JP2016031194A - Heat pump type refrigeration device - Google Patents

Heat pump type refrigeration device Download PDF

Info

Publication number
JP2016031194A
JP2016031194A JP2014153899A JP2014153899A JP2016031194A JP 2016031194 A JP2016031194 A JP 2016031194A JP 2014153899 A JP2014153899 A JP 2014153899A JP 2014153899 A JP2014153899 A JP 2014153899A JP 2016031194 A JP2016031194 A JP 2016031194A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
cooling water
refrigerant
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014153899A
Other languages
Japanese (ja)
Other versions
JP6296934B2 (en
Inventor
輝 森田
Teru Morita
輝 森田
若林 努
Tsutomu Wakabayashi
努 若林
祥史 山下
Sachifumi Yamashita
祥史 山下
優磨 古橋
Yuma Furuhashi
優磨 古橋
智史 新川
Tomoji Shinkawa
智史 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014153899A priority Critical patent/JP6296934B2/en
Publication of JP2016031194A publication Critical patent/JP2016031194A/en
Application granted granted Critical
Publication of JP6296934B2 publication Critical patent/JP6296934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deviation of pressure loss of air introduced into a housing through a heat exchanger for a refrigerant and a heat exchange portion for cooling water, and to unify an air volume with a simple constitution.SOLUTION: A heat pump type refrigeration device including a blower fan 24 for introducing introduced air A from a side portion of a housing 21 to the inside and discharging the same from an upper portion, a heat exchanger 3A for a refrigerant, exchanging heat between a refrigerant B circulated in a refrigeration circuit R provided with a compressor 2 and the air A, and a heat exchange portion 23 for cooling water, exchanging heat between cooling water C for cooling an apparatus 1 for driving the compressor 2 and the air A, the heat exchangers 3A are respectively disposed at both opposed side portions of the side portions of the housing 21, and the heat exchange portion 23 is composed of a coiled heat exchanger 23A formed into the cylindrical shape by winding a heat transfer tube 23a in which the cooling water C is circulated, in several times, and is disposed inside of the housing 21 at a downstream side of the heat exchangers 3A in the circulating direction of the air A in a state in which its axial direction is along the vertical direction.SELECTED DRAWING: Figure 3

Description

本発明は、ヒートポンプ式冷凍装置に関し、より詳しくは、筐体と、筐体の上部に設けられ、筐体の側部から内部に導入される導入空気を筐体の上部を介して外部空間に排出する送風ファンと、圧縮機を備えた冷凍回路と、冷凍回路のチューブ内を通流する冷媒と導入空気とを熱交換させるフィンチューブ式の冷媒用熱交換器と、圧縮機を駆動する機器を冷却する冷却水が通流する冷却水用循環路と、冷却水用循環路を通流する冷却水と導入空気とを熱交換させる冷却水用熱交換部と、を備えたヒートポンプ式冷凍装置に関する。   The present invention relates to a heat pump refrigeration apparatus. More specifically, the present invention is provided with a housing and an upper portion of the housing, and introduced air introduced into the inside from the side of the housing into the external space through the upper portion of the housing. A blower fan to be discharged, a refrigeration circuit provided with a compressor, a fin-tube type heat exchanger for refrigerant that exchanges heat between the refrigerant flowing through the tube of the refrigeration circuit and the introduced air, and a device that drives the compressor A heat pump refrigeration system comprising: a cooling water circulation path through which cooling water for cooling the cooling water flows; and a heat exchange section for cooling water that exchanges heat between the cooling water flowing through the cooling water circulation path and the introduced air About.

かかるヒートポンプ式冷凍装置では、例えば特許文献1に示すように、室外機内において、上方側に送風ファンが配設され、送風ファンを挟んだ両側部には、フィンチューブ式の冷却水用熱交換器(冷却水用熱交換部の一例)が配設され、各冷却水用熱交換器の外方側には、フィンチューブ式の冷媒用熱交換器が配設されている。そして、送風ファンを回転駆動させることにより、外部空気を、冷媒用熱交換器、冷却水用熱交換器の順に通過させて室外機内に導入し、送風ファンを介して上方側から外部空間に排出する構成とされている。これにより、外部空気と冷媒及び冷却水とを間接的に熱交換させることができる。   In such a heat pump refrigeration apparatus, for example, as shown in Patent Document 1, a blower fan is disposed on the upper side in an outdoor unit, and fin tube type heat exchangers for cooling water are provided on both sides of the blower fan. (An example of a cooling water heat exchanger) is disposed, and a fin-tube refrigerant heat exchanger is disposed on the outer side of each cooling water heat exchanger. Then, by rotating the blower fan, external air is introduced into the outdoor unit through the refrigerant heat exchanger and the cooling water heat exchanger in this order, and discharged from the upper side to the external space via the blower fan. It is supposed to be configured. Thereby, heat can be indirectly exchanged between the external air, the refrigerant, and the cooling water.

特開2004−116931号公報JP 2004-116931 A

ここで、圧縮機を駆動する機器としては、発電した電力により圧縮機を駆動する燃料電池等やエンジンの駆動力に連動して圧縮機を駆動するガスエンジン等を例示することができる。そして、例えば、ガスエンジンは、用途に応じて定格出力や最高出力が設定されており、それら出力での発熱量に応じて、ガスエンジンを確実に冷却できるように冷却水用熱交換器の容量、形状及び配置等が決定されている。このため、ガスエンジンの冷却を確実に行うことができる範囲内であれば、上述の特許文献1に記載の構成を、例えば、各冷媒用熱交換器の内方側のうちの一方側のみに、フィンチューブ式の冷却水用熱交換器を設ける構成とする等、種々に改変することができる。   Here, examples of the device that drives the compressor include a fuel cell that drives the compressor with generated power, a gas engine that drives the compressor in conjunction with the driving force of the engine, and the like. And, for example, the rated output and the maximum output of the gas engine are set according to the application, and the capacity of the heat exchanger for cooling water can be surely cooled according to the calorific value at those outputs. The shape and arrangement are determined. For this reason, if it is in the range which can cool a gas engine reliably, the structure of the above-mentioned patent document 1 will be applied to only one side of the inner side of each heat exchanger for refrigerants, for example. Various modifications can be made, such as providing a fin tube type heat exchanger for cooling water.

しかしながら、このように構成を変更した場合、ガスエンジンの冷却は確実に行えるものの、外部空気が室外機内に導入される際の圧力損失に偏りが発生する場合がある。
例えば、上述のように、各冷媒用熱交換器の内方側のうちの一方側にフィンチューブ式の冷却水用熱交換器を設け、他方側には冷却水用熱交換器を設けない構成の場合、外部空気が冷媒用熱交換器及び冷却水用熱交換器の両方が設けられた一方側部位と冷媒用熱交換器のみが設けられた他方側部位とを通流する際の各圧力損失は、一方側部位が大きく他方側部位が小さくなってしまい偏りが生じる虞がある。このような場合、各冷媒用熱交換器を通流する外部空気の圧力損失を調整する必要が生じ、当該調整のための労力やコストが必要となり好ましいとはいえない。
また、このような調整が適切になされていない場合、室外機内に導入される外部空気の風量に偏りが生じると共に、各冷媒用熱交換器の熱交換能力にも偏りが生じる虞がある。
However, when the configuration is changed in this way, the gas engine can be reliably cooled, but there may be a bias in pressure loss when external air is introduced into the outdoor unit.
For example, as described above, a fin tube type cooling water heat exchanger is provided on one of the inner sides of each refrigerant heat exchanger, and a cooling water heat exchanger is not provided on the other side. In this case, each pressure when external air flows through one side portion where both the refrigerant heat exchanger and the cooling water heat exchanger are provided and the other side portion where only the refrigerant heat exchanger is provided. The loss may be biased because the one side portion is large and the other side portion is small. In such a case, it is necessary to adjust the pressure loss of the external air flowing through each refrigerant heat exchanger, which requires labor and cost for the adjustment and is not preferable.
Moreover, when such adjustment is not made appropriately, the air volume of the external air introduced into the outdoor unit is biased, and the heat exchange capability of each refrigerant heat exchanger may be biased.

