JP2016032929A - Method for producing thermoplastic resin molding and windmill blade, and thermoplastic resin molding - Google Patents

Method for producing thermoplastic resin molding and windmill blade, and thermoplastic resin molding Download PDF

Info

Publication number
JP2016032929A
JP2016032929A JP2015033021A JP2015033021A JP2016032929A JP 2016032929 A JP2016032929 A JP 2016032929A JP 2015033021 A JP2015033021 A JP 2015033021A JP 2015033021 A JP2015033021 A JP 2015033021A JP 2016032929 A JP2016032929 A JP 2016032929A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
mold
reinforcing fiber
sheets
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015033021A
Other languages
Japanese (ja)
Other versions
JP6407057B2 (en
Inventor
中村 雅則
Masanori Nakamura
雅則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015033021A priority Critical patent/JP6407057B2/en
Publication of JP2016032929A publication Critical patent/JP2016032929A/en
Application granted granted Critical
Publication of JP6407057B2 publication Critical patent/JP6407057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To facilitate recycling of a waste material, and have a short manufacturing step.SOLUTION: In a method for producing a windmill blade, a laminated body S in which a plurality of thermoplastic resin sheets 11 are laminated between a plurality of fiber-reinforced resin sheets 12 formed by impregnating a carbon fiber with a thermosetting resin is bent along an inner surface of a mold 7 and placed. A back side half body 1a is produced by heating the laminated body S through the mold 7 to high temperature, and heating and melting the fiber-reinforced resin sheets 12 and the thermoplastic resin sheets 11 to be integrated with each other. At the time of heating, each of the sheets 11 and 12 is brought into close contact with each other by vacuuming air from each of the end faces and the bottom faces of the plurality of the fiber-reinforced resin sheets 12 and the thermoplastic resin sheets 11 with a suction pipe 9. After heating, the mold 7 is cooled and the back side half body 1a is taken out, and the taken back side half body 1a is joined to an abdominal side half body which has been similarly produced, and a windmill blade is formed. In the windmill blade, a thermoplastic resin layer 3 of the thermoplastic resin sheet 11 is laminated between a fiber-reinforced outer layer 4 and a fiber-reinforced inner layer 5 which are formed of the fiber-reinforced resin sheet 12.SELECTED DRAWING: Figure 3

Description

本発明は、風力発電に用いられる風車翼等の熱可塑性樹脂成形体の製造方法と風車翼、熱可塑性樹脂成形体に関する。   The present invention relates to a method for producing a thermoplastic resin molded body such as a windmill blade used for wind power generation, a windmill blade, and a thermoplastic resin molded body.

従来、風力発電に用いられる風車翼は高い強度と軽量化、そして耐久性が求められている。特に風車翼や航空機や船舶のボディ等は大型の繊維樹脂複合材からなり、熱硬化性樹脂を用いて製造することが通例となっており、大型の熱硬化性樹脂成形体は軽量化と高強度化が重要である。例えば、特許文献1に記載された風車翼100は図12に示すように所定厚みを有する流線形状の外皮層101の層内に背骨部と腹骨部としてスパーキャップ102が配設され、その前後に軽量木材からなるサンドイッチコア材103が内蔵されている。しかも、背側と腹側のスパーキャップの間をシェアウェブ104によって連結して支持している。
風車翼100の外皮層101は繊維基材に液状の熱硬化性樹脂を流し込んで加熱硬化することで製造されている。
Conventionally, wind turbine blades used for wind power generation are required to have high strength, light weight, and durability. In particular, wind turbine blades, aircraft and ship bodies are made of large fiber-resin composites and are usually manufactured using thermosetting resins. Strengthening is important. For example, in the wind turbine blade 100 described in Patent Document 1, a spar cap 102 is disposed as a spine portion and an abdominal portion in a streamlined outer skin layer 101 having a predetermined thickness as shown in FIG. A sandwich core material 103 made of lightweight wood is incorporated in the interior. In addition, the dorsal and ventral spar caps are connected and supported by the share web 104.
The outer skin layer 101 of the wind turbine blade 100 is manufactured by pouring a liquid thermosetting resin into a fiber base material and curing it by heating.

即ち、外皮層101は金型に沿って配置されたドライファブリック(ガラス繊維織物)の中に真空吸引法によって、液状の熱硬化性樹脂(不飽和ポリエステル等)が含浸され、その後、加熱硬化することで、スパーキャップ102やサンドイッチコア材103を含めて外皮層101を一体化する風車翼のハーフ体の製造方法が記載されている。そして、製造された一方のハーフ体と他方ハーフ体とを接着剤等で接合することで風車翼を形成している。
しかも、風車翼に限らず、航空機や船舶等のボディや建物の床材等の大型の繊維樹脂複合成形体はいずれもドライファブリック(ガラス繊維織物)を金型内に配置した状態で、熱硬化型樹脂を真空引きしながら流し込んで含浸させた後、加熱硬化させることで製造している。
That is, the outer skin layer 101 is impregnated with a liquid thermosetting resin (such as an unsaturated polyester) by a vacuum suction method in a dry fabric (glass fiber fabric) arranged along a mold, and then cured by heating. Thus, a method of manufacturing a half body of a wind turbine blade that integrates the outer skin layer 101 including the spar cap 102 and the sandwich core material 103 is described. And the windmill blade is formed by joining one manufactured half body and the other half body with an adhesive agent.
Moreover, not only wind turbine blades, but also large fiber resin composite molded bodies such as aircraft and ship bodies and building flooring are all thermoset with dry fabric (glass fiber fabric) placed in the mold. It is manufactured by pouring the mold resin under vacuum and impregnating it, followed by heat curing.

特開2009−287514号公報JP 2009-287514 A

しかしながら、特許文献1に記載された風車翼のような大型の繊維樹脂複合成形体は、繊維基材に液状の熱硬化性樹脂を流し込んで成形しているが、熱硬化性樹脂の成形体を廃棄する際にリサイクルが困難であった。しかも、熱硬化性樹脂を繊維基材に注入して含浸させ、硬化させるまでに反応を伴うために時間がかかり、製造サイクルが長いという問題があった。   However, a large-sized fiber resin composite molded body such as a wind turbine blade described in Patent Document 1 is formed by pouring a liquid thermosetting resin into a fiber base material. Recycling was difficult when discarded. In addition, there is a problem that it takes time to inject and impregnate the thermosetting resin into the fiber base material, and it takes a long time to cure, resulting in a long manufacturing cycle.

本発明は、このような課題に鑑みてなされたものであり、廃棄物のリサイクルが容易で、製造工程が短くて済む熱可塑性樹脂成形体の製造方法、そしてこの熱可塑性樹脂成形体からなる風車翼、熱可塑性樹脂成形体を提供することを目的とする。   The present invention has been made in view of such a problem, and a method for manufacturing a thermoplastic resin molded body that allows easy recycling of waste and a short manufacturing process, and a windmill made of this thermoplastic resin molded body. It aims at providing a wing | blade and a thermoplastic resin molding.

本発明に係る熱可塑性樹脂成形体の製造方法は、複数の熱可塑性樹脂シートを金型内に載置して積層する工程と、積層された熱可塑性樹脂シートを加熱して該熱可塑性樹脂シートを相互に溶融して一体化して成形する工程と、冷却後に一体化した熱可塑性樹脂シートの成形体を金型から取り出す工程と、を備えたことを特徴とする。
本発明によれば、金型内に積層された複数の熱可塑性樹脂シートを加熱して相互に熱溶着して一体化して冷却することで熱可塑性樹脂成形体を製造することができるため、製造工程が短くて製造コストを低廉にでき、従来の熱硬化性樹脂成形体と比較して軽量化できる。また、熱可塑性樹脂成形体を廃棄する際には粉砕して押出成形が可能であるため他の樹脂製品にリサイクルすることができる。
The method for producing a thermoplastic resin molded body according to the present invention includes a step of placing a plurality of thermoplastic resin sheets in a mold and laminating them, and heating the laminated thermoplastic resin sheets to form the thermoplastic resin sheet. And a step of forming the thermoplastic resin sheet formed after cooling from a mold, and a step of taking out the molded body of the integrated thermoplastic resin sheet after cooling.
According to the present invention, it is possible to manufacture a thermoplastic resin molded body by heating a plurality of thermoplastic resin sheets laminated in a mold, heat-welding each other, and cooling by integration. The manufacturing process can be reduced because the process is short, and the weight can be reduced as compared with the conventional thermosetting resin molding. Further, when the thermoplastic resin molded body is discarded, it can be crushed and extruded to be recycled to other resin products.

また、複数の熱可塑性樹脂シートの表裏面の一方または両方に熱可塑性樹脂シートより高強度の強化繊維と熱可塑性樹脂を含む強化繊維樹脂シートを積層することが好ましい。
熱可塑性樹脂シートの表裏面の一方または両方に強化繊維樹脂シートを積層して一体に加熱溶融して熱可塑性樹脂成形体を成形するため、製造工程が短くてすむ上に高強度で剛性が高く、従来の熱硬化性樹脂成形体と同等の物性を得られる。
Moreover, it is preferable to laminate | stack the reinforced fiber resin sheet containing the reinforced fiber and thermoplastic resin stronger than a thermoplastic resin sheet to one or both of the front and back of a some thermoplastic resin sheet.
A thermoplastic fiber sheet is laminated on one or both of the front and back surfaces of a thermoplastic resin sheet and heated and melted together to form a thermoplastic resin molded product. Therefore, the manufacturing process is short and high strength and rigidity are high. The physical properties equivalent to those of conventional thermosetting resin moldings can be obtained.

また、金型の温度を上昇させることで積層された熱可塑性樹脂シートと強化繊維樹脂シートを加熱するようにしてもよい。
金型の加熱によって熱可塑性樹脂シートと強化繊維樹脂シートを溶融して一体化できる。
Moreover, you may make it heat the laminated | stacked thermoplastic resin sheet and a reinforced fiber resin sheet by raising the temperature of a metal mold | die.
The thermoplastic resin sheet and the reinforcing fiber resin sheet can be melted and integrated by heating the mold.

また、複数の熱可塑性樹脂シートと強化繊維樹脂シートを金型内に積層した後、複数の熱可塑性樹脂シートと強化繊維樹脂シートの端部から空気を排出するようにしてもよい。
複数の熱可塑性樹脂シート及び強化繊維樹脂シートの端部から各シート間の空気を排出することで熱可塑性樹脂シートの溶融による一体化を促進できる。
Moreover, after laminating a plurality of thermoplastic resin sheets and reinforcing fiber resin sheets in a mold, air may be discharged from the end portions of the plurality of thermoplastic resin sheets and reinforcing fiber resin sheets.
By discharging the air between the sheets from the end portions of the plurality of thermoplastic resin sheets and reinforcing fiber resin sheets, integration by melting the thermoplastic resin sheets can be promoted.

また、強化繊維樹脂シートに含まれる強化繊維は炭素繊維、ガラス繊維または高強度有機繊維である。
強化繊維として炭素繊維、ガラス繊維または高強度有機繊維を用いて熱硬化性樹脂を含浸させることで熱可塑性樹脂成形体の強度と剛性を向上できる。
The reinforcing fiber contained in the reinforcing fiber resin sheet is carbon fiber, glass fiber, or high-strength organic fiber.
By impregnating a thermosetting resin using carbon fiber, glass fiber, or high-strength organic fiber as the reinforcing fiber, the strength and rigidity of the thermoplastic resin molded body can be improved.

上述したいずれかの熱可塑性樹脂成形体の製造方法によって製造された複数の熱可塑性樹脂成形体を互いに接合するようにして熱可塑性樹脂成形体を製造してもよい。
複数の熱可塑性樹脂成形体を互いに接合することで、全体で一体の熱可塑性樹脂成形体を製造できる。
A thermoplastic resin molded body may be manufactured by joining a plurality of thermoplastic resin molded bodies manufactured by any one of the methods for manufacturing a thermoplastic resin molded body described above.
By joining a plurality of thermoplastic resin moldings to each other, an integral thermoplastic resin molding can be manufactured as a whole.

