JP2016031060A - Intake device - Google Patents

Intake device Download PDF

Info

Publication number
JP2016031060A
JP2016031060A JP2014154447A JP2014154447A JP2016031060A JP 2016031060 A JP2016031060 A JP 2016031060A JP 2014154447 A JP2014154447 A JP 2014154447A JP 2014154447 A JP2014154447 A JP 2014154447A JP 2016031060 A JP2016031060 A JP 2016031060A
Authority
JP
Japan
Prior art keywords
curved
intake
intake passage
downstream
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014154447A
Other languages
Japanese (ja)
Other versions
JP6394154B2 (en
Inventor
伊藤 篤史
Atsushi Ito
篤史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2014154447A priority Critical patent/JP6394154B2/en
Publication of JP2016031060A publication Critical patent/JP2016031060A/en
Application granted granted Critical
Publication of JP6394154B2 publication Critical patent/JP6394154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an intake device capable of suppressing release of an intake air flow and effectively reducing pressure loss in a curved portion of an intake passage.SOLUTION: An intake port portion 20 of this intake air device 100 includes an intake pipe 1 connected to an internal combustion engine 90 and having a curved portion 3. The curved portion 3 includes a curved upstream portion 4 and a curve downstream portion 5. In a cross-section C2 of the curved downstream portion 5 orthogonal to an extension direction of the intake pipe 1, a distance H2 between an intake passage inner surface 5a on a curve outer side of the curved downstream portion 5 and an intake passage inner surface 5b on a curve inner side is gradually reduced along an intake air flow direction (arrow B direction) of the curved downstream portion 5 and a distance W2 between intake passage inner surfaces 5c and 5d orthogonal to and facing the intake passage inner surfaces 5a and 5b facing each other at the distance H2 is gradually increased along the intake air flow direction so that a cross-sectional area S of the curved downstream portion 5 is made constant along the intake air flow direction.SELECTED DRAWING: Figure 2

Description

本発明は、吸気装置に関し、特に、内燃機関に接続される吸気通路を備えた吸気装置に関する。   The present invention relates to an intake device, and more particularly, to an intake device having an intake passage connected to an internal combustion engine.

従来、内燃機関に接続される吸気通路を備えた吸気装置が知られている(たとえば、特許文献1参照)。   Conventionally, an intake device having an intake passage connected to an internal combustion engine is known (see, for example, Patent Document 1).

上記特許文献1には、吸気流路の途中が湾曲した吸気管を備え、内燃機関に接続される吸気マニホルド(吸気装置)が開示されている。この特許文献1に記載の吸気マニホルドにおける吸気管は、両端部に形成された円筒状部と、扁平率(断面形状)が一定に保たれた扁平形状(長円扁平形状)の流路断面を有する湾曲部と、円筒状部と湾曲部との間に形成され、湾曲部から円筒状部に向けて長円扁平形状の流路断面を徐々に円形状に戻す徐変部とによって構成されている。すなわち、吸気管は、吸気流れ方向に沿って、円筒状部、徐変部、扁平形状の湾曲部、徐変部および円筒状部の順で流路が構成されている。なお、湾曲部においては、扁平率(断面形状)が一定に保たれた状態で曲げられているので、湾曲外側および内側の内面は、各々が一定の曲率半径を有していると考えられる。   Patent Document 1 discloses an intake manifold (intake device) that includes an intake pipe that is curved in the middle of an intake passage and is connected to an internal combustion engine. The intake pipe in the intake manifold described in Patent Document 1 has a cylindrical portion formed at both ends and a flow passage cross section having a flat shape (oval flat shape) in which the flatness (cross-sectional shape) is kept constant. And a gradually changing portion that is formed between the cylindrical portion and the curved portion, and gradually returns the cross section of the elliptical flat shape to the circular shape from the curved portion toward the cylindrical portion. Yes. That is, in the intake pipe, the flow path is configured in the order of the cylindrical portion, the gradually changing portion, the flat curved portion, the gradually changing portion, and the cylindrical portion along the intake flow direction. Since the bending portion is bent in a state in which the flatness (cross-sectional shape) is kept constant, it is considered that the curved inner side and the inner inner surface each have a constant radius of curvature.

特開平11−210578号公報JP-A-11-210578

しかしながら、上記特許文献1に記載された吸気マニホルドでは、扁平率(断面形状)が一定であることから湾曲部における湾曲外側および内側の内面の各々が一定の曲率半径を有して曲げられていると考えられるため、湾曲部の前半部分を通過した吸気流が後半部分を通過する際に、連続する一定の曲げ半径に起因して湾曲内側の内面近傍から剥離しやすいと考えられる。また、湾曲部の後半部分で吸気流が剥離した場合には、背後(徐変部を含む後流領域)における剥離渦の発生が吸気管の圧力損失を増加させることにつながる。このため、吸気管(吸気通路)の湾曲部を通過する吸気流の剥離に起因して圧力損失を効果的に低減することができないという問題点がある。   However, in the intake manifold described in Patent Document 1, since the flatness (cross-sectional shape) is constant, each of the curved outer side and the inner inner surface of the curved portion is bent with a constant radius of curvature. Therefore, when the intake air flow that has passed through the first half portion of the curved portion passes through the second half portion, it is considered that it is likely to peel off from the vicinity of the inner surface of the curved inner side due to a continuous constant bending radius. In addition, when the intake flow is separated at the latter half of the curved portion, the generation of a separation vortex behind (the wake region including the gradually changing portion) leads to an increase in the pressure loss of the intake pipe. For this reason, there is a problem that the pressure loss cannot be effectively reduced due to separation of the intake flow passing through the curved portion of the intake pipe (intake passage).