本発明は、かかる実状に鑑みて為されたものであって、その目的は、冷媒用熱交換器及び冷却水用熱交換部を介して筐体内に導入される導入空気の流れの偏り防止及び風量の均等化を、簡便な構成で実現できるヒートポンプ式冷凍装置を提供することにある。   The present invention has been made in view of such a situation, and the object thereof is to prevent the deviation of the flow of introduced air introduced into the housing through the refrigerant heat exchanger and the cooling water heat exchange unit, and An object of the present invention is to provide a heat pump refrigeration apparatus that can realize equalization of air volume with a simple configuration.

上記目的を達成するための本発明に係るヒートポンプ式冷凍装置は、
筐体と、
前記筐体の上部に設けられ、前記筐体の側部から内部に導入される導入空気を前記筐体の上部を介して外部空間に排出する送風ファンと、
圧縮機を備えた冷凍回路と、
前記冷凍回路のチューブ内を通流する冷媒と前記導入空気とを熱交換させるフィンチューブ式の冷媒用熱交換器と、
前記圧縮機を駆動する機器を冷却する冷却水が通流する冷却水用循環路と、
前記冷却水用循環路を通流する冷却水と前記導入空気とを熱交換させる冷却水用熱交換部と、を備えたヒートポンプ式冷凍装置であって、その特徴構成は、
少なくとも一対の前記冷媒用熱交換器が、前記筐体の側部のうち対向する両側部の夫々に配置され、
前記冷却水用熱交換部が、前記冷却水が通流する伝熱管を複数回巻回して円筒状に形成されたコイル状熱交換器により構成されると共に、前記筐体の内部において、前記導入空気の通流方向における前記一対の冷媒用熱交換器の下流側で且つ軸芯方向が上下方向に沿うように配置されている点にある。
In order to achieve the above object, a heat pump refrigeration apparatus according to the present invention comprises:
A housing,
A blower fan that is provided at an upper portion of the casing and discharges the introduction air introduced into the inside from a side portion of the casing to an external space through the upper portion of the casing;
A refrigeration circuit with a compressor;
A fin-tube refrigerant heat exchanger that exchanges heat between the refrigerant flowing through the tube of the refrigeration circuit and the introduced air;
A cooling water circulation path through which cooling water for cooling the device driving the compressor flows;
A heat pump refrigeration apparatus comprising a cooling water heat exchange section for exchanging heat between the cooling water flowing through the cooling water circulation path and the introduced air,
At least a pair of the heat exchangers for refrigerant is disposed on each of opposite side portions of the side portion of the casing,
The cooling water heat exchanging section is constituted by a coiled heat exchanger formed in a cylindrical shape by winding a heat transfer tube through which the cooling water flows a plurality of times. It exists in the point arrange | positioned so that an axial center direction may follow the up-down direction in the downstream of the said pair of refrigerant | coolant heat exchanger in the flow direction of air.

上記構成によれば、筐体の上部に設けられた送風ファンが回転することにより、筐体の側部から内部に導入される導入空気は、冷媒用熱交換器及び冷却水用熱交換部を通過した後、筐体の上部を介して外部空間に排出される。これにより、冷媒用熱交換器にて導入空気と冷媒との熱交換が行われ、冷却水用熱交換部にて導入空気と冷却水との熱交換が行われる。
具体的には、筐体内に導入される導入空気は、まず、筐体の側部のうち対向する両側部の夫々に配設されたフィンチューブ式の冷媒用熱交換器を通過して、圧縮機を備えた冷凍回路のチューブ内を通流する冷媒と間接的に熱交換する。この際、各冷媒用熱交換器は、筐体の側部のうち対向する両側部の夫々に相互に対向する状態で配置されているので、両位置間で導入空気の流れの偏りが生じにくくなる。
According to the above configuration, when the blower fan provided at the upper part of the casing rotates, the introduced air introduced into the inside from the side of the casing is replaced with the refrigerant heat exchanger and the cooling water heat exchanger. After passing, it is discharged to the external space through the upper part of the housing. Thus, heat exchange between the introduced air and the refrigerant is performed in the refrigerant heat exchanger, and heat exchange between the introduced air and the cooling water is performed in the heat exchange section for the cooling water.
Specifically, the introduced air introduced into the casing is first compressed through a finned-tube refrigerant heat exchanger disposed on each of opposite side portions of the casing. Heat exchange indirectly with the refrigerant flowing in the tube of the refrigeration circuit equipped with the machine. At this time, each refrigerant heat exchanger is arranged in a state of facing each other on both sides facing each other among the side portions of the housing, so that the flow of the introduced air is less likely to be biased between the two positions. Become.

続いて、各冷媒用熱交換器を通過した後の導入空気は、各冷媒用熱交換器の下流側に位置する冷却水用熱交換部を通過して、冷却水用循環路を通流して圧縮機を駆動する機器(燃料電池やガスエンジン等)を冷却する冷却水と間接的に熱交換する。この際、冷却水用熱交換部は、冷却水が通流する伝熱管を複数回巻回して円筒状に形成されたコイル状熱交換器により構成されると共に、軸芯方向が上下方向に沿うように配置されている。このため、冷媒用熱交換器を通流した後の導入空気は、上下方向において伝熱管同士の隣接間に形成され且つ周方向において螺旋状に連続的に形成される各間隙を通過して、当該円筒状のコイル状熱交換器の内部から送風ファンを介して外部空間に排出されることとなる。従って、導入空気が上下方向を除く何れの方向から各隙間を介して円筒状のコイル状熱交換器を通過する際であっても、上記の導入空気の流れの偏りの問題を発生することがない。
従って、冷却水用熱交換部として円筒状のコイル状熱交換器を採用することにより、各冷媒用熱交換器の形状や構造等を略同一の構成とすることができ、このように構成しても、導入空気の流れの偏り防止及び風量の均等化を、簡便な装置構成で実現することができる。
Subsequently, the introduced air after passing through each refrigerant heat exchanger passes through the cooling water heat exchange section located on the downstream side of each refrigerant heat exchanger and flows through the cooling water circulation path. It indirectly exchanges heat with cooling water that cools the equipment (fuel cell, gas engine, etc.) that drives the compressor. At this time, the heat exchanger for cooling water is constituted by a coiled heat exchanger formed in a cylindrical shape by winding a heat transfer tube through which the cooling water flows a plurality of times, and the axial direction is along the vertical direction. Are arranged as follows. For this reason, the introduced air after flowing through the refrigerant heat exchanger passes through the gaps formed between adjacent heat transfer tubes in the vertical direction and continuously formed spirally in the circumferential direction, It will be discharged | emitted by the external space through the ventilation fan from the inside of the said cylindrical coiled heat exchanger. Therefore, even when the introduced air passes through the cylindrical coiled heat exchanger through each gap from any direction except the vertical direction, the problem of the deviation of the flow of the introduced air may occur. Absent.
Therefore, by adopting a cylindrical coiled heat exchanger as the cooling water heat exchanging section, the shape and structure of each refrigerant heat exchanger can be made substantially the same. However, it is possible to realize the prevention of uneven flow of the introduced air and the equalization of the air volume with a simple apparatus configuration.

よって、ヒートポンプ式冷凍装置において、冷媒用熱交換器及び冷却水用熱交換部を介して筐体内に導入される導入空気の流れの偏り防止及び風量の均等化を簡便な装置構成で実現できた。   Therefore, in the heat pump refrigeration apparatus, it was possible to realize the prevention of unevenness in the flow of the introduced air introduced into the housing through the heat exchanger for refrigerant and the heat exchanger for cooling water and equalization of the air volume with a simple apparatus configuration. .

本発明に係るヒートポンプ式冷凍装置の更なる特徴構成は、前記円筒状のコイル状熱交換器の軸芯方向において隣接する前記伝熱管の隣接間に形成される各間隙のうち、少なくとも一部の間隙が基準となる他部の間隙に対して上下方向で異なるように形成されている点にある。   A further characteristic configuration of the heat pump refrigeration apparatus according to the present invention is that at least a part of the gaps formed between adjacent heat transfer tubes in the axial direction of the cylindrical coiled heat exchanger. The gap is formed so as to be different in the vertical direction with respect to the gap of the other part serving as a reference.