本発明による風車翼は、熱可塑性樹脂層の表面に熱可塑性樹脂層より高強度の強化繊維と熱可塑性樹脂を含む強化繊維樹脂層を積層して一体化させたことを特徴とする。
本発明によれば、熱可塑性樹脂層と強化繊維樹脂層を積層して一体化した風車翼は、従来の熱硬化性樹脂成形体と比較して軽量化できる上に剛性は等価であり、しかも風車翼を廃棄する際には粉砕して押出成形が可能であるため他の樹脂製品にリサイクルすることができる。なお、強化繊維樹脂層は熱可塑性樹脂層の表裏面の少なくとも一方の面に積層して一体化していればよい。
The wind turbine blade according to the present invention is characterized in that a reinforcing fiber resin layer containing a reinforcing fiber and a thermoplastic resin having higher strength than the thermoplastic resin layer is laminated and integrated on the surface of the thermoplastic resin layer.
According to the present invention, the wind turbine blade obtained by laminating and integrating the thermoplastic resin layer and the reinforcing fiber resin layer can be reduced in weight as compared with the conventional thermosetting resin molded body, and the rigidity is equivalent. When the wind turbine blades are discarded, they can be crushed and extruded to be recycled into other resin products. The reinforcing fiber resin layer may be laminated and integrated on at least one of the front and back surfaces of the thermoplastic resin layer.

また、熱可塑性樹脂層または強化繊維樹脂層の一部を他の領域より肉厚に形成してもよい。
これによって、風車翼の肉厚部分の強度をより高く設定できる。
Moreover, you may form a part of thermoplastic resin layer or a reinforced fiber resin layer thicker than another area | region.
Thereby, the strength of the thick portion of the wind turbine blade can be set higher.

また、本発明による熱可塑性樹脂成形体の製造方法は、複数の熱可塑性樹脂シートと強化繊維樹脂シートを載置して積層体を構成する工程と、積層体を加熱して複数の熱可塑性樹脂シートと強化繊維樹脂シートを相互に溶融して一体化させる工程と、積層体を一対の金型で圧縮することで、溶融した熱可塑性樹脂を流動させ、成形体の一部を他の領域より肉厚に形成する工程と、冷却後に一体化した成形体を金型から取り出す工程と、を備えるようにしてもよい。
また、本発明による熱可塑性樹脂成形体は、この熱可塑性樹脂成形体の製造方法を用い、一部に他の領域より肉厚の熱可塑性樹脂層を備えるとともに、熱可塑性樹脂層の表面側に強化繊維と熱可塑性樹脂を含む強化繊維樹脂層を備えて形成されていてもよい。
これらの発明によれば、複数の熱可塑性樹脂シートと強化繊維樹脂シートを載置して構成した積層体を加熱して相互に溶融して一体化させた段階で、所望の凹凸形状(傾斜形状、曲面形状等を含む)を型面に備えた金型で積層体を圧縮することにより、溶融した熱可塑性樹脂を流動させ、型面の形状に応じてこの流動した熱可塑性樹脂によって一部を他の領域より肉厚にすることが可能になる。すなわち、このように熱可塑性樹脂を用い、加熱して溶融した熱可塑性樹脂を金型で押圧して流動させることで、所望の凹凸形状を備えた成形体を容易に製造することが可能になる。
なお、一部に他の領域より肉厚の肉厚部がある構造体(成形体)としては、例えばスキン−リブ構造体などが挙げられる。
Further, the method for producing a thermoplastic resin molded body according to the present invention includes a step of placing a plurality of thermoplastic resin sheets and a reinforced fiber resin sheet to form a laminate, and a plurality of thermoplastic resins by heating the laminate. The process of melting and integrating the sheet and the reinforcing fiber resin sheet with each other, and compressing the laminated body with a pair of molds, allows the molten thermoplastic resin to flow, and part of the molded body from other regions You may make it provide the process of forming in thickness, and the process of taking out the molded object integrated after cooling from a metal mold | die.
Further, the thermoplastic resin molded body according to the present invention includes a thermoplastic resin layer that is thicker than other regions in part using the method for manufacturing a thermoplastic resin molded body, and is provided on the surface side of the thermoplastic resin layer. It may be formed with a reinforcing fiber resin layer containing reinforcing fibers and a thermoplastic resin.
According to these inventions, at a stage where a laminated body constituted by placing a plurality of thermoplastic resin sheets and reinforcing fiber resin sheets is heated and melted and integrated with each other, a desired uneven shape (inclined shape) is obtained. The laminate is compressed with a mold having a curved surface shape, etc.), and the molten thermoplastic resin is caused to flow, and a part of the molten thermoplastic resin is caused to flow according to the shape of the mold surface. It becomes possible to make it thicker than other regions. That is, by using the thermoplastic resin in this way and pressing and flowing the thermoplastic resin that has been heated and melted with a mold, it becomes possible to easily produce a molded body having a desired uneven shape. .
In addition, examples of the structure (molded body) having a thick part thicker than other regions include a skin-rib structure.

本発明による熱可塑性樹脂成形体の製造方法によれば、金型内に積層された複数の熱可塑性樹脂シートを加熱溶融し一体化して冷却することで熱可塑性樹脂成形体を製造することができるため、従来の熱硬化性樹脂成形体と比較して軽量化できる上に製造工程が短くなるため製造コストの増大を抑制できる。
しかも、熱可塑性樹脂成形体を廃棄する際には粉砕して押出成形等が可能であるため他の樹脂製品にリサイクルすることができる。
According to the method for manufacturing a thermoplastic resin molded body according to the present invention, a thermoplastic resin molded body can be manufactured by heating, melting, integrating, and cooling a plurality of thermoplastic resin sheets laminated in a mold. Therefore, the weight can be reduced as compared with the conventional thermosetting resin molded body, and the manufacturing process is shortened, so that an increase in manufacturing cost can be suppressed.
In addition, when the thermoplastic resin molding is discarded, it can be pulverized and extruded, so that it can be recycled to other resin products.

また、本発明による風車翼によれば、熱可塑性樹脂層と強化繊維樹脂層を積層して一体化したことで、従来の熱硬化性樹脂成形体の風車翼と比較して軽量化できる上に剛性は等価であり、しかも廃棄する際に他の樹脂製品にリサイクルできる。   Further, according to the wind turbine blade according to the present invention, the thermoplastic resin layer and the reinforced fiber resin layer are laminated and integrated, so that the weight can be reduced as compared with the wind turbine blade of the conventional thermosetting resin molded body. The rigidity is equivalent and can be recycled to other resin products when discarded.

本発明の第一実施形態による風車翼の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the windmill blade by 1st embodiment of this invention. 第一実施形態による熱可塑性樹脂シートとその上下の強化繊維樹脂シートを積層してなる積層体の分解斜視図である。It is a disassembled perspective view of the laminated body formed by laminating | stacking the thermoplastic resin sheet by 1st embodiment, and the upper and lower reinforcement fiber resin sheet. 本実施形態による風車翼の製造方法を示す図であり、(a)は風車翼のハーフ体の金型を示す断面図、(b)は金型内に熱可塑性樹脂シートと強化繊維樹脂シートの積層体を載置した断面図、(c)は積層体を加熱して風車翼のハーフ体を形成した断面図である。It is a figure which shows the manufacturing method of the windmill blade by this embodiment, (a) is sectional drawing which shows the metal mold | die of the half body of a windmill blade, (b) is a thermoplastic resin sheet and a reinforced fiber resin sheet in a metal mold | die. Sectional drawing which mounted the laminated body, (c) is sectional drawing which heated the laminated body and formed the half body of the windmill blade. 図3(b)におけるA部断面図である。It is A section sectional drawing in FIG.3 (b). 図3(c)におけるB部断面図である。It is a B section sectional view in Drawing 3 (c). 風車翼の一方のハーフ体と他方のハーフ体を加熱接合する工程を示す断面図である。It is sectional drawing which shows the process of heat-joining one half body and the other half body of a windmill blade. 本発明の第二実施形態による熱可塑性樹脂シートとその上下の強化繊維樹脂シートを積層してなる積層体の分解斜視図である。It is a disassembled perspective view of the laminated body formed by laminating | stacking the thermoplastic resin sheet by 2nd embodiment of this invention, and the upper and lower reinforcement fiber resin sheet. 第二実施形態による熱可塑性樹脂シートとその上下の強化繊維樹脂シートの積層体を金型内に載置した状態の断面図である。It is sectional drawing of the state which mounted the laminated body of the thermoplastic resin sheet by 2nd embodiment, and the upper and lower reinforcement fiber resin sheet in the metal mold | die. 図8に示す熱可塑性樹脂シートとその上下の強化繊維樹脂シートの層間が接合された風車翼のハーフ体の断面図である。It is sectional drawing of the half body of the windmill blade by which the interlayer of the thermoplastic resin sheet shown in FIG. 8 and the upper and lower reinforcement fiber resin sheets was joined. 本発明の実施例と従来例の変位と剛性との関係を示す図である。It is a figure which shows the relationship between the displacement and rigidity of the Example of this invention, and a prior art example. 本発明の第三実施形態による熱可塑性樹脂成形体の製造方法、この製造方法を用いて製造した熱可塑性樹脂成形体を示す断面図である。It is sectional drawing which shows the manufacturing method of the thermoplastic resin molding by 3rd embodiment of this invention, and the thermoplastic resin molding manufactured using this manufacturing method. 従来の風車翼を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional windmill blade.

以下、本発明の実施形態による熱可塑性樹脂成形体である巨大な風車翼とその製造方法について添付図面により説明する。
図1は本発明の第一実施形態による熱可塑性樹脂成形体である風車翼1の縦断面図である。図1に示す風車翼1では熱可塑性樹脂からなる外皮層2が例えば流線形状に形成されている。外皮層2を構成する三層は厚みの大きい熱可塑性樹脂層3と、その外面側と内面側とに積層された薄層の強化繊維外層4及び強化繊維内層5とが積層されて一体に形成されている。強化繊維外層4と強化繊維内層5とは、炭素繊維に熱可塑性樹脂を含浸させた薄層で構成されている。
Hereinafter, a huge wind turbine blade that is a thermoplastic resin molded body according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view of a wind turbine blade 1 which is a thermoplastic resin molded body according to a first embodiment of the present invention. In the wind turbine blade 1 shown in FIG. 1, an outer skin layer 2 made of a thermoplastic resin is formed in a streamline shape, for example. The three layers constituting the outer skin layer 2 are integrally formed by laminating a thick thermoplastic resin layer 3 and a thin reinforcing fiber outer layer 4 and a reinforcing fiber inner layer 5 laminated on the outer surface side and the inner surface side thereof. Has been. The reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 are constituted by thin layers in which a carbon fiber is impregnated with a thermoplastic resin.

しかも、図1に示す風車翼1は外皮層2である上側の断面略円弧状をなす背側ハーフ体1aと下側の断面略円弧状の腹側ハーフ体1bとの端面2a、2b同士を接合して形成されている。なお、本実施形態による風車翼1では背側ハーフ体1aと腹側ハーフ体1bの間にシェアウェブを設置しないが、風車翼1の補強のために両ハーフ体1a、1b間にシェアウェブ等を連結させてもよい。   In addition, the wind turbine blade 1 shown in FIG. 1 has end faces 2a and 2b of the dorsal half body 1a having a substantially arc shape in the upper cross section, which is the outer skin layer 2, and the ventral half body 1b having a substantially arc shape in the lower cross section. It is formed by bonding. In the wind turbine blade 1 according to the present embodiment, a share web is not installed between the back half body 1a and the abdomen half body 1b. However, in order to reinforce the wind turbine blade 1, a share web or the like is installed between the half bodies 1a and 1b. You may connect.

次に、本実施形態による巨大な風車翼1の製造方法について図2〜図5により説明する。
図2に示す繊維複合体において、平面上に強化繊維外層4を形成する強化繊維樹脂シート12が複数積層して配列されており、単一の強化繊維樹脂シート12の幅は金型7の内面7aの例えば1/3の長さに対応している。強化繊維樹脂シート12は例えば織物状の炭素繊維に熱可塑性樹脂を含浸させたシート状のプリプレグである。
強化繊維樹脂シート12の上には熱可塑性樹脂層3を形成する熱可塑性樹脂シート11が必要な枚数だけ積層して載置されている。更に、熱可塑性樹脂シート11の上には強化繊維内層5を形成する強化繊維樹脂シート12が必要な枚数だけ積層して載置されている。これらは積層体Sを構成する。
Next, the manufacturing method of the huge windmill blade 1 by this embodiment is demonstrated with reference to FIGS.
In the fiber composite shown in FIG. 2, a plurality of reinforcing fiber resin sheets 12 that form the reinforcing fiber outer layer 4 are arranged on a plane and arranged, and the width of the single reinforcing fiber resin sheet 12 is the inner surface of the mold 7. For example, it corresponds to a length of 1/3 of 7a. The reinforcing fiber resin sheet 12 is, for example, a sheet-like prepreg in which a woven carbon fiber is impregnated with a thermoplastic resin.
On the reinforced fiber resin sheet 12, the necessary number of thermoplastic resin sheets 11 for forming the thermoplastic resin layer 3 are stacked and placed. Further, a necessary number of reinforcing fiber resin sheets 12 forming the reinforcing fiber inner layer 5 are stacked and placed on the thermoplastic resin sheet 11. These constitute the laminated body S.

