JP2016033471A - Manufacturing method of observation sample - Google Patents

Manufacturing method of observation sample Download PDF

Info

Publication number
JP2016033471A
JP2016033471A JP2014156072A JP2014156072A JP2016033471A JP 2016033471 A JP2016033471 A JP 2016033471A JP 2014156072 A JP2014156072 A JP 2014156072A JP 2014156072 A JP2014156072 A JP 2014156072A JP 2016033471 A JP2016033471 A JP 2016033471A
Authority
JP
Japan
Prior art keywords
sample
probe
support film
thin
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014156072A
Other languages
Japanese (ja)
Inventor
達哉 弭間
Tatsuya Hazuma
達哉 弭間
恒一郎 長谷
Koichiro Hase
恒一郎 長谷
勇士 川崎
Yuji Kawasaki
勇士 川崎
康裕 林
Yasuhiro Hayashi
康裕 林
航希 吉川
Koki Yoshikawa
航希 吉川
孝一 佐々木
Koichi Sasaki
孝一 佐々木
大輔 鶴見
Daisuke Tsurumi
大輔 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014156072A priority Critical patent/JP2016033471A/en
Publication of JP2016033471A publication Critical patent/JP2016033471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an observation sample easily detaching a thin sample from a probe, and having less risk of failure.SOLUTION: A manufacturing method of an observation sample 10 in which a thin sample 2 adheres onto a support film 4 includes: a probe adhesion step of making the thin sample 2 adhere to a probe 3 comprising a non-conductive material; an arrangement step in which by moving the probe 3, the thin sample 2 adhering to the probe 3 in the probe adhesion step is arranged at a predetermined position lower than 10 μm on the support film 4; and a support film adhesion step in which by spraying misty liquid L to the thin sample 2 arranged at the predetermined position in the arrangement step, the thin sample 2 is detached from the probe 3 and adheres onto the support film 4.SELECTED DRAWING: Figure 3

Description

本発明は、薄片試料が支持膜上に付着されてなる観察試料の作製方法に関する。   The present invention relates to a method for producing an observation sample in which a thin piece sample is attached on a support film.

集束イオンビーム(FIB)装置を用いた観察試料の作製方法が知られている(例えば、特許文献1〜3及び非特許文献1,2参照)。集束イオンビーム装置により、バルク試料の一部が薄片状に切り出され、薄片試料とされる。薄片試料は、静電気によりプローブに付着した状態で支持膜上へと運ばれる。支持膜上へと運ばれた薄片試料がプローブ先端から離脱し、支持膜上に付着することで、観察試料が作製される。   A method for preparing an observation sample using a focused ion beam (FIB) apparatus is known (see, for example, Patent Documents 1 to 3 and Non-Patent Documents 1 and 2). A part of the bulk sample is cut into a thin piece by the focused ion beam device to obtain a thin piece sample. The flake sample is transported onto the support film while being attached to the probe by static electricity. The observation sample is produced by the thin sample carried on the support film being detached from the probe tip and adhering to the support film.

特開2004−354371号公報JP 2004-354371 A 特開2006−019213号公報JP 2006-019213 A 特開2008−008850号公報JP 2008-008850 A

平坂雅男、「電子顕微鏡研究者のためのFIB・イオンミリング技法Q&A」、アグネ承風社、2002年9月Masao Hirasaka, “FIB / Ion Milling Technique Q & A for Electron Microscope Researchers”, Agne Jofusha, September 2002 朝倉健太郎、「電子顕微鏡研究者のための失敗から学ぶ電子顕微鏡試料作製技法Q&A」、アグネ承風社、2006年6月Kentaro Asakura, “Q & A of electron microscope sample preparation techniques learned from failures for electron microscope researchers”, Agne Jofusha, June 2006

従来の観察試料の作製方法においては、薄片試料を支持膜上に付着させる際に、薄片試料をプローブから離脱させることが難しかった。このため、プローブから離脱させようと薄片試料を支持膜に接触させているうちに、プローブで支持膜を損傷させてしまい、観察試料の作製に失敗する場合があった。   In the conventional method for preparing an observation sample, it is difficult to separate the thin sample from the probe when the thin sample is adhered on the support film. For this reason, while the thin sample was brought into contact with the support film so as to be detached from the probe, the support film was damaged by the probe, and the preparation of the observation sample sometimes failed.