上記構成によれば、円筒状のコイル状熱交換器の軸芯方向において隣接する伝熱管の隣接間に形成される各間隙のうち、少なくとも一部の間隙が基準となる他部の間隙に対して上下方向で異なる大きさ(間隔)に形成されているので、筐体の上部に設けられた送風ファンの回転により円筒状のコイル状熱交換器を通過する導入空気の抵抗を、上下方向において異なるものとなるように調整できる。これにより、筐体の内部に導入された導入空気の風速を上下方向において適宜調整することができ、各冷媒用熱交換器の熱交換能力を上下方向において適宜調整することができる。   According to the above configuration, of the gaps formed between adjacent heat transfer tubes adjacent to each other in the axial direction of the cylindrical coiled heat exchanger, at least a part of the gaps is a reference to other gaps. Therefore, the resistance of the introduced air passing through the cylindrical coiled heat exchanger by the rotation of the blower fan provided at the upper part of the casing is reduced in the vertical direction. Can be adjusted to be different. Thereby, the wind speed of the introduction air introduced into the inside of the housing can be adjusted as appropriate in the vertical direction, and the heat exchange capacity of each refrigerant heat exchanger can be adjusted as appropriate in the vertical direction.

具体的には、ヒートポンプ式冷凍装置は、筐体の上部に設けられた送風ファンの回転により、筐体の側部から内部に導入された導入空気が冷媒用熱交換器及び冷却水用熱交換部を介して筐体の上部から排出される構成である。このため、筐体の内部に導入された導入空気は、上方側の風速が速く下方側の風速が遅くなる傾向にあり、各冷媒用熱交換器の部位により熱交換能力にも偏りが生じる虞がある。
このような場合、例えば、円筒状のコイル状熱交換器の軸芯方向において、隣接する伝熱管の隣接間に形成される各間隙が、下方側から上方側に行くにつれて狭くなるように上下方向において相互に異なる大きさ(間隔)に形成されていると、筐体の上部に設けられた送風ファンの回転により円筒状のコイル状熱交換器を通過する導入空気の抵抗を、上方側を相対的に大きくし且つ下方側を相対的に小さくするようにバランスを取ることができる。これにより、筐体の内部に導入された導入空気は、上方側及び下方側とも風速の均一化を図ることができ、各冷媒用熱交換器の各部位において熱交換能力の均一化を図ることもできる。
Specifically, in the heat pump type refrigeration apparatus, the introduced air introduced into the inside from the side of the housing by the rotation of the blower fan provided at the top of the housing is used as the heat exchanger for the refrigerant and the heat exchange for the cooling water. It is the structure discharged | emitted from the upper part of a housing | casing through a part. For this reason, the air introduced into the housing tends to have a high upper wind speed and a lower lower air speed, and the heat exchange capacity may be biased depending on the location of each refrigerant heat exchanger. There is.
In such a case, for example, in the axial direction of the cylindrical coiled heat exchanger, each gap formed between adjacent adjacent heat transfer tubes is vertically reduced so as to become narrower from the lower side to the upper side. Are formed in different sizes (intervals), the resistance of the introduced air passing through the cylindrical coiled heat exchanger by the rotation of the blower fan provided at the top of the housing is Can be balanced so that the lower side is relatively small and the lower side is relatively small. As a result, the air introduced into the housing can be made uniform in air speed on both the upper side and the lower side, and the heat exchange capacity can be made uniform in each part of each heat exchanger for refrigerant. You can also.

また、必要に応じて、例えば、円筒状のコイル状熱交換器の軸芯方向において隣接する伝熱管の隣接間に形成される各間隙のうち、少なくとも一部の間隙を基準となる他部の間隙に対して上下方向で異なる大きさ(間隔)に形成する際、上方側部位に位置する各間隙を、基準となる他部(例えば、上方側部位と下方側部位との間に位置する各間隙)の間隔に対して下方側から上方側に行くにつれて順次狭くなるように形成し、下方側部位に位置する各間隙を、基準となる他部の間隔に対して狭く形成することもできる。   Further, if necessary, for example, among the gaps formed between adjacent heat transfer tubes in the axial direction of the cylindrical coiled heat exchanger, at least a part of the gaps as a reference When forming the gaps having different sizes (intervals) in the vertical direction with respect to the gap, the gaps located in the upper part are set as reference parts (for example, the parts located between the upper part and the lower part). It is also possible to form the gaps so as to become narrower sequentially from the lower side to the upper side with respect to the gaps), and to make the gaps located in the lower part narrower than the gaps of other parts serving as a reference.

本発明に係るヒートポンプ式冷凍装置の更なる特徴構成は、前記円筒状のコイル状熱交換器が、その軸芯方向が前記送風ファンの回転軸芯と同芯状態で前記送風ファンの下方側に配設されると共に、各々が同一構造で形成される前記一対の冷媒用熱交換器間に配設されている点にある。   A further characteristic configuration of the heat pump refrigeration apparatus according to the present invention is such that the cylindrical coiled heat exchanger has an axial direction concentric with a rotational axis of the blower fan and is below the blower fan. And being disposed between the pair of refrigerant heat exchangers each having the same structure.

上記構成によれば、円筒状のコイル状熱交換器が、その軸芯方向が送風ファンの回転軸芯と同芯状態で送風ファンの下方側に配設されると共に、各々が同一構造で形成される一対の冷媒用熱交換器間に配設されているので、各冷媒用熱交換器を介して筐体内に導入された導入空気が、略同様の風量で円筒状のコイル状熱交換器の各隙間を通過して当該コイル状熱交換器内に導入され、その後、上方側に上昇するだけで送風ファンを介して外部空間に排出されることとなる。
これにより、送風ファンにより筐体の側部から導入される導入空気の風量の均一化を図ることできる。
According to the above configuration, the cylindrical coil-shaped heat exchanger is disposed on the lower side of the blower fan with its axial direction being concentric with the rotary shaft of the blower fan, and each has the same structure Since the introduced air introduced into the housing via each refrigerant heat exchanger has a substantially the same air volume, it is disposed between the pair of refrigerant heat exchangers. After passing through each of the gaps, it is introduced into the coiled heat exchanger, and after that, only rising upward is discharged to the external space through the blower fan.
Thereby, the air volume of the introduction air introduce | transduced from the side part of a housing | casing by a ventilation fan can be aimed at.

本発明に係るヒートポンプ式冷凍装置の更なる特徴構成は、前記円筒状のコイル状熱交換器を構成する前記伝熱管が蛇腹形状に形成されている点にある。   A further characteristic configuration of the heat pump refrigeration apparatus according to the present invention is that the heat transfer tubes constituting the cylindrical coiled heat exchanger are formed in a bellows shape.

上記構成によれば、コイル状熱交換器を構成する伝熱管自体が蛇腹形状に構成されているので、伝熱管の表面積を増加させて、筐体の外部から導入される導入空気との熱交換効率を向上させることができる。   According to the above configuration, since the heat transfer tube itself constituting the coiled heat exchanger is configured in a bellows shape, the surface area of the heat transfer tube is increased, and heat exchange with the introduced air introduced from the outside of the housing is performed. Efficiency can be improved.

ガスヒートポンプ式冷凍装置の概略構成を示す回路図Circuit diagram showing schematic configuration of gas heat pump refrigeration system ガスヒートポンプ式冷凍装置の室外機の概略構成を示す斜視図The perspective view which shows schematic structure of the outdoor unit of a gas heat pump type freezing apparatus ガスヒートポンプ式冷凍装置の室外機の概略構成を示す側断面図Side sectional view showing schematic configuration of outdoor unit of gas heat pump refrigeration system 円筒状のコイル式熱交換器の概略構成を示す側断面図Side sectional view showing a schematic configuration of a cylindrical coil heat exchanger

図1〜図4に基づいて、本発明に係るヒートポンプ式冷凍装置の実施形態について説明する。
図1に示すように、ガスヒートポンプ式冷凍装置(ヒートポンプ式冷凍装置の一例)50は、空調対象空間(図示せず)を空調(冷暖房)可能に構成されており、主として、ガスエンジン(圧縮機を駆動する機器の一例)1により駆動される圧縮機2を備えた冷凍回路Rと、空調対象空間内に配設される室内機10と、空調対象空間外に配設される室外機20とを備えている。
Based on FIGS. 1-4, embodiment of the heat pump type freezing apparatus which concerns on this invention is described.
As shown in FIG. 1, a gas heat pump refrigeration apparatus (an example of a heat pump refrigeration apparatus) 50 is configured to be capable of air conditioning (cooling and heating) a space to be air-conditioned (not shown). An example of a device that drives the refrigeration circuit R) The refrigeration circuit R including the compressor 2 driven by 1, the indoor unit 10 disposed in the air-conditioning target space, and the outdoor unit 20 disposed outside the air-conditioning target space It has.

