実現し得る効果もある。
また、カルシウム成分(典型的には、酸化カルシウム(CaO))は、上記バリウム成分と同様に、熱膨張係数を調整してガラスマトリックスの熱的安定性を向上させる効果が高い成分である。さらに、ガラスマトリックスの硬度を上げて、接合部の耐摩耗性を向上させ得る効果もある。
また、ホウ素成分(典型的には、酸化ホウ素(B))は、ガラスフリットの熱的安定性を向上させる(熱膨張係数を調整する)とともに、ガラスフリットの軟化点を低下させる効果が高い成分である。
このため、各ガラス層を構成するガラスマトリックスの成分およびその含有割合を調整することで、所望の熱膨張係数を備えかつ用途等に応じた諸特性にも優れたガラス層を実現することができる。
In a preferred embodiment, the glass matrix constituting each glass layer independently oxidizes one or more elements of Ti, Zn, B, and Ca in addition to Ba, Si, and Al. Contains things.
For example, a titanium component (typically titanium oxide (TiO 2 )) is a component that can increase the thermal expansion coefficient. Thereby, the thermal expansion coefficient of the glass layer can be maintained at a relatively high value.
A zinc component (typically zinc oxide (ZnO)) is a component that has a high effect of improving the thermal stability of the glass frit. Furthermore, there is an effect that a chemically stable property and durability can be realized, such as high thermal shock resistance and being hardly attacked by water.
Further, the calcium component (typically calcium oxide (CaO)) is a component having a high effect of adjusting the thermal expansion coefficient and improving the thermal stability of the glass matrix, like the barium component. Furthermore, there is an effect that the hardness of the glass matrix can be increased and the wear resistance of the joint can be improved.
Further, the boron component (typically boron oxide (B 2 O 3 )) improves the thermal stability of the glass frit (adjusts the coefficient of thermal expansion) and reduces the softening point of the glass frit. Is a high component.
For this reason, the glass layer which is provided with the desired thermal expansion coefficient and excellent also in the various characteristics according to a use etc. is realizable by adjusting the component of the glass matrix which comprises each glass layer, and its content rate. .

各ガラス層を構成する成分は、典型的には3成分以上、例えば4成分以上10成分以下であるとよい。ガラスマトリックスが3成分以上の多成分系で構成されることで、物理的安定性が向上する。また、作業性やコストの観点からは、ガラスマトリックスが10成分以下で構成されることが好ましい。   The components constituting each glass layer are typically 3 or more, for example, 4 or more and 10 or less. When the glass matrix is composed of a multi-component system having three or more components, physical stability is improved. From the viewpoint of workability and cost, the glass matrix is preferably composed of 10 components or less.

好適な一態様では、隣り合うガラス層間において、一方のガラス層が有しているガラス構成元素(成分)のうち少なくとも1つの元素は、他方のガラス層に存在しない(以下、このような元素を「隣接非共有元素」ということもある。)。換言すれば、接合材(積層ガラス)を構成する各ガラス層について、少なくとも1の隣り合うガラス層間で一方のガラス層が有しているガラス構成元素(成分)のうち少なくとも1つは他方のガラス層に存在しないよう構成するとよい。より好ましくは、かかるガラス層間が連続的あるいは断続的(例えば1つおき、あるいは2つおき)に存在するよう各ガラス層を構成するとよい。例えば、接合材(積層ガラス)を構成するいずれの隣り合うガラス層間においても、一方のガラス層が有しているガラス構成元素のうち少なくとも1つは他方のガラス層に存在しないように構成してもよい。なお、上記隣接非共有元素の種類は全てのガラス層間で同じであってもよく、異なっていてもよい。
本発明者の検討によれば、隣り合うガラス層同士の構成成分が全く同じであって例えば酸化物換算の質量比のみが異なる場合には、当該隣り合うガラス層同士が混ざり合って均質化されることがあり得る。隣接非共有元素の存在により、上記隣接するガラス層同士の均質化(典型的には高温焼成時の融合)が防止され、接合部の熱膨張係数の勾配をより安定的に確保することができる。その結果、部材間の接合部をより強固なものとすることができる。したがって、本発明の効果をより高いレベルで発揮することができる。
In a preferred aspect, at least one of the glass constituent elements (components) of one glass layer does not exist in the other glass layer between adjacent glass layers (hereinafter referred to as such element). Sometimes called “adjacent non-covalent elements”.) In other words, for each glass layer constituting the bonding material (laminated glass), at least one of the glass constituent elements (components) of one glass layer between at least one adjacent glass layer is the other glass. It may be configured not to exist in the layer. More preferably, each glass layer may be configured such that such glass layers are present continuously or intermittently (for example, every other or every second). For example, between any adjacent glass layers constituting the bonding material (laminated glass), at least one of the glass constituent elements of one glass layer is configured not to exist in the other glass layer. Also good. In addition, the kind of said adjacent non-covalent element may be the same between all the glass layers, and may differ.
According to the study of the present inventors, when the constituent components of the adjacent glass layers are exactly the same and only the mass ratio in terms of oxide is different, for example, the adjacent glass layers are mixed and homogenized. It is possible that The presence of adjacent non-covalent elements prevents the above-mentioned adjacent glass layers from being homogenized (typically, fusion during high-temperature firing), and can more stably ensure the gradient of the thermal expansion coefficient of the joint. . As a result, the joint portion between the members can be made stronger. Therefore, the effect of the present invention can be exhibited at a higher level.