本発明は、上記問題点を解決するためになされたものであり、薄片試料をプローブから離脱させ易く、失敗するおそれが少ない観察試料の作製方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing an observation sample that is easy to detach a thin piece sample from a probe and is less likely to fail.

本発明の一態様に係る観察試料の作製方法は、薄片試料が支持膜上に付着されてなる観察試料の作製方法であって、非導電性材料からなるプローブに薄片試料を付着させるプローブ付着工程と、プローブを移動させることで、プローブ付着工程によりプローブに付着させられた薄片試料を、支持膜上の10μmよりも低い所定位置に配置する配置工程と、配置工程により所定位置に配置された薄片試料に霧状の液体を吹きかけることで、薄片試料をプローブから離脱させて支持膜上に付着させる支持膜付着工程と、を備える。   An observation sample manufacturing method according to one embodiment of the present invention is an observation sample manufacturing method in which a thin sample is attached to a support film, and the probe attaching step of attaching the thin sample to a probe made of a non-conductive material. And by moving the probe, the thin film sample attached to the probe by the probe attaching process is arranged at a predetermined position lower than 10 μm on the support film, and the thin piece arranged at the predetermined position by the arranging process A supporting film attaching step of spraying a mist-like liquid onto the sample to separate the thin sample from the probe and attach it to the supporting film.

本発明によれば、薄片試料をプローブから離脱させ易く、失敗するおそれが少ない観察試料の作製方法を提供することができる。   According to the present invention, it is possible to provide a method for producing an observation sample that is easy to detach a thin piece sample from a probe and is less likely to fail.

本発明の一形態に係る観察試料の作製方法における取得工程及びプローブ付着工程について説明する図である。It is a figure explaining the acquisition process and probe adhesion process in the preparation method of the observation sample concerning one form of the present invention. 本発明の一形態に係る観察試料の作製方法における配置工程について説明する図である。It is a figure explaining the arrangement | positioning process in the preparation methods of the observation sample which concerns on one form of this invention. 本発明の一形態に係る観察試料の作製方法における支持膜付着工程について説明する図である。It is a figure explaining the support film adhesion process in the manufacturing method of the observation sample concerning one form of the present invention. 観察試料の一例の写真図である。It is a photograph figure of an example of an observation sample. 観察試料の観察方法について説明する図である。It is a figure explaining the observation method of an observation sample. 従来の観察試料の作製方法について説明する図である。It is a figure explaining the preparation methods of the conventional observation sample.

本発明の一態様に係る観察試料の作製方法は、薄片試料が支持膜上に付着されてなる観察試料の作製方法であって、非導電性材料からなるプローブに薄片試料を付着させるプローブ付着工程と、プローブを移動させることで、プローブ付着工程によりプローブに付着させられた薄片試料を、支持膜上の10μmよりも低い所定位置に配置する配置工程と、配置工程により所定位置に配置された薄片試料に霧状の液体を吹きかけることで、薄片試料をプローブから離脱させて支持膜上に付着させる支持膜付着工程と、を備える。   An observation sample manufacturing method according to one embodiment of the present invention is an observation sample manufacturing method in which a thin sample is attached to a support film, and the probe attaching step of attaching the thin sample to a probe made of a non-conductive material. And by moving the probe, the thin film sample attached to the probe by the probe attaching process is arranged at a predetermined position lower than 10 μm on the support film, and the thin piece arranged at the predetermined position by the arranging process A supporting film attaching step of spraying a mist-like liquid onto the sample to separate the thin sample from the probe and attach it to the supporting film.