冷凍回路Rは、冷媒Bが循環可能な循環回路により構成され、その循環回路に、蒸発した冷媒Bを圧縮する圧縮機2と、圧縮機2にて圧縮された冷媒Bを凝縮させる凝縮器3と、凝縮器3にて凝縮された後の冷媒Bを膨張させる膨張弁4と、膨張弁4にて膨張された後の冷媒B(凝縮冷媒)を蒸発させる蒸発器5と、圧縮機2と蒸発器5との間に設けられるアキュムレータ8とを備えている。なお、図1では、空調対象空間を冷房する場合の回路構成を示している。   The refrigeration circuit R is configured by a circulation circuit through which the refrigerant B can circulate, and in the circulation circuit, the compressor 2 that compresses the evaporated refrigerant B and the condenser 3 that condenses the refrigerant B compressed by the compressor 2. An expansion valve 4 for expanding the refrigerant B after being condensed in the condenser 3, an evaporator 5 for evaporating the refrigerant B (condensed refrigerant) after being expanded by the expansion valve 4, and the compressor 2 An accumulator 8 provided between the evaporator 5 and the evaporator 5 is provided. In addition, in FIG. 1, the circuit structure in the case of cooling the air-conditioning object space is shown.

室内機10は、冷凍回路Rの一部を構成するチューブ(図示せず)内を通流する冷媒Bを膨張させる膨張弁4と、当該冷媒Bと空調対象空間内の空気(図示せず)とを熱交換させる板状でフィンチューブ式の室内側冷媒用熱交換器11と、送風ファン12とを備えている。図1に示すように、冷房運転時には、室内機10の室内側冷媒用熱交換器11は蒸発器5として機能しているが、暖房運転時には凝縮器3として機能するように構成されている。なお、本実施形態では、ガスヒートポンプ式冷凍装置50に室内機10を3つ設けたが、室内機10の設置数は必要に応じて増減することができる。   The indoor unit 10 includes an expansion valve 4 that expands the refrigerant B flowing through a tube (not shown) that forms part of the refrigeration circuit R, and the refrigerant B and air in the air-conditioning target space (not shown). And a fin-tube indoor refrigerant heat exchanger 11 and a blower fan 12 for exchanging heat with each other. As shown in FIG. 1, the indoor-side refrigerant heat exchanger 11 of the indoor unit 10 functions as the evaporator 5 during the cooling operation, but functions as the condenser 3 during the heating operation. In the present embodiment, three indoor units 10 are provided in the gas heat pump refrigeration apparatus 50. However, the number of installed indoor units 10 can be increased or decreased as necessary.

図1〜図3に示すように、室外機20は、概略長方形状の箱状の筐体21と、ガスエンジン1と、ベルト1a(伝達部材の一例)を介してガスエンジン1により駆動される圧縮機2と、冷凍回路Rの一部を構成するチューブ3a内を通流する冷媒Bと導入空気Aとを熱交換させ当該冷媒Bを蒸発させる板状でフィンチューブ式の室外側冷媒用熱交換器(冷媒用熱交換器の一例)3Aと、ガスエンジン1を冷却する冷却水Cが通流する冷却水用循環路Pと、冷却水用循環路Pを通流する冷却水Cと導入空気Aとを熱交換させる冷却水用熱交換部23と、筐体21の上部に設けられ、筐体21の側部から内部に導入される導入空気Aを筐体21の上部を介して外部空間(図示せず)に排出する送風ファン24とを備える。図1に示すように、冷房運転時には、室外機20の室外側冷媒用熱交換器3Aは凝縮器3として機能しているが、暖房運転時には蒸発器5として機能するように構成されている。なお、板状でフィンチューブ式の室外側冷媒用熱交換器(冷媒用熱交換器の一例)3Aは、形状や構造等が略同一の構成とされている。   As shown in FIGS. 1 to 3, the outdoor unit 20 is driven by the gas engine 1 via a substantially rectangular box-shaped casing 21, the gas engine 1, and a belt 1 a (an example of a transmission member). Heat of the compressor 2 and the refrigerant B flowing through the tube 3a constituting a part of the refrigeration circuit R and the introduced air A to evaporate the refrigerant B in a plate-like fin-tube type outdoor refrigerant heat Exchanger (an example of a heat exchanger for refrigerant) 3A, a cooling water circulation path P through which cooling water C for cooling the gas engine 1 flows, and a cooling water C flowing through the cooling water circulation path P are introduced. The cooling water heat exchanging part 23 for exchanging heat with the air A and the introduction air A provided in the upper part of the casing 21 and introduced from the side of the casing 21 to the outside through the upper part of the casing 21 And a blower fan 24 for discharging to a space (not shown). As shown in FIG. 1, the outdoor refrigerant heat exchanger 3A of the outdoor unit 20 functions as the condenser 3 during the cooling operation, but functions as the evaporator 5 during the heating operation. The plate-shaped and fin-tube outdoor refrigerant heat exchanger (an example of a refrigerant heat exchanger) 3A has substantially the same shape and structure.

筐体21は、筐体21の内部に板状の仕切底部材21aによって上下2分割された上部空間20Aと下部空間20Bとを備えている。
下部空間20Bの周囲四面は、板状の壁部材21bにより閉鎖され、下部空間20B内には、上述のガスエンジン1、圧縮機2及びアキュムレータ8等が収納されている。
The housing 21 includes an upper space 20A and a lower space 20B that are divided into two parts by a plate-like partition bottom member 21a inside the housing 21.
The four surrounding surfaces of the lower space 20B are closed by a plate-like wall member 21b, and the gas engine 1, the compressor 2, the accumulator 8, and the like are accommodated in the lower space 20B.

上部空間20Aの上部は天井壁部材21cにより閉鎖され、上部空間20Aの周囲四面のうち、対向する二面(短手面)の夫々には板状の壁部材21eが設けられ、その他の対向する二面(長手面)の夫々には室外側冷媒用熱交換器(冷媒用熱交換器の一例)3Aが設けられている。即ち、一対の室外側冷媒用熱交換器3Aは、筐体21の上部空間20Aの側部に設けられ、当該上部空間20A内に導入される導入空気Aの通流方向(水平方向)に対して略直交するように配置されている。   The upper portion of the upper space 20A is closed by a ceiling wall member 21c, and plate-like wall members 21e are provided on each of two opposing surfaces (short surfaces) of the four surrounding surfaces of the upper space 20A, and the other opposing surfaces. Each of the two surfaces (longitudinal surfaces) is provided with an outdoor refrigerant heat exchanger (an example of a refrigerant heat exchanger) 3A. In other words, the pair of outdoor refrigerant heat exchangers 3A is provided on the side of the upper space 20A of the casing 21, and the flow direction (horizontal direction) of the introduced air A introduced into the upper space 20A. Are arranged so as to be substantially orthogonal.

また、天井壁部材21cには、上部空間20Aと外部空間とを連通する円形状で一対の開口部21dが貫通形成されている。一対の開口部21dは、平面視で、一対の室外側冷媒用熱交換器3Aの対向面間の中央部位において、当該室外側冷媒用熱交換器3Aの対向面に沿って並設されている。
さらに、天井壁部材21cにおける各開口部21dには、各開口部21dと同芯の回転軸芯を備えた送風ファン24が設けられている。
The ceiling wall member 21c is formed with a pair of openings 21d that penetrates the upper space 20A and the external space in a circular shape. The pair of openings 21d are arranged side by side along the opposing surface of the outdoor refrigerant heat exchanger 3A at a central portion between the opposing surfaces of the pair of outdoor refrigerant heat exchangers 3A in plan view. .
Furthermore, each opening 21d in the ceiling wall member 21c is provided with a blower fan 24 having a rotation axis that is concentric with each opening 21d.

図1〜図4に示すように、冷却水用循環路Pは、冷却水Cが循環可能な循環回路により構成され、その循環回路に、送出ポンプ6と、ガスエンジン1と、冷却水Cと上部空間20Aの側部から内部に導入される導入空気Aとを熱交換させて、当該冷却水Cを冷却する冷却水用熱交換部23とを備えている。   As shown in FIGS. 1 to 4, the cooling water circulation path P is constituted by a circulation circuit through which the cooling water C can circulate, and the circulation circuit includes the delivery pump 6, the gas engine 1, the cooling water C, and the like. A heat exchanger 23 for cooling water that cools the cooling water C by exchanging heat with the introduced air A introduced into the inside from the side of the upper space 20A is provided.

