JP2016031808A - Light guide member - Google Patents

Light guide member Download PDF

Info

Publication number
JP2016031808A
JP2016031808A JP2014153038A JP2014153038A JP2016031808A JP 2016031808 A JP2016031808 A JP 2016031808A JP 2014153038 A JP2014153038 A JP 2014153038A JP 2014153038 A JP2014153038 A JP 2014153038A JP 2016031808 A JP2016031808 A JP 2016031808A
Authority
JP
Japan
Prior art keywords
light
light guide
reflection region
shaft member
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014153038A
Other languages
Japanese (ja)
Inventor
口 幸 夫 谷
Yukio Taniguchi
口 幸 夫 谷
口 竜 二 堀
Ryuji Horiguchi
口 竜 二 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2014153038A priority Critical patent/JP2016031808A/en
Publication of JP2016031808A publication Critical patent/JP2016031808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light guide member which suppresses the attenuation of guided light while effectively suppressing that the light takes on hue.SOLUTION: A light guide member 12 includes an axial shaft member 20 having an inner face 21 defining a light guide path 28 which guides light. The inner face 21 of the shaft member 20 includes a first reflection area 22 which reflects light with a wave length of 600 nm in a higher reflectance than light with a wave length of 450 nm, and a second reflection area 23 which reflects light with a wave length of 450 nm in a higher reflectance than light with a wave length of 600 nm.SELECTED DRAWING: Figure 2

Description

本発明は、光を導光する導光部材に係り、とりわけ、導光する光が色味を帯びることを抑制した導光部材に関する。   The present invention relates to a light guide member that guides light, and more particularly, to a light guide member that suppresses a color of light to be guided.

例えば特許文献1に開示されているように、太陽光を採光して当該光を室内に導くために導光部材が利用されている。特許文献1に示す導光部材としての光ダクトは、その内面に反射膜が形成され、取り込んだ太陽光を繰り返し反射させて室内に導くようになっている。典型的には、太陽光の繰り返し反射に伴う反射損失をできるだけ抑えるために、光ダクトの内面に、反射率の高い金属、例えばアルミニウムや銀を蒸着させて反射膜が形成される。   For example, as disclosed in Patent Document 1, a light guide member is used to collect sunlight and guide the light into the room. The optical duct as a light guide member shown in Patent Document 1 has a reflective film formed on the inner surface thereof, and repeatedly reflects the captured sunlight to guide it into the room. Typically, in order to suppress reflection loss due to repeated reflection of sunlight as much as possible, a reflective film is formed on the inner surface of the optical duct by evaporating a highly reflective metal such as aluminum or silver.

アルミニウムや銀のような金属を蒸着させた反射膜は、光の波長に応じて反射率が異なる。このため、光ダクト内で太陽光が反射を繰り返すことにより、特定の波長の光が大きく減衰していき、導光される光が徐々に色味を帯びていってしまう。そこで、導光される光が色味を帯びることを抑制すべく、従来の光ダクトでは、反射膜に着色層を積層して、反射される光の色補正を行っていた(特許文献1及び特許文献2参照)。   A reflective film on which a metal such as aluminum or silver is vapor-deposited has a different reflectance depending on the wavelength of light. For this reason, when sunlight repeatedly reflects in the light duct, light of a specific wavelength is greatly attenuated, and the guided light is gradually colored. Therefore, in order to suppress the color of the guided light from being tinted, the conventional optical duct performs color correction of the reflected light by laminating a colored layer on the reflective film (Patent Document 1 and Patent Document 2).

特開2012−94394号公報JP 2012-94394 A 特開2008−304795号公報JP 2008-304795 A

しかしながら、季節や時間帯に応じて光ダクト内に入射する太陽光の入射角度は変動する。光ダクト内に入射する太陽光の入射角度が変動すると、光ダクト内で繰り返し反射する太陽光が着色層を通過する光路の長さも変動する。このため、光ダクト内に入射する太陽光の入射角度に応じて、色補正効果に差異が生じ、室内に導かれた光に色むらが生じやすい。   However, the incident angle of sunlight entering the light duct varies depending on the season and time zone. When the incident angle of the sunlight entering the optical duct varies, the length of the optical path through which the sunlight that is repeatedly reflected in the optical duct passes through the colored layer also varies. For this reason, there is a difference in the color correction effect depending on the incident angle of sunlight entering the light duct, and color unevenness tends to occur in the light guided into the room.

この点、室内に導かれた光に色むらが生じることを抑制するべく、着色層の吸収スペクトル並びに着色層が光を吸収する程度を調整することも考えられる。しかしながら、室内に導かれた光に色むらが生じる要因が着色層を通過する光路の長さの変動に起因することから、このような調整を行っても、導光される光の減衰を抑制しつつ当該光が色味を帯びることを効果的に抑制することはできない。   In this regard, it is also conceivable to adjust the absorption spectrum of the colored layer and the extent to which the colored layer absorbs light in order to suppress the occurrence of uneven color in the light guided into the room. However, the cause of uneven color in the light guided into the room is due to fluctuations in the length of the optical path that passes through the colored layer. Therefore, even if such adjustment is performed, attenuation of the guided light is suppressed. However, it cannot effectively suppress the light from being colored.

その上、光ダクトの内面に形成された反射膜に着色層を積層させることは、製造工程の追加による加工費の増加及び材料費の増加を招く点でも好ましくない。   In addition, laminating a colored layer on the reflective film formed on the inner surface of the optical duct is not preferable because it causes an increase in processing cost and material cost due to the addition of a manufacturing process.

本発明は、以上の点を考慮してなされたものであり、導光される光の減衰を抑制しつつ当該光が色味を帯びることも効果的に抑制した導光部材を提供することを目的とする。   The present invention has been made in consideration of the above points, and provides a light guide member that effectively suppresses tinting of the light while suppressing attenuation of the light guided. Objective.

本発明による導光部材は、光を導光する導光路を規定する内面をもつ軸状の軸部材を備え、前記軸部材の内面に、波長450nmの光よりも波長600nmの光を高い反射率で反射する第1反射領域と、波長600nmの光よりも波長450nmの光を高い反射率で反射する第2反射領域と、が形成されている。   The light guide member according to the present invention includes a shaft-shaped shaft member having an inner surface that defines a light guide path that guides light, and the inner surface of the shaft member has a higher reflectance of light having a wavelength of 600 nm than light having a wavelength of 450 nm. And a second reflection region that reflects light having a wavelength of 450 nm with a higher reflectance than light having a wavelength of 600 nm.

本発明による導光部材において、前記軸部材の内面に周状に形成された第1反射領域と、前記軸部材の内面に周状に形成された第2反射領域とが、前記軸部材の軸方向に並べて配置されていてもよい。   In the light guide member according to the present invention, a first reflection region formed circumferentially on the inner surface of the shaft member and a second reflection region formed circumferentially on the inner surface of the shaft member include an axis of the shaft member. They may be arranged side by side in the direction.

本発明による導光部材において、前記第1反射領域と前記第2反射領域とは、前記軸部材の軸方向に交互に並べて配置されていてもよい。   In the light guide member according to the present invention, the first reflection region and the second reflection region may be alternately arranged in the axial direction of the shaft member.

本発明による導光部材において、前記軸部材の内面には、前記軸部材の軸方向に直交する一方向に互いに対向して配置された第1反射領域及び第2反射領域と、前記軸部材の軸方向に直交し且つ前記一方向に交差する方向に互いに対向して配置された別の第1反射領域及び第2反射領域と、が少なくとも形成されていてもよい。   In the light guide member according to the present invention, on the inner surface of the shaft member, a first reflection region and a second reflection region that are disposed to face each other in one direction orthogonal to the axial direction of the shaft member, and the shaft member At least another first reflection region and a second reflection region that are arranged to face each other in a direction orthogonal to the axial direction and intersecting the one direction may be formed.

本発明による導光部材において、前記軸部材の内面は、前記軸部材の軸方向に直交する一方向に対向して配置された第1面及び第2面と、前記軸部材の軸方向に直交し且つ前記一方向に交差する方向に対向して配置された第3面及び第4面と、を含み、前記第1面、前記第2面、前記第3面及び前記第4面の各々に、第1反射領域と第2反射領域とが形成されていてもよい。   In the light guide member according to the present invention, the inner surface of the shaft member is orthogonal to the first surface and the second surface disposed to face one direction orthogonal to the axial direction of the shaft member, and to the axial direction of the shaft member. And a third surface and a fourth surface disposed to face each other in a direction intersecting the one direction, and each of the first surface, the second surface, the third surface, and the fourth surface. The first reflection area and the second reflection area may be formed.

本発明による導光部材において、前記第1反射領域をなす材料は、銀成分を含み、
前記第2反射領域をなす材料は、アルミニウム成分を含んでもよい。
In the light guide member according to the present invention, the material forming the first reflective region includes a silver component,
The material forming the second reflective region may include an aluminum component.

本発明による導光部材において、前記第1反射領域の前記導光路に露出する面積と、前記第2反射領域の前記導光路に露出する面積と、の比が、変更可能になっていてもよい。   In the light guide member according to the present invention, a ratio between an area exposed to the light guide path of the first reflection region and an area exposed to the light guide path of the second reflection region may be changeable. .

本発明による導光部材において、前記導光路内で前記軸部材に対して当該軸部材の軸方向に可動となるように設けられた中空の可動部材をさらに備え、前記中空の可動部材は、前記軸部材の軸方向に開口し、且つ、前記中空の可動部材の内面に、光を反射させる反射領域が形成されていて、前記軸部材に対して前記軸方向に沿って前記可動部材を移動させた位置に応じて、前記可動部材が前記第1反射領域及び前記第2反射領域を覆う範囲が変化してもよい。   The light guide member according to the present invention further includes a hollow movable member provided so as to be movable in the axial direction of the shaft member with respect to the shaft member in the light guide path, and the hollow movable member includes: A reflection region that opens in the axial direction of the shaft member and reflects light is formed on the inner surface of the hollow movable member, and the movable member is moved along the axial direction with respect to the shaft member. Depending on the position, the range in which the movable member covers the first reflection area and the second reflection area may change.

本発明による導光部材において、前記可動部材の内面に形成された反射領域は、波長450nmの光よりも波長600nmの光を高い反射率で反射する第3反射領域と、波長600nmの光よりも波長450nmの光を高い反射率で反射する第4反射領域と、を含んでもよい。   In the light guide member according to the present invention, the reflection region formed on the inner surface of the movable member includes a third reflection region that reflects light having a wavelength of 600 nm with a higher reflectance than light having a wavelength of 450 nm, and light having a wavelength of 600 nm. And a fourth reflection region that reflects light having a wavelength of 450 nm with a high reflectance.

本発明によれば、軸部材の内面が、相対的に大きい波長の光を高い反射率で反射する第1反射領域と、相対的に低い波長の光を高い反射率で反射する第2反射領域と、を含むため、導光路内で反射を繰り返す光の反射損失を抑えつつ、特定の波長の光が大きく減衰することを抑制することができる。結果として、導光される光の減衰を抑制しつつ当該光が色味を帯びることを効果的に抑制することが可能となる。   According to the present invention, the first reflection region in which the inner surface of the shaft member reflects light having a relatively large wavelength with a high reflectance, and the second reflection region in which light having a relatively low wavelength is reflected with a high reflectance. Therefore, it is possible to suppress a large attenuation of light of a specific wavelength while suppressing a reflection loss of light that repeats reflection in the light guide. As a result, it is possible to effectively suppress the light from being tinted while suppressing the attenuation of the guided light.

本発明の一実施の形態による導光部材が取り付けられた建物を模式的に示す図。The figure which shows typically the building where the light guide member by one embodiment of this invention was attached. 図1に示す建物に取り付けられた導光部材を模式的に示す斜視図。The perspective view which shows typically the light guide member attached to the building shown in FIG. いわゆる等色関数を示したグラフ。A graph showing a so-called color matching function. 金属材料毎に、波長と反射率との関係を示すグラフ。The graph which shows the relationship between a wavelength and a reflectance for every metal material. 図2に対応する図であって、導光部材の変形例を模式的に示す概略斜視図。It is a figure corresponding to FIG. 2, Comprising: The schematic perspective view which shows typically the modification of a light guide member. 図2に対応する図であって、導光部材の別の変形例を模式的に示す概略斜視図。It is a figure corresponding to FIG. 2, Comprising: The schematic perspective view which shows typically the another modification of a light guide member. 図2に対応する図であって、導光部材のさらに別の変形例を模式的に示す概略斜視図。It is a figure corresponding to FIG. 2, Comprising: The schematic perspective view which shows typically another modification of a light guide member. 図2に対応する図であって、導光部材のさらに別の変形例を模式的に示す概略斜視図。It is a figure corresponding to FIG. 2, Comprising: The schematic perspective view which shows typically another modification of a light guide member. 図2に対応する図であって、導光部材のさらに別の変形例を模式的に示す概略斜視図。It is a figure corresponding to FIG. 2, Comprising: The schematic perspective view which shows typically another modification of a light guide member. 図2に対応する図であって、軸部材の変形例を模式的に示す概略斜視図。It is a figure corresponding to FIG. 2, Comprising: The schematic perspective view which shows typically the modification of a shaft member. 図10に示す線X−Xに沿った導光部材の断面を示す断面図。Sectional drawing which shows the cross section of the light guide member along line XX shown in FIG. 図2に対応する図であって、軸部材内に可動部材がさらに設けられた例を模式的に示す概略斜視図。It is a figure corresponding to FIG. 2, Comprising: The schematic perspective view which shows typically the example in which the movable member was further provided in the shaft member. 図12に示す線XIII−XIIIに沿った導光部材の断面を示す断面図。Sectional drawing which shows the cross section of the light guide member along line XIII-XIII shown in FIG. 図13に対応する図であって、導光部材の作用を説明するための断面図。FIG. 14 is a cross-sectional view corresponding to FIG. 13 for explaining the operation of the light guide member. 図13に対応する図であって、導光部材の作用を説明するための断面図。FIG. 14 is a cross-sectional view corresponding to FIG. 13 for explaining the operation of the light guide member. 実施例及び比較例に係る導光部材において、導光される光が軸部材の内面で6回反射されたときの、各波長の光が減衰する程度を示すグラフ。In the light guide member which concerns on an Example and a comparative example, the graph which shows the grade to which the light of each wavelength attenuate | damps when the light guided is reflected 6 times by the inner surface of a shaft member. 実施例及び比較例に係る導光部材において、導光される光が軸部材の内面で12回反射されたときの、各波長の光が減衰する程度を示すグラフ。The light guide member which concerns on an Example and a comparative example WHEREIN: The graph which shows the grade to which the light of each wavelength attenuate | damps when the light guided is reflected 12 times by the inner surface of a shaft member.

以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。図1〜図4は、本発明による一実施の形態を説明するための図である。このうち、図1は、導光部材12を有する太陽光採光システム10が取り付けられた建物1を模式的に示す図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings attached to the present specification, for the sake of illustration and ease of understanding, the scale, the vertical / horizontal dimension ratio, and the like are appropriately changed and exaggerated from those of the actual product. 1 to 4 are diagrams for explaining an embodiment according to the present invention. Among these, FIG. 1 is a diagram schematically showing a building 1 to which a sunlight lighting system 10 having a light guide member 12 is attached.

導光部材12を有する太陽光採光システム10は、建物1に取り付けられ、太陽光を取り込んで所定の空間、例えば部屋2に導くためのものである。太陽光採光システム10は、太陽光を取り込む採光部材11をさらに有し、採光部材11に取り込まれた太陽光は、導光部材12によって部屋2に導かれる。太陽光採光システム10によれば、採光部材11で採光した光を導光部材12を介して部屋2に導き、例えば室内照明光として用いることができる。すなわち、太陽光採光システム10を用いることにより、省エネルギーを直接的に実現することができ、また、COの削減にも貢献し得る。以下、各構成要素について説明していく。 A sunlight lighting system 10 having a light guide member 12 is attached to a building 1 for taking sunlight and guiding it to a predetermined space, for example, a room 2. The daylighting system 10 further includes a daylighting member 11 that takes in sunlight, and the sunlight taken into the daylighting member 11 is guided to the room 2 by the light guide member 12. According to the sunlight lighting system 10, the light collected by the lighting member 11 can be guided to the room 2 via the light guide member 12, and can be used as, for example, indoor illumination light. That is, by using the solar lighting system 10, energy saving can be directly realized, and it can contribute to the reduction of CO 2 . Hereinafter, each component will be described.

採光部材11は、季節や時間帯に応じて入射方向が変動する太陽光の光路を調整して導光部材12に導くために設けられている。採光部材11は、建物1の屋根5や壁3に設置される。図1に示す例では、採光部材11は、建物1の屋根5に設けられた開口に嵌め込まれている。採光部材11の一具体例として、いわゆるプリズムシートやルーバーシートが挙げられる。プリズムシートとは、入射する太陽光を導光部材12に向けて偏向させる多数のプリズムが配列されたシートである。ルーバーシートとは、シート内で或る方向に並べられた多数の屈折率界面乃至反射面を有し、太陽光の入射方向に応じて当該太陽光に選択的に光学作用を及ぼすシートである。例えば、比較的高い高度に位置する太陽からの太陽光は、隣り合う屈折率界面乃至反射面の間を透過し、その進行方向を維持したままで導光部材12に向かっていく。一方、比較的低い高度に位置する太陽からの太陽光は、屈折率界面乃至反射面でその進行方向を変更させられ、導光部材12に向かっていく。このような入射方向の変動に応じて太陽光の光路を調整する採光部材11は、当業者によく知られているため、ここではこれ以上の詳細な説明を省略する。   The daylighting member 11 is provided in order to adjust the light path of sunlight whose incident direction varies depending on the season and time zone and to guide it to the light guide member 12. The daylighting member 11 is installed on the roof 5 or the wall 3 of the building 1. In the example shown in FIG. 1, the daylighting member 11 is fitted in an opening provided in the roof 5 of the building 1. A specific example of the daylighting member 11 is a so-called prism sheet or louver sheet. The prism sheet is a sheet in which a large number of prisms that deflect incident sunlight toward the light guide member 12 are arranged. The louver sheet is a sheet having a large number of refractive index interfaces or reflecting surfaces arranged in a certain direction in the sheet and selectively exerting an optical action on the sunlight according to the incident direction of sunlight. For example, sunlight from the sun located at a relatively high altitude is transmitted between adjacent refractive index interfaces or reflecting surfaces, and travels toward the light guide member 12 while maintaining its traveling direction. On the other hand, the sunlight from the sun located at a relatively low altitude is changed in the traveling direction at the refractive index interface or the reflecting surface and travels toward the light guide member 12. Since the daylighting member 11 that adjusts the optical path of sunlight according to such a change in the incident direction is well known to those skilled in the art, further detailed description thereof is omitted here.

次に、採光部材11にて取り込まれた太陽光を導光する導光部材12について説明する。導光部材12は、入射する光を所定の空間例えば部屋2に導くためのものである。図1に示す例では、導光部材12は、建物1の屋根5から、部屋2を区画する天井4まで延びている。導光部材12の入光側の端部に、屋根5に設けられた採光部材11が接続されており、採光部材11にて取り込まれた太陽光が導光部材12内を通って部屋2まで導かれるようになっている。   Next, the light guide member 12 that guides sunlight taken in by the daylighting member 11 will be described. The light guide member 12 is for guiding incident light to a predetermined space such as the room 2. In the example illustrated in FIG. 1, the light guide member 12 extends from the roof 5 of the building 1 to the ceiling 4 that partitions the room 2. A daylighting member 11 provided on the roof 5 is connected to an end of the light guide member 12 on the light incident side, and sunlight taken in by the daylighting member 11 passes through the light guide member 12 to the room 2. It has come to be guided.

図2に、導光部材12を模式的に示す。図2に示すように、導光部材12は、軸方向d1に沿って延びる中空の軸部材20を有している。中空の軸部材20の内面21は、高い反射率をもつ反射面として形成されている。このため、内面21に囲まれる空間に、光を繰り返し反射して導光する導光路28が画定される。すなわち、軸部材20とは、軸方向d1に沿って延びると共に、光を導光する導光路28を規定する内面21をもつ中空の部材をいう。典型的には、軸部材20は、中空の筒状部材からなる光ダクトとして構成され得る。   FIG. 2 schematically shows the light guide member 12. As shown in FIG. 2, the light guide member 12 has a hollow shaft member 20 extending along the axial direction d1. The inner surface 21 of the hollow shaft member 20 is formed as a reflective surface having a high reflectance. Therefore, a light guide path 28 that guides light by repeatedly reflecting light is defined in a space surrounded by the inner surface 21. That is, the shaft member 20 refers to a hollow member that extends along the axial direction d1 and has an inner surface 21 that defines a light guide path 28 that guides light. Typically, the shaft member 20 can be configured as an optical duct made of a hollow cylindrical member.

典型的には、軸部材20の内面21をなす高い反射率の材料は、波長に応じた固有の反射率で各波長の光を反射させる。このため、軸部材20の内面21に単一の材料からなる反射面が形成された場合、光が導光路28内で反射を繰り返すことにより、特定の波長の
光が大きく減衰していき、導光される光が徐々に色味を帯びていってしまうおそれがある。そこで、導光路28内で導光される光が色味を帯びることを抑制すべく、本実施の形態の軸部材20の内面21には、相対的に大きい波長の光を高い反射率で反射する第1反射領域22と、相対的に低い波長の光を高い反射率で反射する第2反射領域23と、が形成されている。このような形態によれば、導光路28内で反射を繰り返す光が第1反射領域22及び第2反射領域23でバランスよく反射して、特定の波長の光が大きく減衰するということを抑制することができる。結果として、導光される光の減衰を抑制しつつ当該光が色味を帯びることを効果的に抑制することが可能となる。
Typically, the highly reflective material forming the inner surface 21 of the shaft member 20 reflects light of each wavelength with a specific reflectance corresponding to the wavelength. For this reason, when a reflecting surface made of a single material is formed on the inner surface 21 of the shaft member 20, the light is repeatedly reflected in the light guide path 28, so that light of a specific wavelength is greatly attenuated and guided. There is a risk that the light emitted will gradually become tinted. Accordingly, in order to suppress the light guided in the light guide path 28 from being colored, the inner surface 21 of the shaft member 20 of the present embodiment reflects light having a relatively large wavelength with a high reflectance. And a second reflection region 23 that reflects light having a relatively low wavelength with a high reflectivity. According to such a form, the light which repeats reflection within the light guide path 28 is reflected in a balanced manner by the first reflection region 22 and the second reflection region 23, thereby suppressing the light having a specific wavelength from being greatly attenuated. be able to. As a result, it is possible to effectively suppress the light from being tinted while suppressing the attenuation of the guided light.

図3は、等色関数、すなわち三刺激値X,Y,Zを決定するための波長と感度を調査したグラフである。図3の縦軸に人の目の感度を示し、横軸に光の波長を示す。図3から理解されるように、等色関数X(λ)は波長600nmにピークを有し、等色関数Z(λ)は波長450nmにピークを有する。従って、波長600nmの反射率が刺激値Xの変化率と等しく、波長450nmの反射率が刺激値Zの変化率と等しいと近似できる。この点を考慮して、第1反射領域22を、波長450nmの光よりも波長600nmの光を高い反射率で反射する領域とし、第2反射領域23を、波長600nmの光よりも波長450nmの光を高い反射率で反射する領域としている。この場合、白色光が第1反射領域22で反射すると赤味を帯びやすくなり、白色光が第2反射領域23で反射すると青味を帯びやすくなる。すなわち、第1反射領域22及び第2反射領域23を上記のように選定することにより、導光部材12から部屋2に放出される光の赤味または青味から、第1反射領域22及び第2反射領域23を調整する程度を判断することが可能となる。したがって、第1反射領域22及び第2反射領域23を上記のように選定することにより、第1反射領域22及び第2反射領域23を容易に調整することができる。   FIG. 3 is a graph in which the wavelength and sensitivity for determining the color matching function, that is, the tristimulus values X, Y, and Z are investigated. The vertical axis of FIG. 3 shows the sensitivity of the human eye, and the horizontal axis shows the wavelength of light. As understood from FIG. 3, the color matching function X (λ) has a peak at a wavelength of 600 nm, and the color matching function Z (λ) has a peak at a wavelength of 450 nm. Therefore, it can be approximated that the reflectance at a wavelength of 600 nm is equal to the change rate of the stimulus value X and the reflectance at a wavelength of 450 nm is equal to the change rate of the stimulus value Z. Considering this point, the first reflection region 22 is a region that reflects light having a wavelength of 600 nm with a higher reflectance than light having a wavelength of 450 nm, and the second reflection region 23 is light having a wavelength of 450 nm than light having a wavelength of 600 nm. The region reflects light with high reflectivity. In this case, when white light is reflected by the first reflection region 22, it becomes easy to be reddish, and when white light is reflected by the second reflection region 23, it becomes easy to be bluish. That is, by selecting the first reflection region 22 and the second reflection region 23 as described above, the first reflection region 22 and the second reflection region 22 can be obtained from the redness or blueness of the light emitted from the light guide member 12 to the room 2. It is possible to determine the degree of adjusting the two reflection areas 23. Therefore, by selecting the first reflection region 22 and the second reflection region 23 as described above, the first reflection region 22 and the second reflection region 23 can be easily adjusted.

なお、各波長の光の反射率は、反射型分光器を用いて計測することができる。反射型分光器を用いた各波長の光の反射率を計測する方法は、当業者によく知られているため、ここでは詳細な説明を省略する。より正確に測定する場合は、反射領域に対する入射角度を、実際の範囲内で変えながら測定し、平均することが好ましい。   In addition, the reflectance of the light of each wavelength can be measured using a reflection type spectroscope. Since the method of measuring the reflectance of light of each wavelength using a reflection type spectrometer is well known to those skilled in the art, detailed description thereof is omitted here. In the case of measuring more accurately, it is preferable to measure and average the incident angle with respect to the reflection region while changing within the actual range.

図2に戻って、本実施の形態では、第1反射領域22及び第2反射領域23は、軸部材20の軸方向d1に沿って並べて配置されている。図示する例では、1つの第1反射領域22と1つの第2反射領域23とが軸方向d1に隣り合っている。第1反射領域22は、軸部材20の入光側の領域において、軸部材20の内面21に周状に形成され導光路28の周りを取り囲んでいる。第2反射領域23は、軸部材20の出光側の領域において、軸方向d1の内面21に周状に形成され導光路28の周りを取り囲んでいる。   Returning to FIG. 2, in the present embodiment, the first reflection region 22 and the second reflection region 23 are arranged side by side along the axial direction d <b> 1 of the shaft member 20. In the illustrated example, one first reflection region 22 and one second reflection region 23 are adjacent to each other in the axial direction d1. The first reflection region 22 is formed in a circumferential shape on the inner surface 21 of the shaft member 20 and surrounds the light guide path 28 in the light incident side region of the shaft member 20. The second reflection region 23 is formed in a circumferential shape on the inner surface 21 in the axial direction d1 and surrounds the light guide path 28 in the region on the light output side of the shaft member 20.

図2に示す例では、軸部材20の内面21は、軸方向d1に直交する一方向d2に対向して配置された第1面21a及び第2面21bと、軸方向d1に直交し且つ一方向d2に交差より詳細には直交する他方向d3に対向して配置された第3面21c及び第4面21dと、を含んでいる。したがって、第1面21a〜第4面21dにて構成される内面21は、軸方向d1に直交する断面において多角形より詳細には矩形の輪郭を有する。そして、第1反射領域22は、各第1面21a〜第4面21dの入光側となる領域に形成され、第2反射領域23は、各第1面21a〜第4面21dの出光側となる領域に形成されている。したがって、第1反射領域22は、軸部材20の内面21の入光側となる領域の全域を覆い、第2反射領域23は、軸部材20の内面21の出光側となる領域の全域を覆っている。なお、軸部材20の内面21の輪郭の形状は、このような例に限定されず円形または楕円形であってもよい。   In the example shown in FIG. 2, the inner surface 21 of the shaft member 20 has a first surface 21 a and a second surface 21 b disposed so as to face one direction d2 orthogonal to the axial direction d1, and one orthogonal to the axial direction d1. More specifically, it includes a third surface 21c and a fourth surface 21d that are disposed to face each other in the direction d2, which is orthogonal to the other direction d3. Therefore, the inner surface 21 constituted by the first surface 21a to the fourth surface 21d has a rectangular outline in more detail than a polygon in a cross section orthogonal to the axial direction d1. And the 1st reflective area | region 22 is formed in the area | region used as the light-incidence side of each 1st surface 21a-4th surface 21d, and the 2nd reflective area | region 23 is the light emission side of each 1st surface 21a-4th surface 21d. It is formed in the area. Therefore, the first reflection region 22 covers the entire region on the light incident side of the inner surface 21 of the shaft member 20, and the second reflection region 23 covers the entire region on the light output side of the inner surface 21 of the shaft member 20. ing. Note that the shape of the contour of the inner surface 21 of the shaft member 20 is not limited to such an example, and may be circular or elliptical.

次に、第1反射領域22及び第2反射領域23をなす材料について図4を参照しながら説明する。図4は、金属材料毎に、波長と反射率との関係を示すグラフである。図4に示すグラフから理解されるように、金及び銀は、波長450nmの光よりも波長600nmの光を高い反射率で反射する。したがって、第1反射領域22を構成する材料として、金または銀を主成分として含む材料を採用することができる。なお、ここでいう金または銀を主成分として含む材料には、金または銀からなる材料のみでなく、金を成分として含む化合物からなる材料も含まれる。   Next, the material forming the first reflection region 22 and the second reflection region 23 will be described with reference to FIG. FIG. 4 is a graph showing the relationship between wavelength and reflectance for each metal material. As understood from the graph shown in FIG. 4, gold and silver reflect light having a wavelength of 600 nm with a higher reflectance than light having a wavelength of 450 nm. Therefore, a material containing gold or silver as a main component can be adopted as the material constituting the first reflective region 22. The material containing gold or silver as a main component here includes not only a material made of gold or silver but also a material made of a compound containing gold as a component.

これに対して、アルミニウムは、波長600nmの光よりも波長450nmの光を高い反射率で反射する。したがって、第2反射領域23を構成する材料として、アルミニウムを主成分として含む材料を採用することができる。なお、ここでいうアルミニウムを主成分として含む材料には、アルミニウムからなる材料のみでなく、アルミニウムを成分として含む化合物からなる材料も含まれる。一例として、第1反射領域22及び第2反射領域23は、対象となる材料を軸部材20の内面21に蒸着させることにより得られる。ただし、このような第1反射領域22及び第2反射領域23の形成方法は、一例であって、所望の反射率を達成することができる限り、他の形成方法を採用することもできる。例えば、金属材料を含むコーティング材料を軸部材20の内面21にコーティングしてもよい。また、第1反射領域22及び第2反射領域23をなす材料は、複数の金属材料を混合した材料であってもよい。あるいは、軸部材20の内面21に高反射率の誘電体を単層膜または多層膜として成膜してもよい。   In contrast, aluminum reflects light having a wavelength of 450 nm with a higher reflectance than light having a wavelength of 600 nm. Therefore, a material containing aluminum as a main component can be adopted as the material constituting the second reflective region 23. Here, the material containing aluminum as a main component includes not only a material made of aluminum but also a material made of a compound containing aluminum as a component. As an example, the first reflection region 22 and the second reflection region 23 are obtained by evaporating a target material on the inner surface 21 of the shaft member 20. However, such a formation method of the first reflection region 22 and the second reflection region 23 is an example, and other formation methods can be adopted as long as a desired reflectance can be achieved. For example, a coating material containing a metal material may be coated on the inner surface 21 of the shaft member 20. Moreover, the material which makes the 1st reflective area | region 22 and the 2nd reflective area | region 23 may be the material which mixed several metal material. Alternatively, a high reflectivity dielectric may be formed on the inner surface 21 of the shaft member 20 as a single layer film or a multilayer film.

とりわけ、導光路28を通過した光が色味を帯びることを効果的に抑制する観点から、以下の条件を満たすことが好ましいことが知見された。前提として、第1反射領域22の波長450nmの光の反射率をR1(450)とし、第1反射領域22の波長600nmの光の反射率をR1(600)とし、第2反射領域23の波長450nmの光の反射率をR2(450)とし、第2反射領域23の波長600nmの光の反射率をR2(600)とする。さらに、色ムラを抑制することを意図された光が導光路28内において第1反射領域22にてN1回反射し、第2反射領域23にてN2回反射して導光路28を通過したとする。   In particular, it has been found that it is preferable to satisfy the following conditions from the viewpoint of effectively suppressing light passing through the light guide path 28 from being colored. As a premise, the reflectance of light having a wavelength of 450 nm in the first reflecting region 22 is R1 (450), the reflectance of light having a wavelength of 600 nm in the first reflecting region 22 is R1 (600), and the wavelength of the second reflecting region 23 is assumed. The reflectance of light having a wavelength of 450 nm is R2 (450), and the reflectance of light having a wavelength of 600 nm in the second reflection region 23 is R2 (600). Further, light that is intended to suppress color unevenness is reflected N1 times in the first reflection region 22 in the light guide path 28, reflected N2 times in the second reflection region 23, and passes through the light guide path 28. To do.

このとき、導光路28を通過した光のうち、波長450nmの光の導光効率C(450)は、

Figure 2016031808
にて示される。ここで、或る波長の光の導光効率とは、対象となる波長の光が導光路28に入射したときの光量に対する、当該光が導光路28から出射したときの光量の割合をいう。 At this time, among the light that has passed through the light guide path 28, the light guide efficiency C (450) of light having a wavelength of 450 nm is:
Figure 2016031808
It is indicated by. Here, the light guide efficiency of light of a certain wavelength refers to the ratio of the light quantity when the light emitted from the light guide path 28 to the light quantity when the light of the target wavelength enters the light guide path 28.

同様に、導光路28を通り抜けた光のうち、波長600nmの光の導光効率C(600)は、

Figure 2016031808
にて示される。
なお、導光効率C(450)やC(600)は、導光路に太陽光もしくは同等の光源光を入射し、入射端と出射端で当該波長における光束を測定し、その比をとることで求められる。 Similarly, the light guide efficiency C (600) of light having a wavelength of 600 nm among the light passing through the light guide path 28 is:
Figure 2016031808
It is indicated by.
The light guide efficiency C (450) or C (600) is obtained by making sunlight or an equivalent light source light incident on the light guide path, measuring the light flux at the incident end and the exit end, and taking the ratio. Desired.

導光路28を通過した光が色味を帯びることを効果的に抑制するためには、C(450)=C(600)となることが好ましいことから、

Figure 2016031808
したがって、色ムラを抑制することを意図された光が式(3)を満たすように、第1反射領域22及び第2反射領域23の分布を調整することが好ましい。 In order to effectively suppress the light passing through the light guide path 28 from being tinted, it is preferable that C (450) = C (600).
Figure 2016031808
Therefore, it is preferable to adjust the distribution of the first reflection region 22 and the second reflection region 23 so that the light intended to suppress color unevenness satisfies the expression (3).

ところで、本実施の形態では、軸方向d1に沿った第1反射領域22の長さL1は、軸方向d1に沿った第2反射領域23の長さL2と等しくなっている。ただし、式(3)の関係を考慮して、第1反射領域22の長さL1及び第2反射領域23の長さL2は、適宜設定可能である。   By the way, in the present embodiment, the length L1 of the first reflection region 22 along the axial direction d1 is equal to the length L2 of the second reflection region 23 along the axial direction d1. However, the length L1 of the first reflection region 22 and the length L2 of the second reflection region 23 can be appropriately set in consideration of the relationship of the expression (3).

さらに導光効率C(450)とC(600)の望ましい範囲を示す。JIS9112では白色光源における昼光色、昼白色、白色、温白色のそれぞれの色度範囲が示されており、それぞれのx値の範囲は0.025〜0.03である。すなわちx値が0.03変われば白色であっても異なる色として認識されることが分かる。   Furthermore, the desirable range of light guide efficiency C (450) and C (600) is shown. In JIS9112, the chromaticity ranges of daylight color, daylight white, white, and warm white in a white light source are shown, and the range of each x value is 0.025 to 0.03. That is, it can be seen that if the x value changes by 0.03, a white color is recognized as a different color.

定義により、x値は刺激値X,Y,Zから下式で得られる。ただし、X、Y、Zはそれぞれ等色関数X(λ)、Y(λ)、Z(λ)の積分値である。
x=X/(X+Y+Z) (4)
入射端では、太陽光の直達光は白色であるから、刺激値Xと刺激値Zは1と近似してよい。
X=1、Z=1 (5)
また、出射端では刺激値Xと刺激値Zは、それぞれ波長600nmと波長450nmの導光効率に等しいと近似できる。すなわち、
X=C(600)、Z=C(450) (6)
また、刺激値YはXとZの平均と近似できる。
Y=(X+Z)/2 (7)
式(7)を式(4)に代入して整理すると、

Figure 2016031808
Z/Xを新たにRとおき、両辺を微分すると、
Figure 2016031808
ここでΔxとΔRは、それぞれxとRの、導光路を通過することによる変化率である。前述のように入射端と出射端で同じ色と認識されるためには、x値の変化範囲が0.03以下、すなわち±0.015以下であることが必要である。従って、
Figure 2016031808
ここで、Rは、導光路による変化は十分小さいとみなして、式(5)から1と近似できる。R=1を代入して整理すると、
Figure 2016031808
ΔRを、式(5)と式(6)から求めると、
Figure 2016031808
導光路の出射端と入射端が同じ色と認識されるためには、この式を満たすことが望ましい。 By definition, the x value is obtained from the stimulus values X, Y, and Z by the following equation. However, X, Y, and Z are integral values of the color matching functions X (λ), Y (λ), and Z (λ), respectively.
x = X / (X + Y + Z) (4)
Since the direct light of sunlight is white at the incident end, the stimulus value X and the stimulus value Z may be close to 1.
X = 1, Z = 1 (5)
Further, at the emission end, the stimulus value X and the stimulus value Z can be approximated to be equal to the light guide efficiency at a wavelength of 600 nm and a wavelength of 450 nm, respectively. That is,
X = C (600), Z = C (450) (6)
The stimulus value Y can be approximated to the average of X and Z.
Y = (X + Z) / 2 (7)
Substituting equation (7) into equation (4) and rearranging,
Figure 2016031808
When Z / X is newly set to R and both sides are differentiated,
Figure 2016031808
Here, Δx and ΔR are rates of change of x and R, respectively, by passing through the light guide. As described above, in order to recognize the same color at the entrance end and the exit end, the change range of the x value needs to be 0.03 or less, that is, ± 0.015 or less. Therefore,
Figure 2016031808
Here, R can be approximated to 1 from Equation (5), assuming that the change due to the light guide is sufficiently small. Substituting R = 1 and rearranging,
Figure 2016031808
When ΔR is obtained from Equation (5) and Equation (6),
Figure 2016031808
It is desirable to satisfy this equation in order for the exit end and entrance end of the light guide to be recognized as the same color.

図1に戻って、部屋2に接続する軸部材20の端部に、拡散板からなる出光部材13が設置されている。拡散板からなる出光部材13によれば、軸部材20から導かれる光で部屋2内をむらなく照明することが可能となる。もっとも、軸部材20の端部に出光部材13が設置されていなくてもよく、軸部材20内を導光された光が導光部材12の端部から直接的に射出してもよい。   Returning to FIG. 1, a light output member 13 made of a diffusion plate is installed at the end of the shaft member 20 connected to the room 2. According to the light exiting member 13 made of a diffusion plate, the inside of the room 2 can be illuminated uniformly with the light guided from the shaft member 20. However, the light exiting member 13 may not be installed at the end of the shaft member 20, and the light guided through the shaft member 20 may be emitted directly from the end of the light guide member 12.

次に、以上のような構成からなる本実施の形態の作用について説明する。   Next, the operation of the present embodiment configured as described above will be described.

冬季や朝や夕方の時間帯において、太陽の高度は比較的低い。低い高度の太陽からの光は、採光部材11に或る入射角度で入射して、導光部材12に導かれる。導光部材12に導かれた太陽光は、導光路28内で反射を繰り返しながら部屋2に向かって導光されていく。上述のように、軸部材20の内面21には、相対的に大きい波長の光を高い反射率で反射する第1反射領域22と、相対的に低い波長の光を高い反射率で反射する第2反射領域23と、が形成されている。このことから、導光路28内で反射を繰り返していく太陽光は、第1反射領域22及び第2反射領域23でバランスよく反射して、特定の波長の光が大きく減衰するということが抑制される。導光路28内で導光された光は、軸部材20の端部に取り付けられた拡散板としての出光部材13に入射する。出光部材13に入射した光は、当該出光部材13で拡散されて部屋2内をむらなく照明する。   The sun's altitude is relatively low during winter and in the morning and evening hours. Light from the low altitude sun enters the daylighting member 11 at a certain incident angle and is guided to the light guide member 12. The sunlight guided to the light guide member 12 is guided toward the room 2 while being repeatedly reflected in the light guide path 28. As described above, the inner surface 21 of the shaft member 20 has the first reflection region 22 that reflects light having a relatively large wavelength with high reflectance and the first reflection region 22 that reflects light having a relatively low wavelength with high reflectance. 2 reflection regions 23 are formed. From this, the sunlight that is repeatedly reflected in the light guide path 28 is reflected in a balanced manner by the first reflection region 22 and the second reflection region 23, and it is suppressed that light of a specific wavelength is greatly attenuated. The The light guided in the light guide path 28 is incident on the light output member 13 as a diffusion plate attached to the end of the shaft member 20. The light that has entered the light exiting member 13 is diffused by the light exiting member 13 and illuminates the interior of the room 2 evenly.

一方、夏季、特に昼間の時間帯においては、太陽の高度は比較的高い。高い高度の太陽からの光は、採光部材11に別の或る入射角度で入射して、導光部材12に導かれる。導光部材12に導かれた太陽光は、導光路28内で反射を繰り返しながら部屋2に向かって導光されていく。上述のように、軸部材20の内面21には、相対的に大きい波長の光を高い反射率で反射する第1反射領域22と、相対的に低い波長の光を高い反射率で反射する第2反射領域23と、が形成されている。このことから、導光路28内で反射を繰り返す光は、第1反射領域22及び第2反射領域23でバランスよく反射して、特定の波長の光が大きく減衰するということが抑制される。導光路28内で導光された太陽光は、軸部材20の端部に取り付けられた拡散板としての出光部材13に入射する。出光部材13に入射した太陽光は、当該出光部材13で拡散されて部屋2内をむらなく照明する。   On the other hand, the altitude of the sun is relatively high in summer, especially in the daytime. Light from the high altitude sun enters the daylighting member 11 at another incident angle and is guided to the light guide member 12. The sunlight guided to the light guide member 12 is guided toward the room 2 while being repeatedly reflected in the light guide path 28. As described above, the inner surface 21 of the shaft member 20 has the first reflection region 22 that reflects light having a relatively large wavelength with high reflectance and the first reflection region 22 that reflects light having a relatively low wavelength with high reflectance. 2 reflection regions 23 are formed. For this reason, the light that repeats reflection in the light guide path 28 is reflected in a balanced manner by the first reflection region 22 and the second reflection region 23, and it is suppressed that light of a specific wavelength is greatly attenuated. Sunlight guided in the light guide path 28 enters the light output member 13 as a diffusion plate attached to the end of the shaft member 20. The sunlight that has entered the light exiting member 13 is diffused by the light exiting member 13 and illuminates the interior of the room 2 evenly.

以上のように、本実施の形態によれば、光を導光する導光路28を規定する内面21をもつ軸状の軸部材20を有し、軸部材20の内面21に、波長450nmの光よりも波長600nmの光を高い反射率で反射する第1反射領域22と、波長600nmの光よりも波長450nmの光を高い反射率で反射する第2反射領域23と、が形成されている。このような形態によれば、導光路28内で反射を繰り返す光が第1反射領域22及び第2反射領域23でバランスよく反射して、特定の波長の光が大きく減衰するということを抑制することができる。結果として、導光される光の減衰を抑制しつつ当該光が色味を帯びることを効果的に抑制することが可能となる。   As described above, according to the present embodiment, the shaft-shaped shaft member 20 having the inner surface 21 that defines the light guide path 28 that guides light is provided, and light having a wavelength of 450 nm is formed on the inner surface 21 of the shaft member 20. A first reflection region 22 that reflects light having a wavelength of 600 nm with a higher reflectance than the first reflection region 22 and a second reflection region 23 that reflects light with a wavelength of 450 nm with a higher reflectance than the light with a wavelength of 600 nm are formed. According to such a form, the light which repeats reflection within the light guide path 28 is reflected in a balanced manner by the first reflection region 22 and the second reflection region 23, thereby suppressing the light having a specific wavelength from being greatly attenuated. be able to. As a result, it is possible to effectively suppress the light from being tinted while suppressing the attenuation of the guided light.

また、本実施の形態によれば、軸部材20の内面21に周状に形成された第1反射領域22と、軸部材20の内面21に周状に形成された第2反射領域23とが、軸部材20の軸方向d1に並べて配置されている。このような形態によれば、導光路28内を導光される光が第1反射領域22にて反射された後に第2反射領域23で反射される、あるいは、第2反射領域23にて反射された後に第1反射領域22で反射される、ということが起こりやすくなる。結果として、導光路28内で反射を繰り返す光が第1反射領域22及び第2反射領域23でバランスよく反射して、当該光が色味を帯びることを効果的に抑制することができる。   Further, according to the present embodiment, the first reflection region 22 formed circumferentially on the inner surface 21 of the shaft member 20 and the second reflection region 23 formed circumferentially on the inner surface 21 of the shaft member 20 are provided. The shaft member 20 is arranged side by side in the axial direction d1. According to such a form, the light guided in the light guide path 28 is reflected by the second reflection region 23 after being reflected by the first reflection region 22, or reflected by the second reflection region 23. It is easy to occur that the light is reflected by the first reflection region 22 after being applied. As a result, it is possible to effectively suppress the light that repeats reflection in the light guide path 28 from being reflected in a balanced manner by the first reflection region 22 and the second reflection region 23, and the light from being colored.

また、本実施の形態によれば、第1反射領域22をなす材料は、銀成分を含み、第2反射領域23をなす材料は、アルミニウム成分を含む。第1反射領域22に含まれる銀成分は、可視光に対して高い反射率を示す上に、波長450nmの光よりも波長600nmの光を高い反射率で反射する。これに対して、第2反射領域23に含まれるアルミニウム成分は、可視光に対して高い反射率を示す上に、波長600nmの光よりも波長450nmの光を高い反射率で反射する。したがって、第1反射領域22をなす材料が銀成分を含み、第2反射領域23をなす材料がアルミニウム成分を含むことにより、導光される光の減衰を抑制しつつ当該光が色味を帯びることを効果的に抑制する、という効果を有効に実現することが可能となる。   Further, according to the present embodiment, the material forming the first reflection region 22 includes a silver component, and the material forming the second reflection region 23 includes an aluminum component. The silver component contained in the first reflection region 22 exhibits a high reflectance with respect to visible light, and reflects light having a wavelength of 600 nm with a higher reflectance than light having a wavelength of 450 nm. On the other hand, the aluminum component contained in the second reflective region 23 exhibits a high reflectance with respect to visible light, and reflects light having a wavelength of 450 nm with a higher reflectance than light having a wavelength of 600 nm. Therefore, when the material forming the first reflection region 22 includes a silver component and the material forming the second reflection region 23 includes an aluminum component, the light is tinted while suppressing attenuation of the guided light. It is possible to effectively realize the effect of effectively suppressing this.

≪変形例≫
なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、図面を参照しながら、変形の一例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。
≪Modification≫
Note that various modifications can be made to the above-described embodiment. Hereinafter, an example of modification will be described with reference to the drawings. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding parts in the above embodiment are used for the parts that can be configured in the same manner as in the above embodiment. A duplicate description is omitted.

上述した実施の形態では、図2に示すように、1つの第1反射領域22と1つの第2反射領域23とが軸方向d1に隣り合っている例を示したが、このような例に限定されない。図5乃至図9に、第1反射領域22及び第2反射領域23の他の配置例を示す。このうち、図5に示す例では、複数の第1反射領域22と複数の第2反射領域23とが、軸部材20の軸方向d1に交互に並べて配置されている。各第1反射領域22は、軸部材20の内面21に周状に形成されて導光路28の周りを取り囲んでいる。各第2反射領域23は、軸方向d1の内面21に周状に形成されて導光路28の周りを取り囲んでいる。このような形態によれば、導光路28内を導光される光が第1反射領域22及び第2反射領域23にて交互に反射を繰り返しやすくなる。結果として、導光路28内で反射を繰り返す光が第1反射領域22及び第2反射領域23でバランスよく反射して、当該光が色味を帯びることをさらに効果的に抑制することができる。   In the above-described embodiment, as shown in FIG. 2, an example in which one first reflection region 22 and one second reflection region 23 are adjacent to each other in the axial direction d1 is shown. It is not limited. FIGS. 5 to 9 show other arrangement examples of the first reflection region 22 and the second reflection region 23. Among these, in the example shown in FIG. 5, the plurality of first reflection regions 22 and the plurality of second reflection regions 23 are alternately arranged in the axial direction d <b> 1 of the shaft member 20. Each first reflection region 22 is formed in a circumferential shape on the inner surface 21 of the shaft member 20 and surrounds the light guide path 28. Each second reflection region 23 is formed in a circumferential shape on the inner surface 21 in the axial direction d1 and surrounds the light guide path 28. According to such a form, the light guided in the light guide path 28 is easily reflected repeatedly in the first reflection region 22 and the second reflection region 23. As a result, it is possible to more effectively suppress the light that repeats reflection in the light guide path 28 from being reflected by the first reflection region 22 and the second reflection region 23 in a well-balanced manner.

図6に示す例では、軸部材20の内面21のうちの第1面21a及び第3面21cに、第1反射領域22がそれぞれ形成され、第2面21b及び第4面21dに、第2反射領域23がそれぞれ形成されている。第1面21aに配置された第1反射領域22は、当該第1面21aの全域を覆い、第3面21cに配置された第1反射領域22は、当該第3面21cの全域を覆っている。また、第2面21bに配置された第2反射領域23は、当該第2面21bの全域を覆い、第4面21dに配置された第2反射領域23は、当該第4面21dの全域を覆っている。   In the example shown in FIG. 6, the first reflection region 22 is formed on the first surface 21 a and the third surface 21 c of the inner surface 21 of the shaft member 20, and the second surface 21 b and the fourth surface 21 d are second. Reflective regions 23 are respectively formed. The first reflective region 22 disposed on the first surface 21a covers the entire area of the first surface 21a, and the first reflective region 22 disposed on the third surface 21c covers the entire area of the third surface 21c. Yes. Further, the second reflection region 23 disposed on the second surface 21b covers the entire area of the second surface 21b, and the second reflection region 23 disposed on the fourth surface 21d covers the entire area of the fourth surface 21d. Covering.

しかして、図6に示す導光部材12によれば、軸部材20の内面21に、軸方向d1に直交する一方向d2に互いに対向して配置された第1反射領域22及び第2反射領域23と、軸方向d1に直交し且つ一方向d2に交差する方向d3に互いに対向して配置された別の第1反射領域22及び第2反射領域23と、が少なくとも形成されている。このような形態によれば、互いに対向して第1反射領域22及び第2反射領域23が配置されているため、導光路28内で導光される光が第1反射領域22及び第2反射領域23にて交互に反射を繰り返しやすくなる。結果として、導光路28内で反射を繰り返す光が第1反射領域22及び第2反射領域23でバランスよく反射して、当該光が色味を帯びることをさらに効果的に抑制することができる。   Thus, according to the light guide member 12 shown in FIG. 6, the first reflection region 22 and the second reflection region disposed on the inner surface 21 of the shaft member 20 so as to face each other in one direction d2 orthogonal to the axial direction d1. 23, and another first reflection region 22 and another second reflection region 23 that are disposed to face each other in a direction d3 that is orthogonal to the axial direction d1 and intersects one direction d2 are formed. According to such a form, since the first reflection region 22 and the second reflection region 23 are disposed so as to face each other, the light guided in the light guide path 28 is the first reflection region 22 and the second reflection. It becomes easy to repeat reflection alternately in the region 23. As a result, it is possible to more effectively suppress the light that repeats reflection in the light guide path 28 from being reflected by the first reflection region 22 and the second reflection region 23 in a well-balanced manner.

一方、図7に示す例では、第1反射領域22と第2反射領域23とは、軸部材20の軸方向d1に平行な平面P1に対して面対称に配置されている。より詳細には、第1反射領域22と第2反射領域23とは、軸部材20の中心軸を含む平面P1に対して面対称に配置されている。図示する例では、第1面21aに第2反射領域23が形成され、第2面21bに第1反射領域22が形成されている。第3面21cの第1面21a側の領域に第2反射領域23が形成され、第3面21cの第2面21b側の領域に第1反射領域22が形成されている。また、第4面21dの第1面21a側の領域に第2反射領域23が形成され、第4面21dの第2面21b側の領域に第1反射領域22が形成されている。第1面21aに配置された第2反射領域23は、当該第1面21aの全域を覆い、第2面21bに配置された第1反射領域22は、当該第2面21bの全域を覆っている。また、第3面21cに配置された第1反射領域22と第2反射領域23とが、当該第3面21cの全域を等しい割合で覆い、第3面21cに配置された第1反射領域22と第2反射領域23とが、当該第3面21cの全域を等しい割合で覆っている。   On the other hand, in the example shown in FIG. 7, the first reflection region 22 and the second reflection region 23 are arranged in plane symmetry with respect to the plane P <b> 1 parallel to the axial direction d <b> 1 of the shaft member 20. More specifically, the first reflection region 22 and the second reflection region 23 are arranged symmetrically with respect to the plane P1 including the central axis of the shaft member 20. In the example shown in the figure, the second reflection region 23 is formed on the first surface 21a, and the first reflection region 22 is formed on the second surface 21b. A second reflective region 23 is formed in a region of the third surface 21c on the first surface 21a side, and a first reflective region 22 is formed in a region of the third surface 21c on the second surface 21b side. In addition, a second reflective region 23 is formed in a region on the first surface 21a side of the fourth surface 21d, and a first reflective region 22 is formed in a region on the second surface 21b side of the fourth surface 21d. The second reflective region 23 disposed on the first surface 21a covers the entire area of the first surface 21a, and the first reflective region 22 disposed on the second surface 21b covers the entire area of the second surface 21b. Yes. Moreover, the 1st reflective area | region 22 arrange | positioned at the 3rd surface 21c and the 2nd reflective area | region 23 cover the whole area of the said 3rd surface 21c in an equal ratio, and the 1st reflective area | region 22 arrange | positioned at the 3rd surface 21c. And the second reflection region 23 cover the entire area of the third surface 21c at an equal ratio.

しかして、図7に示す導光部材12によれば、第1反射領域22と第2反射領域23とが、軸部材20の軸方向d1に平行な平面P1に対して面対称に配置されているため、導光路28内を導光される光が第1反射領域22及び第2反射領域23にて交互に反射を繰り返しやすくなる。結果として、導光路28内で反射を繰り返す光が第1反射領域22及び第2反射領域23でバランスよく反射して、当該光が色味を帯びることをさらに効果的に抑制することができる。   Thus, according to the light guide member 12 shown in FIG. 7, the first reflection region 22 and the second reflection region 23 are arranged in plane symmetry with respect to the plane P1 parallel to the axial direction d1 of the shaft member 20. Therefore, the light guided in the light guide path 28 is likely to be repeatedly reflected in the first reflection region 22 and the second reflection region 23 alternately. As a result, it is possible to more effectively suppress the light that repeats reflection in the light guide path 28 from being reflected by the first reflection region 22 and the second reflection region 23 in a well-balanced manner.

他方で、図8に示す例では、軸部材20の内面21に沿って周方向に交互に並ぶように、複数の第1反射領域22及び複数の第2反射領域23が配置されている。各第1反射領域22及び各第2反射領域23は、ストライプ状に形成され軸方向d1に長手方向をもつ。図示する例では、第1反射領域22及び第2反射領域23が、軸部材20の内面21を構成する各面21a〜21dに、それぞれ1つずつ配置されている。   On the other hand, in the example shown in FIG. 8, the plurality of first reflection regions 22 and the plurality of second reflection regions 23 are arranged so as to be alternately arranged in the circumferential direction along the inner surface 21 of the shaft member 20. Each first reflection region 22 and each second reflection region 23 are formed in a stripe shape and have a longitudinal direction in the axial direction d1. In the example illustrated, the first reflection region 22 and the second reflection region 23 are arranged one by one on each surface 21 a to 21 d constituting the inner surface 21 of the shaft member 20.

しかして、図8に示す導光部材12によれば、第1面21a〜第4面21dの各々に、第1反射領域22と第2反射領域23とが形成されている。このような形態によれば、複数の第1反射領域22と複数の第2反射領域23とが軸部材20の内面21にバランスよく配置されているため、導光路28内を導光される光が第1反射領域22及び第2反射領域23にて交互に反射を繰り返しやすくなる。結果として、導光路28内で反射を繰り返す光が第1反射領域22及び第2反射領域23でバランスよく反射して、当該光が色味を帯びることをさらに効果的に抑制することができる。   Thus, according to the light guide member 12 shown in FIG. 8, the first reflection region 22 and the second reflection region 23 are formed on each of the first surface 21a to the fourth surface 21d. According to such a form, since the plurality of first reflection regions 22 and the plurality of second reflection regions 23 are arranged on the inner surface 21 of the shaft member 20 in a balanced manner, the light guided through the light guide path 28. However, it becomes easy to repeat reflection alternately in the first reflection region 22 and the second reflection region 23. As a result, it is possible to more effectively suppress the light that repeats reflection in the light guide path 28 from being reflected by the first reflection region 22 and the second reflection region 23 in a well-balanced manner.

また、図9に示す例では、軸部材20の内面21に、複数の第1反射領域22及び複数の第2反射領域23が千鳥状に配置されている。すなわち、軸部材20の内面21を構成する各面21a〜21dに、複数の矩形の第1反射領域22及び複数の矩形の第2反射領域23が軸方向d1に交互に並べられ且つ軸方向d1に直交する方向にも交互に並べられている。   In the example illustrated in FIG. 9, a plurality of first reflection regions 22 and a plurality of second reflection regions 23 are arranged in a staggered manner on the inner surface 21 of the shaft member 20. That is, a plurality of rectangular first reflection regions 22 and a plurality of rectangular second reflection regions 23 are alternately arranged in the axial direction d1 on each surface 21a to 21d constituting the inner surface 21 of the shaft member 20, and the axial direction d1. They are also arranged alternately in the direction perpendicular to.

しかして、図9に示す導光部材12によれば、複数の第1反射領域22と複数の第2反射領域23とが軸部材20の内面21にバランスよく分布しているため、導光路28内を導光される光が第1反射領域22及び第2反射領域23にて交互に反射を繰り返しやすくなる。結果として、導光路28内で反射を繰り返す光が第1反射領域22及び第2反射領域23でバランスよく反射して、当該光が色味を帯びることをさらに効果的に抑制することができる。   Therefore, according to the light guide member 12 illustrated in FIG. 9, the plurality of first reflection regions 22 and the plurality of second reflection regions 23 are distributed in a balanced manner on the inner surface 21 of the shaft member 20. The light guided in the inside is easily reflected repeatedly in the first reflection region 22 and the second reflection region 23. As a result, it is possible to more effectively suppress the light that repeats reflection in the light guide path 28 from being reflected by the first reflection region 22 and the second reflection region 23 in a well-balanced manner.

また、上述した実施の形態では、図2に示すように、第1反射領域22と第2反射領域23との面積比が可変ではない例を示したが、このような例に限定されない。図10及び図11に、第1反射領域22と第2反射領域23との面積比が可変になっている例を示す。図10及び図11に示す例では、中空の軸部材20は、軸方向d1に沿って配置された第1部分20a、第2部分20b及び第3部分20cと、を含んでいる。第1部分20aは、屋根5に設けられた採光部材11に接続されており、第3部分20cは、天井4に設けられた出光部材13に接続されている。第2部分20bは、第1部分20aと第2部分20bとの間で、軸方向d1に沿って可動になっている。   In the above-described embodiment, as shown in FIG. 2, the example in which the area ratio between the first reflection region 22 and the second reflection region 23 is not variable is shown, but the present invention is not limited to such an example. 10 and 11 show an example in which the area ratio between the first reflection region 22 and the second reflection region 23 is variable. In the example shown in FIGS. 10 and 11, the hollow shaft member 20 includes a first portion 20a, a second portion 20b, and a third portion 20c arranged along the axial direction d1. The first portion 20 a is connected to the daylighting member 11 provided on the roof 5, and the third portion 20 c is connected to the light output member 13 provided on the ceiling 4. The second portion 20b is movable along the axial direction d1 between the first portion 20a and the second portion 20b.

第1部分20aの内面211及び第2部分20bの内面212には、相対的に大きい波長の光を高い反射率で反射する上述の第1反射領域22が形成されている。その一方で、第3部分20cの内面213には、相対的に低い波長の光を高い反射率で反射する第2反射領域23が形成されている。第1部分20aの内面211に囲まれる空間、第2部分20bの内面212に囲まれる空間及び第3部分20cの内面213に囲まれる空間に、光を繰り返し反射して導光する導光路28が画定されている。   On the inner surface 211 of the first portion 20a and the inner surface 212 of the second portion 20b, the above-described first reflection region 22 that reflects light having a relatively large wavelength with high reflectance is formed. On the other hand, on the inner surface 213 of the third portion 20c, a second reflection region 23 that reflects light having a relatively low wavelength with a high reflectance is formed. A light guide path 28 that repeatedly reflects and guides light in a space surrounded by the inner surface 211 of the first portion 20a, a space surrounded by the inner surface 212 of the second portion 20b, and a space surrounded by the inner surface 213 of the third portion 20c. Is defined.

図10及び図11に示す例では、第2部分20bの外径は、第1部分20aの内径及び第3部分20cの内径よりも小さくなっている。そして、第2部分20bは、第1部分20a及び第3部分20cの内部に部分的に収容され、当該第1部分20a及び第3部分20cに部分的に重なっている。なお、第2部分20bの外面と第1部分20aの内面211との間から光が漏れることを抑制するべく、第2部分20bの外面と第1部分20aの内面211とは、相対移動可能な程度に近接している。同様に、第2部分20bの外面と第3部分20cの内面213との間から光が漏れることを抑制するべく、第2部分20bの外面と第3部分20cの内面213とは、相対移動可能な程度に近接している。   In the example shown in FIGS. 10 and 11, the outer diameter of the second portion 20b is smaller than the inner diameter of the first portion 20a and the inner diameter of the third portion 20c. The second portion 20b is partially accommodated in the first portion 20a and the third portion 20c, and partially overlaps the first portion 20a and the third portion 20c. The outer surface of the second portion 20b and the inner surface 211 of the first portion 20a are relatively movable so as to prevent light from leaking between the outer surface of the second portion 20b and the inner surface 211 of the first portion 20a. Close to the extent. Similarly, the outer surface of the second portion 20b and the inner surface 213 of the third portion 20c are relatively movable so as to suppress light leakage from between the outer surface of the second portion 20b and the inner surface 213 of the third portion 20c. Close enough.

上述のように、第2部分20bは、第1部分20a及び第3部分20cに対して、軸方向d1に沿って可動になっている。第2部分20bが軸方向d1に沿って移動すると、第2部分20bと第1部分20a及び第3部分20cとの重なる範囲が変化する。したがって、第2部分20bが軸方向d1に沿って移動した位置に応じて、第3部分20cに設けられた第2反射領域23が導光路28に露出する面積A2が変化していく。結果として、第1反射領域22の導光路28に露出する面積A1と、第2反射領域23の導光路28に露出する面積A2と、の比が、変化する。   As described above, the second portion 20b is movable along the axial direction d1 with respect to the first portion 20a and the third portion 20c. When the second portion 20b moves along the axial direction d1, the overlapping range of the second portion 20b, the first portion 20a, and the third portion 20c changes. Therefore, the area A2 at which the second reflection region 23 provided in the third portion 20c is exposed to the light guide path 28 changes according to the position where the second portion 20b moves along the axial direction d1. As a result, the ratio of the area A1 exposed to the light guide path 28 of the first reflection region 22 and the area A2 exposed to the light guide path 28 of the second reflection region 23 changes.

図10及び図11に示す形態によれば、第2部分20bが軸方向d1に沿って移動した位置に応じて、第1反射領域22の導光路28に露出する面積A1と、第2反射領域23の導光路28に露出する面積A2と、の比が、変化する。したがって、第2部分20bを相対移動させることにより、導光される光の第1反射領域22及び第2反射領域23での反射回数を調整することができる。これにより、導光路28内を導光される光が色味を帯びることをさらに効果的に抑制することができる。   10 and 11, according to the position where the second portion 20b has moved along the axial direction d1, the area A1 exposed to the light guide path 28 of the first reflective region 22 and the second reflective region The ratio of the area A <b> 2 exposed to the light guide path 28 of 23 changes. Therefore, by relatively moving the second portion 20b, the number of reflections of the guided light at the first reflection region 22 and the second reflection region 23 can be adjusted. Thereby, it can suppress more effectively that the light guided in the light guide path 28 is colored.

また、上述した導光部材12において、導光路28内で軸部材20に対して軸方向d1に可動となるように設けられた中空の可動部材40をさらに設けた例を、図12及び図13に示す。図12及び図13に示す例では、中空の可動部材40は、軸部材20の軸方向d1に開口し、その中空の空間が導光路28に繋がっている。可動部材40の内面41に、波長450nmの光よりも波長600nmの光を高い反射率で反射する第3反射領域43と、波長600nmの光よりも波長450nmの光を高い反射率で反射する第4反射領域44と、が形成されている。これら第3反射領域43をなす材料として、軸部材20の第1反射領域22をなす材料と同じ材料を用いることができ、第4反射領域44をなす材料として、軸部材20の第2反射領域23をなす材料と同じ材料を用いることができる。   Moreover, in the light guide member 12 described above, an example in which a hollow movable member 40 provided so as to be movable in the axial direction d1 with respect to the shaft member 20 in the light guide path 28 is further provided as shown in FIGS. Shown in In the example shown in FIGS. 12 and 13, the hollow movable member 40 opens in the axial direction d <b> 1 of the shaft member 20, and the hollow space is connected to the light guide path 28. A third reflection region 43 that reflects light having a wavelength of 600 nm with a higher reflectance than light having a wavelength of 450 nm is reflected on the inner surface 41 of the movable member 40, and a light having a reflectance of 450 nm that is higher than that of light having a wavelength of 600 nm. 4 reflection regions 44 are formed. As the material forming the third reflection region 43, the same material as the material forming the first reflection region 22 of the shaft member 20 can be used, and as the material forming the fourth reflection region 44, the second reflection region of the shaft member 20 is used. The same material as that forming 23 can be used.

図12及び図13に示すように、第3反射領域43及び第4反射領域44は、第1反射領域22及び第2反射領域23の配列に合わせて、軸部材20の軸方向d1に沿って並べて配置されている。図示する例では、1つの第3反射領域43と1つの第4反射領域44とが軸方向d1に隣り合っている。第3反射領域43は、可動部材40の入光側の領域において、可動部材40の内面41に沿って周状に形成されている。第4反射領域44は、可動部材40の出光側の領域において、可動部材40の内面41に沿って周状に形成されている。   As shown in FIGS. 12 and 13, the third reflective region 43 and the fourth reflective region 44 are aligned with the arrangement of the first reflective region 22 and the second reflective region 23 along the axial direction d1 of the shaft member 20. They are arranged side by side. In the illustrated example, one third reflection region 43 and one fourth reflection region 44 are adjacent to each other in the axial direction d1. The third reflection region 43 is formed in a circumferential shape along the inner surface 41 of the movable member 40 in the light incident side region of the movable member 40. The fourth reflection region 44 is formed in a circumferential shape along the inner surface 41 of the movable member 40 in the light output side region of the movable member 40.

また、軸部材20の鉛直方向下方に位置する第4面21dに、軸方向d1に延びるレール51が配置されている。これに対して、可動部材40は、レール51上で摺動可能な車輪52を有している。可動部材40の車輪52が軸部材20のレール51上を転がることにより、可動部材40が軸部材20に対して軸方向d1に移動することができる。   A rail 51 extending in the axial direction d1 is disposed on the fourth surface 21d positioned below the shaft member 20 in the vertical direction. On the other hand, the movable member 40 has a wheel 52 that can slide on the rail 51. When the wheel 52 of the movable member 40 rolls on the rail 51 of the shaft member 20, the movable member 40 can move in the axial direction d <b> 1 with respect to the shaft member 20.

とりわけ、図14に、可動部材40を軸部材20に対して入光側に移動させた状態が示されており、図15に、可動部材40を軸部材20に対して出光側に移動させた状態が示されている。図14及び図15に示すように、可動部材40を軸部材20に対して入光側乃至出光側に移動させると、可動部材40が第1反射領域22及び第2反射領域23を覆う範囲が変化する。とりわけ、図14に示すように、可動部材40を軸部材20に対して入光側に移動させると、可動部材40が第1反射領域22を覆う範囲が増加していくと共に第2反射領域23を覆う範囲が減少していく。これに対し、図15に示すように、可動部材40を軸部材20に対して出光側に移動させると、可動部材40が第1反射領域22を覆う範囲が減少していくと共に第2反射領域23を覆う範囲が増加していく。   In particular, FIG. 14 shows a state where the movable member 40 is moved to the light incident side with respect to the shaft member 20, and FIG. 15 shows a state where the movable member 40 is moved to the light output side with respect to the shaft member 20. The state is shown. As shown in FIGS. 14 and 15, when the movable member 40 is moved from the light incident side to the light outgoing side with respect to the shaft member 20, there is a range in which the movable member 40 covers the first reflective region 22 and the second reflective region 23. Change. In particular, as shown in FIG. 14, when the movable member 40 is moved to the light incident side with respect to the shaft member 20, the range in which the movable member 40 covers the first reflection region 22 increases and the second reflection region 23. The area that covers is decreasing. On the other hand, as shown in FIG. 15, when the movable member 40 is moved to the light output side with respect to the shaft member 20, the range in which the movable member 40 covers the first reflective region 22 decreases and the second reflective region. The range covering 23 increases.

図12乃至図15に示す可動部材40によれば、軸部材20に対して軸方向d1に沿って可動部材40を移動させた位置に応じて、可動部材40が第1反射領域22及び第2反射領域23を覆う範囲が変化する。したがって、可動部材40を相対移動させることにより、導光される光の第1反射領域22及び第2反射領域23での反射回数を調整することができる。これにより、導光路28内を導光される光が色味を帯びることをさらに効果的に抑制することができる。   According to the movable member 40 shown in FIGS. 12 to 15, the movable member 40 moves in the first reflection region 22 and the second in accordance with the position where the movable member 40 is moved along the axial direction d <b> 1 with respect to the shaft member 20. The range covering the reflective area 23 changes. Therefore, the number of reflections of the guided light at the first reflection region 22 and the second reflection region 23 can be adjusted by relatively moving the movable member 40. Thereby, it can suppress more effectively that the light guided in the light guide path 28 is colored.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこの実施例に限定されるものではない。以下に説明するようにして、実施例に係る導光部材を設計し、導光される光の減衰をシミュレーションによって確認した。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to this Example. As described below, the light guide member according to the example was designed, and attenuation of the guided light was confirmed by simulation.

実施例1は、図2に示す導光部材に対応している。軸部材の内面に、第1反射領域と第2反射領域とが1対1の割合となるように設けた。第1反射領域をなす材料として、銀を採用し、第2反射領域をなす材料として、アルミニウムを採用した。   Example 1 corresponds to the light guide member shown in FIG. The first reflection region and the second reflection region were provided on the inner surface of the shaft member so that the ratio was 1: 1. Silver was adopted as a material forming the first reflection region, and aluminum was adopted as a material forming the second reflection region.

比較例1は、実施例1に対して、第2反射領域をなす材料も第1反射領域をなす材料と同じ銀とした形態に対応している。すなわち、比較例1は、導光部材の内面の全面に、銀からなる反射領域を形成した形態である。   The first comparative example corresponds to the first embodiment in which the material forming the second reflective region is the same silver as the material forming the first reflective region. That is, the comparative example 1 is a form in which a reflective region made of silver is formed on the entire inner surface of the light guide member.

比較例2は、実施例1に対して、第1反射領域をなす材料も第2反射領域をなす材料と同じアルミニウムとした形態に対応している。すなわち、比較例2は、導光部材の内面の全面に、アルミニウムからなる反射領域を形成した形態である。   Comparative Example 2 corresponds to Embodiment 1 in which the material forming the first reflective region is the same aluminum as the material forming the second reflective region. That is, the comparative example 2 is a form in which a reflective region made of aluminum is formed on the entire inner surface of the light guide member.

実施例1及び比較例1、2に係る導光部材に、或る入射角度で導光部材に白色光を入射させ、白色光を軸部材の内面で合計6回反射させた。このとき、実施例1に係る導光部材に入射した白色光は、第1反射領域で3回反射し、第2反射領域で3回反射した。図16に、本シミュレーションにて得られた結果を示す。図16は、各導光部材毎に、光の波長と導光効率との関係を示すグラフである。   In the light guide members according to Example 1 and Comparative Examples 1 and 2, white light was incident on the light guide member at a certain incident angle, and the white light was reflected six times in total on the inner surface of the shaft member. At this time, the white light incident on the light guide member according to Example 1 was reflected three times in the first reflection region and reflected three times in the second reflection region. FIG. 16 shows the results obtained in this simulation. FIG. 16 is a graph showing the relationship between the wavelength of light and the light guide efficiency for each light guide member.

図16から理解されるように、軸部材の内面に銀からなる反射領域を形成した比較例1に係る導光部材では、可視光領域において、相対的に低い波長の光の導光効率が低く、相対的に高い波長の光の導光効率が高い、という結果が得られた。とりわけ、波長450nmの光の導光効率が0.83程度であるのに対して、波長600nmの光の導光効率が0.93程度であった。したがって、比較例1に係る導光部材を通過した光は、黄色味を帯びることがわかる。   As understood from FIG. 16, in the light guide member according to Comparative Example 1 in which the reflection region made of silver is formed on the inner surface of the shaft member, the light guide efficiency of light having a relatively low wavelength is low in the visible light region. As a result, the light guide efficiency of light having a relatively high wavelength was high. In particular, the light guide efficiency of light having a wavelength of 450 nm was about 0.83, whereas the light guide efficiency of light having a wavelength of 600 nm was about 0.93. Therefore, it turns out that the light which passed the light guide member which concerns on the comparative example 1 is tinged with yellowishness.

一方、軸部材の内面にアルミニウムからなる反射領域を形成した比較例2に係る導光部材では、可視光領域において、相対的に低い波長の光の導光効率が高く、相対的に低い波長の光の導光効率が低い、という結果が得られた。とりわけ、波長450nmの光の導光効率が0.63程度であるのに対して、波長600nmの光の導光効率が0.57程度であった。したがって、比較例2に係る導光部材を通過した光は、青色味を帯びることがわかる。   On the other hand, in the light guide member according to Comparative Example 2 in which the reflection region made of aluminum is formed on the inner surface of the shaft member, the light guide efficiency of light having a relatively low wavelength is high in the visible light region, and The result that the light guide efficiency of light was low was obtained. In particular, the light guide efficiency of light with a wavelength of 450 nm was about 0.63, whereas the light guide efficiency of light with a wavelength of 600 nm was about 0.57. Therefore, it turns out that the light which passed the light guide member which concerns on the comparative example 2 is tinged with blue.

これらに対して、軸部材の内面に2つの反射領域を形成した実施例1に係る導光部材では、可視光領域において、各波長の光の導光効率にほとんど差異が生じなかった。例えば、波長450nmの光の導光効率が0.71程度であるのに対して、波長600nmの光の導光効率が0.72程度であった。したがって、実施例1に係る導光部材を通過した光は、ほとんど色味を帯びないことがわかる。   On the other hand, in the light guide member according to Example 1 in which two reflection regions were formed on the inner surface of the shaft member, there was almost no difference in the light guide efficiency of light of each wavelength in the visible light region. For example, the light guide efficiency of light having a wavelength of 450 nm is about 0.71, whereas the light guide efficiency of light having a wavelength of 600 nm is about 0.72. Therefore, it turns out that the light which passed the light guide member which concerns on Example 1 is hardly tinged with color.

比較例1、比較例2、実施例1について、式(12)の右辺を計算すると、それぞれ0.108、0.105、0.014である。比較例1と比較例2は式(12)を満たさないが、実施例1は満たすことが分かる。   For Comparative Example 1, Comparative Example 2, and Example 1, the right side of Equation (12) is calculated to be 0.108, 0.105, and 0.014, respectively. It can be seen that Comparative Example 1 and Comparative Example 2 do not satisfy Expression (12), but Example 1 satisfies.

次に、実施例1及び比較例1、2に係る導光部材に、或る入射角度で導光部材に白色光を入射させ、白色光を軸部材の内面で合計12回反射させた。このとき、実施例1に係る導光部材に入射した白色光は、第1反射領域で6回反射し、第2反射領域で6回反射した。図17に、本シミュレーションにて得られた結果を示す。図17は、各導光部材毎に、光の波長と導光効率との関係を示すグラフである。   Next, white light was incident on the light guide member according to Example 1 and Comparative Examples 1 and 2 at a certain incident angle, and the white light was reflected a total of 12 times on the inner surface of the shaft member. At this time, the white light incident on the light guide member according to Example 1 was reflected six times in the first reflection region and reflected six times in the second reflection region. FIG. 17 shows the results obtained in this simulation. FIG. 17 is a graph showing the relationship between the wavelength of light and the light guide efficiency for each light guide member.

図17から理解されるように、実施例1並びに比較例1及び2に係る導光部材は、いずれも図16に示すシミュレーションに対して、相対的に低い波長の光の導光効率と、相対的に高い波長の光の導光効率と、の差が大きくなる傾向を示した。具体的には、軸部材の内面に銀からなる反射領域を形成した比較例1に係る導光部材では、波長450nmの光の導光効率が0.69程度であるのに対して、波長600nmの光の導光効率が0.88程度であった。軸部材の内面にアルミニウムからなる反射領域を形成した比較例2に係る導光部材では、波長450nmの光の導光効率が0.39程度であるのに対して、波長600nmの光の導光効率が0.33程度であった。軸部材の内面に2つの反射領域を形成した実施例1に係る導光部材では、波長450nmの光の導光効率が0.53程度であるのに対して、波長600nmの光の導光効率が0.55程度であった。   As understood from FIG. 17, the light guide members according to Example 1 and Comparative Examples 1 and 2 both have a light guide efficiency of relatively low wavelength and relative to the simulation shown in FIG. 16. In particular, the difference between the light guiding efficiency of light with a high wavelength tends to increase. Specifically, in the light guide member according to Comparative Example 1 in which the reflection region made of silver is formed on the inner surface of the shaft member, the light guide efficiency of light with a wavelength of 450 nm is about 0.69, whereas the wavelength is 600 nm. The light guiding efficiency was about 0.88. In the light guide member according to Comparative Example 2 in which the reflection region made of aluminum is formed on the inner surface of the shaft member, the light guide efficiency of light with a wavelength of 450 nm is about 0.39, whereas light guide with a wavelength of 600 nm is guided. The efficiency was about 0.33. In the light guide member according to Example 1 in which two reflection regions are formed on the inner surface of the shaft member, the light guide efficiency of light having a wavelength of 450 nm is about 0.53, whereas the light guide efficiency of light having a wavelength of 600 nm is about 0.53. Was about 0.55.

比較例1、比較例2、実施例1について、式(12)の右辺を計算すると、それぞれ0.216、0.182、0.036である。比較例1と比較例2は式(12)を満たさないが、実施例1は満たすことが分かる。   For Comparative Example 1, Comparative Example 2, and Example 1, the right side of Equation (12) is calculated to be 0.216, 0.182, and 0.036, respectively. It can be seen that Comparative Example 1 and Comparative Example 2 do not satisfy Expression (12), but Example 1 satisfies.

したがって、図17に示すシミュレーションによれば、比較例1に係る導光部材を通過した光は、より強い黄色味を帯び、比較例2に係る導光部材を通過した光は、より強い青色味を帯びることがわかる。その一方で、実施例1に係る導光部材を通過した光は、ほとんど色味を帯びない、という結果が得られた。   Therefore, according to the simulation shown in FIG. 17, the light that has passed through the light guide member according to Comparative Example 1 has a stronger yellow tint, and the light that has passed through the light guide member according to Comparative Example 2 has a stronger blue tint. You can see that On the other hand, the result that the light which passed the light guide member which concerns on Example 1 is hardly tinted was obtained.

1 建物
2 部屋
10 太陽光採光システム
12 導光部材
20 軸部材
21 内面
21a〜d 第1〜4面
22 第1反射領域
23 第2反射領域
28 導光路
40 可動部材
41 内面
42 反射領域
43 第3反射領域
44 第4反射領域
d1 軸方向
d2 一方向
d3 他方向
DESCRIPTION OF SYMBOLS 1 Building 2 Room 10 Daylighting system 12 Light guide member 20 Shaft member 21 Inner surface 21a-d 1st-4th surface 22 1st reflection area 23 2nd reflection area 28 Light guide path 40 Movable member 41 Inner surface 42 Reflection area 43 3rd Reflection area 44 Fourth reflection area d1 Axial direction d2 One direction d3 Other direction

Claims (9)

光を導光する導光路を規定する内面をもつ軸状の軸部材を備え、
前記軸部材の内面に、波長450nmの光よりも波長600nmの光を高い反射率で反射する第1反射領域と、波長600nmの光よりも波長450nmの光を高い反射率で反射する第2反射領域と、が形成されている、導光部材。
An axial shaft member having an inner surface defining a light guide path for guiding light;
A first reflection region that reflects light having a wavelength of 600 nm with a higher reflectance than light having a wavelength of 450 nm on the inner surface of the shaft member, and a second reflection that reflects light having a wavelength of 450 nm with higher reflectance than light having a wavelength of 600 nm. A light guide member in which a region is formed.
前記軸部材の内面に周状に形成された第1反射領域と、前記軸部材の内面に周状に形成された第2反射領域とが、前記軸部材の軸方向に並べて配置されている、請求項1に記載の導光部材。   A first reflection region formed circumferentially on the inner surface of the shaft member and a second reflection region formed circumferentially on the inner surface of the shaft member are arranged side by side in the axial direction of the shaft member. The light guide member according to claim 1. 前記第1反射領域と前記第2反射領域とは、前記軸部材の軸方向に交互に並べて配置されている、請求項1または2に記載の導光部材。   The light guide member according to claim 1 or 2, wherein the first reflection region and the second reflection region are alternately arranged in the axial direction of the shaft member. 前記軸部材の内面には、前記軸部材の軸方向に直交する一方向に互いに対向して配置された第1反射領域及び第2反射領域と、前記軸部材の軸方向に直交し且つ前記一方向に交差する方向に互いに対向して配置された別の第1反射領域及び第2反射領域と、が少なくとも形成されている、請求項1乃至3のいずれか一項に記載の導光部材。   On the inner surface of the shaft member, a first reflection region and a second reflection region that are arranged to face each other in one direction orthogonal to the axial direction of the shaft member, and orthogonal to the axial direction of the shaft member and the one The light guide member according to any one of claims 1 to 3, wherein at least another first reflection region and a second reflection region that are arranged to face each other in a direction that intersects the direction are formed. 前記軸部材の内面は、前記軸部材の軸方向に直交する一方向に対向して配置された第1面及び第2面と、前記軸部材の軸方向に直交し且つ前記一方向に交差する方向に対向して配置された第3面及び第4面と、を含み、
前記第1面、前記第2面、前記第3面及び前記第4面の各々に、第1反射領域と第2反射領域とが形成されている、請求項1乃至4のいずれか一項に記載の導光部材。
An inner surface of the shaft member intersects with the first surface and the second surface arranged to face one direction orthogonal to the axial direction of the shaft member, and is orthogonal to the axial direction of the shaft member and intersects the one direction. Including a third surface and a fourth surface disposed to face each other,
The first reflection region and the second reflection region are formed on each of the first surface, the second surface, the third surface, and the fourth surface, according to any one of claims 1 to 4. The light guide member as described.
前記第1反射領域をなす材料は、銀成分を含み、
前記第2反射領域をなす材料は、アルミニウム成分を含む、請求項1乃至5のいずれか一項に記載の導光部材。
The material forming the first reflective region includes a silver component,
The light guide member according to any one of claims 1 to 5, wherein the material forming the second reflective region includes an aluminum component.
前記第1反射領域の前記導光路に露出する面積と、前記第2反射領域の前記導光路に露出する面積と、の比が、変更可能になっている、請求項1乃至6のいずれか一項に記載の導光部材。   The ratio of the area exposed to the light guide path of the first reflective region and the area exposed to the light guide path of the second reflective region can be changed. The light guide member according to item. 前記導光路内で前記軸部材に対して当該軸部材の軸方向に可動となるように設けられた中空の可動部材をさらに備え、
前記中空の可動部材は、前記軸部材の軸方向に開口し、且つ、前記中空の可動部材の内面に、光を反射させる反射領域が形成されていて、
前記軸部材に対して前記軸方向に沿って前記可動部材を移動させた位置に応じて、前記可動部材が前記第1反射領域及び前記第2反射領域を覆う範囲が変化する、請求項1乃至7のいずれか一項に記載の導光部材。
A hollow movable member provided so as to be movable in the axial direction of the shaft member with respect to the shaft member in the light guide path;
The hollow movable member is opened in the axial direction of the shaft member, and a reflection region for reflecting light is formed on the inner surface of the hollow movable member,
The range in which the movable member covers the first reflection region and the second reflection region changes according to a position where the movable member is moved along the axial direction with respect to the shaft member. The light guide member according to claim 7.
前記可動部材の内面に形成された反射領域は、波長450nmの光よりも波長600nmの光を高い反射率で反射する第3反射領域と、波長600nmの光よりも波長450nmの光を高い反射率で反射する第4反射領域と、を含む、請求項8に記載の導光部材。   The reflection region formed on the inner surface of the movable member includes a third reflection region that reflects light having a wavelength of 600 nm with a higher reflectance than light having a wavelength of 450 nm, and a reflectance that has a higher reflectance of 450 nm than light having a wavelength of 600 nm. The light guide member according to claim 8, further comprising: a fourth reflection region that is reflected by the lens.
JP2014153038A 2014-07-28 2014-07-28 Light guide member Pending JP2016031808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014153038A JP2016031808A (en) 2014-07-28 2014-07-28 Light guide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014153038A JP2016031808A (en) 2014-07-28 2014-07-28 Light guide member

Publications (1)

Publication Number Publication Date
JP2016031808A true JP2016031808A (en) 2016-03-07

Family

ID=55442093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153038A Pending JP2016031808A (en) 2014-07-28 2014-07-28 Light guide member

Country Status (1)

Country Link
JP (1) JP2016031808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083617A1 (en) * 2016-11-03 2018-05-11 Basf Se Daylighting panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083617A1 (en) * 2016-11-03 2018-05-11 Basf Se Daylighting panel
CN109923345A (en) * 2016-11-03 2019-06-21 巴斯夫欧洲公司 Daylighting panel
US20190285238A1 (en) * 2016-11-03 2019-09-19 Basf Se Daylighting panel
US10794557B2 (en) 2016-11-03 2020-10-06 Basf Se Daylighting panel

Similar Documents

Publication Publication Date Title
US10883685B2 (en) Sunlight-based sun imitating illumination
JP5901037B2 (en) Lighting device
AU2013270458B2 (en) High aspect ratio daylight collectors
US8550681B2 (en) Light source assemblies
US20130114292A1 (en) Surface Light Guide and Planar Emitter
US20140233104A1 (en) Optical element, window material, fitting, and solar shading device
US20120275132A1 (en) Pseudo-Sunlight Irradiating Apparatus
US11899230B2 (en) Optical filters complementary angular blocking regions
JPS61143719A (en) View angle sensitive color illumination accessary
WO2019179164A1 (en) Dispersive spectroscopy type optical filtering method and device
CN103477147A (en) Light duct tee extractor
JP2016031808A (en) Light guide member
US7646982B2 (en) Chromatic dispersion compensator
JP3484827B2 (en) Lenticular lens sheet and transmission screen
DE102016102934A1 (en) Light module for a vehicle headlight
JP6245500B2 (en) Blinds and lighting equipment
CN105954930A (en) Backlight module of liquid crystal display
EP4127791A1 (en) An interference filter, optical device and method of manufacturing an interference filter
Yaremchuk et al. New design of interference band-pass infrared filter
EP4365483A1 (en) Lighting device
JPH04359858A (en) Surface light source device
Dross Investigation of the design space for low aspect ratio LED collimators
JP6395065B2 (en) Lighting device
JP6102355B2 (en) Anisotropic light absorbing film and screen
US6848810B2 (en) Edge light source for a flat panel display or luminaire