このように上記の作製方法では、プローブに付着させられた薄片試料を、支持膜上の10μmよりも低い所定位置に配置し、霧状の液体を吹きかけるため、薄片試料をプローブから離脱させ、支持膜上に付着させ易い。したがって、薄片試料をプローブから離脱させ、支持膜上に付着させるために、薄片試料を支持膜に接触させる必要がない。この結果、プローブで支持膜を損傷させてしまい、観察試料の作製に失敗するおそれが少ない。   As described above, in the above production method, the thin piece sample attached to the probe is placed at a predetermined position lower than 10 μm on the support film and sprayed with a mist-like liquid, so that the thin piece sample is detached from the probe and supported. Easy to adhere on the film. Therefore, it is not necessary to bring the thin sample into contact with the support film in order to detach the thin sample from the probe and attach it to the support film. As a result, the support film is damaged by the probe, and there is little possibility that the preparation of the observation sample fails.

上記の観察試料の作製方法は、バルク試料の一部を集束イオンビーム装置により薄片状に切り出して薄片試料を取得する取得工程を更に備えてもよい。この場合、バルク試料の任意の微細箇所を切り出して薄片試料を得ることができる。   The observation sample manufacturing method may further include an acquisition step of acquiring a thin piece sample by cutting a part of the bulk sample into a thin piece shape with a focused ion beam apparatus. In this case, a thin sample can be obtained by cutting out an arbitrary fine portion of the bulk sample.

上記の観察試料の作製方法では、霧状の液体は、純度99%以上の水であってもよい。この場合、プローブと薄片試料との間に働く静電気力を容易に弱めることができる。   In the above-described observation sample manufacturing method, the mist-like liquid may be water having a purity of 99% or more. In this case, the electrostatic force acting between the probe and the thin sample can be easily weakened.

[本発明の実施形態の詳細]
本発明の実施形態に係る観察試料の作製方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A specific example of a method for producing an observation sample according to an embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.

本実施形態に係る観察試料の作製方法は、取得工程、プローブ付着工程、配置工程、及び支持膜付着工程を順に行って、観察試料を作製するものである。この作製方法によって作製される観察試料は、例えば、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、走査透過電子顕微鏡(STEM)、及びオージェ分光装置等による解析に用いることができる。以下、上述した各工程の詳細について説明する。   The observation sample preparation method according to the present embodiment is to prepare an observation sample by sequentially performing an acquisition step, a probe attachment step, an arrangement step, and a support film attachment step. The observation sample produced by this production method can be used for analysis by, for example, a transmission electron microscope (TEM), a scanning electron microscope (SEM), a scanning transmission electron microscope (STEM), an Auger spectrometer, and the like. Hereinafter, the detail of each process mentioned above is demonstrated.

まず、図1を参照して、取得工程及びプローブ付着工程について説明する。図1は、本実施形態に係る観察試料の作製方法における取得工程及びプローブ付着工程について説明する図である。取得工程では、バルク試料1の一部を集束イオンビーム(FIB)装置(不図示)により薄片状に切り出して薄片試料2を取得する。薄片試料2は、FIB加工によってバルク試料1から完全に切り離された状態とされる。本実施形態では、薄片試料2は、例えば、厚さ0.1μmで、一辺が10μmの正方形状に切り出される。薄片試料2の形状は、厚さ方向から見て長方形状であってもよい。切り出された薄片試料2は、プローブ3を備えるマニピュレータ付顕微鏡(不図示)を用いてバルク試料1から取り出される。このように試料を取り出す方法は、リフトアウト法と呼ばれる。   First, an acquisition process and a probe attachment process will be described with reference to FIG. FIG. 1 is a diagram illustrating an acquisition process and a probe attachment process in the observation sample manufacturing method according to the present embodiment. In the acquisition step, a part of the bulk sample 1 is cut into a thin piece by a focused ion beam (FIB) apparatus (not shown) to obtain the thin piece sample 2. The flake sample 2 is completely separated from the bulk sample 1 by FIB processing. In the present embodiment, the thin piece sample 2 is cut into a square shape having a thickness of 0.1 μm and a side of 10 μm, for example. The shape of the flake sample 2 may be rectangular when viewed from the thickness direction. The sliced sample 2 cut out is taken out from the bulk sample 1 using a microscope with a manipulator (not shown) provided with the probe 3. This method of taking out the sample is called a lift-out method.