冷却水用熱交換部23は、冷却水Cが通流する伝熱管23aを複数回(図4では、11回)巻回して円筒状に形成(即ち、螺旋状に形成)されたコイル状熱交換器23Aにより構成され、コイル状熱交換器23Aの円筒の内部、及び、軸芯方向(上下方向)において隣接する伝熱管23aの隣接間に形成される各間隙Dを、上部空間20A内に導入された導入空気Aが通流可能に構成されている。また、複数の伝熱管23aは、円筒状のコイル状熱交換器23Aの外径及び内径の夫々が、軸芯方向に亘って略同径となるように巻回されている。さらに、円筒状のコイル状熱交換器23Aの内径は、各開口部21dの内径よりも若干大径となるように構成されている。
また、円筒状のコイル状熱交換器23Aは、各間隙Dが、下方側から上方側に行くにつれて狭くなるように形成されている。具体的には、各間隙Dのうち、下方側のD1から順次、D2、D3、・・・Dnと、上方側に向かうにつれて一つずつ順次間隔が狭くなるように形成されている。
つまり、円筒状のコイル状熱交換器23Aは、円筒状のコイル状熱交換器23Aの軸芯方向において隣接する伝熱管23aの隣接間に形成される各間隙Dのうち、少なくとも一部の間隙Dが基準となる他部の間隙Dに対して上下方向で異なるように形成されている。なお、本実施形態では、各間隙Dの全てが、他の間隙D(基準となる他部の間隙D)に対して上下方向で異なる大きさ(間隔)となるように形成されている。
The heat exchanger 23 for cooling water is formed in a cylindrical shape (that is, formed in a spiral shape) by winding the heat transfer tube 23a through which the cooling water C flows a plurality of times (11 times in FIG. 4). Each gap D formed by the exchanger 23A and formed between the inside of the cylinder of the coiled heat exchanger 23A and the adjacent heat transfer tubes 23a in the axial direction (vertical direction) is formed in the upper space 20A. The introduced introduction air A is configured to be able to flow. The plurality of heat transfer tubes 23a are wound so that the outer diameter and the inner diameter of the cylindrical coiled heat exchanger 23A have substantially the same diameter in the axial direction. Further, the inner diameter of the cylindrical coiled heat exchanger 23A is configured to be slightly larger than the inner diameter of each opening 21d.
The cylindrical coil heat exchanger 23A is formed such that each gap D becomes narrower from the lower side to the upper side. Specifically, among the gaps D, the gaps are formed so that the intervals are sequentially reduced from D1 on the lower side to D2, D3,.
That is, the cylindrical coiled heat exchanger 23A has at least a part of the gaps D formed between the adjacent heat transfer tubes 23a in the axial direction of the cylindrical coiled heat exchanger 23A. D is formed so as to be different in the vertical direction with respect to the gap D of the other part as a reference. In the present embodiment, all the gaps D are formed to have different sizes (intervals) in the vertical direction with respect to other gaps D (reference gaps D).

そして、円筒状のコイル状熱交換器23Aは、その軸芯方向が上下方向に沿うように上部ケーシング20A内に配置されていると共に、送風ファン24の回転軸芯と同芯状態で当該送風ファン24の下部に配置されている。即ち、各送風ファン24の下方側のそれぞれに、同芯状態でコイル状熱交換器23Aが配置されている。また、各コイル状熱交換器23Aは、導入空気の通流方向において一対の室外側冷媒用熱交換器3A間における中間部位に配設されている。なお、中間部位とは、一対の室外側冷媒用熱交換器3A間の中央(各室外側冷媒用熱交換器3Aからの距離が完全に一致した位置)に位置しているものに限らず、当該中央から各室外側冷媒用熱交換器3A側に若干程度ずれた位置に位置しているものも含まれる概念である。   The cylindrical coiled heat exchanger 23A is disposed in the upper casing 20A so that the axial direction of the cylindrical heat exchanger is along the vertical direction, and the blower fan is concentric with the rotary shaft of the blower fan 24. 24 is arranged at the bottom. That is, the coiled heat exchanger 23 </ b> A is arranged in a concentric state on the lower side of each blower fan 24. Each coil-shaped heat exchanger 23A is disposed at an intermediate portion between the pair of outdoor refrigerant heat exchangers 3A in the flow direction of the introduced air. The intermediate portion is not limited to the one located at the center between the pair of outdoor refrigerant heat exchangers 3A (the position where the distances from the outdoor refrigerant heat exchangers 3A are completely matched), It is a concept that includes those located at a position slightly deviated from the center toward each outdoor refrigerant heat exchanger 3A side.

ガスヒートポンプ式冷凍装置50の運転動作について説明する。
ガスエンジン1の運転が開始されると、ベルト1aを介して圧縮機2が駆動して、冷凍回路R内を冷媒Bが循環通流する。また、冷却水用循環路Pにおける送出ポンプ6が駆動して、当該冷却水用循環路P内を冷却水Cが循環通流する。さらに、送風ファン24が回転駆動して、導入空気Aが、外部空間から筐体21の上部空間20Aの側部を介して当該上部空間20A内に導入され、外部空間に排出される。以下に、具体的に説明する。
The operation of the gas heat pump refrigeration apparatus 50 will be described.
When the operation of the gas engine 1 is started, the compressor 2 is driven via the belt 1a, and the refrigerant B circulates through the refrigeration circuit R. Further, the delivery pump 6 in the cooling water circulation path P is driven, and the cooling water C circulates through the cooling water circulation path P. Further, the blower fan 24 is rotationally driven, and the introduced air A is introduced into the upper space 20A from the outer space via the side portion of the upper space 20A of the housing 21 and discharged into the outer space. This will be specifically described below.

冷凍回路R内の冷媒Bは、圧縮機2にて圧縮された後、各室外側冷媒用熱交換器3A(凝縮器3)のチューブ3a内を通流し、筐体21の上部空間20A内に導入された導入空気Aと間接的に熱交換して冷却されて凝縮する。凝縮された冷媒Bは、各膨張弁4にて減圧された後、各室内側冷媒用熱交換器11(蒸発器5)内に流入し、空調対象空間内の空気と間接的に熱交換して加熱されて蒸発するとともに、当該空気が冷却されて空調対象空間を冷房する。蒸発した冷媒Bは、アキュムレータ8に流入し、その後圧縮機2に戻される。   The refrigerant B in the refrigeration circuit R is compressed by the compressor 2 and then flows through the tubes 3a of the outdoor refrigerant heat exchangers 3A (condenser 3) to enter the upper space 20A of the casing 21. The heat is indirectly exchanged with the introduced introduction air A to be cooled and condensed. The condensed refrigerant B is decompressed by each expansion valve 4 and then flows into each indoor-side refrigerant heat exchanger 11 (evaporator 5) to indirectly exchange heat with air in the air-conditioning target space. The air is heated and evaporated, and the air is cooled to cool the air-conditioning target space. The evaporated refrigerant B flows into the accumulator 8 and is then returned to the compressor 2.

一方で、冷却水用循環路P内の冷却水Cは、送出ポンプ6にてガスエンジン1に供給されて当該ガスエンジン1を冷却した後、各コイル状熱交換器23A内に流入し、筐体212の上部空間20A内において室外側冷媒用熱交換器3Aを通過した後の導入空気Aと間接的に熱交換して冷却される。冷却された冷却水Cは、送出ポンプ6に戻される。   On the other hand, the cooling water C in the cooling water circulation path P is supplied to the gas engine 1 by the delivery pump 6 to cool the gas engine 1 and then flows into the coil heat exchangers 23A. In the upper space 20A of the body 212, heat is indirectly exchanged with the introduced air A after passing through the outdoor refrigerant heat exchanger 3A, and the body 212 is cooled. The cooled cooling water C is returned to the delivery pump 6.

他方、送風ファン24の回転駆動により、導入空気Aが、筐体21の側部から略水平方向に沿って上部空間20A内に導入され、各室外側冷媒用熱交換器3Aを通過する。この際、各室外側冷媒用熱交換器3Aは、形状や構造等が略同一の構成とされており、導入空気Aの通流方向に対して略直交する状態で相互に対向する位置に配置されているので、各室外側冷媒用熱交換器3Aを通過した両位置間で導入空気Aの流れの偏りが生じにくくなる。   On the other hand, by the rotational drive of the blower fan 24, the introduction air A is introduced into the upper space 20A along the substantially horizontal direction from the side portion of the casing 21, and passes through each outdoor refrigerant heat exchanger 3A. At this time, each of the outdoor refrigerant heat exchangers 3A has substantially the same shape, structure, etc., and is disposed at a position facing each other in a state substantially orthogonal to the flow direction of the introduction air A. Therefore, the flow of the introduced air A is less likely to be biased between both positions that have passed through the outdoor refrigerant heat exchanger 3A.

続いて、各室外側冷媒用熱交換器5Aを通過した後の導入空気Aは、上下方向において伝熱管23a同士の隣接間に形成され且つ周方向において螺旋状に連続的に形成される各間隙Dを略水平方向に通過し、当該円筒状のコイル状熱交換器23Aの内部を上下方向に通過して、当該内部から送風ファン24及び開口部21dを介して外部空間に排出されることとなる。従って、導入空気Aが上下方向を除く何れの方向から各隙間Dを介して円筒状のコイル状熱交換器23Aを通過する際であっても、導入空気Aの流れの偏りの問題を発生することがなくなる。
従って、冷却水用熱交換部23として円筒状のコイル状熱交換器23Aを採用することにより、各室外側冷媒用熱交換器3Aの形状や構造等を略同一の構成とすることができ、このように構成しても、導入空気Aの流れの偏り防止及び風量の均等化を、簡便な装置構成で実現することができる。
Subsequently, the introduced air A after passing through each outdoor refrigerant heat exchanger 5A is formed between adjacent heat transfer tubes 23a in the vertical direction and continuously formed in a spiral shape in the circumferential direction. Passing through D in a substantially horizontal direction, passing through the inside of the cylindrical coiled heat exchanger 23A in the vertical direction, and being discharged from the inside to the external space via the blower fan 24 and the opening 21d. Become. Therefore, even when the introduced air A passes through the cylindrical coiled heat exchanger 23A through any gap D from any direction except the vertical direction, a problem of uneven flow of the introduced air A occurs. Nothing will happen.
Therefore, by adopting a cylindrical coiled heat exchanger 23A as the cooling water heat exchanging portion 23, the shape and structure of each outdoor refrigerant heat exchanger 3A can be made substantially identical, Even with this configuration, it is possible to prevent the deviation of the flow of the introduced air A and equalize the air volume with a simple apparatus configuration.

さらに、筐体21の天井壁部材21cに設けられた送風ファン24の回転により筐体21の上部空間20Aの内部に導入された導入空気Aが、上方側の風速が速く下方側の風速が遅くなる傾向であっても、円筒状のコイル状熱交換器23Aの伝熱管23aの隣接間に形成される各間隙Dが、下方側から上方側に行くにつれて狭くなるように上下方向において相互に異なる大きさ(間隔)に形成されているので、上方側の抵抗を相対的に大きくし且つ下方側の抵抗を相対的に小さくするようにバランスを取ることができる。これにより、筐体21の内部に導入された導入空気Aは、上方側及び下方側とも風速の均一化を図ることができ、各室外側冷媒用熱交換器3Aの各部位において熱交換能力の均一化を図ることもできる。
つまり、円筒状のコイル状熱交換器23Aの軸芯方向において隣接する伝熱管23aの隣接間に形成される各間隙Dのうち、少なくとも一部の間隙Dが基準となる他部の間隙Dに対して上下方向で異なる大きさ(間隔)に形成されているので、筐体21の上部に設けられた送風ファン24の回転により円筒状のコイル状熱交換器23Aを通過する導入空気Aの抵抗を、上下方向において異なるものとなるように調整できる。これにより、筐体21の内部に導入された導入空気Aの風速を上下方向において適宜調整することができ、各冷媒用熱交換器3Aの熱交換能力を上下方向において適宜調整することができる。
Further, the introduction air A introduced into the upper space 20A of the casing 21 by the rotation of the blower fan 24 provided on the ceiling wall member 21c of the casing 21 has a high upper wind speed and a lower lower wind speed. Even in such a tendency, the gaps D formed between adjacent heat transfer tubes 23a of the cylindrical coiled heat exchanger 23A are different from each other in the vertical direction so as to become narrower from the lower side to the upper side. Since it is formed in a size (interval), it is possible to balance so that the upper resistance is relatively large and the lower resistance is relatively small. Thereby, the introduction air A introduced into the inside of the housing 21 can achieve uniform wind speed on both the upper side and the lower side, and the heat exchange capacity can be improved in each part of each outdoor refrigerant heat exchanger 3A. Uniformity can also be achieved.
In other words, among the gaps D formed between the adjacent heat transfer tubes 23a in the axial direction of the cylindrical coiled heat exchanger 23A, at least a part of the gaps D serves as a reference gap D. On the other hand, since they are formed in different sizes (intervals) in the vertical direction, the resistance of the introduced air A that passes through the cylindrical coiled heat exchanger 23A by the rotation of the blower fan 24 provided in the upper part of the housing 21. Can be adjusted to be different in the vertical direction. Thereby, the wind speed of the introduction air A introduced into the inside of the housing 21 can be appropriately adjusted in the vertical direction, and the heat exchanging ability of each refrigerant heat exchanger 3A can be appropriately adjusted in the vertical direction.

よって、ガスヒートポンプ式冷凍装置において、冷媒用熱交換器5A及び冷却水用熱交換部23を介して筐体21内に導入される導入空気Aの流れの偏り防止、風量の均等化及び風速の均一化を実現できた。   Therefore, in the gas heat pump refrigeration apparatus, the flow of the introduced air A introduced into the housing 21 through the refrigerant heat exchanger 5A and the cooling water heat exchanger 23 is prevented from being biased, the air volume is equalized, and the wind speed Uniformity was achieved.

〔その他の実施形態〕
(1)上述の実施形態では、一対の送風ファン24に対応して円筒状のコイル状熱交換器23A(冷却水用熱交換部の一例)を一対設けたが、各送風ファン24に対応する状態であれば、円筒状のコイル状熱交換器23Aの設置数は1つであってもよいし、3つ以上であってもよい。なお、各送風ファン24に対応する状態で円筒状のコイル状熱交換器23Aを3つ以上設置する場合は、各コイル状熱交換器23Aを一対の室外側冷媒用熱交換器3Aの対向面に沿って並設することが好ましい。
[Other Embodiments]
(1) In the above-described embodiment, a pair of cylindrical coil heat exchangers 23 </ b> A (an example of a heat exchange unit for cooling water) is provided corresponding to the pair of blower fans 24. If it is in a state, the number of installed cylindrical coiled heat exchangers 23A may be one, or may be three or more. When three or more cylindrical coiled heat exchangers 23A are installed in a state corresponding to each blower fan 24, each coiled heat exchanger 23A is opposed to a pair of outdoor refrigerant heat exchangers 3A. It is preferable to line up along.

(2)上述の実施形態では、各送風ファン24の下方側に位置する円筒状のコイル状熱交換器23A(冷却水用熱交換部の一例)の夫々を、平面視で対向配置される一対の室外側冷媒用熱交換器5Aの中間部位に設ける構成としたが、各送風ファン24の下方側に位置する状態で円筒状のコイル状熱交換器23Aを何れかの室外側冷媒用熱交換器3Aに近接或いは離間した側に設ける構成としてもよい。 (2) In the above-described embodiment, a pair of cylindrical coil heat exchangers 23A (an example of a cooling water heat exchange unit) positioned below each blower fan 24 are opposed to each other in plan view. However, the cylindrical coil heat exchanger 23 </ b> A is exchanged with any one of the outdoor refrigerants in a state of being positioned below each blower fan 24. It is good also as a structure provided in the side close | similar to or spaced apart from the container 3A.

(3)上述の実施形態では、円筒状のコイル状熱交換器23Aの内径を、天井壁部材21cにおける開口部21dの内径よりも若干大径に構成したが、コイル状熱交換器23Aの内径及び外径は適宜変更することができる。
また、円筒状のコイル状熱交換器23Aの構成、即ち、伝熱管の径、巻き数等は、適宜変更することができる。
さらに、円筒状のコイル状熱交換器23Aの伝熱管23aを、蛇腹形状に形成する構成としてもよい。この場合、伝熱管23aの表面積を増加させて、筐体21の外部から導入される導入空気Aとの熱交換効率を向上させることができる。
(3) In the above embodiment, the inner diameter of the cylindrical coiled heat exchanger 23A is configured to be slightly larger than the inner diameter of the opening 21d in the ceiling wall member 21c, but the inner diameter of the coiled heat exchanger 23A The outer diameter can be changed as appropriate.
Further, the configuration of the cylindrical coiled heat exchanger 23A, that is, the diameter and the number of turns of the heat transfer tube, can be changed as appropriate.
Further, the heat transfer tube 23a of the cylindrical coiled heat exchanger 23A may be formed in a bellows shape. In this case, the heat exchange efficiency with the introduction air A introduced from the outside of the housing 21 can be improved by increasing the surface area of the heat transfer tube 23a.

(4)上述の実施形態では、図1に示すように、冷凍回路Rにおいて冷媒Bを、圧縮機2、室外側冷媒用熱交換器3A、膨張弁4、室内側冷媒用熱交換器11、アキュムレータ8、圧縮機2の順に循環通流させる構成とし、室外側冷媒用熱交換器3Aを凝縮器3として機能させ、室内側冷媒用熱交換器11を蒸発器5として機能させて、空調対象空間内の冷房運転を行う構成について説明した。
これに対して、図示しないが、四方弁や補助蒸発器等を適宜設けて、冷凍回路Rにおいて冷媒Bを、圧縮機2、アキュムレータ8、室内側冷媒用熱交換器11、膨張弁4、室外側冷媒用熱交換器3A、圧縮機2の順に循環通流させる構成とし、室内側冷媒用熱交換器11を凝縮器3として機能させ、室外側冷媒用熱交換器3Aを蒸発器5として機能させて、空調対象空間内を暖房運転する構成としてもよい。
(4) In the above-described embodiment, as shown in FIG. 1, in the refrigeration circuit R, the refrigerant B is replaced with the compressor 2, the outdoor refrigerant heat exchanger 3 </ b> A, the expansion valve 4, the indoor refrigerant heat exchanger 11, A configuration in which the accumulator 8 and the compressor 2 are circulated in order, the outdoor refrigerant heat exchanger 3A functions as the condenser 3, and the indoor refrigerant heat exchanger 11 functions as the evaporator 5 to be air-conditioned. The configuration for performing the cooling operation in the space has been described.
On the other hand, although not shown, a four-way valve, an auxiliary evaporator, and the like are provided as appropriate so that the refrigerant B is supplied to the compressor 2, the accumulator 8, the indoor refrigerant heat exchanger 11, the expansion valve 4, and the chamber in the refrigeration circuit R. The outside refrigerant heat exchanger 3A and the compressor 2 are circulated in this order, the indoor refrigerant heat exchanger 11 functions as the condenser 3, and the outdoor refrigerant heat exchanger 3A functions as the evaporator 5. It is good also as a structure which carries out heating operation in the air-conditioning object space.

(5)上述の実施形態では、円筒状のコイル状熱交換器23Aの軸芯方向において隣接する伝熱管23aの隣接間に形成される各間隙Dのうち、少なくとも一部の間隙Dを基準となる他部の間隙Dに対して上下方向で異なる大きさ(間隔)に形成する際、円筒状のコイル状熱交換器23Aを、各間隙Dが、下方側から上方側に行くにつれて狭くなるように形成し、各間隙Dのうち、下方側のD1から順次、D2、D3、・・・Dnと、上方側に向かうにつれて一つずつ順次間隔が狭くなるように形成して、各間隙Dを上下方向において相互に異なる大きさ(間隔)に形成したが、各間隙Dは適宜間隔に設定することができる。
例えば、円筒状のコイル状熱交換器23Aの軸芯方向において隣接する伝熱管23aの隣接間に形成される各間隙Dのうち、少なくとも一部の間隙Dを基準となる他部の間隙Dに対して上下方向で異なる大きさ(間隔)に形成する際、各間隙Dの間隔を下方側から上方側に行くにつれて複数間隔ごとに狭くなるように形成し、上下方向において、これら複数の間隔を形成する間隙D群に対して他の複数の間隔を形成する間隙D群を、相互に異なる大きさ(間隔)に形成する構成としてもよい。
また、例えば、円筒状のコイル状熱交換器23Aの軸芯方向において隣接する伝熱管23aの隣接間に形成される各間隙Dのうち、少なくとも一部の間隙Dを基準となる他部の間隙Dに対して上下方向で異なる大きさ(間隔)に形成する際、上方側部位に位置する各間隙Dを、基準となる他部(例えば、上方側部位と下方側部位との間に位置する各間隙D)の間隔に対して下方側から上方側に行くにつれて順次狭くなるように形成し、下方側部位に位置する各間隙Dを、基準となる他部の間隔に対して狭く形成することもできる。
さらに、例えば、各間隙Dの間隔を一定の間隔にすることもできる。
(5) In the above embodiment, at least a part of the gaps D among the gaps D formed between the adjacent heat transfer tubes 23a in the axial direction of the cylindrical coiled heat exchanger 23A is used as a reference. When forming different sizes (intervals) in the vertical direction with respect to the other gap D, the cylindrical coiled heat exchanger 23A is narrowed so that each gap D goes from the lower side to the upper side. In the gaps D, the gaps D1 are sequentially formed from the lower side D1 to D2, D3,... Although different sizes (intervals) are formed in the vertical direction, the gaps D can be set as appropriate.
For example, among the gaps D formed between the adjacent heat transfer tubes 23a in the axial direction of the cylindrical coiled heat exchanger 23A, at least a part of the gaps D serves as a reference gap D. In contrast, when the gaps D are formed in different sizes (intervals) in the vertical direction, the gaps D are formed so as to become narrower at intervals of plural intervals from the lower side to the upper side. It is good also as a structure which forms the gap | interval D group which forms another some space | interval with respect to the gap | interval D group to form in a mutually different magnitude | size (interval).
Further, for example, among the gaps D formed between the adjacent heat transfer tubes 23a in the axial direction of the cylindrical coiled heat exchanger 23A, at least a part of the gaps D based on at least a part of the gaps D is used. When forming different sizes (intervals) in the vertical direction with respect to D, each gap D positioned in the upper part is positioned between other parts serving as a reference (for example, between the upper part and the lower part) Each gap D) is formed so as to become narrower sequentially from the lower side to the upper side, and each gap D located in the lower part is formed narrower than the reference interval of other parts. You can also.
Furthermore, for example, the interval between the gaps D can be set to a constant interval.

(6)上記実施形態では、筐体21の側部のうち対向する両側部の夫々に室外側冷媒用熱交換器3Aを設けたが、これに加えて、筐体21の側部のうちの他の側部に板状のフィンチューブ式の室外側冷媒用熱交換器3Aを設ける構成としてもよい。 (6) In the above embodiment, the outdoor refrigerant heat exchanger 3 </ b> A is provided on each of the opposite side portions of the side portion of the casing 21, but in addition to this, of the side portions of the casing 21 It is good also as a structure which provides 3A of plate-shaped fin tube type outdoor refrigerant | coolant heat exchangers in another side part.

(7)上記実施形態では、冷凍回路Rを構成する圧縮機2をガスエンジン(圧縮機を駆動する機器の一例)1によりベルト1aを介して機械的に起動する構成としたが、圧縮機2を駆動する機器としては、当該圧縮機2を良好に駆動させることができ、当該駆動により排熱を発生する機器であれば、燃料電池等とすることもできる。この場合、燃料電池等から発生した電力により圧縮機2を駆動することとなる。 (7) In the above embodiment, the compressor 2 constituting the refrigeration circuit R is mechanically started by the gas engine (an example of a device that drives the compressor) 1 via the belt 1a. As a device that drives the compressor 2, the compressor 2 can be driven satisfactorily, and a fuel cell or the like can be used as long as the device generates exhaust heat by the drive. In this case, the compressor 2 is driven by electric power generated from the fuel cell or the like.

以上説明したように、冷媒用熱交換器及び冷却水用熱交換器を介して筐体内に導入される導入空気の圧力損失の偏り防止及び風量の均一化を、簡便な構成で実現できるヒートポンプ式冷凍装置を提供することができる。   As described above, the heat pump type that can realize the prevention of uneven pressure loss of the introduced air introduced into the casing through the heat exchanger for refrigerant and the heat exchanger for cooling water and uniform air flow with a simple configuration. A refrigeration apparatus can be provided.