図3(a)に示す金型7は例えば風車翼1の背側ハーフ体1aを形成する形状の内面7aを有している。そして、金型7内の内面7a近傍には、高温の蒸気と冷却水を選択的に通す温度調整パイプ8を備えた温度調整手段と、内面7aの強化繊維樹脂シート12を真空吸引するための吸引パイプ9を備えた吸引手段とが配設されている。なお、温度調整パイプ8と吸引パイプ9の各構成と配列は例示的なものであり、必要に応じて任意の構成の温度調整手段と吸引手段とを採用できる。
そして、図3(b)に示すように、金型7の内面7a上には熱可塑性樹脂シート11とその上下の強化繊維樹脂シート12からなる積層体Sが内面7aの形状に沿って湾曲した形状に載置されている。
The metal mold 7 shown in FIG. 3A has an inner surface 7 a having a shape that forms, for example, the back half body 1 a of the wind turbine blade 1. And in the vicinity of the inner surface 7a in the mold 7, temperature adjusting means including a temperature adjusting pipe 8 for selectively passing high-temperature steam and cooling water, and vacuum suction of the reinforcing fiber resin sheet 12 on the inner surface 7a A suction means including a suction pipe 9 is provided. Note that the configurations and arrangements of the temperature adjustment pipe 8 and the suction pipe 9 are exemplary, and an arbitrary configuration of temperature adjustment means and suction means can be employed as necessary.
And as shown in FIG.3 (b), on the inner surface 7a of the metal mold | die 7, the laminated body S which consists of the thermoplastic resin sheet 11 and the upper and lower reinforcement fiber resin sheets 12 curved along the shape of the inner surface 7a. It is placed in shape.

ここで、風車翼1の製造方法の説明に先だって図4に示す各層の構成について説明する。
熱可塑性樹脂シート11は厚み0.1mm〜5.0mmの範囲とされている。熱可塑性樹脂シート11の厚みが0.1mm未満では熱可塑性樹脂層3の所要の厚みを得るのに多大な枚数が必要になり積層工程が長くなる欠点があり、5.0mmを超えるとシートに柔軟性がなくなり金型7の内面7aに沿った風車翼1の曲面形状を形成することが困難になる。なお、熱可塑性樹脂シート11の幅は任意であり、所定のシート幅(例えば10m)のものを順次配列及び積層することになる。
Here, prior to the description of the method of manufacturing the wind turbine blade 1, the configuration of each layer shown in FIG. 4 will be described.
The thermoplastic resin sheet 11 has a thickness in the range of 0.1 mm to 5.0 mm. If the thickness of the thermoplastic resin sheet 11 is less than 0.1 mm, a large number of sheets are required to obtain the required thickness of the thermoplastic resin layer 3, and the lamination process becomes long. The flexibility is lost and it becomes difficult to form the curved surface shape of the wind turbine blade 1 along the inner surface 7 a of the mold 7. The width of the thermoplastic resin sheet 11 is arbitrary, and a predetermined sheet width (for example, 10 m) is sequentially arranged and laminated.

また、熱可塑性樹脂シート11は低温でシート間の接合が行われるように低温の熱可塑性樹脂を用いることが好ましい。具体的には融点が約135℃程度の高密度ポリエチレン、融点が約150℃〜170℃程度のポリプロピレン等のポリオレフィン樹脂等を用いる。高融点の熱可塑性樹脂を用いる場合には、表面には低融点の樹脂層を有する、いわゆる多層シートを用いることが好ましい。高融点の熱可塑性樹脂としてナイロン樹脂やポリエステル樹脂があり、表面の低融点の熱可塑性樹脂としてはアクリル樹脂、SEBS樹脂、EVA樹脂等のいわゆる接着性樹脂が好適である。
なお、複数積層する熱可塑性樹脂シート11は異なる種類のものを混ぜて積層してもよい。例えば外面側には耐候性や難燃性に優れた塩化ビニル樹脂やポリエチレン等のポリカーボネイト樹脂等のシートを用いるとよい。
さらには、落雷対策のため、最表面にアルミニウム等の金属シートをアクリル樹脂、SEBS樹脂、EVA樹脂等のいわゆる接着性樹脂シートとともに積層してもよい。
The thermoplastic resin sheet 11 is preferably a low-temperature thermoplastic resin so that the sheets can be joined at a low temperature. Specifically, a high density polyethylene having a melting point of about 135 ° C., a polyolefin resin such as polypropylene having a melting point of about 150 ° C. to 170 ° C., or the like is used. When a high-melting thermoplastic resin is used, a so-called multilayer sheet having a low-melting resin layer on the surface is preferably used. Examples of the high melting point thermoplastic resin include nylon resin and polyester resin. As the low melting point thermoplastic resin on the surface, a so-called adhesive resin such as acrylic resin, SEBS resin, and EVA resin is preferable.
In addition, you may laminate | stack the thermoplastic resin sheet 11 laminated | stacked by mixing a different kind of thing. For example, a sheet made of a polycarbonate resin such as a vinyl chloride resin or polyethylene excellent in weather resistance and flame retardancy may be used on the outer surface side.
Furthermore, a metal sheet such as aluminum may be laminated on the outermost surface together with a so-called adhesive resin sheet such as an acrylic resin, a SEBS resin, or an EVA resin for lightning strike countermeasures.

次に、熱可塑性樹脂シート11の積層体からなる熱可塑性樹脂層3だけで風車翼1を構成すると強度が十分でないため、その表裏両面に強化繊維外層4と強化繊維内層5を接合する。強化繊維外層4と強化繊維内層5は同一材質からなるものであり、強化繊維に熱可塑性樹脂を含浸させたシート状の複数の強化繊維樹脂シート12で構成されている。ここで、強化繊維として、例えば炭素繊維、ガラス繊維、高強度有機繊維等を用いることができるが、中でも軽量で高剛性の炭素繊維が好ましい。
また、強化繊維は強度面から連続繊維であることが好ましく、強化繊維の配向は1方向にそろえてもよいし、互いに直交する縦横方向にそろえてもよい。或いは強化繊維を縦横方向に直交させて配列すると共に45°方向の配列も加える等することで疑似等方性に配列してもよい。強化繊維の配列は使用目的に応じて選定可能であるが、一般的には予め強化繊維を織物のように互いに交差させて配列したものを用いるとよい。
Next, since the strength is not sufficient when the wind turbine blade 1 is constituted only by the thermoplastic resin layer 3 made of the laminate of the thermoplastic resin sheets 11, the reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 are bonded to both the front and back surfaces. The reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 are made of the same material, and are composed of a plurality of sheet-like reinforcing fiber resin sheets 12 in which reinforcing fibers are impregnated with a thermoplastic resin. Here, as the reinforcing fiber, for example, carbon fiber, glass fiber, high-strength organic fiber, or the like can be used. Among them, lightweight and highly rigid carbon fiber is preferable.
The reinforcing fibers are preferably continuous fibers in terms of strength, and the orientation of the reinforcing fibers may be aligned in one direction, or may be aligned in the vertical and horizontal directions perpendicular to each other. Alternatively, the reinforcing fibers may be arranged in a quasi-isotropic manner by arranging them in a direction perpendicular to the vertical and horizontal directions and adding an arrangement in the 45 ° direction. The arrangement of the reinforcing fibers can be selected according to the purpose of use. In general, it is preferable to use the reinforcing fibers arranged in advance so as to cross each other like a woven fabric.

強化繊維をバインド(拘束)する熱可塑性樹脂は、熱可塑性樹脂シート11と同様に低温で繊維間や層間の接合が可能な高密度ポリエチレンや、ポリプロピレン等のポリオレフィン樹脂を用いることが好ましい。
また、熱可塑性樹脂シート11としてナイロンやポリエステル等の高融点の樹脂を用いる場合には、層間接合が低温で達成できるように上述した接着性の熱可塑性樹脂を用いることが望ましい。
なお、強化繊維樹脂シート12における強化繊維の含有率は、強化繊維樹脂シート12全体に対して20〜60体積%の範囲とする。含有率が20体積%未満では補強効果が小さく、60体積%を超えて含有させるのは一般に困難であり、ボイド等が発生してかえって強度低下を招く恐れがある。
また、強化繊維樹脂シート12の厚みは特に制限はないが、厚すぎると金型7の内面7aに沿って積層させることが困難であるため、0.05mm〜1.00mmの範囲が好適である。強化繊維樹脂シート12の幅は通常300mm〜1000mmで製造される。
As the thermoplastic resin that binds (restrains) the reinforcing fibers, it is preferable to use a polyolefin resin such as high-density polyethylene or polypropylene that can bond between fibers and layers at low temperatures, similarly to the thermoplastic resin sheet 11.
Further, when a high melting point resin such as nylon or polyester is used as the thermoplastic resin sheet 11, it is desirable to use the above-mentioned adhesive thermoplastic resin so that interlayer bonding can be achieved at a low temperature.
In addition, let the content rate of the reinforced fiber in the reinforced fiber resin sheet 12 be the range of 20-60 volume% with respect to the reinforced fiber resin sheet 12 whole. If the content is less than 20% by volume, the reinforcing effect is small, and it is generally difficult to contain more than 60% by volume, and voids or the like may be generated, leading to a decrease in strength.
Further, the thickness of the reinforcing fiber resin sheet 12 is not particularly limited, but if it is too thick, it is difficult to stack the reinforcing fiber resin sheet 12 along the inner surface 7a of the mold 7, and therefore a range of 0.05 mm to 1.00 mm is preferable. . The width | variety of the reinforced fiber resin sheet 12 is normally manufactured by 300 mm-1000 mm.

熱可塑性樹脂シート11の積層数と強化繊維樹脂シート12の積層数、そして両者の積層比率は製造すべき熱可塑性樹脂成形体の厚みや要求強度によって異なる。本実施形態では、例えば巨大な熱可塑性樹脂成形体である風車翼1の製造を目的としているので、熱可塑性樹脂シート11と強化繊維樹脂シート12の各積層数は少なくとも10枚以上、1000枚までの範囲に設定される。積層数が1000枚を超えると金型7内での加熱が困難であり、好ましくない。   The number of laminated thermoplastic resin sheets 11, the number of laminated reinforcing fiber resin sheets 12, and the lamination ratio of both differ depending on the thickness and required strength of the thermoplastic resin molded body to be produced. In the present embodiment, for example, the purpose is to manufacture a wind turbine blade 1 that is a huge thermoplastic resin molded body. Therefore, the number of laminated layers of the thermoplastic resin sheet 11 and the reinforcing fiber resin sheet 12 is at least 10 or more and 1000 sheets. Is set in the range. If the number of stacked layers exceeds 1000, heating in the mold 7 is difficult, which is not preferable.

また、風車翼1の外皮層2において、熱可塑性樹脂シート11と強化繊維樹脂シート12の配列に制限はなく、例えば複数の熱可塑性樹脂シート11の間に強化繊維樹脂シート12を分けて交互に配列してもよい。或いは複数の熱可塑性樹脂シート11の中間に強化繊維樹脂シート12をまとめて配列させてもよい。
しかしながら、本実施形態における風車翼1の外皮層2は、熱可塑性樹脂層3として多数の熱可塑性樹脂シート11を積層させ、その表裏面側に強化繊維外層4と強化繊維内層5として強化繊維樹脂シート12をそれぞれ集中的に積層して構成すると風車翼1の剛性と強度を発揮しやすいので好ましい。
Moreover, in the outer skin layer 2 of the windmill blade 1, there is no restriction | limiting in the arrangement | sequence of the thermoplastic resin sheet 11 and the reinforced fiber resin sheet 12, For example, the reinforced fiber resin sheet 12 is divided | segmented alternately between the several thermoplastic resin sheets 11, and is alternately. You may arrange. Alternatively, the reinforcing fiber resin sheets 12 may be arranged together in the middle of the plurality of thermoplastic resin sheets 11.
However, the outer skin layer 2 of the wind turbine blade 1 in the present embodiment is formed by laminating a large number of thermoplastic resin sheets 11 as the thermoplastic resin layer 3, and reinforcing fiber resin as the reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 on the front and back sides thereof. It is preferable that the sheets 12 are laminated in a concentrated manner because the rigidity and strength of the wind turbine blade 1 are easily exhibited.

次に本実施形態による風車翼1の製造方法について図2〜図6に基づいて説明する。
本実施形態における熱可塑性樹脂シート11は例えば幅10m程度であり、強化繊維樹脂シート12は通常幅1m以下であるため、金型7の内面7aに積層する際、強化繊維樹脂シート12間に隙間を生じ易い。そのため、平面上において、予め複数の強化繊維樹脂シート12を金型7の内面7aの寸法に合わせて隙間なく並べ、その上に広幅の熱可塑性樹脂シート11を載置して融着させておく。
そして、平面上で、複数の強化繊維樹脂シート12の上に熱可塑性樹脂シート11を必要な枚数だけ積層し、更にその上に複数の強化繊維樹脂シート12を積層して積層体Sを構成する。しかも積層された各所要枚数のシート11、12が相互にずれないようにレーザー光等で部分的に溶着させておくことが好ましい。
Next, the manufacturing method of the windmill blade 1 by this embodiment is demonstrated based on FIGS.
The thermoplastic resin sheet 11 in the present embodiment has a width of, for example, about 10 m, and the reinforcing fiber resin sheet 12 has a width of usually 1 m or less. Therefore, when the thermoplastic resin sheet 11 is laminated on the inner surface 7 a of the mold 7, there is a gap between the reinforcing fiber resin sheets 12. It is easy to produce. Therefore, on the plane, a plurality of reinforcing fiber resin sheets 12 are arranged in advance without gaps in accordance with the dimensions of the inner surface 7a of the mold 7, and the wide thermoplastic resin sheet 11 is placed thereon and fused. .
Then, on the plane, a required number of thermoplastic resin sheets 11 are laminated on the plurality of reinforcing fiber resin sheets 12, and a plurality of reinforcing fiber resin sheets 12 are further laminated thereon to form a laminate S. . Moreover, it is preferable that the required number of stacked sheets 11 and 12 are partially welded with a laser beam or the like so as not to be displaced from each other.

次に、図3(a)に示す金型7の内面7a上に、これら積層された多数枚のシート11,12からなる積層体Sをクレーン等で持ち上げて金型7の内面7aに沿ってしわがよらないように湾曲させて載置する。なお、積層体Sの枚数が大きい場合には複数回に分けて積層してもよい。
また、図3(b)に示す積層体Sの熱可塑性樹脂シート11や強化繊維樹脂シート12の各間や底部に残存する空気を排除するために積層体Sの端面や底面から吸引パイプ9等で真空引きしてもよい。更に、積層体Sの上側からロールで押圧することでシート11,12間の空気を抜くようにしてもよい。こうして、積層体Sをなす各複数枚の熱可塑性樹脂シート11や強化繊維樹脂シート12は図4に示すように互いに密着された状態で積層される。
Next, on the inner surface 7a of the mold 7 shown in FIG. 3 (a), the laminated body S made up of a large number of these stacked sheets 11 and 12 is lifted by a crane or the like along the inner surface 7a of the mold 7. Place it curved to avoid wrinkling. In addition, when the number of the laminated bodies S is large, they may be laminated in a plurality of times.
Further, in order to eliminate air remaining between the thermoplastic resin sheet 11 and the reinforcing fiber resin sheet 12 of the laminate S and the reinforcing fiber resin sheet 12 shown in FIG. The vacuum may be drawn with. Further, the air between the sheets 11 and 12 may be removed by pressing with a roll from the upper side of the laminate S. In this way, each of the plurality of thermoplastic resin sheets 11 and reinforcing fiber resin sheets 12 constituting the laminated body S are laminated in a state of being in close contact with each other as shown in FIG.

そして、図3(b)において、金型7の温度調整パイプ8に高温の蒸気を流すことで内面7aを通して積層体Sの下側から熱を加える。金型7の加熱温度は積層体Sに用いる熱可塑性樹脂の種類によって異なり、熱可塑性樹脂を溶融できる温度に制御する。例えば、熱可塑性樹脂として高密度ポリエチレンを用いた場合には150℃〜180℃の範囲に金型7の温度を制御することが好ましい。
また、積層体Sの加熱に際し、金型7の内面7a側だけでなく積層体Sの上側にシート状のヒータを配設して上側からも加熱することが加熱溶融を促進する上で好ましい。なお、積層体Sを加熱しながら端面から吸引パイプ9でシート間の空気を抜くようにしてもよい。
And in FIG.3 (b), heat is applied from the lower side of the laminated body S through the inner surface 7a by flowing a high temperature steam through the temperature adjustment pipe 8 of the metal mold 7. The heating temperature of the mold 7 varies depending on the kind of the thermoplastic resin used for the laminate S, and is controlled to a temperature at which the thermoplastic resin can be melted. For example, when high-density polyethylene is used as the thermoplastic resin, it is preferable to control the temperature of the mold 7 in the range of 150 ° C. to 180 ° C.
In addition, when heating the laminated body S, it is preferable to dispose a sheet-like heater not only on the inner surface 7a side of the mold 7 but also on the upper side of the laminated body S and to heat from the upper side in order to promote heating and melting. Note that the air between the sheets may be removed from the end surface by the suction pipe 9 while the laminated body S is heated.

積層体Sの加熱によって、図3(c)及び図5に示すように、強化繊維外層4及び強化繊維内層5では、各強化繊維樹脂シート12に含浸された熱可塑性樹脂が溶融して炭素繊維を含んで互いに密着させる。また、熱可塑性樹脂層3では多数枚の熱可塑性樹脂シート11が互いに溶融して一体化され、しかも熱可塑性樹脂シート11と強化繊維樹脂シート12との間でも熱可塑性樹脂が互いに溶融して一体化される。
強化繊維外層4と熱可塑性樹脂層3と強化繊維内層5との間の各シート11、12の接合を確実にするには、積層体Sの加熱時間は20分から60分が必要である。20分以下では積層体Sの中央部に加熱不足による未接合部分が生じ易い。一方、60分を超えて加熱すると、酸化によって熱可塑性樹脂が劣化するおそれがある。
As shown in FIGS. 3C and 5, the thermoplastic resin impregnated in each reinforcing fiber resin sheet 12 is melted in the reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 by the heating of the laminated body S, so that carbon fibers are used. And intimately contact each other. In the thermoplastic resin layer 3, a large number of thermoplastic resin sheets 11 are melted and integrated with each other, and the thermoplastic resin is also melted and integrated with each other between the thermoplastic resin sheet 11 and the reinforced fiber resin sheet 12. It becomes.
In order to ensure the bonding of the sheets 11 and 12 between the reinforcing fiber outer layer 4, the thermoplastic resin layer 3, and the reinforcing fiber inner layer 5, the heating time of the laminate S needs 20 to 60 minutes. In 20 minutes or less, an unjoined portion due to insufficient heating tends to occur in the central portion of the laminate S. On the other hand, when heated for more than 60 minutes, the thermoplastic resin may be deteriorated due to oxidation.

積層体Sの層間の接合が一体化すると、強化繊維外層4と熱可塑性樹脂層3と強化繊維内層5とが一体になった外皮層2のハーフ体1aが形成される。この状態で金型7の内面7aからはみ出す部分を切除することで図3(c)に示すようにハーフ体1aの端面は金型7の上面と同一面上に位置する。
積層体Sの層間接合の完了後、金型の温度調整パイプ8内に冷却水を通す等して金型7を冷却して積層体Sを冷却する。冷却に際して、金型7の上部からも送風等によって冷却することが好ましい。採用する熱可塑性樹脂の種類にもよるが、例えば高密度ポリエチレンを用いた場合には、積層体Sの温度が70℃程度にまで下がれば金型7から取り外すことができる。なお、ポリオレフィン樹脂を用いた場合には金型7への密着性が低いため、取り外しはクレーン等を用いて容易に行うことができる。
When the bonding between the layers of the laminate S is integrated, a half body 1a of the outer skin layer 2 in which the reinforcing fiber outer layer 4, the thermoplastic resin layer 3, and the reinforcing fiber inner layer 5 are integrated is formed. In this state, by cutting away the portion protruding from the inner surface 7 a of the mold 7, the end surface of the half body 1 a is located on the same plane as the upper surface of the mold 7 as shown in FIG.
After the completion of the interlayer bonding of the laminate S, the laminate 7 is cooled by cooling the die 7 by passing cooling water through the temperature adjusting pipe 8 of the die. When cooling, it is preferable to cool from the upper part of the mold 7 by blowing air or the like. Depending on the type of thermoplastic resin employed, for example, when high-density polyethylene is used, it can be removed from the mold 7 if the temperature of the laminate S is reduced to about 70 ° C. In addition, since the adhesiveness to the metal mold | die 7 is low when polyolefin resin is used, removal can be performed easily using a crane etc.

こうして金型7によってそれぞれ製造した風車翼1の背側ハーフ体1aと腹側ハーフ体1bは炭素繊維強化プラスチック(CFRP)である。これら背側ハーフ体1aと腹側ハーフ体1bを接合して風車翼1を製造する際、背側ハーフ体1aと腹側ハーフ体1bは熱可塑性樹脂であるため接着剤による接合ができない。
そのため、図6に示すように、これら背側ハーフ体1aと腹側ハーフ体1bとの端面2a、2b同士を、接合用の例えば鉄製金網14を介して突き合わせて外部からのマイクロ波や電流等によって加熱接合し、端面2a、2bの熱可塑性樹脂を再溶融させて接合して一体化させる。こうして熱可塑性樹脂と炭素繊維を用いて、炭素繊維強化プラスチック(CFRP)製の風車翼1を製造することができる。
Thus, the back half body 1a and the ventral half body 1b of the wind turbine blade 1 manufactured by the mold 7 are each made of carbon fiber reinforced plastic (CFRP). When the wind turbine blade 1 is manufactured by joining the back half body 1a and the ventral half body 1b, the back half body 1a and the ventral half body 1b cannot be joined by an adhesive because they are thermoplastic resins.
Therefore, as shown in FIG. 6, the end faces 2a and 2b of the back half body 1a and the abdominal half body 1b are brought into contact with each other via, for example, an iron wire mesh 14 and externally applied by microwaves or currents. Heat joining is performed, and the thermoplastic resins of the end faces 2a and 2b are remelted and joined to be integrated. In this way, the wind turbine blade 1 made of carbon fiber reinforced plastic (CFRP) can be manufactured using the thermoplastic resin and the carbon fiber.

上述したように本実施形態による風車翼1の製造方法によれば、金型7内に積層された熱可塑性樹脂層3をなす複数枚の熱可塑性樹脂シート11と強化繊維外層4及び内層5をなす複数枚の強化繊維樹脂シート12とを加熱して各シート同士を相互に熱溶着し一体化して冷却することで、熱可塑性樹脂成形体からなる風車翼1を従来の熱硬化性樹脂成形体よりも短い製造サイクルで製造することができる。   As described above, according to the method for manufacturing the wind turbine blade 1 according to the present embodiment, the plurality of thermoplastic resin sheets 11, the reinforcing fiber outer layer 4, and the inner layer 5 that form the thermoplastic resin layer 3 laminated in the mold 7 are provided. A plurality of reinforcing fiber resin sheets 12 formed are heated, and the sheets are thermally welded to each other and integrated and cooled, whereby a wind turbine blade 1 made of a thermoplastic resin molded body is converted into a conventional thermosetting resin molded body. Can be manufactured in a shorter manufacturing cycle.

そして、本実施形態による熱可塑性樹脂成形体からなる風車翼1は、従来のガラス繊維とエポキシ樹脂等の熱硬化性樹脂からなる熱硬化性樹脂成形体(GFRP)と比較して、軽量化できる上に厚みを増大可能で、剛性はほぼ等価であり、しかも炭素繊維はガラス繊維より高価であるが製造工程を短くできるので風車翼1等の大型樹脂成形体を製造する際の製造コストをほぼ同等に抑制できる。
また、熱可塑性樹脂成形体の風車翼1を廃棄する際には粉砕して押出成形が可能であるため他の樹脂製品にリサイクルすることができ、この点はリサイクルが困難な従来の熱硬化性樹脂成形体と比較して資源の無駄を省いて経済的に再利用できる。
And the windmill blade 1 which consists of a thermoplastic resin molding by this embodiment can be reduced in weight compared with the thermosetting resin molding (GFRP) which consists of thermosetting resins, such as the conventional glass fiber and an epoxy resin. The thickness can be increased, the rigidity is almost equivalent, and the carbon fiber is more expensive than the glass fiber, but the manufacturing process can be shortened, so that the manufacturing cost when manufacturing a large resin molded body such as the wind turbine blade 1 is almost reduced. It can be suppressed equally.
Further, when the wind turbine blade 1 of the thermoplastic resin molded body is discarded, it can be pulverized and extruded to be recycled to other resin products. This is the conventional thermosetting that is difficult to recycle. Compared to a resin molded body, it can be reused economically without waste of resources.

なお、本発明は上述した第一実施形態による風車翼1とその製造方法に限定されることはなく、本発明の要旨を逸脱しない範囲で適宜の変更や置換等が可能であり、これらはいずれも本発明に含まれる。以下に本発明の他の実施形態や変形例について説明するが、上述した実施形態の部品や部材と同一または同様なものには同一の符号を用いて説明を省略する。   The present invention is not limited to the wind turbine blade 1 and the manufacturing method thereof according to the first embodiment described above, and can be appropriately changed or replaced without departing from the gist of the present invention. Are also included in the present invention. Other embodiments and modifications of the present invention will be described below, but the same reference numerals are used for the same or similar parts and members of the above-described embodiments, and description thereof will be omitted.

次に本発明の第二実施形態による熱可塑性樹脂成形体としての風車翼1の製造方法について図7から図9に基づいて説明する。
図7において、平面上に強化繊維樹脂シート12が複数積層して配列されており、強化繊維樹脂シート12の上には熱可塑性樹脂シート11が必要な枚数だけ積層して載置されている。更に、熱可塑性樹脂シート11の上には強化繊維樹脂シート12が必要な枚数だけ積層して載置されている。しかも、強化繊維内層5を形成する強化繊維樹脂シート12は、風車翼1のハーフ体1aの強度が比較的小さい中央部分で強化繊維外層4を形成する強化繊維樹脂シート12よりも積層枚数が多く設定されている。
Next, the manufacturing method of the windmill blade 1 as a thermoplastic resin molding by 2nd embodiment of this invention is demonstrated based on FIGS.
In FIG. 7, a plurality of reinforcing fiber resin sheets 12 are stacked and arranged on a plane, and a thermoplastic resin sheet 11 is stacked and mounted on the reinforcing fiber resin sheet 12 in a necessary number. Further, a necessary number of reinforcing fiber resin sheets 12 are stacked and placed on the thermoplastic resin sheet 11. Moreover, the reinforcing fiber resin sheet 12 forming the reinforcing fiber inner layer 5 has a larger number of laminated sheets than the reinforcing fiber resin sheet 12 forming the reinforcing fiber outer layer 4 at the central portion where the strength of the half body 1a of the wind turbine blade 1 is relatively small. Is set.

次に、これらの積層体Sをクレーン等で吊り上げて、図8に示すように金型7の内面7a上に載置させる。そして、内面7aと積層体Sとの間には加熱成形後の剥離が容易なように例えばテフロン(登録商標)製の剥離シートが設置されていてもよい。
この状態で、金型7内の温度調整パイプ8に高温の蒸気を循環させて金型温度を上昇させて積層体Sの下面から加熱を行う。また、積層体Sの端面や底面には吸引パイプ9の開口を配設して真空吸引を行うことで各シート11、12間の空気を抜いて加熱効率を上げる。その際、積層された熱可塑性樹脂シート11及び強化繊維樹脂シート12の端面から空気を吸引パイプ9で吸引できるように積層体Sの上面にシート16を被せて内部を真空に近い状態に保持できるようにしている。
そして、加熱によってシート11,12間の接合が十分に行われてそれぞれ一体化され、しかも熱可塑性樹脂層3とその上下の強化繊維外層4及び内層5が互いに接合される。
Next, these laminates S are lifted by a crane or the like and placed on the inner surface 7a of the mold 7 as shown in FIG. And between the inner surface 7a and the laminated body S, the peeling sheet made from Teflon (trademark) may be installed so that peeling after thermoforming may be easy, for example.
In this state, high-temperature steam is circulated through the temperature adjustment pipe 8 in the mold 7 to raise the mold temperature, and heating is performed from the lower surface of the laminate S. Further, an opening of the suction pipe 9 is provided on the end face and the bottom surface of the laminate S to perform vacuum suction, thereby removing air between the sheets 11 and 12 and increasing the heating efficiency. At that time, the sheet 16 is covered on the upper surface of the laminate S so that air can be sucked by the suction pipe 9 from the end faces of the laminated thermoplastic resin sheet 11 and the reinforcing fiber resin sheet 12, and the inside can be maintained in a state close to a vacuum. I am doing so.
The sheets 11 and 12 are sufficiently joined by heating to be integrated, and the thermoplastic resin layer 3 and the upper and lower reinforcing fiber outer layers 4 and 5 are joined to each other.

こうして、積層体Sの各シート11,12間の接合が十分なされた後、温度調整パイプ8内に冷却水を流して金型7を冷却して得られた風車翼1の背側ハーフ体1aを金型7から取り外す。得られた背側ハーフ体1aは、図9に示すように、強化繊維内層5の中央部の厚みが両端部より肉厚に形成され、強度を高めている。そして、背側ハーフ体1aと腹側ハーフ体1bの両端を切り落として端面2a、2b同士を互いに溶融して接合することで風車翼1が得られる。   Thus, after the joining between the sheets 11 and 12 of the laminated body S is sufficient, the back half body 1a of the wind turbine blade 1 obtained by flowing the cooling water into the temperature adjusting pipe 8 and cooling the mold 7 is obtained. Is removed from the mold 7. As shown in FIG. 9, the obtained back half body 1 a is formed such that the thickness of the central portion of the reinforcing fiber inner layer 5 is thicker than both ends, and the strength is increased. And the windmill blade 1 is obtained by cutting off both ends of the back side half body 1a and the abdominal side half body 1b, and fuse | melting and joining end surfaces 2a and 2b mutually.

上述したように、本第二実施形態による風車翼1は互いに接合させた背側ハーフ体1aと腹側ハーフ体1bの接合部から離間する中央部を強化繊維樹脂シート12で肉厚に設定したことで風車翼1の強度を高めることができるという利点がある。   As described above, in the wind turbine blade 1 according to the second embodiment, the central portion that is separated from the joint portion of the back half body 1a and the ventral half body 1b joined to each other is set to be thick with the reinforcing fiber resin sheet 12. There is an advantage that the strength of the wind turbine blade 1 can be increased.

なお、上述した第一実施形態による熱可塑性樹脂成形体である風車翼1の背側ハーフ体1aは熱可塑性樹脂層3の表裏面に強化繊維外層4と強化繊維内層5を一体形成したが、表裏面のいずれか一方にのみ強化繊維外層4または強化繊維内層5を接合する構成を採用してもよい。この場合、風車翼1の外表面の強度を向上させるために強化繊維外層4を形成することが好ましい。   In addition, although the back side half body 1a of the wind turbine blade 1 which is the thermoplastic resin molded body according to the first embodiment described above integrally forms the reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 on the front and back surfaces of the thermoplastic resin layer 3, You may employ | adopt the structure which joins the reinforced fiber outer layer 4 or the reinforced fiber inner layer 5 only to either one of front and back. In this case, it is preferable to form the reinforcing fiber outer layer 4 in order to improve the strength of the outer surface of the wind turbine blade 1.

また、上述した各実施形態において、金型7上に載置された積層体Sを加熱して接合する際、温度調整パイプ8内に高温の蒸気を流通させて加熱する手段に代えて、金型7を設置した室内全体の雰囲気温度を高温に設定させることで積層体Sを溶融して接合するようにしてもよい。
また、第二実施形態において、強化繊維内層5の中央部の厚みを両端部より大きくする構成に代えて、熱可塑性樹脂層3を形成する熱可塑性樹脂シート11の中央部の厚みを両端部より大きく設定してもよい。
Moreover, in each embodiment mentioned above, when heating and joining the laminated body S mounted on the metal mold | die 7, it replaces with the means which distribute | circulates high temperature steam in the temperature control pipe 8, and heats it. The laminated body S may be melted and joined by setting the atmospheric temperature of the entire room where the mold 7 is installed to a high temperature.
Moreover, in 2nd embodiment, it replaces with the structure which makes thickness of the center part of the reinforced fiber inner layer 5 larger than both ends, and makes thickness of the center part of the thermoplastic resin sheet 11 which forms the thermoplastic resin layer 3 from both ends. You may set large.

次に本発明の第一実施形態による炭素繊維と熱可塑性樹脂からなる風車翼1を実施例とし、従来のガラス繊維と熱硬化性樹脂からなる風車翼を従来例として、これらの製造方法と得られた成形体である風車翼1の特性について試験した。なお、実施例と従来例による風車翼1の体積は同一とした。
実施例では、第一実施形態に示すように、風車翼1の背側ハーフ体1aと腹側ハーフ体1bについて、炭素繊維に熱可塑性樹脂として高密度ポリエチレン樹脂を含浸させた強化繊維樹脂シート12からなる強化繊維外層4と強化繊維内層5の間に、高密度ポリエチレン樹脂からなる熱可塑性樹脂層3を溶融させて一体化させた炭素繊維複合体(CFRP)の風車翼1を製造した。
一方、従来例では、風車翼全体に、ガラス繊維に熱硬化性樹脂としてエポキシ樹脂を含浸させてガラス繊維複合体(GFRP)の風車翼を製造した。
Next, a wind turbine blade 1 made of carbon fiber and a thermoplastic resin according to the first embodiment of the present invention is used as an example, and a wind turbine blade made of a conventional glass fiber and a thermosetting resin is used as a conventional example. The characteristics of the wind turbine blade 1 which was the formed body were tested. In addition, the volume of the windmill blade 1 by an Example and a prior art example was made the same.
In the examples, as shown in the first embodiment, the back half body 1a and the abdomen half body 1b of the wind turbine blade 1 are obtained from a reinforced fiber resin sheet 12 in which carbon fiber is impregnated with a high-density polyethylene resin as a thermoplastic resin. A carbon fiber composite (CFRP) wind turbine blade 1 in which a thermoplastic resin layer 3 made of high-density polyethylene resin was melted and integrated between the reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 was manufactured.
On the other hand, in the conventional example, a glass fiber composite (GFRP) wind turbine blade was manufactured by impregnating the entire wind turbine blade with an epoxy resin as a thermosetting resin.

これら実施例と従来例について、各繊維量の体積%と重量と厚みを比較すると、従来例を100とすると下記表1に示すようになった。   When the volume%, weight, and thickness of each fiber amount of these Examples and Conventional Examples are compared, Table 1 below shows that the Conventional Example is 100.

また、実施例と従来例による幅方向の変位位置(mm)と剛性(荷重:N)との関係をグラフで示すと図10に示すようになった。表1と図10から実施例の炭素繊維の繊維量が従来例のほぼ1/3でも物性はほぼ等価であり、実施例の厚みを増大できて重量を軽減できた。
更に実施例と従来例の製造方法において、使用後の金型7の冷却時間は、実施例では80℃程度でよいため20分であった。なお、さらに続けて成形を行う場合、熱可塑性樹脂を用いている実施例では、80℃程度の金型に直接シートを積層しても問題はない。一方、従来例ではエポキシ樹脂が熱硬化性樹脂であるため、次の成形時にエポキシ樹脂の粘度が上昇しないように、各成形毎に金型を常温まで冷却したため冷却時間は60分かかった。
Further, the relationship between the displacement position (mm) in the width direction and the rigidity (load: N) according to the example and the conventional example is shown in FIG. 10 as a graph. From Table 1 and FIG. 10, even if the fiber amount of the carbon fiber of the example was almost 1/3 of the conventional example, the physical properties were almost equivalent, and the thickness of the example could be increased and the weight could be reduced.
Furthermore, in the production methods of the example and the conventional example, the cooling time of the mold 7 after use was 20 minutes because it may be about 80 ° C. in the example. In the case where the molding is further performed, in the embodiment using the thermoplastic resin, there is no problem even if the sheet is directly laminated on a mold of about 80 ° C. On the other hand, since the epoxy resin is a thermosetting resin in the conventional example, the cooling time was 60 minutes because the mold was cooled to room temperature for each molding so that the viscosity of the epoxy resin did not increase during the next molding.

また、各樹脂や織布(繊維)の金型7への設置時間は、従来例では90分であったが、実施例ではクレーンで積層体Sを載置できるため30分であった。また、従来例では金型7への熱硬化性樹脂の注入に30分かかったが、実施例はシート状であるため樹脂注入を必要としない。更に加熱硬化と冷却に要する時間は実施例では50分であったが、従来例では120分かかった。
そしてトータルの製造時間は実施例で100分、従来例で300分となり、従来例の1/3の時間で製造できた。そのため、炭素繊維はガラス繊維と比較して高価であるが、製造工程の時間が短いので同程度のコストで製造できた。
In addition, the installation time of each resin or woven fabric (fiber) to the mold 7 was 90 minutes in the conventional example, but in the example, it was 30 minutes because the laminate S could be placed with a crane. Further, in the conventional example, it took 30 minutes to inject the thermosetting resin into the mold 7. However, since the example is a sheet shape, the resin injection is not required. Further, the time required for heat curing and cooling was 50 minutes in the example, but it took 120 minutes in the conventional example.
The total production time was 100 minutes in the example and 300 minutes in the conventional example, and the production was completed in 1/3 of the conventional example. Therefore, although carbon fiber is expensive compared with glass fiber, since the time of the manufacturing process is short, it was able to be manufactured at the same cost.

上述したように、本発明の熱可塑性樹脂成形体の製造方法によれば、風車翼1に限らず、金型形状に沿った二次元または三次元の大型建造物の製造が可能になる。この建造物は熱可塑性樹脂であるため、接合面を溶融することで建造物どうしを融着して、さらに大型化することや、少なくとも片面に熱可塑性の補強リブを融着することで強度向上させることも可能である。また、熱可塑性樹脂でない補強リブの場合には熱可塑樹脂との間に接着性樹脂材を介して融着による接合が可能である。   As described above, according to the method for manufacturing a thermoplastic resin molded body of the present invention, it is possible to manufacture not only the wind turbine blade 1 but also a two-dimensional or three-dimensional large-sized building along the mold shape. Since this building is a thermoplastic resin, the strength is improved by fusing the joint surfaces to fuse the buildings together and further increasing the size, or by fusing thermoplastic reinforcing ribs on at least one side. It is also possible to make it. In the case of a reinforcing rib that is not a thermoplastic resin, it can be joined to the thermoplastic resin by fusion bonding with an adhesive resin material.

また、上述した各実施形態において、風車翼1における強化繊維外層4及び強化繊維内層5の強化繊維樹脂シート12として、炭素繊維に熱可塑性樹脂を含浸させたものを用いたが、炭素繊維に代えてガラス繊維や高強度有機繊維等を用いてもよい。
また、本発明による熱可塑性樹脂成形体は必ずしも強化繊維樹脂シート12の強化繊維外層4及び強化繊維内層5を用いなくてもよく、熱可塑性樹脂シート11を複数積層して溶融させて一体化した熱可塑性樹脂層3だけで構成してもよい。
なお、風車翼1における強化繊維外層4と強化繊維内層5は強化繊維樹脂層に含まれる。
Further, in each of the above-described embodiments, as the reinforcing fiber resin sheet 12 of the reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 in the wind turbine blade 1, a carbon fiber impregnated with a thermoplastic resin is used. Glass fiber, high-strength organic fiber, or the like may be used.
In addition, the thermoplastic resin molded body according to the present invention does not necessarily need to use the reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 of the reinforcing fiber resin sheet 12, and a plurality of thermoplastic resin sheets 11 are laminated and fused to be integrated. You may comprise only the thermoplastic resin layer 3. FIG.
The reinforcing fiber outer layer 4 and the reinforcing fiber inner layer 5 in the wind turbine blade 1 are included in the reinforcing fiber resin layer.

なお、本発明の各実施形態では製造できる熱可塑性樹脂成形体として、風力発電に用いる風車翼1の製造方法と風車翼1について説明したが、本発明はこのような実施形態に限定されるものではなく、例えば幅10m以上となるような各種の大型熱可塑性樹脂成形体に適用できる。具体的には巨大な風車翼1のほかに土木建築用の床板、屋根材、船舶や航空機やトレーラー等の車両に用いるボディ等の大型の建造物等にも適用できる。
また、本発明は、風車翼を実施形態として、断面略円弧状の金型を用いて説明を行ったが、これに代えて断面が略円状の金型を用いて、積層する熱可塑性シートを環状に積層しても構わない。この場合の製造される大型熱可塑樹脂成形体は、大型パイプ、例えば天然ガス等のパイプライン等に適用可能である。
In addition, although each embodiment of this invention demonstrated the manufacturing method of the windmill blade 1 used for wind power generation, and the windmill blade 1 as a thermoplastic resin molded object which can be manufactured, this invention is limited to such embodiment. Instead, for example, the present invention can be applied to various large thermoplastic resin molded articles having a width of 10 m or more. Specifically, in addition to the huge windmill blade 1, it can also be applied to a large building such as a floor plate for civil engineering construction, a roofing material, a body used in a vehicle such as a ship, an aircraft, and a trailer.
Further, the present invention has been described using a wind turbine blade as an embodiment and using a die having a substantially arc-shaped cross section. Instead, a thermoplastic sheet laminated using a die having a substantially circular cross section. May be laminated in an annular shape. The large thermoplastic resin molded body produced in this case can be applied to large pipes such as natural gas pipelines.

次に、本発明の第三実施形態による熱可塑性樹脂成形体の製造方法及びこの製造方法を用いて形成した熱可塑性樹脂成形体について図11に基づいて説明する。   Next, a method for manufacturing a thermoplastic resin molded body according to a third embodiment of the present invention and a thermoplastic resin molded body formed by using this manufacturing method will be described with reference to FIG.

本第三実施形態による熱可塑性樹脂成形体の製造方法は、図11に示すように、複数の熱可塑性樹脂シート11と強化繊維樹脂シート12を載置して積層体Sを構成する工程と、この積層体Sを加熱して相互に溶融して一体化させる工程と、積層体Sを一対の金型17、18で圧縮することで、溶融した熱可塑性樹脂を流動させ、成形体(熱可塑性樹脂成形体)20の一部を他の領域より肉厚に形成する工程と、冷却後に一体化した成形体20を金型17、18から取り出す工程を備えている。   The method for producing a thermoplastic resin molded body according to the third embodiment comprises a step of placing a plurality of thermoplastic resin sheets 11 and reinforcing fiber resin sheets 12 to form a laminate S, as shown in FIG. The laminated body S is heated and melted to be integrated with each other, and the laminated body S is compressed by a pair of molds 17 and 18 so that the molten thermoplastic resin flows and a molded body (thermoplastic A step of forming a part of the resin molded body) 20 thicker than other regions, and a step of taking out the molded body 20 integrated after cooling from the molds 17 and 18.

そして、本第三実施形態では、一方の金型17の型面(内面)17aが凹凸状に形成されており、一対の金型17、18で、加熱して溶融した積層体Sを圧縮すると、一方の金型17の凸部17bによって積層体Sの一部が強く押圧(圧縮)され、この部分の溶融した熱可塑性樹脂が凹部17c側(凹部17c内)に流動する。   In the third embodiment, the mold surface (inner surface) 17a of one mold 17 is formed in a concavo-convex shape, and when the laminated body S heated and melted is compressed with the pair of molds 17 and 18, A part of the laminate S is strongly pressed (compressed) by the convex portion 17b of one mold 17, and the molten thermoplastic resin in this portion flows toward the concave portion 17c (in the concave portion 17c).

したがって、本第三実施形態による熱可塑性樹脂成形体の製造方法(及び熱可塑性樹脂成形体20)においては、第一実施形態、第二実施形態と同様の作用効果に加え、積層体Sが繊維を含まない熱可塑性樹脂シート層3を備えて形成されているため、積層体Sを加熱して相互に溶融して一体化させるとともに、この積層体Sを所望の凹凸形状(や傾斜形状、曲面形状等)を型面17aに備えた金型17、18で圧縮することにより、溶融した熱可塑性樹脂を流動させ、型面17aの形状に応じて一部を他の領域より肉厚にすることが可能になる。   Therefore, in the method for producing a thermoplastic resin molded body according to the third embodiment (and the thermoplastic resin molded body 20), in addition to the same effects as those of the first embodiment and the second embodiment, the laminate S is a fiber. Since the laminated body S is formed by heating and melting each other to be integrated, the laminated body S is formed into a desired uneven shape (or inclined shape, curved surface). The shape of the mold surface 17a is compressed by the molds 17 and 18 provided on the mold surface 17a, so that the molten thermoplastic resin flows and a part of the mold surface 17a is made thicker than the other regions. Is possible.

これにより、部分的に肉厚の異なる成形体20を比較的低い圧力の圧縮成形によって成形することができ、図11に示したスキン−リブ構造体のような複雑な形状の成形体を容易に製造することが可能になる。
特に風車のように巨大な構造物を圧縮成形する際には、低い圧力で成形できる本発明の製造方法は極めて有益である。
As a result, the molded body 20 having partially different thicknesses can be molded by compression molding at a relatively low pressure, and a molded body having a complicated shape such as the skin-rib structure shown in FIG. 11 can be easily formed. It becomes possible to manufacture.
In particular, when a huge structure such as a windmill is compression-molded, the production method of the present invention that can be molded at a low pressure is extremely useful.

次に、本発明に係る第三実施形態による熱可塑樹脂成形体20の製造方法及び熱可塑性樹脂成形体20の実施例について説明する。   Next, a method for manufacturing a thermoplastic resin molded body 20 and an example of the thermoplastic resin molded body 20 according to the third embodiment of the present invention will be described.

(熱可塑性樹脂シートの成形)
本実施例では、熱可塑性樹脂シートとして次のように製造したポリプロピレン樹脂シートを用いた。
ポリプロピレン樹脂(EA9:日本ポリプロピレン株式会社製品)を単軸押し出し機にて溶融混練した後、幅400mmのT型ダイを通して押し出した。その後、一対の冷却ロールで冷却と引取りを行い、厚み0.3mm、幅350mmで成形した。
(Molding of thermoplastic resin sheet)
In this example, a polypropylene resin sheet produced as follows was used as the thermoplastic resin sheet.
Polypropylene resin (EA9: Nippon Polypropylene Co., Ltd.) was melt-kneaded with a single screw extruder, and then extruded through a T-type die having a width of 400 mm. Then, it cooled and picked up with a pair of cooling roll, and shape | molded by thickness 0.3mm and width 350mm.

(含浸用熱可塑性樹脂シートの成形)
含浸用の熱可塑性樹脂シートとしては次のように製造したポリプロピレン樹脂シートを用いた。
ポリプロピレン樹脂(MA04A:日本ポリプロピレン株式会社製品)を単軸押し出し機にて溶融混練した後、幅400mmのT型ダイを通して押し出した。その後、一対の冷却ロールで冷却と引取りを行い、厚み0.15mm、幅350mmで成形した。
(Formation of thermoplastic resin sheet for impregnation)
A polypropylene resin sheet produced as follows was used as the impregnating thermoplastic resin sheet.
Polypropylene resin (MA04A: Nippon Polypropylene Co., Ltd.) was melt-kneaded with a single screw extruder and then extruded through a T-die having a width of 400 mm. Then, it cooled and picked up with a pair of cooling roll, and shape | molded by thickness 0.15mm and width 350mm.

(強化繊維樹脂シート:ガラス繊維樹脂シート)
次に、積層体の一面側に配設する強化繊維樹脂シートとしてTEPEX(104RG601:ボンドラミネート社製品)を用いた。この強化繊維樹脂シートはガラス繊維の平織物にポリプロピレン樹脂を含浸したもので、厚みが0.55mmである。
(Reinforced fiber resin sheet: glass fiber resin sheet)
Next, TEMPEX (104RG601: Bond Laminate product) was used as a reinforcing fiber resin sheet disposed on one side of the laminate. This reinforcing fiber resin sheet is obtained by impregnating a plain woven fabric of glass fiber with a polypropylene resin, and has a thickness of 0.55 mm.