プローブ付着工程では、非導電性材料からなるプローブ3に薄片試料2を付着させる。プローブ3は、非導電性材料からなり、例えば、ガラス(石英)からなる。プローブ3は、先端が数μm程度に先鋭化された形状である。プローブ3は、マニュピレータに取り付けて用いられる。このようなプローブ3の先端を薄片試料2に近づけると、薄片試料2は、プローブ3の先端の静電気により引き寄せられ、プローブ3の先端に付着する。   In the probe attaching step, the thin sample 2 is attached to the probe 3 made of a non-conductive material. The probe 3 is made of a non-conductive material, for example, glass (quartz). The probe 3 has a shape whose tip is sharpened to about several μm. The probe 3 is used by being attached to a manipulator. When the tip of the probe 3 is brought close to the thin sample 2, the thin sample 2 is attracted by the static electricity at the tip of the probe 3 and adheres to the tip of the probe 3.

次に、図2を参照して、配置工程について説明する。図2は、本実施形態に係る観察試料の作製方法における配置工程について説明する図である。配置工程では、プローブ3を移動させることで、プローブ付着工程によりプローブ3に付着させられた薄片試料2を支持膜4上の10μmよりも低い所定位置に配置する。即ち、薄片試料2は、支持膜4との間の距離dが10μmよりも小さくなるような所定位置に配置される。このとき、プローブ3の位置を調整することによって、薄片試料2は、薄片試料2の主面が支持膜4に対して平行となるように配置される。薄片試料2の配置される所定位置を、支持膜4上の10μmよりも低い位置(例えば数μm)とすることで、続く支持膜付着工程により薄片試料2を支持膜4上に付着させ易くなる。   Next, an arrangement process will be described with reference to FIG. FIG. 2 is a diagram for explaining an arrangement step in the observation sample manufacturing method according to the present embodiment. In the placement step, the probe 3 is moved to place the thin sample 2 attached to the probe 3 in the probe attachment step at a predetermined position lower than 10 μm on the support film 4. That is, the thin piece sample 2 is disposed at a predetermined position such that the distance d between the thin piece sample 2 and the support film 4 is smaller than 10 μm. At this time, by adjusting the position of the probe 3, the thin sample 2 is arranged so that the main surface of the thin sample 2 is parallel to the support film 4. By setting the predetermined position at which the thin piece sample 2 is disposed to a position lower than 10 μm on the support film 4 (for example, several μm), the thin piece sample 2 can be easily attached on the support film 4 in the subsequent support film attaching step. .

支持膜4は、例えば、有機膜であり、カーボン等を材料として、電子線が透過可能に構成されている。支持膜4の厚さは、5〜80nm程度である。支持膜4は、観察用メッシュグリッドを構成する枠5(図3参照)上に設けられている。枠5は、例えば、銅(Cu)等の金属からなる。   The support film 4 is, for example, an organic film, and is configured to transmit an electron beam using carbon or the like as a material. The thickness of the support film 4 is about 5 to 80 nm. The support film 4 is provided on a frame 5 (see FIG. 3) constituting an observation mesh grid. The frame 5 is made of a metal such as copper (Cu), for example.