この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、吸気流の剥離を抑制して吸気通路の湾曲部における圧力損失を効果的に低減することが可能な吸気装置を提供することである。   The present invention has been made to solve the above-described problems, and one object of the present invention is to effectively suppress pressure loss in the curved portion of the intake passage by suppressing separation of the intake flow. It is to provide an intake device capable of this.

上記目的を達成するために、この発明の一の局面における吸気装置は、内燃機関に接続され、通路外面および通路内面が共に湾曲する湾曲部を有する吸気通路を備え、吸気通路の湾曲部は、湾曲部の上流側の部分である湾曲上流部と、湾曲部の下流側の部分である湾曲下流部とを含み、湾曲下流部の吸気通路の延びる方向と直交する断面において、湾曲下流部における湾曲外側の吸気通路内面と湾曲内側の吸気通路内面との間の下流部第1間隔を湾曲下流部の吸気流れ方向に沿って徐々に小さくするとともに、下流部第1間隔を有して対向する吸気通路内面に直交して対向する吸気通路内面間の下流部第2間隔を吸気流れ方向に沿って徐々に大きくすることによって、湾曲下流部の断面積が吸気流れ方向に沿って一定になるように構成されている。   In order to achieve the above object, an intake device according to one aspect of the present invention includes an intake passage that is connected to an internal combustion engine and has a curved portion in which both an outer surface of the passage and an inner surface of the passage are curved. The curved downstream portion includes a curved upstream portion, which is an upstream portion of the curved portion, and a curved downstream portion, which is a downstream portion of the curved portion, in a cross section orthogonal to the direction in which the intake passage extends in the curved downstream portion. The first downstream interval between the outer intake passage inner surface and the curved inner intake passage inner surface is gradually decreased along the intake flow direction of the curved downstream portion, and the intake air is opposed to the downstream first interval. By gradually increasing the downstream second interval between the inner surfaces of the intake passages that are orthogonal to the inner surface of the passage, the sectional area of the curved downstream portion becomes constant along the intake flow direction. Composed That.

この発明の一の局面による吸気装置では、上記のように、湾曲下流部の吸気通路の延びる方向と直交する断面において、湾曲下流部における湾曲外側の吸気通路内面と湾曲内側の吸気通路内面との間の下流部第1間隔を吸気流れ方向に沿って徐々に小さくするとともに、下流部第1間隔を有して対向する吸気通路内面に直交して対向する吸気通路内面間の下流部第2間隔を吸気流れ方向に沿って徐々に大きくすることによって、湾曲下流部の断面積が吸気流れ方向に沿って一定になるように吸気通路の湾曲部を構成する。これにより、吸気流の剥離が発生しやすい湾曲下流部において、湾曲外側および内側の吸気通路内面間の下流部第1間隔を小さくすることにより、湾曲外側の吸気通路内面近傍での流路長と湾曲内側の吸気通路内面近傍での流路長との差が減少されるので、吸気流が湾曲内側の吸気通路内面から剥離するのが抑制される。さらに、湾曲下流部の湾曲外側および内側の吸気通路内面間の下流部第1間隔を急激に変化させることなく徐々に変化させることによって、湾曲外側の吸気通路内面近傍での流路長と湾曲内側の吸気通路内面近傍での流路長との差を急激に減少させることなく徐々に減少させることができるので、吸気流が湾曲内側の吸気通路内面から剥離するのをより効果的に抑制することができる。その結果、吸気通路の湾曲部における圧力損失を効果的に低減することができる。また、湾曲外側の吸気通路内面と湾曲内側の吸気通路内面との間の下流部第1間隔を減少させるように流路断面形状を変化させた場合にも、下流部第2間隔を増加させることにより断面積を一定に保つことによって、下流部第1間隔が細められた湾曲下流部での吸気流の圧力損失が増加するのを効果的に抑制することができる。これによっても、吸気通路の湾曲部における圧力損失を効果的に低減することができる。   In the intake device according to one aspect of the present invention, as described above, in the cross section orthogonal to the extending direction of the intake passage in the curved downstream portion, the intake passage inner surface on the curved downstream side and the intake passage inner surface on the curved inner side in the curved downstream portion. The downstream first interval is gradually decreased along the intake flow direction, and the downstream second interval between the intake passage inner surfaces that are orthogonal to the opposed intake passage inner surfaces and have the first downstream interval. Is gradually increased along the intake flow direction, so that the curved portion of the intake passage is configured such that the cross-sectional area of the curved downstream portion is constant along the intake flow direction. Thereby, in the curved downstream portion where the separation of the intake flow is likely to occur, the flow path length in the vicinity of the inner surface of the intake passage on the outer side of the curve is reduced by reducing the downstream first interval between the inner surface of the intake passage and the outer side of the curve. Since the difference from the flow path length in the vicinity of the inner surface of the intake passage inside the curve is reduced, the separation of the intake flow from the inner surface of the intake passage inside the curve is suppressed. Further, by gradually changing the first downstream distance between the curved outer side of the curved downstream portion and the inner intake passage inner surface without suddenly changing, the flow path length and the curved inner side in the vicinity of the curved inner surface of the intake passage Since the difference with the flow path length near the inner surface of the intake passage can be gradually reduced without abruptly decreasing, it is possible to more effectively suppress the separation of the intake flow from the inner surface of the intake passage inside the curve. Can do. As a result, the pressure loss in the curved portion of the intake passage can be effectively reduced. Further, when the flow path cross-sectional shape is changed so as to decrease the downstream first interval between the inner surface of the intake passage on the outer side of the curve and the inner surface of the intake passage on the inner side of the curve, the second interval of the downstream portion is increased. Thus, by keeping the cross-sectional area constant, it is possible to effectively suppress an increase in the pressure loss of the intake flow in the curved downstream portion where the downstream first interval is narrowed. This can also effectively reduce the pressure loss in the curved portion of the intake passage.