好適な他の一態様では、接合材(積層ガラス)全体が、酸化物換算の質量比で、
BaO 50〜65質量%(例えば54〜59質量%)、
SiO 20〜35質量%(例えば24〜29質量%)、
Al 5〜15質量%(例えば7〜9質量%)、
TiO 1〜10質量%(例えば4〜6質量%)、
ZnO 0〜5質量%(例えば0〜1質量%)、
1〜5質量%(例えば1〜3質量%)、
MgO、CaOおよびSrOのうちの少なくとも1種 1〜5質量%(例えば2〜3質量%)、
の成分を含んでいる。積層ガラスを構成するガラスマトリックス全体をこのような組成とすることで、接合部の安定性を一層向上させることができ、本願発明の効果を更に高いレベルで発揮することができる。
In another preferred embodiment, the entire bonding material (laminated glass) is an oxide-converted mass ratio,
BaO 50-65 mass% (for example, 54-59 mass%),
SiO 2 20 to 35 wt% (e.g. 24 to 29 wt%),
Al 2 O 3 5 to 15 wt% (e.g., 7-9 wt%),
TiO 2 1 to 10% by mass (eg 4 to 6% by mass),
ZnO 0-5 mass% (for example, 0-1 mass%),
B 2 O 3 1 to 5 wt% (e.g., 1-3 wt%),
1-5 mass% (for example, 2-3 mass%) of at least 1 sort (s) of MgO, CaO, and SrO,
Contains ingredients. By making the whole glass matrix which comprises laminated glass into such a composition, stability of a junction part can be improved further and the effect of this invention can be exhibited at a still higher level.

ここに開示される接合材(積層ガラス)の各ガラス層は、実質的にアルカリ成分を含まない。換言すれば、ここに開示される接合材の各ガラス層を構成するガラスマトリックスには、アルカリ成分を積極的に添加しない(不可避的な不純物として混入することは許容され得る)。アルカリ成分(例えばカリウム成分やナトリウム成分)は高温環境下において飛散が生じ易く、これによってガラス層の熱膨張係数が変化したり機械的強度が低下したりすることがあり得る。また、上述の通り、例えばクロム系の金属材料や安価な金属材料を皮膜処理なしで使用する場合等に、当該金属材料と反応して接合部の安定性が低下することがある。このため、いずれのガラス層にもアルカリ成分を含まないことで、例えば被接合部材(金属部材)の種類や接合体の使用環境等に依らず、安定して、接合部の耐久性(長期高温耐久性)が高い接合体を実現することができる。
加えて、各ガラス層には、ヒ素成分(As)や鉛成分(Pb)をも含まないことが好ましい。これらの成分は人体や環境に対して悪影響となり得るため、環境性や作業性、安全性の観点から好ましくない。
Each glass layer of the bonding material (laminated glass) disclosed herein does not substantially contain an alkali component. In other words, an alkali component is not positively added to the glass matrix constituting each glass layer of the bonding material disclosed herein (mixing as an inevitable impurity can be permitted). Alkali components (for example, potassium component and sodium component) are likely to be scattered in a high-temperature environment, which may change the thermal expansion coefficient of the glass layer or decrease the mechanical strength. Further, as described above, for example, when a chromium-based metal material or an inexpensive metal material is used without a film treatment, the stability of the joint may be reduced by reacting with the metal material. For this reason, by not including an alkali component in any glass layer, for example, regardless of the type of a member to be joined (metal member) or the use environment of the joined body, the durability of the joined portion (long-term high temperature) A bonded body having high durability can be realized.
In addition, it is preferable that each glass layer does not contain an arsenic component (As) or a lead component (Pb). These components are not preferable from the viewpoints of environmental performance, workability, and safety because they can adversely affect the human body and the environment.

ここに開示される接合材(積層ガラス)の好ましい一態様を、図1に模式的に示す。図1に示す態様では、接合材10は熱膨張係数の異なる3つのガラス層、すなわちX層(熱膨張係数小ガラス層)12、Y層(熱膨張係数中ガラス層)14、およびZ層(熱膨張係数大ガラス層)16から構成される3層構造の積層ガラスである。3つのガラス層の熱膨張係数(ppm/K)は、X層12<Y層14<Z層16、の関係である。そして、X層12とY層14の間の熱膨張係数の差(すなわち、(Y層14の熱膨張係数)−(X層12の熱膨張係数))、および、Y層14とZ層16の間の熱膨張係数の差(すなわち、(Z層16の熱膨張係数)−(Y層14の熱膨張係数))が、いずれも1.5ppm/K以下である。
被接合部材間を接合する際には、接合材(積層ガラス)10の第一の面10aが、相対的に熱膨張係数の小さな部材と接するよう配置される。また、接合材(積層ガラス)10の第二の面10bが、相対的に熱膨張係数の大きな部材と接するよう配置される。
A preferred embodiment of the bonding material (laminated glass) disclosed herein is schematically shown in FIG. In the embodiment shown in FIG. 1, the bonding material 10 includes three glass layers having different thermal expansion coefficients, that is, an X layer (a small thermal expansion coefficient glass layer) 12, a Y layer (a medium thermal expansion coefficient glass layer) 14, and a Z layer ( It is a laminated glass having a three-layer structure composed of a glass layer having a large thermal expansion coefficient. The thermal expansion coefficients (ppm / K) of the three glass layers are in a relationship of X layer 12 <Y layer 14 <Z layer 16. Then, the difference in thermal expansion coefficient between the X layer 12 and the Y layer 14 (that is, (thermal expansion coefficient of the Y layer 14) − (thermal expansion coefficient of the X layer 12)), and the Y layer 14 and the Z layer 16 The difference in thermal expansion coefficient between (ie, (thermal expansion coefficient of Z layer 16) − (thermal expansion coefficient of Y layer 14)) is 1.5 ppm / K or less.
When the members to be joined are joined, the first surface 10a of the joining material (laminated glass) 10 is disposed so as to be in contact with a member having a relatively small thermal expansion coefficient. Further, the second surface 10b of the bonding material (laminated glass) 10 is disposed so as to be in contact with a member having a relatively large thermal expansion coefficient.