次に、図3を参照して、支持膜付着工程について説明する。図3は、本実施形態に係る観察試料の作製方法における支持膜付着工程について説明する図である。支持膜付着工程では、配置工程により所定位置に配置された薄片試料2に霧状の液体Lを吹きかけることで、薄片試料2をプローブ3から離脱させて支持膜4上に付着させる。液体Lは、例えば、純度99%以上の水(超純水)、アルコール等である。液体Lは、スポイト加湿器6の先端部から、霧状とされて薄片試料2に吹きかけられる。液体Lにより、プローブ3の先端と薄片試料2との間に働いていた静電気力が弱まる。また、薄片試料2と支持膜4との間に水滴が入り込み、薄片試料2と支持膜4との間に吸着力を発生させる。この吸着力が静電気力に勝る結果、薄片試料2がプローブ3から離脱して、支持膜4上に付着する。配置工程において、薄片試料2を支持膜4上の10μm以上の高さに配置する場合は、薄片試料2がプローブ3から離脱した際、支持膜4までの距離が長いため、プローブ3から直線的に落下せず、薄片試料2が狙った位置に付着しない、もしくは狙った位置から大きく逸れて薄片試料2を紛失する可能性が高くなる。このように液体Lを利用し、薄片試料2をプローブ3から離脱し易くするので、支持膜4を損傷させるおそれが少ない。   Next, with reference to FIG. 3, the supporting film attaching step will be described. FIG. 3 is a diagram for explaining a support film attaching step in the method for producing an observation sample according to the present embodiment. In the support film attaching step, the thin sample 2 is detached from the probe 3 and attached onto the support film 4 by spraying the mist-like liquid L onto the thin piece sample 2 placed at a predetermined position in the placement step. The liquid L is, for example, water having a purity of 99% or more (ultra pure water), alcohol, or the like. The liquid L is atomized from the tip of the dropper humidifier 6 and sprayed onto the thin piece sample 2. The electrostatic force acting between the tip of the probe 3 and the thin sample 2 is weakened by the liquid L. Further, a water droplet enters between the thin piece sample 2 and the support film 4, and an adsorption force is generated between the thin piece sample 2 and the support film 4. As a result of this attraction force surpassing the electrostatic force, the flake sample 2 is detached from the probe 3 and adheres to the support film 4. In the arrangement step, when the thin piece sample 2 is arranged at a height of 10 μm or more on the support film 4, the distance from the probe 3 to the support film 4 is long when the thin piece sample 2 is detached from the probe 3. And the thin piece sample 2 does not adhere to the target position or is greatly deviated from the target position and the thin piece sample 2 is likely to be lost. Thus, since the liquid L is used and the thin sample 2 is easily detached from the probe 3, there is little possibility of damaging the support film 4.

図4は、観察試料の一例の写真図である。観察試料10は、このように薄片試料2が支持膜4上に付着されてなる。支持膜4は、枠5上に設けられている。枠5は、互いに所定の間隔をあけて、複数配置されている。この例では、枠5は、一辺が40μmの正方形状のCu枠とされ、支持膜4は、厚さ30nmの膜とされている。枠5の形状は、正方形状等の矩形状に限られず、円形等であってもよい。   FIG. 4 is a photograph of an example of an observation sample. The observation sample 10 is formed by attaching the thin piece sample 2 on the support film 4 in this way. The support film 4 is provided on the frame 5. A plurality of frames 5 are arranged at predetermined intervals. In this example, the frame 5 is a square Cu frame having a side of 40 μm, and the support film 4 is a film having a thickness of 30 nm. The shape of the frame 5 is not limited to a rectangular shape such as a square shape, and may be a circular shape or the like.

そして、支持膜付着工程によって支持膜4上に付着された薄片試料2を、例えばTEM等によって、図5に示すように、観察して解析を実行する。なお、観察を行う際には、観察試料10の薄片試料2に対して、例えば、電子線Bを照射し、透過させることで、高分解能観察を行うことができる。   Then, the thin piece sample 2 attached on the support film 4 in the support film attachment step is observed and analyzed by, for example, TEM as shown in FIG. When performing observation, high-resolution observation can be performed by, for example, irradiating and transmitting the thin piece sample 2 of the observation sample 10 with the electron beam B.