上記一の局面による吸気装置において、好ましくは、湾曲下流部の湾曲内側の吸気通路内面は、湾曲上流部の湾曲内側の吸気通路内面よりも大きい曲率半径を有しており、吸気通路の延びる方向と直交する断面において、下流部第1間隔は、湾曲上流部における湾曲外側の吸気通路内面と湾曲内側の吸気通路内面との間の上流部第1間隔よりも小さい。このように構成すれば、吸気流の剥離が発生しやすい湾曲下流部において、湾曲内側の吸気通路内面の曲率半径を増加させて湾曲外側の吸気通路内面に容易に近付けることができるので、湾曲上流部における上流部第1間隔に対して湾曲下流部における下流部第1間隔を容易に減少させることができる。すなわち、湾曲上流部において湾曲外側の吸気通路内面近傍での流路長と湾曲内側の吸気通路内面近傍での流路長との差が比較的大きい状態から、湾曲下流部においては湾曲内側の吸気通路内面近傍での流路長を増加させて湾曲外側の吸気通路内面近傍での流路長に近付けてその差を容易に減少させることができる。これにより、湾曲内側の吸気通路内面から吸気流が剥離するのを抑制可能な湾曲下流部を容易に設けることができる。   In the intake device according to the above aspect, the inner surface of the intake passage inside the curved downstream portion preferably has a larger radius of curvature than the inner surface of the intake passage inside the curved upstream portion, and the direction in which the intake passage extends In the cross section orthogonal to the first portion, the downstream first interval is smaller than the first upstream interval between the inner curved inner surface of the intake passage and the inner curved intake passage. With this configuration, in the curved downstream portion where the separation of the intake flow is likely to occur, the curvature radius of the inner surface of the intake passage on the inner side of the curve can be increased to easily approach the inner surface of the intake passage on the outer side of the curve. It is possible to easily reduce the downstream first interval in the curved downstream portion with respect to the upstream first interval in the portion. That is, since the difference between the flow path length in the vicinity of the inner surface of the intake passage outside the curve and the flow path length in the vicinity of the inner surface of the intake passage on the inner side of the curve is relatively large in the upstream portion of the curve, The flow path length in the vicinity of the inner surface of the passage can be increased to approach the flow path length in the vicinity of the inner surface of the intake passage on the outside of the curve, and the difference can be easily reduced. Accordingly, it is possible to easily provide a curved downstream portion capable of suppressing the separation of the intake air flow from the inner surface of the intake passage inside the curve.

上記一の局面による吸気装置において、好ましくは、湾曲下流部の下流端において、下流部第1間隔が最も小さく、かつ、下流部第2間隔が最も大きくなるように構成されている。このように構成すれば、湾曲下流部においては下流端での断面における下流部第1間隔を最も細める(最も扁平形状にする)ことによって、湾曲外側の吸気通路内面近傍における吸気流の流速と湾曲内側の吸気通路内面近傍における吸気流の流速との差を最も小さくすることができるので、湾曲下流部の下流端において吸気流の剥離が低減された状態を維持することができる。   In the intake device according to the above aspect, preferably, at the downstream end of the curved downstream portion, the downstream portion first interval is the smallest and the downstream portion second interval is the largest. With this configuration, the flow velocity and the curve of the intake air flow in the vicinity of the inner surface of the intake passage on the outer side of the curve are reduced by narrowing the first downstream interval in the cross section at the downstream end to the narrowest (the most flat shape). Since the difference with the flow velocity of the intake flow in the vicinity of the inner surface of the intake passage can be minimized, it is possible to maintain a state in which the separation of the intake flow is reduced at the downstream end of the curved downstream portion.