各ガラス層の厚み(すなわち、接合材(積層ガラス)10の第一の面10aから第二の面10bに向かう垂直方向の長さ)は同じであってもよく、異なっていてもよい。図1に示す態様では、X層12、Y層14、Z層16の厚みが概ね同等である。また、各ガラス層の厚みは特に限定されないが、典型的には各ガラス層の厚みが数μm〜数百μm、例えば1μm〜100μm程度であるとよい。各ガラス層の厚みを凡そ1μm以上とすることで、接合材10の熱膨張係数を第一の面10aから第二の面10bに向かって安定的に少しずつ変化させることができる。このため、より信頼性の高い接合部を実現することができる。また、各ガラス層の厚みを凡そ100μm以下とすることで、残留応力の発生を一層抑制することができ、より一層耐ヒートサイクル性に優れた接合部を実現することができる。   The thickness of each glass layer (that is, the length in the vertical direction from the first surface 10a to the second surface 10b of the bonding material (laminated glass) 10) may be the same or different. In the embodiment shown in FIG. 1, the thicknesses of the X layer 12, the Y layer 14, and the Z layer 16 are substantially equal. In addition, the thickness of each glass layer is not particularly limited, but typically, the thickness of each glass layer is preferably several μm to several hundred μm, for example, about 1 μm to 100 μm. By setting the thickness of each glass layer to approximately 1 μm or more, the thermal expansion coefficient of the bonding material 10 can be stably and gradually changed from the first surface 10a toward the second surface 10b. For this reason, a more reliable joining part is realizable. Further, by setting the thickness of each glass layer to about 100 μm or less, it is possible to further suppress the occurrence of residual stress and to realize a joint portion that is further excellent in heat cycle resistance.

なお、図1に示す態様では、接合材10は3層のガラス層から構成されているが、これに限定されず、例えば4層のガラス層、あるいは5層以上のガラス層から構成することもできる。好適なガラス層の数の上限は、例えば各ガラス層の厚み等にも依るため特に限定されないが、作業効率や生産性等を考慮すると、典型的には20層以下、例えば10層以下とするとよい。   In addition, in the aspect shown in FIG. 1, although the joining material 10 is comprised from 3 glass layers, it is not limited to this, For example, it may comprise from 4 glass layers or 5 or more glass layers. it can. The upper limit of the number of suitable glass layers is not particularly limited because it depends on, for example, the thickness of each glass layer, but in consideration of work efficiency, productivity, etc., typically 20 layers or less, for example, 10 layers or less. Good.

このような接合材(積層ガラス)の製造方法は特に制限されないが、例えば、先ず、各ガラス層の構成成分を含有する酸化物、炭酸塩、硝酸塩、複合酸化物等を含む工業製品、試薬、または各種の鉱物原料を用意し、それぞれ所望の組成となるよう混合する。原料粉末の調製は、例えばボールミル等の混合機に上記原料を投入し、数時間〜数十時間混合することによって行うことができる。このようにして得られたガラス原料粉末を乾燥した後、それぞれ高温(典型的には1000℃〜1500℃)条件下で加熱・溶融して、冷却または急冷することでガラスを調製する。好適な一態様では、次に、得られたガラスを適当な大きさ(典型的には、平均粒径が0.5μm〜50μm程度。例えば、平均粒径が0.1μm〜10μm程度。)となるまで粉砕し、ガラスカレットまたはガラスパウダー等の形態に調製する。次に、得られたガラス(粉砕後のガラスカレットおよびガラスパウダー)を圧縮成形した後、ガラス粒子同士が互いに結着する程度の温度で仮焼して、ペレット状または板状に加工する。これらの作業を繰り返して、少なくとも3つのガラス層を作製する。そして、得られた各ガラス層の熱膨張係数を測定して熱膨張係数の順に積層した後、例えば50MPa〜150MPa程度の圧力でプレス処理して一体化させる。これにより、ここに開示されるような接合材(積層ガラス)を得ることができる。   The method for producing such a bonding material (laminated glass) is not particularly limited. For example, first, industrial products, reagents, oxides, carbonates, nitrates, composite oxides, and the like containing the components of each glass layer, Alternatively, various mineral raw materials are prepared and mixed so as to have a desired composition. The raw material powder can be prepared, for example, by putting the raw material into a mixer such as a ball mill and mixing for several hours to several tens of hours. After the glass raw material powder thus obtained is dried, the glass is prepared by heating and melting under high-temperature conditions (typically 1000 ° C. to 1500 ° C.), respectively, and cooling or quenching. In a preferred embodiment, the obtained glass is then sized appropriately (typically, the average particle size is about 0.5 μm to 50 μm. For example, the average particle size is about 0.1 μm to 10 μm). It grind | pulverizes until it becomes, and prepares in forms, such as glass cullet or glass powder. Next, after compression-molding the obtained glass (glass cullet and glass powder after pulverization), the glass is calcined at a temperature at which the glass particles are bound to each other and processed into a pellet or plate shape. These operations are repeated to produce at least three glass layers. And after measuring the thermal expansion coefficient of each obtained glass layer and laminating | stacking in order of a thermal expansion coefficient, it press-processes with the pressure of about 50 MPa-150 MPa, for example, and is integrated. Thereby, a bonding material (laminated glass) as disclosed herein can be obtained.