ここで、図6を参照して、本実施形態に係る観察試料の作製方法と、従来例に係る観察試料の作製方法との違いについて説明する。図6は、従来の観察試料の作製方法について説明する図であり、図6(a)は、薄片試料を支持膜に接触させる様子を説明し、図6(b)は、薄片試料を支持膜に接触させた結果、支持膜が破損する様子を説明する。このように、従来の観察試料の作製方法では、薄片試料2をプローブ3から離脱させるために、薄片試料2を支持膜4に接触させている。しかしながら、プローブ3の先端と薄片試料2との間に働く静電気力が、薄片試料2と支持膜4との間に働く吸着力よりも大きいので、薄片試料2がプローブ3から離脱し難い。このため、薄片試料2をプローブ3から離脱させるために、支持膜4上に薄片試料2を何度も擦る必要があった。この結果、支持膜4が破れる等して破損し、更には、薄片試料2が紛失される場合もあった。   Here, with reference to FIG. 6, the difference between the method for producing the observation sample according to the present embodiment and the method for producing the observation sample according to the conventional example will be described. 6A and 6B are diagrams for explaining a conventional method for producing an observation sample. FIG. 6A illustrates how a thin sample is brought into contact with a support film, and FIG. 6B illustrates a thin sample as a support film. The manner in which the support membrane is damaged as a result of being brought into contact with is described. Thus, in the conventional method for preparing an observation sample, the thin piece sample 2 is brought into contact with the support film 4 in order to separate the thin piece sample 2 from the probe 3. However, since the electrostatic force acting between the tip of the probe 3 and the thin piece sample 2 is larger than the adsorption force acting between the thin piece sample 2 and the support film 4, the thin piece sample 2 is not easily detached from the probe 3. For this reason, in order to detach the thin sample 2 from the probe 3, it was necessary to rub the thin sample 2 on the support film 4 many times. As a result, the support film 4 is broken and broken, and the thin sample 2 may be lost.

これに対し、本実施形態に係る観察試料の作製方法では、プローブ3に付着させられた薄片試料2を、支持膜4上の10μmよりも低い所定位置に配置し、これに対して、霧状の液体Lを吹きかけるようにしている。これにより、プローブ3の先端と薄片試料2との間に働いていた静電気力を弱めることができる。また、薄片試料2と支持膜4との間に水滴を入り込ませることで、薄片試料2と支持膜4との間に吸着力を発生させることもできる。したがって、本実施形態に係る観察試料の作製方法によれば、吸着力が静電気力に勝る結果、薄片試料2をプローブ3から離脱させて、支持膜4上に付着させ易くなる。このため、薄片試料2をプローブ3から離脱させるために、薄片試料2を支持膜4に接触させる必要がなくなる。よって、プローブ3で支持膜4を損傷させてしまい、観察試料10の作製に失敗するおそれが少なくなる。   On the other hand, in the method for producing an observation sample according to the present embodiment, the thin piece sample 2 attached to the probe 3 is disposed at a predetermined position lower than 10 μm on the support film 4, and in contrast to the mist shape The liquid L is sprayed. Thereby, the electrostatic force which worked between the front-end | tip of the probe 3 and the thin piece sample 2 can be weakened. Further, an adsorption force can be generated between the thin piece sample 2 and the support film 4 by allowing water droplets to enter between the thin piece sample 2 and the support film 4. Therefore, according to the method for producing an observation sample according to the present embodiment, the thin sample 2 is easily detached from the probe 3 and attached to the support film 4 as a result of the attraction force surpassing the electrostatic force. For this reason, it is not necessary to bring the thin sample 2 into contact with the support film 4 in order to separate the thin sample 2 from the probe 3. Therefore, the possibility that the support film 4 is damaged by the probe 3 and the production of the observation sample 10 fails will be reduced.