この場合、好ましくは、吸気通路は、湾曲部の下流端に接続され湾曲度合いが湾曲部よりも小さい湾曲小部をさらに含み、湾曲部の下流端から湾曲小部の下流に向かって、湾曲小部の断面の縦横比が吸気流れ方向に沿って徐々に1に近づくように、下流部第1間隔に対応する湾曲小部の吸気通路内面間の湾曲小部第1間隔が徐々に大きくなるとともに、下流部第2間隔に対応する湾曲小部の吸気通路内面間の湾曲小部第2間隔が徐々に小さくなっている。ここで、湾曲下流部の下流端では、断面が最も扁平形状になることから流路断面における吸気通路内面の周長が極大値となるため、吸気流と吸気通路内面との間に壁面摩擦に起因した圧力損失が僅かながら生じる。しかしながら、上記構成のように湾曲下流部の下流端に接続される湾曲小部をその断面の縦横比が吸気流れ方向に沿って徐々に1に近づくように吸気通路内面間の湾曲小部第1間隔を徐々に増加させかつ湾曲小部第2間隔を徐々に減少させることによって、湾曲下流部の下流端において最も扁平となった断面形状を徐々に扁平でない状態(縦横比が吸気流れ方向に沿って徐々に1に近づけられる状態)へと戻すことができる。これにより、湾曲下流部の下流端で周長の極大化に伴って発生する吸気流と吸気通路内面との間の壁面摩擦に起因した圧力損失を即座に解消することができる。その結果、湾曲下流部と湾曲小部とによって、吸気流の剥離の低減と壁面摩擦の低減とを両立させることができるので、湾曲部を含めた吸気通路の圧力損失を最小限に抑えることができる。   In this case, preferably, the intake passage further includes a curved small portion that is connected to the downstream end of the curved portion and has a degree of curvature smaller than that of the curved portion, and the curved portion decreases from the downstream end of the curved portion toward the downstream of the curved small portion. And the curved small portion first interval between the intake passage inner surfaces of the curved small portion corresponding to the downstream first interval is gradually increased so that the aspect ratio of the section of the curved portion gradually approaches 1 along the intake flow direction. The second small interval between the curved small portions between the intake passage inner surfaces of the small curved portions corresponding to the second downstream interval is gradually reduced. Here, at the downstream end of the curved downstream portion, since the cross section is the flattest shape, the circumferential length of the inner surface of the intake passage in the cross section of the flow path becomes a maximum value, so that wall friction occurs between the intake flow and the inner surface of the intake passage. A slight pressure loss is caused. However, the curved small portion connected to the downstream end of the curved downstream portion as in the above configuration has a curved small portion first between the intake passage inner surfaces so that the aspect ratio of the cross section gradually approaches 1 along the intake flow direction. By gradually increasing the interval and gradually decreasing the second small curve portion, the flattened cross-sectional shape at the downstream end of the curved downstream portion is not gradually flattened (the aspect ratio is along the intake flow direction). The state can be gradually returned to 1). As a result, the pressure loss due to the wall friction between the intake air flow and the inner surface of the intake passage that occurs as the circumference increases at the downstream end of the curved downstream portion can be immediately eliminated. As a result, the curved downstream portion and the curved small portion can achieve both a reduction in separation of the intake flow and a reduction in wall friction, thereby minimizing the pressure loss in the intake passage including the curved portion. it can.

なお、本発明における湾曲小部とは、湾曲部(湾曲上流部および湾曲下流部)よりも吸気通路における通路外面および通路内面の曲率半径が大きくかつ湾曲下流部の下流端に接続された下流区間のことを意味する。すなわち、湾曲小部は、湾曲部よりも大きな所定の曲率半径を有する場合に加えて、曲率半径が無限大に近付けられてほぼ直線状に延びる場合も含む広い概念である。   The small curved portion in the present invention is a downstream section in which the radius of curvature of the passage outer surface and the inner surface of the intake passage is larger than the curved portion (curved upstream portion and curved downstream portion) and is connected to the downstream end of the curved downstream portion. Means that. That is, the small curved portion is a wide concept including a case where the radius of curvature is close to infinity and extends substantially linearly, in addition to a case where a predetermined radius of curvature is larger than that of the curved portion.

上記一の局面による吸気装置において、好ましくは、吸気通路の湾曲下流部は、吸気通路の延びる方向と直交する断面において、下流部第1間隔よりも下流部第2間隔が大きく、かつ、4隅に円弧形状部が設けられた長方形形状、または長円形状の断面形状を有する。このように構成すれば、4隅に円弧形状部が設けられた断面では、4隅に円弧形状部が設けられていない断面と比較して、吸気通路内面の周長(吸気通路内面の面積)をより少なくすることができるとともに、4隅の円弧形状部により、4隅での流路抵抗を減少させることができる。したがって、吸気流と吸気通路内面との間の壁面摩擦をさらに低減することができるので、湾曲部における圧力損失をさらに低減することができる。   In the intake device according to the above aspect, preferably, the curved downstream portion of the intake passage has a downstream portion second interval larger than the downstream portion first interval and has four corners in a cross section orthogonal to the direction in which the intake passage extends. It has a rectangular shape provided with an arc-shaped portion, or an elliptical cross-sectional shape. If comprised in this way, in the cross section in which the arc-shaped part was provided in four corners, compared with the cross section in which the arc-shaped part was not provided in four corners, the perimeter of the intake passage inner surface (area of the intake passage inner surface) The arc resistance at the four corners can reduce the flow resistance at the four corners. Accordingly, the wall friction between the intake flow and the inner surface of the intake passage can be further reduced, so that the pressure loss in the curved portion can be further reduced.

この場合、好ましくは、吸気通路の湾曲下流部は、吸気通路の延びる方向と直交する断面において、湾曲内側の吸気通路内面に接する2つの円弧形状部が、湾曲外側の吸気通路内面に接する2つの円弧形状部よりも小さい半径を有する。このように構成すれば、下流部第1間隔を減少させかつ下流部第2間隔を増加させるような流路断面形状を湾曲下流部に容易に形成することができる。すなわち、湾曲下流部における湾曲内側の吸気通路内面を湾曲外側の吸気通路内面に向かって容易に近付けることができる。   In this case, it is preferable that the curved downstream portion of the intake passage has two arc-shaped portions that are in contact with the inner surface of the intake passage on the inner side of the curve in the cross section orthogonal to the extending direction of the intake passage. It has a smaller radius than the arcuate part. If comprised in this way, the flow-path cross-sectional shape which decreases a downstream part 1st space | interval and increases a downstream part 2nd space | interval can be easily formed in a curved downstream part. In other words, the inner surface of the intake passage inside the curve in the downstream portion of the curve can be easily brought closer to the inner surface of the intake passage outside the curve.