(強化繊維樹脂シート:炭素繊維樹脂シート)
次に、積層体の他面側に配設する強化繊維樹脂シートとしては次のように製造した炭素繊維樹脂シートを用いた。
炭素繊維トウ(TC35、24K:台湾プラスチック製品)を上記した含浸用熱可塑性樹脂シートの上に、繊維方向を一方向に方向を揃えてトウ中心間の距離が14mmとなるように整列させた。その後、200℃に加熱された350mm角の加熱プレス(東洋精機株式会社製品)を用いて、溶融した熱可塑性樹脂を炭素繊維トウに含浸させた。このとき、圧力を1MPa、加圧時間を1分間として熱可塑性樹脂を炭素繊維トウに含浸させた。その後、材料を冷却することにより、300mm角、厚さ0.2mmの炭素繊維樹脂シートを得た。
(Reinforced fiber resin sheet: carbon fiber resin sheet)
Next, as the reinforcing fiber resin sheet disposed on the other surface side of the laminate, a carbon fiber resin sheet produced as follows was used.
Carbon fiber tows (TC35, 24K: Taiwan plastic products) were aligned on the above-described thermoplastic resin sheet for impregnation so that the fiber directions were aligned in one direction and the distance between the tow centers was 14 mm. Then, the carbon fiber tow was impregnated with the molten thermoplastic resin using a 350 mm square heating press (Toyo Seiki Co., Ltd. product) heated to 200 ° C. At this time, the carbon fiber tow was impregnated with the thermoplastic resin at a pressure of 1 MPa and a pressurization time of 1 minute. Then, the carbon fiber resin sheet of 300 mm square and thickness 0.2mm was obtained by cooling material.

(積層体の一体化工程)
そして、上記した材料を、幅100mm、長さ200mmのサイズに切断した後、炭素繊維樹脂シートを6枚、熱可塑性樹脂シートを20枚、ガラス繊維樹脂シートを5枚の順に積層し、積層体を形成した。
また、積層体の上に厚み10mmの鉄板を載せ、全体に多少の圧力をかけた状態で積層体を熱風オーブン中で加熱した。このとき、オーブン温度を200℃、加熱時間を30分間とした。これにより、積層体はポリプロピレンの溶融温度である170℃以上の温度の加熱され、層間が融着して一体化することが確認された。
(Integration process of laminated body)
And after cutting the above-mentioned material into the size of width 100mm and length 200mm, it laminates | stacks in order of 6 sheets of carbon fiber resin sheets, 20 sheets of thermoplastic resin sheets, and 5 sheets of glass fiber resin sheets. Formed.
In addition, an iron plate having a thickness of 10 mm was placed on the laminate, and the laminate was heated in a hot air oven with some pressure applied to the whole. At this time, the oven temperature was 200 ° C. and the heating time was 30 minutes. Thus, it was confirmed that the laminate was heated at a temperature of 170 ° C. or higher, which is the melting temperature of polypropylene, and the layers were fused and integrated.

(積層体を一対の金型で圧縮し、部分的に厚みの異なる熱可塑樹脂成形体を得る工程)
次に、加熱溶融して一体化した積層体を金型内に入れ、上下一対の金型で型締めした。一方の金型(下方の金型)は型面が平面状で形成されているのに対し、他方の金型は型面が所定の幅寸法で形成され、規則的に交互に並設された複数の凸部と凹部を備えて形成されている。
また、本実施例では、ガラス繊維樹脂シートが一方の金型の平面上の型面側に配されるようにして積層体を金型内に入れた。
この金型を350mm角の加熱プレス(東洋精機株式会社製品)で圧縮した。この圧縮工程では、金型を非加熱とし、一対の金型に出力200kgfの荷重を印加した。これにより、金型内の積層体にかかる圧力はおよそ1kg/cmと計算された。
10分間この加圧状態を保持して積層体を加圧しながら冷却し、その後、金型から部分的に厚みの異なるように成形された熱可塑性樹脂成形体を取り出す。
このように製造した成形体はいわゆるスキンーリブ構造を有しており、スキン部の厚みはおよそ4mm、リブ部の高さは15mmであった。
(Process of compressing the laminated body with a pair of molds to obtain a thermoplastic resin molded body partially different in thickness)
Next, the laminated body integrated by heating and melting was put in a mold and clamped with a pair of upper and lower molds. One mold (lower mold) has a flat mold surface, whereas the other mold has a mold surface with a predetermined width and is arranged alternately and regularly. A plurality of convex portions and concave portions are provided.
Moreover, in the present Example, the laminated body was put in the mold so that the glass fiber resin sheet was disposed on the mold surface side on the plane of one mold.
This mold was compressed with a 350 mm square heating press (product of Toyo Seiki Co., Ltd.). In this compression step, the mold was not heated and a load of 200 kgf was applied to the pair of molds. As a result, the pressure applied to the laminate in the mold was calculated to be approximately 1 kg / cm 2 .
The laminated body is cooled for 10 minutes while maintaining this pressurized state, and then the thermoplastic resin molded body formed to have a partially different thickness is taken out from the mold.
The molded body thus produced had a so-called skin rib structure, and the thickness of the skin portion was about 4 mm and the height of the rib portion was 15 mm.

以上、本発明に係る第三実施形態の熱可塑樹脂成形体の製造方法及び熱可塑性樹脂成形体について説明したが、本発明は上記の第三実施形態に限定されるものではなく、第一実施形態、第二実施形態、第三実施形態の変更例を含め、本発明の要旨を逸脱しない範囲で適宜の変更可能である。   As mentioned above, although the manufacturing method and thermoplastic resin molding of the thermoplastic resin molding of 3rd embodiment which concern on this invention were demonstrated, this invention is not limited to said 3rd embodiment, 1st implementation Appropriate modifications can be made without departing from the scope of the present invention, including modifications of the embodiment, the second embodiment, and the third embodiment.

また、第一実施形態、第二実施形態の構成を適宜適用したり、組み合わせるようにしてもよい。   Further, the configurations of the first embodiment and the second embodiment may be appropriately applied or combined.

さらに、本実施形態では、一方の金型17の型面17aが凹凸形状で形成され、他方の金型18の型面18aが平面状に形成されているものとしたが、他方の金型18の型面18aも凹凸形状にし、強化繊維外層4によって形成される一面側と、強化繊維内層5によって形成される他面側の両面側を凹凸形状にして、熱可塑樹脂成形体20を製造するようにしてもよい。また、本発明に係る凹凸形状は傾斜形状や曲面形状等であってもよい。   Further, in the present embodiment, the mold surface 17a of one mold 17 is formed in an uneven shape, and the mold surface 18a of the other mold 18 is formed in a flat shape. The mold surface 18a is also formed into a concavo-convex shape, and the thermoplastic resin molded body 20 is manufactured by making the one surface side formed by the reinforcing fiber outer layer 4 and the other surface side formed by the reinforced fiber inner layer 5 into a concavo-convex shape. You may do it. Further, the uneven shape according to the present invention may be an inclined shape, a curved surface shape, or the like.

1 風車翼
1a 背側ハーフ体
1b 腹側ハーフ体
3 熱可塑性樹脂層
4 強化繊維外層
5 強化繊維内層
7 金型
8 温度調整パイプ
9 吸引パイプ
11 熱可塑性樹脂シート
12 強化繊維樹脂シート
17 一方の金型
17a 型面(内面)
17c 凸部
17c 凹部
18 他方の金型
18a 型面(内面)
20 熱可塑性樹脂成形体
S 積層体
DESCRIPTION OF SYMBOLS 1 Windmill blade 1a Back half body 1b Abdominal half body 3 Thermoplastic resin layer 4 Reinforcement fiber outer layer 5 Reinforcement fiber inner layer 7 Mold 8 Temperature adjustment pipe 9 Suction pipe 11 Thermoplastic resin sheet 12 Reinforcement fiber resin sheet 17 One gold Mold 17a Mold surface (inner surface)
17c Convex part 17c Concave part 18 Other mold 18a Mold surface (inner surface)
20 Thermoplastic Resin Molded Body S Laminate

Claims (10)

複数の熱可塑性樹脂シートを金型内に載置して積層する工程と、
積層された前記熱可塑性樹脂シートを加熱して相互に溶融して一体化して成形する工程と、
冷却後に前記一体化した熱可塑性樹脂シートの成形体を金型から取り出す工程と、を備えたことを特徴とする熱可塑性樹脂成形体の製造方法。
Placing and stacking a plurality of thermoplastic resin sheets in a mold; and
A step of heating and laminating the laminated thermoplastic resin sheets to form a single piece;
And a step of taking out the integrated molded body of the thermoplastic resin sheet from the mold after cooling, and a method for producing the molded thermoplastic resin body.
前記複数の熱可塑性樹脂シートの表裏面の一方または両方に前記熱可塑性樹脂シートより高強度の強化繊維と熱可塑性樹脂を含む強化繊維樹脂シートを積層した請求項1に記載された熱可塑性樹脂成形体の製造方法。   2. The thermoplastic resin molding according to claim 1, wherein a reinforcing fiber resin sheet containing reinforcing fibers and thermoplastic resin having higher strength than the thermoplastic resin sheet is laminated on one or both of the front and back surfaces of the plurality of thermoplastic resin sheets. Body manufacturing method. 前記金型の温度を上昇させることで前記積層された熱可塑性樹脂シートと強化繊維樹脂シートを加熱するようにした請求項2に記載された熱可塑性樹脂成形体の製造方法。   The method for producing a thermoplastic resin molded body according to claim 2, wherein the laminated thermoplastic resin sheet and reinforced fiber resin sheet are heated by raising the temperature of the mold. 前記複数の熱可塑性樹脂シートと強化繊維樹脂シートを金型内に積層した後、
前記複数の熱可塑性樹脂シートと強化繊維樹脂シートの端面から空気を排出するようにした請求項2または3に記載された熱可塑性樹脂成形体の製造方法。
After laminating the plurality of thermoplastic resin sheets and the reinforcing fiber resin sheet in a mold,
The method for producing a thermoplastic resin molded body according to claim 2 or 3, wherein air is discharged from end faces of the plurality of thermoplastic resin sheets and the reinforcing fiber resin sheet.
前記強化繊維樹脂シートに含まれる強化繊維は炭素繊維、ガラス繊維または高強度有機繊維である請求項2から4のいずれか1項に記載された熱可塑性樹脂成形体の製造方法。   The method for producing a thermoplastic resin molded article according to any one of claims 2 to 4, wherein the reinforcing fibers contained in the reinforcing fiber resin sheet are carbon fibers, glass fibers, or high-strength organic fibers. 請求項1から5のいずれか1項に記載された前記熱可塑性樹脂成形体の製造方法によって製造された複数の熱可塑性樹脂成形体を互いに接合するようにした熱可塑性樹脂成形体の製造方法。   A method for manufacturing a thermoplastic resin molded body, wherein a plurality of thermoplastic resin molded bodies manufactured by the method for manufacturing a thermoplastic resin molded body according to any one of claims 1 to 5 are joined to each other. 熱可塑性樹脂層の表面に前記熱可塑性樹脂層より高強度の強化繊維と熱可塑性樹脂を含む強化繊維樹脂層を積層して一体化させたことを特徴とする風車翼。   A wind turbine blade characterized in that a reinforcing fiber resin layer containing a reinforcing fiber and a thermoplastic resin having higher strength than the thermoplastic resin layer is laminated and integrated on the surface of the thermoplastic resin layer. 前記熱可塑性樹脂層または前記強化繊維樹脂層の一部を他の領域より肉厚に形成した請求項7に記載された風車翼。   The wind turbine blade according to claim 7, wherein a part of the thermoplastic resin layer or the reinforcing fiber resin layer is formed thicker than other regions. 複数の熱可塑性樹脂シートと強化繊維樹脂シートを載置して積層体を構成する工程と、
積層体を加熱して複数の熱可塑性樹脂シートと強化繊維樹脂シートを相互に溶融して一体化させる工程と、
積層体を一対の金型で圧縮することで、溶融した熱可塑性樹脂を流動させ、成形体の一部を他の領域より肉厚に形成する工程と、冷却後に一体化した成形体を金型から取り出す工程と、を備えたことを特徴とする熱可塑性樹脂成形体の製造方法。
A step of placing a plurality of thermoplastic resin sheets and reinforcing fiber resin sheets to form a laminate;
A step of heating the laminate and fusing together a plurality of thermoplastic resin sheets and reinforcing fiber resin sheets,
By compressing the laminated body with a pair of molds, the molten thermoplastic resin is made to flow, and a part of the molded body is formed thicker than other regions, and the molded body integrated after cooling is molded into the mold. And a step of removing from the thermoplastic resin molded body.
請求項9に記載の熱可塑性樹脂成形体の製造方法を用いて形成され、
一部に他の領域より肉厚の熱可塑性樹脂層を備えるとともに、熱可塑性樹脂層の表面側に強化繊維と熱可塑性樹脂を含む強化繊維樹脂層を備えて凹凸状に形成されていることを特徴とする熱可塑性樹脂成形体。
It is formed using the method for producing a thermoplastic resin molded body according to claim 9,
It is provided with a thermoplastic resin layer that is thicker than other regions in part, and is provided with a reinforced fiber resin layer containing reinforcing fibers and a thermoplastic resin on the surface side of the thermoplastic resin layer, and is formed in an uneven shape. A thermoplastic resin molded product.
JP2015033021A 2014-07-30 2015-02-23 Method for producing molded thermoplastic resin Active JP6407057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033021A JP6407057B2 (en) 2014-07-30 2015-02-23 Method for producing molded thermoplastic resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014155323 2014-07-30
JP2014155323 2014-07-30
JP2015033021A JP6407057B2 (en) 2014-07-30 2015-02-23 Method for producing molded thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2016032929A true JP2016032929A (en) 2016-03-10
JP6407057B2 JP6407057B2 (en) 2018-10-17

Family

ID=55452064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033021A Active JP6407057B2 (en) 2014-07-30 2015-02-23 Method for producing molded thermoplastic resin

Country Status (1)

Country Link
JP (1) JP6407057B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209300A1 (en) 2016-06-03 2017-12-07 積水化学工業株式会社 Sheet and rod-shaped member
JP2017226179A (en) * 2016-06-24 2017-12-28 積水化学工業株式会社 Sheet
WO2018207702A1 (en) * 2017-05-08 2018-11-15 三菱重工業株式会社 Composite material blade and method for manufacturing composite material blade
JP2018178800A (en) * 2017-04-07 2018-11-15 株式会社Ihi Blade
JP2019001024A (en) * 2017-06-13 2019-01-10 三菱重工業株式会社 Molding method of composite wing
KR20190036879A (en) * 2017-09-28 2019-04-05 (주)엘지하우시스 Blade and manufacturing method thereof
CN110039798A (en) * 2019-05-31 2019-07-23 洛阳北玻台信风机技术有限责任公司 A kind of the three-dimensional flow centrifugal blower fan blade wheel and its forming method of carbon fibre materials
WO2019212553A1 (en) * 2018-05-03 2019-11-07 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10821652B2 (en) 2017-11-21 2020-11-03 General Electric Company Vacuum forming mold assembly and method for creating a vacuum forming mold assembly
US10830206B2 (en) 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10865769B2 (en) 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10913216B2 (en) 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10920745B2 (en) 2017-11-21 2021-02-16 General Electric Company Wind turbine rotor blade components and methods of manufacturing the same
JP2021045297A (en) * 2019-09-18 2021-03-25 グローブライド株式会社 Garment hanger
US11040503B2 (en) 2017-11-21 2021-06-22 General Electric Company Apparatus for manufacturing composite airfoils
US11098691B2 (en) 2017-02-03 2021-08-24 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US20210363313A1 (en) * 2017-08-07 2021-11-25 Zoltek Corporation Polyvinyl alcohol-sized fillers for reinforcing plastics
US11248582B2 (en) 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
CN114619613A (en) * 2022-01-25 2022-06-14 国电联合动力技术有限公司 Waste wind power blade recycling method
EP4019232A1 (en) 2020-12-22 2022-06-29 Brandenburgische Technische Universität Cottbus-Senftenberg Rotor blade for wind turbine and method for the production of such a rotor blade
US11390013B2 (en) 2017-11-21 2022-07-19 General Electric Company Vacuum forming mold assembly and associated methods

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953266A (en) * 1972-09-22 1974-05-23
JPH0247018A (en) * 1988-08-10 1990-02-16 Honda Motor Co Ltd Laminated molding of thermoplastic sheet material
JPH09239760A (en) * 1996-03-14 1997-09-16 Sumitomo Chem Co Ltd Production of composite molded object
JP2001121561A (en) * 1999-10-26 2001-05-08 Sumitomo Chem Co Ltd Thermoplastic resin molded article and method for making the same
JP2004316466A (en) * 2003-04-11 2004-11-11 Sekisui Chem Co Ltd Blade for wind power generation
WO2009119830A1 (en) * 2008-03-28 2009-10-01 株式会社Ihi Blade of a gas turbine engine for an airplane, and a method for manufacturing the same
JP2010503549A (en) * 2006-09-15 2010-02-04 エアバス・フランス Method for manufacturing a panel formed of a thermoplastic composite
JP2010131991A (en) * 2008-11-05 2010-06-17 Toray Ind Inc Fiber-reinforced plastic structure and method of manufacturing the same
WO2012026031A1 (en) * 2010-08-27 2012-03-01 トヨタ自動車株式会社 Process for producing fiber-reinforced resin material
JP2013519837A (en) * 2010-02-18 2013-05-30 ヴォッベン プロパティーズ ゲーエムベーハー Method of manufacturing rotor blades for wind power generation equipment and rotor blades for wind power generation equipment
JP2013230579A (en) * 2012-04-27 2013-11-14 Mitsubishi Plastics Inc Method of manufacturing carbon fiber reinforced resin molded article, carbon fiber reinforced resin molded article, and deep-drawn product using the same
US20140182875A1 (en) * 2012-12-28 2014-07-03 Mark Sprenger Case for an electronic device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953266A (en) * 1972-09-22 1974-05-23
JPH0247018A (en) * 1988-08-10 1990-02-16 Honda Motor Co Ltd Laminated molding of thermoplastic sheet material
JPH09239760A (en) * 1996-03-14 1997-09-16 Sumitomo Chem Co Ltd Production of composite molded object
JP2001121561A (en) * 1999-10-26 2001-05-08 Sumitomo Chem Co Ltd Thermoplastic resin molded article and method for making the same
JP2004316466A (en) * 2003-04-11 2004-11-11 Sekisui Chem Co Ltd Blade for wind power generation
JP2010503549A (en) * 2006-09-15 2010-02-04 エアバス・フランス Method for manufacturing a panel formed of a thermoplastic composite
WO2009119830A1 (en) * 2008-03-28 2009-10-01 株式会社Ihi Blade of a gas turbine engine for an airplane, and a method for manufacturing the same
JP2013078950A (en) * 2008-03-28 2013-05-02 Ihi Corp Method for manufacturing blade for gas turbine engine for aircraft
JP2010131991A (en) * 2008-11-05 2010-06-17 Toray Ind Inc Fiber-reinforced plastic structure and method of manufacturing the same
JP2013519837A (en) * 2010-02-18 2013-05-30 ヴォッベン プロパティーズ ゲーエムベーハー Method of manufacturing rotor blades for wind power generation equipment and rotor blades for wind power generation equipment
WO2012026031A1 (en) * 2010-08-27 2012-03-01 トヨタ自動車株式会社 Process for producing fiber-reinforced resin material
JP2013230579A (en) * 2012-04-27 2013-11-14 Mitsubishi Plastics Inc Method of manufacturing carbon fiber reinforced resin molded article, carbon fiber reinforced resin molded article, and deep-drawn product using the same
US20140182875A1 (en) * 2012-12-28 2014-07-03 Mark Sprenger Case for an electronic device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3466668A4 (en) * 2016-06-03 2019-12-11 Sekisui Chemical Co., Ltd. Sheet and rod-shaped member
WO2017209300A1 (en) 2016-06-03 2017-12-07 積水化学工業株式会社 Sheet and rod-shaped member
TWI738791B (en) * 2016-06-03 2021-09-11 日商積水化學工業股份有限公司 Sheets and rod-shaped members
JP2017226179A (en) * 2016-06-24 2017-12-28 積水化学工業株式会社 Sheet
US11098691B2 (en) 2017-02-03 2021-08-24 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10830206B2 (en) 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
JP2018178800A (en) * 2017-04-07 2018-11-15 株式会社Ihi Blade
US11371365B2 (en) 2017-05-08 2022-06-28 Mitsubishi Heavy Industries, Ltd. Composite blade and method for manufacturing composite blade
CN110612398A (en) * 2017-05-08 2019-12-24 三菱重工业株式会社 Composite blade and method for manufacturing composite blade
JP2018189028A (en) * 2017-05-08 2018-11-29 三菱重工業株式会社 Composite material wing and method of manufacturing composite material wing
WO2018207702A1 (en) * 2017-05-08 2018-11-15 三菱重工業株式会社 Composite material blade and method for manufacturing composite material blade
JP2019001024A (en) * 2017-06-13 2019-01-10 三菱重工業株式会社 Molding method of composite wing
US20210363313A1 (en) * 2017-08-07 2021-11-25 Zoltek Corporation Polyvinyl alcohol-sized fillers for reinforcing plastics
KR20190036879A (en) * 2017-09-28 2019-04-05 (주)엘지하우시스 Blade and manufacturing method thereof
KR102140516B1 (en) * 2017-09-28 2020-08-03 (주)엘지하우시스 Blade for drone and manufacturing method thereof
US10865769B2 (en) 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US11248582B2 (en) 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
US11548246B2 (en) 2017-11-21 2023-01-10 General Electric Company Apparatus for manufacturing composite airfoils
US11040503B2 (en) 2017-11-21 2021-06-22 General Electric Company Apparatus for manufacturing composite airfoils
US10913216B2 (en) 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10821652B2 (en) 2017-11-21 2020-11-03 General Electric Company Vacuum forming mold assembly and method for creating a vacuum forming mold assembly
US11390013B2 (en) 2017-11-21 2022-07-19 General Electric Company Vacuum forming mold assembly and associated methods
US10920745B2 (en) 2017-11-21 2021-02-16 General Electric Company Wind turbine rotor blade components and methods of manufacturing the same
WO2019212553A1 (en) * 2018-05-03 2019-11-07 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
CN110039798A (en) * 2019-05-31 2019-07-23 洛阳北玻台信风机技术有限责任公司 A kind of the three-dimensional flow centrifugal blower fan blade wheel and its forming method of carbon fibre materials
JP2021045297A (en) * 2019-09-18 2021-03-25 グローブライド株式会社 Garment hanger
JP7221837B2 (en) 2019-09-18 2023-02-14 グローブライド株式会社 clothes hanger
EP4019232A1 (en) 2020-12-22 2022-06-29 Brandenburgische Technische Universität Cottbus-Senftenberg Rotor blade for wind turbine and method for the production of such a rotor blade
CN114619613A (en) * 2022-01-25 2022-06-14 国电联合动力技术有限公司 Waste wind power blade recycling method

Also Published As

Publication number Publication date
JP6407057B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6407057B2 (en) Method for producing molded thermoplastic resin
JP4363741B2 (en) Method for producing intermediate molded article made of fiber reinforced composite material
JP5877156B2 (en) Rotor blade manufacturing method and manufacturing apparatus thereof
JP5844967B2 (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same
EP2295235B1 (en) Fiber reinforced plastic-structure and a method to produce the fiber reinforced plastic-structure
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
JP2006219078A (en) Compound body for aircraft, and manufacturing method of compound structural part of aircraft
JP6939920B2 (en) Manufacturing method of fiber reinforced resin molded product and fiber reinforced resin molded product
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
JP2009292054A (en) Method for press-molding fiber-reinforced plastic
JP5950149B2 (en) A method for producing a fiber-reinforced resin structure.
CN106671538B (en) Thermoplastic composite material with semi-closed honeycomb sandwich structure and preparation method thereof
CN109501312A (en) A kind of composite material mould and its application method of modularized design
JP2015178241A (en) Method of producing fiber-reinforced resin material
CN108262993A (en) A kind of ply angles and integral forming process of civil aircraft rudder
JP4765332B2 (en) How to connect fiber reinforced plastic panels
JP2016210080A (en) Molding and method for producing the same
WO2023024003A1 (en) Reinforced core material for fan blade and preparation method therefor
CN101007453B (en) Fluoroplastic compound product and its making method
JP2013188953A (en) Manufacturing method of fiber-reinforced complex body
US20190184675A1 (en) Fiber-reinforced foam material
JP6568445B2 (en) Manufacturing method of fiber reinforced sheet and manufacturing method of structure
JP2022534400A (en) Controlled shear vacuum forming for forming preforms
JP6789518B1 (en) Press equipment
JP6368748B2 (en) Molding method for molding fiber reinforced resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R151 Written notification of patent or utility model registration

Ref document number: 6407057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151