また、上記の作製方法は、バルク試料1の一部を集束イオンビーム装置により薄片状に切り出して薄片試料2を取得する取得工程を更に備えている。したがって、バルク試料1から、任意の微細箇所を切り出して薄片試料2を得ることができる。   Further, the above manufacturing method further includes an acquisition step of acquiring a thin piece sample 2 by cutting out a part of the bulk sample 1 into a thin piece shape with a focused ion beam apparatus. Therefore, a thin sample 2 can be obtained by cutting out an arbitrary fine portion from the bulk sample 1.

また、上記の作製方法では、霧状の液体Lとして、純度99%以上の水を用いている。この場合、プローブ3と薄片試料2との間に働く静電気力を容易に弱めることができる。   Further, in the above production method, water having a purity of 99% or more is used as the mist-like liquid L. In this case, the electrostatic force acting between the probe 3 and the thin sample 2 can be easily weakened.

本発明は、上記実施形態に限定されるものではない。例えば、薄片試料2は、集束イオンビーム装置によりバルク試料1から切り出されたものに限られず、他の手法によって取得されてもよい。   The present invention is not limited to the above embodiment. For example, the flake sample 2 is not limited to one cut out from the bulk sample 1 by the focused ion beam apparatus, and may be obtained by other methods.

本実施形態の効果を確認するため、配置工程において、薄片試料2を支持膜4上の10μm未満の高さに配置した場合と、30μmの高さに配置した場合とで比較を行った。10μm未満の高さに配置した場合、支持膜付着工程において、液体Lとして超純水をスポイト加湿器6の先端部から吹きかけることにより、薄片試料2をプローブ3から離脱させ、支持膜4上に付着させることができた。一方、30μmの高さに配置した場合、支持膜付着工程において、薄片試料2をプローブ3から離脱させる際、支持膜4までの距離が長く、薄片試料2がプローブ3から直線的に落下しないため、薄片試料2を支持膜4上の狙った位置に付着させることができなかったり、狙った位置から大きく逸れて紛失したりした。このように、本実施形態に係る観察試料10の作製方法によれば、薄片試料2をプローブから離脱させ易く、失敗するおそれが少ないことが確認された。   In order to confirm the effect of this embodiment, in the arrangement step, a comparison was made between the case where the thin piece sample 2 was arranged at a height of less than 10 μm on the support film 4 and the case where the thin piece sample 2 was arranged at a height of 30 μm. When arranged at a height of less than 10 μm, the thin sample 2 is detached from the probe 3 by spraying ultrapure water as the liquid L from the tip of the dropper humidifier 6 in the supporting film attaching step, and on the supporting film 4. It was possible to adhere. On the other hand, when it is arranged at a height of 30 μm, when the thin piece sample 2 is detached from the probe 3 in the support film attaching step, the distance to the support film 4 is long and the thin piece sample 2 does not fall linearly from the probe 3. The thin piece sample 2 could not be attached to the target position on the support film 4 or was greatly deviated from the target position and lost. Thus, according to the method for producing the observation sample 10 according to the present embodiment, it was confirmed that the thin sample 2 was easily detached from the probe and there was little risk of failure.

1…バルク試料、2…薄片試料、3…プローブ、4…支持膜、10…観察試料、B…電子線、L…液体。
DESCRIPTION OF SYMBOLS 1 ... Bulk sample, 2 ... Thin piece sample, 3 ... Probe, 4 ... Support film, 10 ... Observation sample, B ... Electron beam, L ... Liquid.