1 ガスエンジン(圧縮機を駆動する機器)
2 圧縮機
3 凝縮器
4 膨張弁
5 蒸発器
3A 室外側冷媒用熱交換器(冷媒用熱交換器)
3a チューブ
21 筐体
21c 天井壁部材(筐体の上部)
21d 開口部
23 冷却水用熱交換部
23A 円筒状のコイル状熱交換器(冷却水用熱交換部)
23a 伝熱管
24 送風ファン
50 ガスヒートポンプ式冷凍装置(ヒートポンプ式冷凍装置)
A 導入空気
B 冷媒
C 冷却水
R 冷凍回路
P 冷却水用循環路
D 間隙
1 Gas engine (equipment that drives the compressor)
2 Compressor 3 Condenser 4 Expansion valve 5 Evaporator 3A Heat exchanger for outdoor refrigerant (heat exchanger for refrigerant)
3a Tube 21 Case 21c Ceiling wall member (upper part of case)
21d Opening 23 Cooling Water Heat Exchanger 23A Cylindrical Coiled Heat Exchanger (Cooling Water Heat Exchanger)
23a Heat transfer tube 24 Blower fan 50 Gas heat pump refrigeration system (heat pump refrigeration system)
A Introduction air B Refrigerant C Cooling water R Refrigeration circuit P Cooling water circulation path D Gap

Claims (4)

筐体と、
前記筐体の上部に設けられ、前記筐体の側部から内部に導入される導入空気を前記筐体の上部を介して外部空間に排出する送風ファンと、
圧縮機を備えた冷凍回路と、
前記冷凍回路のチューブ内を通流する冷媒と前記導入空気とを熱交換させるフィンチューブ式の冷媒用熱交換器と、
前記圧縮機を駆動する機器を冷却する冷却水が通流する冷却水用循環路と、
前記冷却水用循環路を通流する冷却水と前記導入空気とを熱交換させる冷却水用熱交換部と、を備えたヒートポンプ式冷凍装置であって、
少なくとも一対の前記冷媒用熱交換器が、前記筐体の側部のうち対向する両側部の夫々に配置され、
前記冷却水用熱交換部が、前記冷却水が通流する伝熱管を複数回巻回して円筒状に形成されたコイル状熱交換器により構成されると共に、前記筐体の内部において、前記導入空気の通流方向における前記一対の冷媒用熱交換器の下流側で且つ軸芯方向が上下方向に沿うように配置されているヒートポンプ式冷凍装置。
A housing,
A blower fan that is provided at an upper portion of the casing and discharges the introduction air introduced into the inside from a side portion of the casing to an external space through the upper portion of the casing;
A refrigeration circuit with a compressor;
A fin-tube refrigerant heat exchanger that exchanges heat between the refrigerant flowing through the tube of the refrigeration circuit and the introduced air;
A cooling water circulation path through which cooling water for cooling the device driving the compressor flows;
A heat pump refrigeration apparatus comprising: a cooling water heat exchange section that exchanges heat between the cooling water flowing through the cooling water circulation path and the introduced air;
At least a pair of the heat exchangers for refrigerant is disposed on each of opposite side portions of the side portion of the casing,
The cooling water heat exchanging section is constituted by a coiled heat exchanger formed in a cylindrical shape by winding a heat transfer tube through which the cooling water flows a plurality of times. A heat pump type refrigeration apparatus disposed downstream of the pair of refrigerant heat exchangers in the air flow direction and so that an axial direction is along the vertical direction.
前記円筒状のコイル状熱交換器の軸芯方向において隣接する前記伝熱管の隣接間に形成される各間隙のうち、少なくとも一部の間隙が基準となる他部の間隙に対して上下方向で異なるように形成されている請求項1に記載のヒートポンプ式冷凍装置。   Of the gaps formed between adjacent ones of the heat transfer tubes adjacent to each other in the axial direction of the cylindrical coiled heat exchanger, at least a part of the gaps is in the vertical direction with respect to the gaps of the other part. The heat pump refrigeration apparatus according to claim 1, wherein the heat pump refrigeration apparatus is formed differently. 前記円筒状のコイル状熱交換器が、その軸芯方向が前記送風ファンの回転軸芯と同芯状態で前記送風ファンの下方側に配設されると共に、各々が同一構造で形成される前記一対の冷媒用熱交換器間に配設されている請求項1又は2に記載のヒートポンプ式冷凍装置。   The cylindrical coil-shaped heat exchanger is disposed on the lower side of the blower fan with its axial direction being concentric with the rotational axis of the blower fan, and each is formed with the same structure The heat pump refrigeration apparatus according to claim 1, wherein the heat pump refrigeration apparatus is disposed between the pair of refrigerant heat exchangers. 前記円筒状のコイル状熱交換器を構成する前記伝熱管が蛇腹形状に形成されている請求項1から3の何れか一項に記載のヒートポンプ式冷凍装置。   The heat pump refrigeration apparatus according to any one of claims 1 to 3, wherein the heat transfer tube constituting the cylindrical coiled heat exchanger is formed in a bellows shape.
JP2014153899A 2014-07-29 2014-07-29 Heat pump refrigeration system Active JP6296934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014153899A JP6296934B2 (en) 2014-07-29 2014-07-29 Heat pump refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014153899A JP6296934B2 (en) 2014-07-29 2014-07-29 Heat pump refrigeration system

Publications (2)

Publication Number Publication Date
JP2016031194A true JP2016031194A (en) 2016-03-07
JP6296934B2 JP6296934B2 (en) 2018-03-20

Family

ID=55441681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153899A Active JP6296934B2 (en) 2014-07-29 2014-07-29 Heat pump refrigeration system

Country Status (1)

Country Link
JP (1) JP6296934B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144269U (en) * 1980-04-01 1981-10-30
JPS5847065U (en) * 1981-09-18 1983-03-30 株式会社東芝 air conditioner
JP2001221531A (en) * 2000-02-04 2001-08-17 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009074701A (en) * 2007-09-18 2009-04-09 Aisin Seiki Co Ltd Outdoor unit for air conditioner and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144269U (en) * 1980-04-01 1981-10-30
JPS5847065U (en) * 1981-09-18 1983-03-30 株式会社東芝 air conditioner
JP2001221531A (en) * 2000-02-04 2001-08-17 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009074701A (en) * 2007-09-18 2009-04-09 Aisin Seiki Co Ltd Outdoor unit for air conditioner and air conditioner

Also Published As

Publication number Publication date
JP6296934B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
KR102217279B1 (en) Variable heat pump using magneto caloric materials
US9903608B2 (en) Apparatus for opening and closing discharge port and air conditioner having the same
US11506434B2 (en) Adjustable inlet header for heat exchanger of an HVAC system
US9625185B2 (en) Heat pump with magneto caloric materials and variable magnetic field strength
US20110126581A1 (en) Air conditioner and outdoor unit thereof
US20140165594A1 (en) Magneto caloric device with continuous pump
US10830510B2 (en) Heat exchanger for a vapor compression system
WO2014119430A1 (en) Outdoor unit and refrigeration cycle device
JP2015068610A (en) Air conditioner
JP6466047B1 (en) Heat exchanger and air conditioner
KR20190006339A (en) Ciller unit and Chiller system including the same
JP6296934B2 (en) Heat pump refrigeration system
KR100502303B1 (en) A Spiral Type Heat Exchanger Device
JP6661781B2 (en) Refrigeration cycle device
US10378781B2 (en) Outdoor unit for refrigeration cycle apparatus, and refrigeration cycle apparatus
JP6494916B2 (en) Heat exchanger and air conditioner using the same
WO2017056214A1 (en) Air-conditioner
WO2016151655A1 (en) Air conditioning device and method for determining performance of same
KR20170070797A (en) Outdoor unit of air conditioner and air conditioner
WO2015136646A1 (en) Air-conditioning device
WO2017082321A1 (en) Refrigeration cycle device and outdoor unit of air-conditioning device
JP7229255B2 (en) Outdoor unit and refrigeration cycle device
KR101873751B1 (en) Air conditoner
KR101570376B1 (en) Refrigerator
WO2020136797A1 (en) Outdoor unit and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6296934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250