上記一の局面による吸気装置において、好ましくは、湾曲下流部の湾曲外側の吸気通路内面は、湾曲上流部の湾曲外側の吸気通路内面と同じ曲率半径を有する。このように構成すれば、湾曲上流部における湾曲外側の吸気通路内面近傍での吸気流の流線(流れの状態)を湾曲下流部の湾曲外側の吸気通路内面近傍においても維持することができる。そして、この状態で、湾曲下流部における湾曲内側の吸気通路内面を湾曲外側の吸気通路内面に徐々に近付けることができるので、この点でも、湾曲内側の吸気通路内面近傍において吸気流が剥離するのを抑制することができる。   In the intake device according to the one aspect described above, preferably, the inner surface of the intake passage outside the curved portion in the curved downstream portion has the same radius of curvature as the inner surface of the intake passage outside the curved portion in the curved upstream portion. With this configuration, the flow line (flow state) of the intake flow near the inner surface of the intake passage outside the curve in the upstream portion of the curve can be maintained also near the inner surface of the intake passage outside the curve of the downstream portion of the curve. In this state, the inner surface of the intake passage inside the curve in the downstream portion of the curve can be gradually brought closer to the inner surface of the intake passage outside the curve, so that the intake flow is separated in the vicinity of the inner surface of the intake passage inside the curve. Can be suppressed.

なお、本出願では、上記一の局面による吸気装置において、以下のような構成も考えられる。   In the present application, the following configuration is also conceivable in the intake device according to the above aspect.

(付記項1)
すなわち、上記一の局面による吸気装置において、湾曲部の下流端から湾曲小部の下流に向かって、湾曲小部の断面の縦横比が吸気流れ方向に沿って徐々に1に近づき、かつ、吸気流れ方向に沿って断面積が一定になるように、湾曲小部第1間隔が徐々に大きくなるとともに、湾曲小部第2間隔が徐々に小さくなっている。
(Additional item 1)
That is, in the intake device according to the above aspect, the aspect ratio of the cross section of the curved small portion gradually approaches 1 along the intake flow direction from the downstream end of the curved portion toward the downstream of the curved small portion, and the intake air The curved small portion first interval gradually increases and the curved small portion second interval gradually decreases so that the cross-sectional area becomes constant along the flow direction.

(付記項2)
また、上記一の局面による吸気装置において、湾曲上流部および湾曲下流部は、同じ断面積を有する。
(Appendix 2)
In the intake device according to the above aspect, the curved upstream portion and the curved downstream portion have the same cross-sectional area.

(付記項3)
また、上記一の局面による吸気装置において、湾曲部の吸気流れ方向に沿った中間部近傍に湾曲上流部と湾曲下流部との境界が設けられている。
(Additional Item 3)
In the intake device according to the one aspect, a boundary between the curved upstream portion and the curved downstream portion is provided in the vicinity of the intermediate portion along the intake flow direction of the curved portion.

本発明によれば、上記のように、吸気流の剥離を抑制して吸気通路の湾曲部における圧力損失を効果的に低減することが可能な吸気装置を提供することができる。   According to the present invention, as described above, it is possible to provide an intake device capable of effectively reducing pressure loss in the curved portion of the intake passage by suppressing separation of the intake flow.

本発明の一実施形態による吸気装置の構成を示した平面図である。1 is a plan view showing a configuration of an intake device according to an embodiment of the present invention. 本発明の一実施形態による吸気装置における吸気ポート部の構造を示した断面図である。It is sectional drawing which showed the structure of the intake port part in the intake device by one Embodiment of this invention. 図2の110−110線および120−120線に沿った吸気ポート部(吸気管)の断面図である。It is sectional drawing of the intake port part (intake pipe) along the 110-110 line | wire and 120-120 line | wire of FIG. 図2の130−130線に沿った吸気ポート部(吸気管)の断面図である。It is sectional drawing of the intake port part (intake pipe) along the 130-130 line | wire of FIG. 図2の140−140線に沿った吸気ポート部(吸気管)の断面図である。It is sectional drawing of the intake port part (intake pipe) along the 140-140 line | wire of FIG. 図2の150−150線に沿った吸気ポート部(吸気管)の断面図である。It is sectional drawing of the intake port part (intake pipe) along the 150-150 line | wire of FIG. 本発明の一実施形態による吸気装置の第1変形例による吸気ポート部の構造を示した断面図である。It is sectional drawing which showed the structure of the intake port part by the 1st modification of the intake device by one Embodiment of this invention. 本発明の一実施形態による吸気装置の第2変形例による吸気ポート部の構造を示した断面図である。It is sectional drawing which showed the structure of the intake port part by the 2nd modification of the intake device by one Embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図6を参照して、本発明の一実施形態による吸気装置100の構成について説明する。なお、以下では、内燃機関90を基準とした場合にX軸に沿って各気筒が配置されているものとして説明を行う。   With reference to FIGS. 1-6, the structure of the intake device 100 by one Embodiment of this invention is demonstrated. In the following description, it is assumed that each cylinder is arranged along the X axis when the internal combustion engine 90 is used as a reference.

本発明の一実施形態による吸気装置100は、図1に示すように、多気筒(直列4気筒)エンジンである内燃機関90に空気を供給する装置である。また、吸気装置100は、内燃機関90の吸気系の一部を構成しており、吸気装置100は、サージタンク10と、サージタンク10の下流に配置される吸気ポート部20とを備えている。サージタンク10および吸気ポート部20は共に樹脂(ポリアミド樹脂)製であり、サージタンク10の上側半分および吸気ポート部20の上側半分が一体成形されたアッパピースと、サージタンク10の下側半分および吸気ポート部20の下側半分が一体成形されたロアピースとが振動溶着により接合されて一体化されている。   As shown in FIG. 1, an intake apparatus 100 according to an embodiment of the present invention is an apparatus that supplies air to an internal combustion engine 90 that is a multi-cylinder (in-line four-cylinder) engine. The intake device 100 constitutes a part of the intake system of the internal combustion engine 90, and the intake device 100 includes a surge tank 10 and an intake port portion 20 arranged downstream of the surge tank 10. . The surge tank 10 and the intake port portion 20 are both made of resin (polyamide resin), an upper piece in which the upper half of the surge tank 10 and the upper half of the intake port portion 20 are integrally formed, the lower half of the surge tank 10 and the intake air. A lower piece integrally formed with the lower half of the port portion 20 is joined and integrated by vibration welding.