Claims (3)

薄片試料が支持膜上に付着されてなる観察試料の作製方法であって、
非導電性材料からなるプローブに前記薄片試料を付着させるプローブ付着工程と、
前記プローブを移動させることで、前記プローブ付着工程により前記プローブに付着させられた前記薄片試料を、前記支持膜上の10μmよりも低い所定位置に配置する配置工程と、
前記配置工程により前記所定位置に配置された前記薄片試料に霧状の液体を吹きかけることで、前記薄片試料を前記プローブから離脱させて前記支持膜上に付着させる支持膜付着工程と、を備える観察試料の作製方法。
A method for producing an observation sample in which a thin sample is adhered on a support film,
A probe attaching step of attaching the thin sample to a probe made of a non-conductive material;
An arrangement step of disposing the thin piece sample attached to the probe by the probe attachment step at a predetermined position lower than 10 μm on the support film by moving the probe;
A support film attaching step of spraying a mist-like liquid onto the thin piece sample placed at the predetermined position in the placement step so that the thin piece sample is detached from the probe and attached onto the support film. Sample preparation method.
バルク試料の一部を集束イオンビーム装置により薄片状に切り出して前記薄片試料を取得する取得工程を更に備える、請求項1記載の観察試料の作製方法。   The method for producing an observation sample according to claim 1, further comprising an obtaining step of obtaining a piece of the bulk sample by cutting a part of the bulk sample into a thin piece with a focused ion beam apparatus. 前記霧状の液体は、純度99%以上の水である、請求項1又は2記載の観察試料の作製方法。
The method for producing an observation sample according to claim 1 or 2, wherein the mist-like liquid is water having a purity of 99% or more.
JP2014156072A 2014-07-31 2014-07-31 Manufacturing method of observation sample Pending JP2016033471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156072A JP2016033471A (en) 2014-07-31 2014-07-31 Manufacturing method of observation sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156072A JP2016033471A (en) 2014-07-31 2014-07-31 Manufacturing method of observation sample

Publications (1)

Publication Number Publication Date
JP2016033471A true JP2016033471A (en) 2016-03-10

Family

ID=55452435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156072A Pending JP2016033471A (en) 2014-07-31 2014-07-31 Manufacturing method of observation sample

Country Status (1)

Country Link
JP (1) JP2016033471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128972A1 (en) * 2019-12-26 2021-07-01 中国科学院地质与地球物理研究所 Target holder assembly of ion probe, and sample target preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128972A1 (en) * 2019-12-26 2021-07-01 中国科学院地质与地球物理研究所 Target holder assembly of ion probe, and sample target preparation method

Similar Documents

Publication Publication Date Title
EP4250334A3 (en) An apparatus using multiple charged particle beams
Wang et al. Atomic structure and formation mechanism of sub-nanometer pores in 2D monolayer MoS 2
CA2829833C (en) Controlled fabrication of nanopores in nanometric solid state materials
AU2014307798B2 (en) Graphene modification
US8389955B2 (en) Method for thinning a sample and sample carrier for performing said method
CN104458813B (en) Nano-pore measurement system based on diamond like carbon film and preparation method thereof
JP2015204296A5 (en)
JP2015204296A (en) High capacity tem grid
CN103196728A (en) Method for preparing scanning electron microscope (SEM) sample or transmission electron microscope (TEM) sample protection layer by using focused ion beam (FIB) technology
US10801926B2 (en) Probe with solid beveled tip and method for using same for specimen extraction
JP2006017729A (en) Method for taking out microscopic sample from substrate
JP5204592B2 (en) Thin film sample observation system, cooling sample holder, and thin film sample observation method
JP2015038469A (en) Plan view sample preparation
JP2016033471A (en) Manufacturing method of observation sample
JP2008157673A (en) Method for forming grasping surface of sample grasping member
JP2015038477A5 (en)
JP2010230518A (en) Thin sample preparing method
EP3243931B1 (en) Attachment of nano-objects to beam-deposited structures
MY201583A (en) Vertically aligned multi-walled carbon nanotubes
EP2784472A1 (en) Cell sorting device and cell sorting method
US10107835B2 (en) Tip enhanced laser assisted sample transfer for biomolecule mass spectrometry
WO2012077554A1 (en) Charged particle beam apparatus and method of irradiating charged particle beam
JP2009192341A (en) Preparation method of sliced sample for transmission electron microscope, and sample stand used therefor
JP2012068033A (en) Jig for collecting grid and method for collecting grid using the jig
JP2010135132A (en) Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample