JP2016036833A - Two-electrode simultaneous welding device, and two-electrode simultaneous welding method - Google Patents

Two-electrode simultaneous welding device, and two-electrode simultaneous welding method Download PDF

Info

Publication number
JP2016036833A
JP2016036833A JP2014161554A JP2014161554A JP2016036833A JP 2016036833 A JP2016036833 A JP 2016036833A JP 2014161554 A JP2014161554 A JP 2014161554A JP 2014161554 A JP2014161554 A JP 2014161554A JP 2016036833 A JP2016036833 A JP 2016036833A
Authority
JP
Japan
Prior art keywords
welding
electrode
gma
current
consumable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014161554A
Other languages
Japanese (ja)
Inventor
武士 物種
Takeshi Monotane
武士 物種
竹野 祥瑞
Yoshimizu Takeno
祥瑞 竹野
景太 山田
Keita Yamada
景太 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014161554A priority Critical patent/JP2016036833A/en
Publication of JP2016036833A publication Critical patent/JP2016036833A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-electrode simultaneous welding device and a two-electrode simultaneous welding method capable of solving the problems in which the GMA welding of the recent years is varied in the period of an electric current waveform at each time when a welding power source detects the welding state, so that the GMA and the non-consumable welding phase are deviated, if the GMA welding and non-consumable welding are mutually performed at a constant interval, to cause an interference of arcs in any way thereby to make it difficult to weld stably.SOLUTION: An electric current waveform of GMA welding is directly detected to determine a low current region having no interference of an arc so that the simultaneous welding is performed while making controls, in which an arbitrary timing, an arbitrary period and non-consumable welding can be performed.SELECTED DRAWING: Figure 1

Description

本発明は金属のアーク溶接による2電極同時溶接方法および2電極同時装置関するものである。   The present invention relates to a two-electrode simultaneous welding method and two-electrode simultaneous apparatus by arc welding of metal.

GMA(Gas Metal Arc)溶接と非消耗性溶接、例えば、TIG(Tungsten Inert Gas)溶接とを同時に施すことが可能な溶接装置は、溶接速度の向上や溶け込み深さをより深くすることなどに有利である。また、非消耗性電極のため高品質な溶接部が得られるTIG溶接法と、肉盛が可能なGMA溶接法との両方の長所を生かすことができる。しかしながら、一般的にGMA溶接やTIG溶接はアーク放電を行う溶接法であるため、同時に溶接するとアークが発生する磁場により、互いのアーク間に引力や斥力が発生する。引力や斥力は溶接電流に比例し大きくなるため、大電流での溶接、あるいはピーク電流が大きくなるパルス溶接では、大きな引力や斥力が発生し、安定した溶接が困難である。そこで、従来は、特許文献1の図3に示されるように、GMA溶接の電流波形のピークとTIG溶接の波形のピークとが相互に入れ替わるように位相をずらして溶接することで、アークの干渉を抑制していた。   A welding apparatus capable of performing GMA (Gas Metal Arc) welding and non-consumable welding, for example, TIG (Tungsten Inert Gas) welding at the same time, is advantageous in improving the welding speed and increasing the penetration depth. It is. In addition, the advantages of both the TIG welding method in which a high-quality weld is obtained because of a non-consumable electrode and the GMA welding method capable of overlaying can be utilized. However, since GMA welding and TIG welding are generally welding methods in which arc discharge is performed, an attractive force and a repulsive force are generated between the arcs due to a magnetic field generated when arcs are simultaneously welded. Since the attractive force and repulsive force increase in proportion to the welding current, large attractive force and repulsive force are generated in welding with a large current or pulse welding with a large peak current, and stable welding is difficult. Therefore, conventionally, as shown in FIG. 3 of Patent Document 1, arc welding is performed by shifting the phase so that the peak of the current waveform of GMA welding and the peak of the waveform of TIG welding are interchanged. Was suppressed.

特開2008−207213(図3)JP2008-207213 (FIG. 3)

GMA溶接と非消耗性溶接、例えば、TIG溶接の同時溶接にはアークの干渉の回避が必要であるため、両溶接をパルスモードとした上で、互いのピークが重ならないように位相をずらす必要がある。しかしながら、GMA溶接は電極が溶融する消耗性電極であるため、溶接中の電極の溶融状態が刻一刻と変化する。そこで、近年のGMA溶接電源は安定した溶接を行うために、溶接電源が電圧、あるいは電流を検知し、その時々で電流周期を変化させるフィードバック制御機構がついている。このためGMA溶接とTIG溶接とを同時に溶接する際、GMA溶接のピーク電流時間とTIG溶接のピーク電流時間とが重なることを避けるように位相をズラして溶接を開始しても、GMA電源のフィードバック制御機構の働きによりGMA溶接の周波数が変化するため、いずれは電流の互いの溶接電源のピークタイミングが重なってしまい、アークの相互作用が発生し、安定した溶接が困難であった。   For simultaneous welding of GMA welding and non-consumable welding, for example, TIG welding, it is necessary to avoid arc interference, so both phases must be set to pulse mode and the phases must be shifted so that the peaks do not overlap each other. There is. However, since GMA welding is a consumable electrode that melts the electrode, the molten state of the electrode being welded changes every moment. Therefore, in order to perform stable welding in recent GMA welding power sources, the welding power source has a feedback control mechanism that detects voltage or current and changes the current cycle from time to time. For this reason, when GMA welding and TIG welding are performed simultaneously, even if the welding is started with the phase shifted so as to avoid the overlap between the peak current time of GMA welding and the peak current time of TIG welding, Since the frequency of GMA welding is changed by the action of the feedback control mechanism, the peak timings of the current welding power sources overlap each other, and arc interaction occurs, making stable welding difficult.

本発明の2電極同時溶接装置では、GMA溶接電源から電流が供給されるGMA電極と、電流の電流値を計測する電流検知部と、電流値に応じた命令信号を出力する制御部と、アークを発生させる非消耗性電極を備えた非消耗性溶接装置とを備え、命令信号によって非消耗性電極に流れる電流が制御される。   In the two-electrode simultaneous welding apparatus of the present invention, a GMA electrode to which current is supplied from a GMA welding power source, a current detection unit for measuring a current value of the current, a control unit for outputting a command signal corresponding to the current value, an arc And a non-consumable welding apparatus having a non-consumable electrode for generating a current, and a current flowing through the non-consumable electrode is controlled by a command signal.

本発明の2電極同時溶接装置では、GMA溶接電源から電流が供給されるGMA電極と、電流の電流値を計測する電流検知部と、電流値に応じた命令信号を出力する制御部と、アークを発生させる非消耗性電極を備えた非消耗性溶接装置とを備え、命令信号によって非消耗性電極に流れる電流が制御されるので、GMA溶接の電流波形を直接検知することで、アークの干渉を確実に避けた同時溶接を行うことができる。   In the two-electrode simultaneous welding apparatus of the present invention, a GMA electrode to which current is supplied from a GMA welding power source, a current detection unit for measuring a current value of the current, a control unit for outputting a command signal corresponding to the current value, an arc And a non-consumable welding apparatus having a non-consumable electrode that generates electric current, and the current flowing through the non-consumable electrode is controlled by a command signal. Simultaneous welding that reliably avoids this can be performed.

本発明の実施の形態1における2電極同時溶接装置の構成図である。It is a block diagram of the two-electrode simultaneous welding apparatus in Embodiment 1 of this invention. 本発明の実施の形態1におけるパルスGMA溶接の電流波形図である。It is a current wave form diagram of pulse GMA welding in Embodiment 1 of the present invention. 本発明の実施の形態2における2電極同時溶接装置の構成図である。It is a block diagram of the 2 electrode simultaneous welding apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における比較例を示すための図である。It is a figure for showing the comparative example in Embodiment 2 of the present invention. 本発明の実施の形態3における2電極同時溶接装置の構成図である。It is a block diagram of the 2 electrode simultaneous welding apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における2電極同時溶接装置の構成図である。It is a block diagram of the 2 electrode simultaneous welding apparatus in Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1における2電極同時溶接装置の構成図であり、より具体的には、TIG電極1が先行、GMA電極2が後行となる同時溶接方法で、TIG電極1にはTIG溶接電源5が、GMA電極2にはGMA溶接電源4が繋がれている。溶接電流が流れるGMA電源4とGMA電極2との間には直接電流値を読み取る直接電流検知線6が繋がれており、検出した電流の大きさによってTIG電源に制御指令を出す制御装置7を備えた構成である。なお、図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文、図面の全図において共通することである。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a two-electrode simultaneous welding apparatus according to Embodiment 1 of the present invention. More specifically, FIG. 1 shows a simultaneous welding method in which a TIG electrode 1 is preceded and a GMA electrode 2 is followed. A TIG welding power source 5 is connected to 1 and a GMA welding power source 4 is connected to the GMA electrode 2. A direct current detection line 6 for directly reading a current value is connected between the GMA power source 4 and the GMA electrode 2 through which the welding current flows. This is a configuration provided. In the drawings, the same reference numerals denote the same or corresponding parts, and this is common to the entire text of the specification and all the drawings. Furthermore, the form of the constituent elements appearing in the whole specification is merely an example, and is not limited to these descriptions.

ここで、2つの電極(TIG電極1及びGMA電極2)から発生するアーク放電による入熱が1つの溶融池に与えられるように、電極間の距離は10mm以下とする。両溶接法ともにパルス溶接法である。GMA溶接はピーク電流が300A〜500A、ベース電流が60A以下、繰返し周波数が200Hz以下であり、また、TIG溶接はピーク電流が150A以上、ベース電流が60A以下であることが望ましい。また、溶接速度は100mm/min〜2000mm/minが望ましい。具体的な動作は次のとおりである。   Here, the distance between the electrodes is set to 10 mm or less so that heat input by arc discharge generated from the two electrodes (TIG electrode 1 and GMA electrode 2) is given to one molten pool. Both welding methods are pulse welding methods. GMA welding preferably has a peak current of 300A to 500A, a base current of 60A or less, and a repetition frequency of 200Hz or less, and TIG welding preferably has a peak current of 150A or more and a base current of 60A or less. The welding speed is preferably 100 mm / min to 2000 mm / min. The specific operation is as follows.

図2は、本発明の実施の形態1におけるパルスGMA溶接の電流波形図である。GMA電源の回路内に直接電流検知線6を接続し、GMA溶接の溶接電流を直接検知する。例えば、パルスGMA溶接では図2に示すような電流波形となり、電流値の高い矩形区間が存在する。直接電流検知線6は制御装置7に接続されており、制御装置7は電流の値を読み取り、その値によってTIG電源へと指令を送る機能を有する。   FIG. 2 is a current waveform diagram of pulse GMA welding in the first embodiment of the present invention. The current detection line 6 is directly connected to the circuit of the GMA power source to directly detect the welding current of GMA welding. For example, in pulse GMA welding, the current waveform is as shown in FIG. 2, and there is a rectangular section with a high current value. The direct current detection line 6 is connected to a control device 7, and the control device 7 has a function of reading a current value and sending a command to the TIG power source according to the value.

アーク電流が小さい場合、60A以下ではアークの相互干渉が小さく、溶接を困難にするほどではないため、例えば、60Aを閾値として制御装置7に設定する。直接電流検知線6により得られた電流値が閾値以上であれば、TIG電源にピークOFF指令を送り、ピークのアーク発生をストップさせ、低電流、例えば60Aでのベースアーク状態とさせる。閾値以下であれば、TIG電源にピークON指令を送り、TIGアークのピークを発生させ、目的の溶け込みが得られる高電流アーク、例えば、150Aを発生させる。   When the arc current is small, since the mutual interference of arcs is small at 60 A or less and the welding is not difficult, for example, 60 A is set in the control device 7 as a threshold value. If the current value obtained by the direct current detection line 6 is equal to or greater than the threshold value, a peak OFF command is sent to the TIG power source to stop the peak arc generation, and a base arc state at a low current, for example, 60 A is set. If it is below the threshold value, a peak ON command is sent to the TIG power source to generate a TIG arc peak, and a high current arc, for example, 150 A, which provides the desired penetration, is generated.

本形態により、GMA溶接は単独溶接時と同様に安定した溶接が行え、GMA溶接の溶接電流が低い区間にのみTIG溶接がピークとなるため、アークの相互干渉を確実に避ける同時溶接が可能である。   With this configuration, GMA welding can be performed stably as in the case of single welding, and TIG welding peaks only in the section where the welding current of GMA welding is low, so simultaneous welding that reliably avoids arc interference is possible. is there.

GMA溶接は消耗性電極であるため、電極そのものが溶融し、肉盛として母材に溶着する。このため、アーク−母材間に肉盛が存在するため、母材へアーク熱が直接伝わらず、入熱が妨げられ、溶融不足が生じることがある。特に、溶接開始時や、熱伝導率の高いアルミや銅などの金属ではその傾向が顕著である。しかしながら、TIG溶接は非消耗性電極であるため、先述のような母材へのアーク熱を遮るものがなく、150A以上の溶接ピーク電流であれば確実に母材を溶融させることができる。このため、TIG溶接法が先行した同時溶接を行うことで、母材を確実に溶融させることができる。GMA溶接の溶接電流を直接検知し、アーク発生のタイミングを毎回確実にずらすことで安定した同時溶接を可能にしている。   Since GMA welding is a consumable electrode, the electrode itself melts and is deposited on the base material as a build-up. For this reason, since there is build-up between the arc and the base material, arc heat is not directly transmitted to the base material, heat input is hindered, and insufficient melting may occur. In particular, this tendency is remarkable at the start of welding and in metals such as aluminum and copper having high thermal conductivity. However, since TIG welding is a non-consumable electrode, there is nothing to block the arc heat to the base material as described above, and the base material can be reliably melted if the welding peak current is 150 A or more. For this reason, a preform | base_material can be reliably fuse | melted by performing the simultaneous welding which the TIG welding method preceded. By directly detecting the welding current of GMA welding and reliably shifting the timing of arc generation every time, stable simultaneous welding is possible.

また、GMA溶接単体では1000mm/min程度が限界であり、それ以上の高速化を進めると溶接ビードの太さが周期的に変化するハンピングビードとなる。これは高速化により、入熱が不足し、母材が十分加熱されないことが主要因であるが、TIG電源を先行させると、先行して母材を溶融させることができるため、入熱不足が解消され、最大2倍程度まで溶接の高速化が可能となり、TIG溶接法の長所を活かした高速・高品質溶接が可能となる。   In addition, the limit of about 1000 mm / min is the limit for a single GMA weld, and if the speed is further increased, the thickness of the weld bead becomes a humping bead that periodically changes. This is mainly due to insufficient heat input due to the increase in speed and the base material is not heated sufficiently. However, if the TIG power supply is preceded, the base material can be melted in advance, so there is insufficient heat input. As a result, the welding speed can be increased up to twice as much as possible, and high-speed and high-quality welding can be performed utilizing the advantages of the TIG welding method.

さらに、同時溶接における溶接状態を安定させるには、単純に一定間隔で交互に溶接を行うことが適切とは限らない。GMA溶接とTIG溶接とを1対1で交互に行うよりも、例えば、GMA溶接が2周期、TIG溶接が1周期というように周期バランスが2対1の方がより適切となることもある。   Furthermore, in order to stabilize the welding state in the simultaneous welding, it is not always appropriate to simply perform welding alternately at regular intervals. Rather than performing GMA welding and TIG welding alternately on a one-to-one basis, for example, a two-to-one cycle balance may be more appropriate, such as two cycles of GMA welding and one cycle of TIG welding.

例えば、閾値以下の場合の制御機構7の指令を予めプログラミングしておくことで、GMA溶接の低電流区間に発生させるTIGのピーク数(パルス数)を調整することができる。TIG溶接法ではパルス間隔を変更させると溶融池がTIGアークの圧力によって振動させられ、その振動数によって溶接部組織を微細化できることがしられているが、2電極同時溶接法においてもパルス数を増やすことで、溶融池に振動を与えることができる。本条件ではTIG溶接法とGMA溶接法との溶融池が一連となっているため、TIGアークによる溶融池の振動はGMA溶接の溶融池にも有効に働き、溶接部組織を微細化することができる。   For example, the number of TIG peaks (number of pulses) generated in the low current section of GMA welding can be adjusted by programming in advance the command of the control mechanism 7 in the case of the threshold value or less. When the pulse interval is changed in the TIG welding method, the weld pool is vibrated by the pressure of the TIG arc, and the weld structure can be refined by the frequency, but the pulse number is also reduced in the two-electrode simultaneous welding method. By increasing, vibration can be given to the molten pool. Under these conditions, the weld pool of TIG welding method and GMA welding method is a series, so the vibration of the weld pool by TIG arc also works effectively on the weld pool of GMA welding, and the weld structure can be refined. it can.

GMA溶接電源から電流が供給されるGMA電極と、電流の電流値を計測する電流検知部と、電流値に応じた命令信号を出力する制御部と、アークを発生させる非消耗性電極を備えた非消耗性溶接装置とを備え、命令信号によって非消耗性電極に流れる電流が制御される2電極同時溶接装置によれば、命令信号はGMA溶接のアークと非消耗性溶接のアークとが互いに干渉しないように制御するので、波形周期が変動してもアークの干渉を確実に避けた同時溶接を行うことができる。GMA電極に流れる電流値が所定値以下のときに非消耗性溶接を行うからである。   A GMA electrode to which current is supplied from the GMA welding power source, a current detection unit that measures the current value of the current, a control unit that outputs a command signal according to the current value, and a non-consumable electrode that generates an arc According to the two-electrode simultaneous welding device, which has a non-consumable welding device and the current flowing through the non-consumable electrode is controlled by a command signal, the command signal interferes with the arc of GMA welding and the arc of non-consumable welding. Therefore, simultaneous welding can be performed while reliably avoiding arc interference even if the waveform period varies. This is because non-consumable welding is performed when the value of the current flowing through the GMA electrode is equal to or less than a predetermined value.

以上のように、GMA溶接の電流波形を直接検知し、アークの干渉が生じない、低電流領域を判断し、その間では、任意のタイミング、任意の時間、TIG溶接を行えるような制御ができるので、溶接環境・条件に応じて適切なコントロールで同時溶接を行うことができる。   As described above, the current waveform of GMA welding is directly detected, and a low current region in which no arc interference occurs is determined. In the meantime, control can be performed so that TIG welding can be performed at an arbitrary timing and at an arbitrary time. Simultaneous welding can be performed with appropriate control according to the welding environment and conditions.

実施の形態2.
図3は本発明の実施の形態2における2電極同時溶接装置の構成図であり、より具体的には、実施の形態1と同じ構成で垂直方向の溶接を行う例を示している。通常、垂直方向の溶接は溶融池が重力により垂れ下がり、縦向き溶接は溶融池が重力に引っ張られ、垂れ落ちる(図4)。特に、縦向き下進溶接では溶接進行方向に溶融池が垂れ落ち、電極−ワーク間に溶融物が介入するため、アーク放電によるワークへの入熱が妨げられて、安定した溶け込みが得られず品質上の問題となる。一方、縦向き上進溶接では、垂れ落ちを防止するため、連続溶接は行われず、溶融池を素早く凝固させるためアークを切りながら溶接するが、入熱が軽減されるため溶け込み不足が生じる。ここでは、一番厳しい条件となる垂直方向の溶接で説明をしているが、45度以上の傾斜においても同様の問題がある。
Embodiment 2. FIG.
FIG. 3 is a configuration diagram of the two-electrode simultaneous welding apparatus according to the second embodiment of the present invention. More specifically, FIG. 3 shows an example in which vertical welding is performed with the same configuration as that of the first embodiment. Normally, in the vertical welding, the molten pool hangs down due to gravity, and in the vertical welding, the molten pool is pulled down due to gravity (see FIG. 4). In particular, in vertical downward welding, the molten pool hangs down in the welding direction, and the molten material intervenes between the electrode and the workpiece, preventing the heat input to the workpiece due to arc discharge and preventing stable penetration. It becomes a quality problem. On the other hand, in longitudinally upward welding, continuous welding is not performed in order to prevent dripping, and welding is performed while cutting the arc to quickly solidify the molten pool. However, since heat input is reduced, insufficient penetration occurs. Here, the vertical welding, which is the most severe condition, has been described, but the same problem occurs even at an inclination of 45 degrees or more.

本実施の形態では母材の溶け込みをTIG溶接が担い、肉盛りをGMA溶接が担う。GMA溶接は電流波形を逆極性とすることで、ワイヤを優先して溶かすことができることが知られている。本構成では、TIG溶接が先行し、母材を溶融させているため、GMA溶接による入熱はワイヤを溶融させるのに必要な分だけでよい。   In the present embodiment, TIG welding is responsible for the penetration of the base material, and GMA welding is responsible for the build-up. It is known that GMA welding can preferentially melt wires by setting the current waveform to reverse polarity. In this configuration, TIG welding precedes and the base material is melted, so heat input by GMA welding is only necessary for melting the wire.

従来はGMA溶接単独で母材の溶融とワイヤによる肉盛りを同時に行うため、広範囲にわたり、金属の融点を超える必要であった。ピーク温度が一点である場合、温度分布はその拡散性から、ピーク温度を中心に放射状に温度が低下する分布をとる。このため、広範囲を高温、ここでは融点にするためにはピーク温度を融点よりも高くする必要がある。融点以上にする範囲が大きくなるほど、ピーク温度も高くしなければならない。   Conventionally, since GMA welding alone simultaneously melts the base material and builds up with a wire, it has been necessary to exceed the melting point of the metal over a wide range. When the peak temperature is one point, the temperature distribution has a distribution in which the temperature decreases radially from the peak temperature due to its diffusivity. For this reason, the peak temperature needs to be higher than the melting point in order to set the wide range to a high temperature, here the melting point. The larger the range above the melting point, the higher the peak temperature must be.

しかしながら、本構成のように熱源を2分割することにより、ピーク温度が2点となる温度分布では、ピーク温度が1つのときと比較し、低いピーク温度で同等の範囲が融点となる温度分布が得られる。このような原理によって2つの熱源を持つ同時溶接では溶融池の最高温度抑制することができる。金属は一般に高温になるほど粘性が低下するため、本構成を用いることにより、最高温度を抑制することで溶融池の垂れ落ちを解決でき、良好な垂直方向の溶接が可能となる。さらに、先行のTIG溶接時は確実に母材に入熱が行われるため、安定した溶け込みが得られ、45度以上の傾斜又は垂直方向での溶接でも、溶け込み不足を解消することができる。   However, by dividing the heat source into two as in this configuration, the temperature distribution in which the peak temperature is two points has a temperature distribution in which the equivalent range is the melting point at a lower peak temperature than when the peak temperature is one. can get. By such a principle, the maximum temperature of the molten pool can be suppressed by simultaneous welding having two heat sources. Since the viscosity of metal generally decreases as the temperature increases, by using this configuration, the drooping of the molten pool can be solved by suppressing the maximum temperature, and good vertical welding becomes possible. Furthermore, since heat is reliably input to the base metal during the preceding TIG welding, stable penetration can be obtained, and the lack of penetration can be resolved even with welding at 45 degrees or more or in the vertical direction.

GMA溶接電源から電流が供給されるGMA電極と、電流の電流値を計測する電流検知部と、電流値に応じた命令信号を出力する制御部と、アークを発生させる非消耗性電極を備えた非消耗性溶接装置とを備え、命令信号によって非消耗性電極に流れる電流が制御される2電極同時溶接装置によれば、命令信号はGMA溶接のアークと非消耗性溶接のアークとが互いに干渉しないように制御するので、波形周期が変動してもアークの干渉を確実に避けた同時溶接を行うことができる。GMA電極に流れる電流値が所定値以下のときに非消耗性溶接を行うからである。   A GMA electrode to which current is supplied from the GMA welding power source, a current detection unit that measures the current value of the current, a control unit that outputs a command signal according to the current value, and a non-consumable electrode that generates an arc According to the two-electrode simultaneous welding device, which has a non-consumable welding device and the current flowing through the non-consumable electrode is controlled by a command signal, the command signal interferes with the arc of GMA welding and the arc of non-consumable welding. Therefore, simultaneous welding can be performed while reliably avoiding arc interference even if the waveform period varies. This is because non-consumable welding is performed when the value of the current flowing through the GMA electrode is equal to or less than a predetermined value.

実施の形態3.
図6および図7は、本発明の実施の形態3における2電極同時溶接装置の構成図である。実施の形態1および2とは、TIG溶接電源による熱源をプラズマ熱源とする構成の点で異なっている。制御装置7からの命令信号によってプラズマ電極10に流れる電流が制御されている。図6および図7に示すようにプラズマ電極10が先行するプラズマ−GMA同時溶接法であり、図6は水平方向の溶接例、図7は垂直方向の溶接例を示しており、プラズマ溶接が先行し、GMA溶接が続くことになる。
Embodiment 3 FIG.
6 and 7 are configuration diagrams of a two-electrode simultaneous welding apparatus according to Embodiment 3 of the present invention. The first and second embodiments differ from the first and second embodiments in the configuration in which a heat source by a TIG welding power source is a plasma heat source. The current flowing through the plasma electrode 10 is controlled by a command signal from the control device 7. FIG. 6 and FIG. 7 show the plasma-GMA simultaneous welding method preceded by the plasma electrode 10, FIG. 6 shows a horizontal welding example, and FIG. 7 shows a vertical welding example. Then, GMA welding will continue.

2つの電極から発生するアーク放電による入熱が1つの溶融池に与えられるように、電極間の距離は10mm以下とする。GMA溶接はこれまでの構成と同様、パルス溶接法でピーク電流が300A〜500A、ベース電流が60A以下、繰返し周波数が200Hz以下であることが望ましい。プラズマ溶接法はピーク電流が100A以上、ベース電流は60A以下が望ましい。プラズマ溶接を用いることにより、TIG溶接使用時よりも溶接速度を向上させることができ、溶接速度は100mm/min〜3000mm/minが望ましい。さらに、プラズマ溶接を用いることにより、TIG溶接時よりも先行熱源として約30%の入熱を減らすことができ、溶融池の最高温度を抑制できるため、さらに溶融池の垂れ落ちを抑制することができる。   The distance between the electrodes is set to 10 mm or less so that heat input by arc discharge generated from the two electrodes is given to one molten pool. In the GMA welding, it is desirable that the peak current is 300 A to 500 A, the base current is 60 A or less, and the repetition frequency is 200 Hz or less by the pulse welding method as in the conventional configuration. The plasma welding method preferably has a peak current of 100 A or more and a base current of 60 A or less. By using plasma welding, the welding speed can be improved more than when TIG welding is used, and the welding speed is preferably 100 mm / min to 3000 mm / min. Furthermore, by using plasma welding, it is possible to reduce the heat input of about 30% as a leading heat source than during TIG welding, and the maximum temperature of the molten pool can be suppressed, so that dripping of the molten pool can be further suppressed. it can.

以上のように、GMA溶接電源から電流が供給されるGMA電極と、電流の電流値を計測する電流検知部と、電流値に応じた命令信号を出力する制御部と、アークを発生させるプラズマ電極を備えたプラズマ溶接装置とを用いた2電極同時溶接方法であって、非消耗性溶接がGMA溶接に先行し、GMA電極に流れる電流値が所定値以下のときに非消耗性溶接を行う2電極同時溶接方法であり、45度以上の傾斜又は垂直方向に溶接する場合でも、アークの干渉を確実に避けた同時溶接を行うことができる。   As described above, a GMA electrode to which current is supplied from the GMA welding power source, a current detection unit that measures the current value of the current, a control unit that outputs a command signal corresponding to the current value, and a plasma electrode that generates an arc A two-electrode simultaneous welding method using a plasma welding apparatus equipped with a non-consumable welding when non-consumable welding precedes GMA welding and the current value flowing through the GMA electrode is below a predetermined value 2 This is an electrode simultaneous welding method, and even when welding is performed at an inclination of 45 degrees or more or in a vertical direction, simultaneous welding can be performed while reliably avoiding arc interference.

1 TIG電極、2 GMA電極、3 母材、4 GMA溶接電源、5 TIG溶接電源、6 直接電流検知線、7 制御装置、8 GMA溶接の溶接電流波形、9 重力によるビードの垂れ落ち、10 プラズマ電極、11 プラズマ溶接電源。   1 TIG electrode, 2 GMA electrode, 3 base material, 4 GMA welding power source, 5 TIG welding power source, 6 direct current detection line, 7 control device, 8 welding current waveform of GMA welding, 9 bead dripping due to gravity, 10 plasma Electrode, 11 Plasma welding power source.

Claims (10)

GMA溶接電源から電流が供給されるGMA電極と、
前記電流の電流値を計測する電流検知部と、
前記電流値に応じた命令信号を出力する制御部と、
アークを発生させる非消耗性電極を備えた非消耗性溶接装置とを備え、
前記命令信号によって前記非消耗性電極に流れる電流が制御されること特徴とする2電極同時溶接装置。
GMA electrode supplied with current from GMA welding power source,
A current detector for measuring the current value of the current;
A control unit that outputs a command signal according to the current value;
A non-consumable welding device with a non-consumable electrode for generating an arc,
The two-electrode simultaneous welding apparatus, wherein a current flowing through the non-consumable electrode is controlled by the command signal.
命令信号は、GMA溶接のアークと非消耗性溶接のアークとが互いに干渉しないように制御する信号であることを特徴とする請求項1に記載の2電極同時溶接装置。 2. The two-electrode simultaneous welding apparatus according to claim 1, wherein the command signal is a signal for controlling the arc of GMA welding and the arc of non-consumable welding so as not to interfere with each other. GMA溶接電源から電流が供給されるGMA電極と、
前記電流の電流値を計測する電流検知部と、
前記電流値に応じた命令信号を出力する制御部と、
アークを発生させるプラズマ電極を備えたプラズマ溶接装置とを備え、
前記命令信号によって前記プラズマ電極に流れる電流が制御されること特徴とする2電極同時溶接装置。
GMA electrode supplied with current from GMA welding power source,
A current detector for measuring the current value of the current;
A control unit that outputs a command signal according to the current value;
A plasma welding apparatus having a plasma electrode for generating an arc;
The two-electrode simultaneous welding apparatus, wherein a current flowing through the plasma electrode is controlled by the command signal.
命令信号は、GMA溶接のアークとプラズマ溶接のアークとが互いに干渉しないように制御する信号であることを特徴とする請求項3に記載の2電極同時溶接装置。 4. The two-electrode simultaneous welding apparatus according to claim 3, wherein the command signal is a signal for controlling the GMA welding arc and the plasma welding arc so as not to interfere with each other. GMA溶接電源から電流が供給されるGMA電極と、
前記電流の電流値を計測する電流検知部と、
前記電流値に応じた命令信号を出力する制御部と、
アークを発生させる非消耗性電極を備えた非消耗性溶接装置とを用いた2電極同時溶接方法であって、
非消耗性溶接がGMA溶接に先行し、前記命令信号によって前記非消耗性電極に流れる電流を制御する2電極同時溶接方法。
GMA electrode supplied with current from GMA welding power source,
A current detector for measuring the current value of the current;
A control unit that outputs a command signal according to the current value;
A two-electrode simultaneous welding method using a non-consumable welding apparatus having a non-consumable electrode for generating an arc,
A two-electrode simultaneous welding method in which non-consumable welding precedes GMA welding, and a current flowing through the non-consumable electrode is controlled by the command signal.
命令信号は、GMA電極に流れる電流値が所定値以下のときに非消耗性溶接を行うことを特徴とする請求項5に記載の2電極同時溶接方法。 6. The two-electrode simultaneous welding method according to claim 5, wherein the command signal performs non-consumable welding when a current value flowing through the GMA electrode is equal to or less than a predetermined value. 45度以上の傾斜又は垂直方向に溶接することを特徴とする請求項5又は請求項6に記載の2電極同時溶接方法。 The two-electrode simultaneous welding method according to claim 5 or 6, wherein welding is performed at an inclination of 45 degrees or more or in a vertical direction. GMA溶接電源から電流が供給されるGMA電極と、
前記電流の電流値を計測する電流検知部と、
前記電流値に応じた命令信号を出力する制御部と、
アークを発生させるプラズマ電極を備えたプラズマ溶接装置とを用いた2電極同時溶接方法であって、
非消耗性溶接がGMA溶接に先行し、前記命令信号によって前記非消耗性電極に流れる電流を制御する2電極同時溶接方法。
GMA electrode supplied with current from GMA welding power source,
A current detector for measuring the current value of the current;
A control unit that outputs a command signal according to the current value;
A two-electrode simultaneous welding method using a plasma welding apparatus having a plasma electrode for generating an arc,
A two-electrode simultaneous welding method in which non-consumable welding precedes GMA welding, and a current flowing through the non-consumable electrode is controlled by the command signal.
命令信号は、GMA電極に流れる電流値が所定値以下のときにプラズマ溶接を行うことを特徴とする請求項8に記載の2電極同時溶接方法。 9. The two-electrode simultaneous welding method according to claim 8, wherein the command signal performs plasma welding when the value of a current flowing through the GMA electrode is equal to or less than a predetermined value. 45度以上の傾斜又は垂直方向に溶接することを特徴とする請求項8又は請求項9に記載の2電極同時溶接方法。 The two-electrode simultaneous welding method according to claim 8 or 9, wherein welding is performed at an inclination of 45 degrees or more or in a vertical direction.
JP2014161554A 2014-08-07 2014-08-07 Two-electrode simultaneous welding device, and two-electrode simultaneous welding method Pending JP2016036833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014161554A JP2016036833A (en) 2014-08-07 2014-08-07 Two-electrode simultaneous welding device, and two-electrode simultaneous welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161554A JP2016036833A (en) 2014-08-07 2014-08-07 Two-electrode simultaneous welding device, and two-electrode simultaneous welding method

Publications (1)

Publication Number Publication Date
JP2016036833A true JP2016036833A (en) 2016-03-22

Family

ID=55528404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161554A Pending JP2016036833A (en) 2014-08-07 2014-08-07 Two-electrode simultaneous welding device, and two-electrode simultaneous welding method

Country Status (1)

Country Link
JP (1) JP2016036833A (en)

Similar Documents

Publication Publication Date Title
JP3203668U (en) Tandem hot wire system
JP5460863B2 (en) How to change the welding process during a welding operation
JP4877235B2 (en) Welding output control method and arc welding apparatus
US9498838B2 (en) System and method of controlling heat input in tandem hot-wire applications
US20130213948A1 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
EP3208024A1 (en) Arc welding control method
JP2013530046A (en) Short arc welding system
US20150028010A1 (en) System and method of controlling heat input in tandem hot-wire applications
US20210331264A1 (en) Pulsed arc welding control method and pulsed arc welding device
JPWO2016075871A1 (en) Control method of arc welding
JP2017205805A (en) Method and system to use combination of filler wire feed and high intensity energy source for welding and arc suppression of variable polarity hot-wire
JP6945290B2 (en) Welding system for AC welding with reduced spatter
CN102626814A (en) Welding device and carbon dioxide gas shielded arc welding method
JP6524412B2 (en) Arc welding control method
JP6320851B2 (en) Arc start control method and welding apparatus for consumable electrode arc welding
JP5154872B2 (en) Output control method of pulse arc welding
JP2016036833A (en) Two-electrode simultaneous welding device, and two-electrode simultaneous welding method
JP2010194566A (en) Gma welding method
JP2008207213A (en) Welding apparatus
JP6356990B2 (en) Industrial product manufacturing method, spot welding system
JP7300001B2 (en) Double pulse welding method
RU2597855C1 (en) Method of process control of mechanized welding in atmosphere of shielding gases with feeding of welding wire
WO2015125002A1 (en) Method and system to use combination filler wire feed and high intensity energy source for welding with controlled arcing frequency
WO2018070364A1 (en) Arc welding method and arc welding device
Burcă et al. Oscillography Based Analysis of the Arc Stability in Manual Welding with Coated Electrode in Pulsed Current