≪接合方法≫
上記のようにして得られた接合材(積層ガラス)は、従来の接合材とは異なり、ガラス層の積層方向において、一方の端部のガラス層(一のガラス層面)から他方の端部のガラス層(他の一のガラス層面)に向かって熱膨張係数が段階的に高くなっている(あるいは低くなっている)。このため、熱膨張係数の大きく異なる部材間、例えばセラミック部材と金属部材の接合に好適に用いることができる。
換言すれば、本発明により、セラミック部材と金属部材とを接合する方法が提供される。かかる接合方法は、以下の工程:セラミック部材と金属部材とを用意すること;上記接合材をセラミック部材と金属部材の接合部分に付与すること;上記付与された接合材を上記接合部分から流出しない温度域で焼成すること;を包含する。
≪Join method≫
The bonding material (laminated glass) obtained as described above is different from the conventional bonding material in the laminating direction of the glass layer, from the glass layer (one glass layer surface) at one end to the other end. The coefficient of thermal expansion gradually increases (or decreases) toward the glass layer (the surface of the other glass layer). For this reason, it can use suitably for the joining of the member from which a thermal expansion coefficient differs greatly, for example, a ceramic member and a metal member.
In other words, the present invention provides a method for joining a ceramic member and a metal member. Such a bonding method includes the following steps: preparing a ceramic member and a metal member; applying the bonding material to a bonded portion between the ceramic member and the metal member; and preventing the applied bonding material from flowing out from the bonded portion. Firing in a temperature range.

具体的には、先ず、被接合部材としてのセラミック部材と金属部材とを用意する。次に、これらの部材が相互に接触・接続するよう配置し、当該接続部位に、ここに開示される接合材を配置(付与)する。そして、これらの複合体を接合材(ガラス)の軟化点以上の温度域(典型的には600℃以上、例えば700℃〜900℃)で焼成し、ガラス成分を硬化させる。これにより、被接合部材間に気密性の高い接合部を形成することができる。   Specifically, first, a ceramic member and a metal member are prepared as members to be joined. Next, it arrange | positions so that these members may mutually contact and connect, and the bonding | jointing material disclosed here is arrange | positioned at the said connection site | part. And these composites are baked in the temperature range (typically 600 degreeC or more, for example, 700 to 900 degreeC) more than the softening point of a joining material (glass), and a glass component is hardened. Thereby, a joint part with high airtightness can be formed between to-be-joined members.

接合対象(被接合部材)としては特に限定されないが、一好適例として、アルミナ、ムライト、ステアタイト、フォルステライト、チタニア、イットリア、クロミア、ジルコニア、部分安定化ジルコニア等のセラミック材料からなるセラミック部材を考慮することができる。これらはいずれか1種のセラミック材料の単体であっても良いし、上記に例示した2種以上のセラミック材料が複合化されたセラミック複合材料(例えば、アルミナジルコニア、ムライト等)からなるものであっても良い。なかでも、ファインセラミック材料、例えば、機械的、熱的、電気的、磁気的、化学的に様々な優れた特性を有するアルミナを好ましく用いることができる。これらセラミック部材の熱膨張係数は、おおよその目安として、6ppm/K以上8ppm/K以下であり得る。   The material to be joined (members to be joined) is not particularly limited. As a preferred example, a ceramic member made of a ceramic material such as alumina, mullite, steatite, forsterite, titania, yttria, chromia, zirconia, or partially stabilized zirconia is used. Can be considered. These may be a single element of any one ceramic material, or may be made of a ceramic composite material (for example, alumina zirconia, mullite, etc.) in which two or more of the ceramic materials exemplified above are combined. May be. Among these, fine ceramic materials such as alumina having various excellent properties mechanically, thermally, electrically, magnetically, and chemically can be preferably used. The thermal expansion coefficient of these ceramic members can be 6 ppm / K or more and 8 ppm / K or less as a rough guide.

他の一好適例として、ステンレス鋼、アルミニウム、クロム、鉄、ニッケル、銅、銀、マンガン、およびこれらの合金等の金属材料からなる金属部材を考慮することができる。より具体的には、フェライト系やオーステナイト系のステンレス鋼、純アルミニウム、アルミニウム合金(ジュラルミン、アルミニウム青銅等)、銀、銀合金(洋銀等)、銅、銅合金(リン青銅等)等であり得る。特に、高温環境下においてアルカリ成分との反応が生じ易いクロム系の材料や、あるいは皮膜処理が施されていない安価な金属材料(例えばステンレス鋼)を用いる場合に、本発明の効果がより発揮され得る。これら金属部材の熱膨張係数は、おおよその目安として、10ppm/K以上23ppm/K以下(典型的には10ppm/K以上20ppm/K以下、例えば11ppm/K以上17ppm/K以下)であり得る。   As another preferred example, a metal member made of a metal material such as stainless steel, aluminum, chromium, iron, nickel, copper, silver, manganese, and alloys thereof can be considered. More specifically, it may be ferritic or austenitic stainless steel, pure aluminum, aluminum alloy (duralumin, aluminum bronze, etc.), silver, silver alloy (Western silver, etc.), copper, copper alloy (phosphor bronze, etc.), etc. . In particular, the effect of the present invention is more exhibited when using a chromium-based material that easily reacts with an alkali component in a high-temperature environment or an inexpensive metal material that is not subjected to a film treatment (for example, stainless steel). obtain. The coefficient of thermal expansion of these metal members can be 10 ppm / K or more and 23 ppm / K or less (typically 10 ppm / K or more and 20 ppm / K or less, for example, 11 ppm / K or more and 17 ppm / K or less) as an approximate guide.

≪接合体≫
このようにして、熱膨張係数の異なる2つ以上の部材と、部材間を接合する接合部とを備える接合体を得ることができる。ここに開示される接合材によれば、部材間の接合部に優れた耐熱性や化学的安定性、長期耐久性を付与することができる。したがって、当該接合体は、様々な環境下(例えば、高温環境下や、強酸、強アルカリの雰囲気下)で長期にわたって安定的に使用することができる。一好適例では、熱膨張係数の異なるセラミック部材および金属部材と、両部材間を接合する接合部とを備える接合体を得ることができる。
ここに開示される接合体は、具体的には、半導体装置や液晶パネル、蓄電素子や太陽電池等の各種発電システム、およびそれらを製造するための製造装置、ゴミ焼却装置や下水処理装置、排ガス除去装置等の環境装置、車両用の排ガス処理装置、エンジン燃焼試験装置、真空系給排気機器、医療機器、半導体装置等を構成するために用いられる、セラミック部材と金属部材との接合体であり得る。
≪Joint body≫
In this way, it is possible to obtain a joined body including two or more members having different thermal expansion coefficients and a joint portion that joins the members. According to the bonding material disclosed herein, excellent heat resistance, chemical stability, and long-term durability can be imparted to the bonding portion between the members. Therefore, the joined body can be stably used over a long period of time in various environments (for example, in a high temperature environment or a strong acid or strong alkali atmosphere). In one preferred example, a joined body including a ceramic member and a metal member having different thermal expansion coefficients and a joint portion that joins the two members can be obtained.
Specifically, the joined body disclosed herein includes various power generation systems such as semiconductor devices, liquid crystal panels, power storage elements and solar cells, manufacturing devices for manufacturing them, waste incinerators, sewage treatment devices, and exhaust gas. It is an assembly of ceramic members and metal members used to construct environmental devices such as removal devices, exhaust gas treatment devices for vehicles, engine combustion test devices, vacuum supply / exhaust devices, medical devices, semiconductor devices, etc. obtain.

以下、本発明に関する幾つかの試験例を説明するが、本発明をかかる試験例に示すものに限定することを意図したものではない。   Hereinafter, some test examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the test examples.

ここでは、表1に示す組成の板状ガラスa〜jを用いて、計8種類のガラス接合材(S1〜S8)を作製し、接合性について評価した。   Here, a total of eight types of glass bonding materials (S1 to S8) were produced using the plate-like glasses a to j having the compositions shown in Table 1, and the bonding property was evaluated.

Figure 2016037422
Figure 2016037422

〔熱膨張係数の評価〕
上記板状ガラスa〜jを、それぞれダイヤモンドカッターでΦ5mm×10mm〜20mm程度の円柱状に切り出して、測定用の試験片とした。この試験片を、熱機械分析装置(株式会社リガク製、TMA8310)を用いて評価した。具体的には、室温(25℃)から1000℃まで10℃/分の一定速度で昇温したときの30℃から500℃の間の平均線膨張量を算出した。結果を表1に示す。
[Evaluation of thermal expansion coefficient]
The said plate-like glass aj was cut out to the column shape of about (PHI) 5mm x 10mm-20mm with the diamond cutter, respectively, and it was set as the test piece for a measurement. This test piece was evaluated using a thermomechanical analyzer (manufactured by Rigaku Corporation, TMA8310). Specifically, the average linear expansion amount between 30 ° C. and 500 ° C. when the temperature was raised from room temperature (25 ° C.) to 1000 ° C. at a constant rate of 10 ° C./min was calculated. The results are shown in Table 1.

〔接合性評価〕
先ず、板状ガラスa〜jのなかから選択したものを表2に示す順序で積層し、それぞれ50MPa〜150MPa程度で加圧成形することによって一体化させ、積層ガラス(S1〜S8)を得た。次に、これらの積層ガラスを表2に示す被接合部材(金属およびセラミックス)間に配置し、窒素雰囲気で、800℃〜1100℃で1時間焼成することで、被接合部材の接合を試みた。
なお、試験に使用した金属部材およびセラミック部材の熱膨張係数は以下の通りである。
・フェライト系ステンレス鋼(SUS430) 熱膨張係数:11.5ppm/K
・フェライト系ステンレス鋼(SUS310) 熱膨張係数:16.5ppm/K
・アルミナ 熱膨張係数:7.0ppm/K
[Jointability evaluation]
First, those selected from the plate glasses a to j were laminated in the order shown in Table 2, and integrated by press molding at about 50 MPa to 150 MPa, respectively, to obtain laminated glasses (S1 to S8). . Next, these laminated glasses were placed between the members to be joined (metal and ceramics) shown in Table 2, and were fired at 800 ° C. to 1100 ° C. for 1 hour in a nitrogen atmosphere, thereby attempting to join the members to be joined. .
In addition, the thermal expansion coefficient of the metal member and ceramic member which were used for the test is as follows.
-Ferritic stainless steel (SUS430) Thermal expansion coefficient: 11.5ppm / K
Ferritic stainless steel (SUS310) Thermal expansion coefficient: 16.5 ppm / K
・ Alumina Thermal expansion coefficient: 7.0 ppm / K

Figure 2016037422
Figure 2016037422

その後、それぞれの積層体について接合されているか、接合されている場合には気密な接合が実現されているかを確認した。具体的には、残留応力による影響を考慮するために、常温環境下で3日間置いた後、ピンセットを用いて被接合材から接合部が剥がせるかどうかで、両者が機械的に接合されているか否かを確認した。接合が確認できた接合体については、さらに浸透探傷検査を行って、クラックの有無を確認した。
結果を表3の接合性の欄に示す。表3において、「◎」は両者が機械的に接合され、かつ、クラックが確認されなかったことを、「×」は接合不良(剥離)または接合部にクラックが認められたことを表している。
After that, it was confirmed whether each laminated body was bonded or whether airtight bonding was realized when bonded. Specifically, in order to consider the effect of residual stress, after being left in a room temperature environment for 3 days, the two parts are mechanically bonded depending on whether the bonded part can be peeled off from the material to be bonded using tweezers. It was confirmed whether or not. About the joined body which can confirm joining, a penetration flaw inspection was further performed and the presence or absence of the crack was confirmed.
The results are shown in the column of bondability in Table 3. In Table 3, “◎” indicates that both were mechanically bonded and no crack was observed, and “×” indicates that a bonding failure (peeling) or a crack was observed at the bonded portion. .

Figure 2016037422
Figure 2016037422

表3には、接合性の評価結果と同時に、隣り合うガラス層間の熱膨張係数の差分を示している。表3に示すように、S5〜S8に比べて、S1〜S4ではステンレス鋼とアルミナとが良好に接合されていた。このことから、熱膨張係数が隣り合う2つのガラス層間で段階的に異なり、当該隣り合うガラス層間の熱膨張係数の差がいずれも1.5ppm/K以下の積層ガラスをガラス接合材として用いることで、気密性の高い接合部を実現できることがわかった。   Table 3 shows the difference in thermal expansion coefficient between adjacent glass layers simultaneously with the result of evaluation of bondability. As shown in Table 3, compared to S5 to S8, stainless steel and alumina were favorably bonded in S1 to S4. For this reason, laminated glass having a thermal expansion coefficient that differs stepwise between two adjacent glass layers and that has a difference in thermal expansion coefficient between the adjacent glass layers of 1.5 ppm / K or less is used as the glass bonding material. It was found that a highly airtight joint can be realized.

〔ステンレス鋼との反応性評価〕
被接合部材間の良好な接合性が確認された接合体(S1〜S4)については、被接合部材として使用したステンレス鋼との反応が生じていないかを確認した。ステンレス鋼は鉄(Fe)を主成分とし(50質量%以上であり)、またクロム(Cr)成分を10%以上含んでいることから、ここではCr元素の拡散性に基づいてステンレス鋼とガラス接合材の反応性について評価した。具体的には、接合体の断面を走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察し、エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy:EDX)を用いて得られた観察画像をCr元素でマッピングすることにより、接合部にCrが拡散していないかを確認した。また、比較例として、接合部にアルカリ成分である酸化カリウムを含んだガラス接合材を使用して別途接合体を作製し、同様に接合部にCrが拡散していないかを確認した。結果を表3のSUSとの反応性の欄に示す。表3において、「◎」は接合部にCr元素が認められなかったことを、「×」は接合部にCr元素が認められたことを表している。
[Reactivity evaluation with stainless steel]
About the joined body (S1-S4) by which the favorable joining property between to-be-joined members was confirmed, it was confirmed whether reaction with the stainless steel used as a to-be-joined member had arisen. Stainless steel is mainly composed of iron (Fe) (50 mass% or more) and contains 10% or more of chromium (Cr) component. Therefore, here, stainless steel and glass are based on the diffusibility of Cr element. The reactivity of the bonding material was evaluated. Specifically, an observation image obtained by observing a cross section of the joined body with a scanning electron microscope (SEM) and using energy dispersive X-ray spectroscopy (EDX). By mapping Cr with the Cr element, it was confirmed whether Cr was diffused in the joint. In addition, as a comparative example, a separate joined body was prepared using a glass joining material containing potassium oxide, which is an alkaline component, in the joint portion, and similarly, it was confirmed whether Cr was not diffused in the joint portion. The results are shown in the column of reactivity with SUS in Table 3. In Table 3, “◎” represents that no Cr element was observed at the joint, and “x” represents that Cr element was observed at the joint.

表3に示すように、比較例ではCr元素の接合部への拡散が認められ、被接合部材としてのステンレス鋼とガラス接合材との反応が生じていた。一方、アルカリ成分を含まないS1〜S4では、Cr元素の接合部への拡散は認められずステンレス鋼との反応は確認されなかった。かかる結果は、本発明の技術的意義を示すものである。   As shown in Table 3, in the comparative example, the diffusion of Cr element into the bonded portion was recognized, and the reaction between stainless steel as the member to be bonded and the glass bonding material occurred. On the other hand, in S1 to S4 not containing an alkali component, no diffusion of Cr element to the joint was observed, and no reaction with stainless steel was confirmed. This result shows the technical significance of the present invention.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

10 接合材(積層ガラス)
10a 第一の面(セラミック部材側の面)
10b 第二の面(金属部材側の面)
12 X層(熱膨張係数小ガラス層)
14 Y層(熱膨張係数中ガラス層)
16 Z層(熱膨張係数大ガラス層)
10 Bonding material (laminated glass)
10a First surface (surface on the ceramic member side)
10b Second surface (surface on the metal member side)
12 X layer (thermal expansion coefficient small glass layer)
14 Y layer (medium thermal expansion coefficient glass layer)
16 Z layer (Glass layer with large thermal expansion coefficient)

Claims (8)

熱膨張係数の異なる部材間の接合に用いられる接合材であって、
3層以上のガラス層から構成され、かつ、該ガラス層の積層方向において、一方の端部のガラス層から他方の端部のガラス層に向かって30℃〜500℃の熱膨張係数が段階的に増大する積層ガラスであって、
隣り合うガラス層間の30℃〜500℃における熱膨張係数の差がいずれも1.5ppm/K以下であり、
いずれのガラス層にもアルカリ成分を含まない、接合材。
A bonding material used for bonding between members having different thermal expansion coefficients,
It is composed of three or more glass layers, and in the laminating direction of the glass layers, a thermal expansion coefficient of 30 ° C. to 500 ° C. is stepwise from the glass layer at one end toward the glass layer at the other end. A laminated glass that increases to
The difference in thermal expansion coefficient between 30 ° C. and 500 ° C. between adjacent glass layers is 1.5 ppm / K or less,
A bonding material in which none of the glass layers contains an alkali component.
前記3層以上のガラス層が、それぞれ独立して、Ba、Si、Al、Ti、Zn、BおよびCaからなる群から選択される1種または2種以上の元素の酸化物を含む、請求項1に記載の接合材。   The three or more glass layers each independently include an oxide of one or more elements selected from the group consisting of Ba, Si, Al, Ti, Zn, B, and Ca. The bonding material according to 1. 前記積層ガラス全体の30℃〜500℃における熱膨張係数が、5ppm/K以上20ppm/K以下である、請求項1または2に記載の接合材。   The bonding | jointing material of Claim 1 or 2 whose thermal expansion coefficient in 30 to 500 degreeC of the said laminated glass is 5 ppm / K or more and 20 ppm / K or less. 前記積層ガラス全体が、酸化物換算の質量比で、
BaO 50〜65質量%、
SiO 20〜35質量%、
Al 5〜15質量%、
TiO 1〜10質量%、
ZnO 0〜5質量%、
1〜5質量%、
MgO、CaOおよびSrOのうちの少なくとも1種 1〜5質量%、
の成分を含む、請求項1〜3のいずれか1項に記載の接合材。
The entire laminated glass is a mass ratio in terms of oxide,
BaO 50-65 mass%,
SiO 2 20~35% by weight,
Al 2 O 3 5 to 15 wt%,
TiO 2 1-10% by mass,
ZnO 0-5% by mass,
B 2 O 3 1-5% by mass,
1 to 5% by mass of at least one of MgO, CaO and SrO,
The bonding | jointing material of any one of Claims 1-3 containing these components.
前記一方の端部のガラス層の30℃〜500℃における熱膨張係数が6ppm/K以上8ppm/K以下であり、
前記他方の端部のガラス層の30℃〜500℃における熱膨張係数が10ppm/K以上16ppm/K以下である、請求項1〜4のいずれか1項に記載の接合材。
The coefficient of thermal expansion at 30 ° C. to 500 ° C. of the glass layer at the one end is 6 ppm / K or more and 8 ppm / K or less,
The bonding | jointing material of any one of Claims 1-4 whose coefficient of thermal expansion in 30 to 500 degreeC of the glass layer of said other edge part is 10 ppm / K or more and 16 ppm / K or less.
セラミック部材と、金属部材と、両部材間を接合する接合部と、を備え、
前記接合部は、請求項1〜5のいずれか1項に記載の接合材により構成される、接合体。
A ceramic member, a metal member, and a joining portion for joining the two members;
The said junction part is a joined body comprised with the joining material of any one of Claims 1-5.
前記セラミック部材は、30℃〜500℃の熱膨張係数が6ppm/K以上8ppm/K以下のセラミック材料によって構成されており、
前記金属部材は、30℃〜500℃の熱膨張係数が10ppm/K以上23ppm/K以下の金属材料によって構成されている、請求項6に記載の接合体。
The ceramic member is made of a ceramic material having a thermal expansion coefficient of 30 to 500 ° C. of 6 ppm / K or more and 8 ppm / K or less,
The said metal member is a joined body of Claim 6 comprised with the metal material whose thermal expansion coefficient of 30 to 500 degreeC is 10 ppm / K or more and 23 ppm / K or less.
前記セラミック部材がアルミナ系セラミックスからなり、
前記金属部材がステンレス鋼からなる、請求項6または7に記載の接合体。
The ceramic member is made of alumina ceramics,
The joined body according to claim 6 or 7, wherein the metal member is made of stainless steel.
JP2014162413A 2014-08-08 2014-08-08 Bonding material and its use Active JP6285318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014162413A JP6285318B2 (en) 2014-08-08 2014-08-08 Bonding material and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014162413A JP6285318B2 (en) 2014-08-08 2014-08-08 Bonding material and its use

Publications (2)

Publication Number Publication Date
JP2016037422A true JP2016037422A (en) 2016-03-22
JP6285318B2 JP6285318B2 (en) 2018-02-28

Family

ID=55528826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014162413A Active JP6285318B2 (en) 2014-08-08 2014-08-08 Bonding material and its use

Country Status (1)

Country Link
JP (1) JP6285318B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051590A1 (en) * 2015-09-25 2017-03-30 株式会社日立製作所 Joining material and joined body using same
WO2018163632A1 (en) * 2017-03-10 2018-09-13 日立オートモティブシステムズ株式会社 Physical quantity measurement device and method for manufacturing same, and physical quantity measurement element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017295B2 (en) * 2015-05-20 2022-02-08 株式会社ノリタケカンパニーリミテド Joining material and its use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851914A (en) * 1971-11-02 1973-07-21
JPH11135252A (en) * 1997-08-12 1999-05-21 Matsushita Electric Ind Co Ltd Heating device with microwave and joining method of joining object using thereof
JP2000327442A (en) * 1999-05-14 2000-11-28 Ngk Spark Plug Co Ltd Ceramic-metal joined body, its production and high temperature type secondary battery
JP2013241323A (en) * 2012-04-24 2013-12-05 Nippon Electric Glass Co Ltd Crystalline glass composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851914A (en) * 1971-11-02 1973-07-21
JPH11135252A (en) * 1997-08-12 1999-05-21 Matsushita Electric Ind Co Ltd Heating device with microwave and joining method of joining object using thereof
JP2000327442A (en) * 1999-05-14 2000-11-28 Ngk Spark Plug Co Ltd Ceramic-metal joined body, its production and high temperature type secondary battery
JP2013241323A (en) * 2012-04-24 2013-12-05 Nippon Electric Glass Co Ltd Crystalline glass composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051590A1 (en) * 2015-09-25 2017-03-30 株式会社日立製作所 Joining material and joined body using same
JPWO2017051590A1 (en) * 2015-09-25 2018-03-22 株式会社日立製作所 Bonding material and bonded body using the same
US10442724B2 (en) 2015-09-25 2019-10-15 Hitachi Ltd. Joining material and joined body using same
WO2018163632A1 (en) * 2017-03-10 2018-09-13 日立オートモティブシステムズ株式会社 Physical quantity measurement device and method for manufacturing same, and physical quantity measurement element
JPWO2018163632A1 (en) * 2017-03-10 2019-11-07 日立オートモティブシステムズ株式会社 PHYSICAL QUANTITY MEASURING DEVICE, ITS MANUFACTURING METHOD, AND PHYSICAL QUANTITY MEASURING DEVICE

Also Published As

Publication number Publication date
JP6285318B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
JP5787928B2 (en) Barium and strontium-free vitreous or glass-ceramic bonding materials and their use
Chou et al. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect
EP2117765B1 (en) Metal-ceramic composite air braze with ceramic particulate
JP6032014B2 (en) Crystalline glass composition
US8511535B1 (en) Innovative braze and brazing process for hermetic sealing between ceramic and metal components in a high-temperature oxidizing or reducing atmosphere
Chou et al. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels
JP6285318B2 (en) Bonding material and its use
KR20160125903A (en) Vitreous or at least partly crystallised sealing material, joint connection, barrier layer and layer system comprising the sealing material, and integration thereof into components
JP7062087B2 (en) Ceramic sintered body and substrate for semiconductor devices
JP2013234117A (en) Glass ceramic bonding material and use thereof
JP6285271B2 (en) Bonding material and its use
CN104711457B (en) High temperature solder and application thereof
JP2017141124A (en) Glass composition and use thereof
JP5789177B2 (en) Polycrystalline ceramic joined body and method for producing the same
JP7017295B2 (en) Joining material and its use
JP5925159B2 (en) Heat-resistant glass bonding material and use thereof
JP6305315B2 (en) Heat-resistant glass sealing material and use thereof
JP6101232B2 (en) Glass bonding material
JP5886794B2 (en) Heat-resistant glass bonding material and use thereof
JP7232106B2 (en) Glass bonding material and its use
Sinnamon et al. Wetting and mechanical performance of zirconia brazed with silver/copper oxide and silver/vanadium oxide alloys
JP6305037B2 (en) Bonding material
Joshi et al. An Experimental Study on Fabrication, Mechanical Behavior Characterization and Micro Structural Evolution in Glass‐Metal Joints
EP3427889B1 (en) Air braze filler material for ceramic metallization and bonding, and method for metallization and bonding of ceramic surfaces
JP2008174443A (en) Ceramic bonded body and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180201

R150 Certificate of patent or registration of utility model

Ref document number: 6285318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250