また、吸気ポート部20は、サージタンク10に蓄えられた吸気空気をシリンダヘッド91内の各気筒に分配する役割を有する。なお、吸気ポート部20における矢印A方向側がサージタンク10に接続される吸気上流側であり、矢印B方向側が内燃機関90(シリンダヘッド91)に接続される吸気下流側である。   In addition, the intake port portion 20 has a role of distributing intake air stored in the surge tank 10 to each cylinder in the cylinder head 91. Note that the arrow A direction side in the intake port portion 20 is the intake upstream side connected to the surge tank 10, and the arrow B direction side is the intake downstream side connected to the internal combustion engine 90 (cylinder head 91).

また、吸気ポート部20は、図1および図2に示すように、経路の途中が所定の曲率半径を有して湾曲した複数(4本)の吸気管1と、各々の吸気管1の下流端部に一体的に形成されたフランジ部7とを備えている。なお、図1においては、各々の吸気管1は、吸気流れ方向(矢印B方向)に沿って紙面手前側から紙面奥に向かって曲げられている。なお、図2では、吸気管1の管形状を形成する管壁部1c(図3参照)に関し、その厚みの図示を便宜的に省略している。図2では、吸気管1の通路外面1aおよび通路内面1bの形状を主に図示している。なお、吸気管1は、本発明の「吸気通路」の一例である。   As shown in FIGS. 1 and 2, the intake port section 20 includes a plurality of (four) intake pipes 1 having a predetermined radius of curvature along the path, and downstream of each intake pipe 1. And a flange portion 7 formed integrally with the end portion. In FIG. 1, each intake pipe 1 is bent from the front side of the drawing to the back of the drawing along the intake flow direction (arrow B direction). In FIG. 2, the thickness of the pipe wall 1c (see FIG. 3) forming the pipe shape of the intake pipe 1 is omitted for convenience. In FIG. 2, the shapes of the passage outer surface 1a and the passage inner surface 1b of the intake pipe 1 are mainly illustrated. The intake pipe 1 is an example of the “intake passage” in the present invention.

吸気ポート部20を矢印X1方向に沿って見た場合、図2に示すように、各々の吸気管1は、吸気流れ方向(矢印B方向)に沿って、上流配管部2と、湾曲部3と、戻し配管部6とがこの順に接続されている。上流配管部2は、サージタンク10(図1参照)に接続されるとともに、戻し配管部6は、下流端6zがフランジ部7を介してシリンダヘッド91に接続されている。なお、戻し配管部6は、本発明の「湾曲小部」の一例である。   When the intake port portion 20 is viewed along the direction of the arrow X1, as shown in FIG. 2, each intake pipe 1 has an upstream pipe portion 2 and a curved portion 3 along the intake flow direction (arrow B direction). And the return piping part 6 is connected in this order. The upstream piping part 2 is connected to a surge tank 10 (see FIG. 1), and the return piping part 6 has a downstream end 6z connected to a cylinder head 91 via a flange part 7. The return pipe portion 6 is an example of the “curved small portion” in the present invention.

吸気管1は、管壁部1c(図3参照)における通路外面1aおよび通路内面1bを有している。上流配管部2では、通路外面1aおよび通路内面1bは共に湾曲せず、上流配管部2は直線的に延びている。湾曲部3では、通路外面1aおよび通路内面1bは共に同じ方向(図2において反時計回り方向)に湾曲している。そして、戻し配管部6では、通路外面1aおよび通路内面1bの一部が共に湾曲しているがその度合いは湾曲部3よりも非常に緩やかであり、フランジ部7までおおよそ直線的に延びている。このように、吸気ポート部20では、サージタンク10(図1参照)に蓄えられた吸気空気が、上流配管部2と、途中で曲げられた湾曲部3と、戻し配管部6とを有する吸気管1を流通してシリンダヘッド91に供給される。なお、管壁部1cの厚みは、上流配管部2、湾曲部3および戻し配管部6までの全区間に亘っておおよそ一定である。   The intake pipe 1 has a passage outer surface 1a and a passage inner surface 1b in the pipe wall portion 1c (see FIG. 3). In the upstream piping portion 2, the passage outer surface 1a and the passage inner surface 1b are not curved, and the upstream piping portion 2 extends linearly. In the bending portion 3, the passage outer surface 1a and the passage inner surface 1b are both bent in the same direction (counterclockwise direction in FIG. 2). In the return pipe portion 6, a part of the passage outer surface 1 a and a portion of the passage inner surface 1 b are both curved, but the degree thereof is much gentler than that of the curved portion 3 and extends approximately linearly to the flange portion 7. . As described above, in the intake port portion 20, the intake air stored in the surge tank 10 (see FIG. 1) is an intake air having the upstream piping portion 2, the curved portion 3 bent in the middle, and the return piping portion 6. It flows through the pipe 1 and is supplied to the cylinder head 91. In addition, the thickness of the pipe wall part 1c is substantially constant over the whole area to the upstream piping part 2, the bending part 3, and the return piping part 6. FIG.

ここで、本実施形態では、湾曲部3は、湾曲部3における上流側の部分となる湾曲上流部4と、湾曲部3における下流側の部分となる湾曲下流部5とによって構成されている。また、湾曲上流部4は、吸気流れ方向に沿って約60度だけ反時計回りに曲げられるとともに、湾曲上流部4につづく湾曲下流部5も、約60度だけ反時計回りに曲げられている。また、湾曲上流部4が図3に示される断面C1のような断面形状を有するのに対して、湾曲下流部5は、図4および図5に示される断面C2のような断面形状を有する。すなわち、湾曲上流部4の断面C1と、湾曲下流部5の断面C2とは、その断面形状が互いに異なる。以下、湾曲部3における各区間に応じた断面形状について詳細に説明する。   Here, in the present embodiment, the bending portion 3 includes a bending upstream portion 4 that is an upstream portion of the bending portion 3 and a bending downstream portion 5 that is a downstream portion of the bending portion 3. The curved upstream portion 4 is bent counterclockwise by about 60 degrees along the intake flow direction, and the curved downstream portion 5 following the curved upstream portion 4 is also bent counterclockwise by about 60 degrees. . Further, the curved upstream portion 4 has a cross-sectional shape such as a cross-section C1 shown in FIG. 3, whereas the curved downstream portion 5 has a cross-sectional shape such as a cross-section C2 shown in FIGS. That is, the cross section C1 of the curved upstream portion 4 and the cross section C2 of the curved downstream portion 5 are different from each other. Hereinafter, the cross-sectional shape corresponding to each section in the bending portion 3 will be described in detail.

まず、湾曲上流部4は、図2に示すように、曲率半径R1aを有して湾曲する湾曲外側の吸気通路内面4aと、曲率半径R1aよりも小さい曲率半径R1bを有して湾曲する湾曲内側の吸気通路内面4bとを有している。なお、吸気通路内面4aおよび4bは、曲げの半径方向(矢印R方向)に互いに対向し、かつ、X軸に沿ってほぼ平行に延びた部分を含んでいる。また、吸気通路内面4aは、吸気流れ方向(矢印B方向)に沿って一定の曲率半径R1aで曲げられるとともに、吸気通路内面4bは、吸気流れ方向に沿って一定の曲率半径R1bで曲げられている。したがって、湾曲上流部4は、図3に示すように、吸気流れ方向のどの位置においても断面C1からなる断面形状を有している。すなわち、吸気通路内面4aおよび4bは、一定の間隔H1を有して曲げの半径方向(矢印R方向)に互いに対向している。なお、間隔H1は、本発明の「上流部第1間隔」の一例である。なお、吸気通路内面4aは、本発明の「湾曲外側の吸気通路内面」の一例であり、吸気通路内面4bは、本発明の「湾曲内側の吸気通路内面」の一例である。   First, as shown in FIG. 2, the curved upstream portion 4 has a curved outside intake passage inner surface 4a curved with a curvature radius R1a and a curved inner side curved with a curvature radius R1b smaller than the curvature radius R1a. And an intake passage inner surface 4b. The intake passage inner surfaces 4a and 4b include portions that face each other in the bending radial direction (arrow R direction) and extend substantially parallel to the X axis. The intake passage inner surface 4a is bent at a constant radius of curvature R1a along the intake flow direction (arrow B direction), and the intake passage inner surface 4b is bent at a constant curvature radius R1b along the intake flow direction. Yes. Therefore, as shown in FIG. 3, the curved upstream portion 4 has a cross-sectional shape including a cross-section C1 at any position in the intake air flow direction. That is, the intake passage inner surfaces 4a and 4b are opposed to each other in the bending radial direction (arrow R direction) with a constant interval H1. The interval H1 is an example of the “upstream first interval” in the present invention. The intake passage inner surface 4a is an example of the “curved outer intake passage inner surface” in the present invention, and the intake passage inner surface 4b is an example of the “curved inner intake passage inner surface” in the present invention.

また、湾曲上流部4は、図3に示すように、吸気通路内面4aおよび4bの対向方向(矢印R方向)に直交するX軸方向において互いに対向する吸気通路内面4cおよび4dをさらに有する。なお、吸気通路内面4cおよび4dは、X軸方向に互いに対向し、かつ、矢印R方向に沿ってほぼ平行に延びた部分を含んでいる。また、吸気通路内面4cおよび4dは、一定の間隔W1を有して互いに対向している。したがって、湾曲上流部4では、断面C1は、X軸方向の中心線31(一点鎖線で示す)および曲げの半径方向(矢印R方向)の中心線32(一点鎖線で示す)の各々に対して線対称な形状を有している。また、湾曲上流部4では、曲率半径R1aおよびR1bがそれぞれ一定であるので、吸気流れ方向に沿った湾曲外側の吸気通路内面4a近傍での流路長と湾曲内側の吸気通路内面4b近傍での流路長とには、曲率半径R1aおよびR1bの差に対応した流路長差が存在する。また、流路長差は、吸気流の吸気通路内面4a近傍での流速と吸気通路内面4b近傍での流速とに僅かな差(流速差)をもたらしうる。   Further, as shown in FIG. 3, the curved upstream portion 4 further includes intake passage inner surfaces 4 c and 4 d that face each other in the X-axis direction orthogonal to the opposing direction (arrow R direction) of the intake passage inner surfaces 4 a and 4 b. The intake passage inner surfaces 4c and 4d include portions that face each other in the X-axis direction and extend substantially in parallel along the arrow R direction. Further, the intake passage inner surfaces 4c and 4d are opposed to each other with a constant interval W1. Accordingly, in the curved upstream portion 4, the cross section C <b> 1 is relative to each of the center line 31 in the X-axis direction (indicated by the alternate long and short dash line) and the center line 32 in the radial direction of bending (in the direction of arrow R) (indicated by the alternate long and short dashed line). It has a line-symmetric shape. Further, since the curvature radii R1a and R1b are respectively constant in the curved upstream portion 4, the flow path length in the vicinity of the intake passage inner surface 4a on the outer side of the curve along the intake flow direction and the vicinity of the intake passage inner surface 4b on the inner side of the curve The channel length has a channel length difference corresponding to the difference between the curvature radii R1a and R1b. Further, the flow path length difference can cause a slight difference (flow velocity difference) between the flow velocity of the intake air flow in the vicinity of the intake passage inner surface 4a and the flow velocity in the vicinity of the intake passage inner surface 4b.

次に、湾曲下流部5は、図2に示すように、曲率半径R2aを有して湾曲する湾曲外側の吸気通路内面5aと、曲率半径R2aよりも小さい曲率半径R2bを有して湾曲する湾曲内側の吸気通路内面5bとを有する。なお、吸気通路内面5aおよび5bは、曲げの半径方向(矢印R方向)に互いに対向し、かつ、X軸に沿ってほぼ平行に延びた部分を含んでいる。また、吸気通路内面5aは、吸気流れ方向(矢印B方向)に沿って一定の曲率半径R2aで曲げられるとともに、吸気通路内面5bは、吸気流れ方向に沿って変化するような曲率半径R2bで曲げられている。したがって、湾曲下流部5は、図4に示すような断面C2を部分的に有しており、吸気通路内面5aおよび5bが間隔H2を有して曲げの半径方向(矢印R方向)に互いに対向している。なお、間隔H2は、本発明の「下流部第1間隔」の一例である。   Next, as shown in FIG. 2, the curved downstream portion 5 is curved with a curvature radius R2a and a curved outer intake passage inner surface 5a that curves and a curvature radius R2b that is smaller than the curvature radius R2a. And an inner intake passage inner surface 5b. The intake passage inner surfaces 5a and 5b include portions that face each other in the bending radial direction (arrow R direction) and extend substantially parallel to the X axis. The intake passage inner surface 5a is bent at a constant radius of curvature R2a along the intake flow direction (arrow B direction), and the intake passage inner surface 5b is bent at a curvature radius R2b that changes along the intake flow direction. It has been. Therefore, the curved downstream portion 5 partially has a cross section C2 as shown in FIG. 4, and the intake passage inner surfaces 5a and 5b are opposed to each other in the bending radial direction (arrow R direction) with the interval H2. doing. The interval H2 is an example of the “downstream first interval” in the present invention.

また、湾曲下流部5は、吸気通路内面5aおよび5bの対向方向(矢印R方向)に直交するX軸方向において互いに対向する吸気通路内面5cおよび5dをさらに有する。なお、吸気通路内面5cおよび5dは、X軸方向に互いに対向し、かつ、矢印R方向に沿ってほぼ平行に延びた部分を含んでいる。また、吸気通路内面5cおよび5dは、間隔W2を有して互いに対向している。なお、間隔W2は、本発明の「下流部第2間隔」の一例である。また、吸気通路内面5aは、本発明の「湾曲外側の吸気通路内面」の一例であり、吸気通路内面5bは、本発明の「湾曲内側の吸気通路内面」の一例である。また、吸気通路内面5cおよび5dは、本発明の「直交して対向する吸気通路内面」の一例である。   Further, the curved downstream portion 5 further includes intake passage inner surfaces 5c and 5d that face each other in the X-axis direction orthogonal to the facing direction (arrow R direction) of the intake passage inner surfaces 5a and 5b. The intake passage inner surfaces 5c and 5d include portions that face each other in the X-axis direction and extend substantially in parallel along the arrow R direction. Further, the intake passage inner surfaces 5c and 5d are opposed to each other with a gap W2. The interval W2 is an example of the “second downstream portion interval” in the present invention. The intake passage inner surface 5a is an example of the “curved outer intake passage inner surface” in the present invention, and the intake passage inner surface 5b is an example of the “curved inner intake passage inner surface” in the present invention. The intake passage inner surfaces 5c and 5d are examples of the “inner-pass opposed inner surfaces” of the present invention.

ここで、本実施形態では、湾曲上流部4では、吸気流れ方向のどの位置においても断面C1(図3参照)であるのに対し、湾曲下流部5では、吸気流れ方向の位置に応じて断面C2(図4および図5参照)が変化するように構成されている。すなわち、湾曲上流部4の断面C1(図3参照)と、湾曲下流部5の断面C2(図4または図5参照)との比較からも明らかなように、湾曲下流部5においては、湾曲外側の吸気通路内面5aは、吸気流れ方向(矢印B方向)に沿って一定の曲率半径R2aで曲げられる一方、湾曲内側の吸気通路内面5bは、吸気流れ方向に沿って曲率半径R2bを徐々に増加させるようにして曲げられている。すなわち、図4の断面C2と、図5の断面C2とは、その形状が互いに異なる。ここで、湾曲上流部4の吸気通路内面4aの曲率半径R1aと、湾曲下流部5の吸気通路内面5aの曲率半径R2aとは、等しくなる(曲率半径R1a=曲率半径R2a)ように湾曲部3は構成されている。   Here, in the present embodiment, the curved upstream portion 4 has a cross section C1 (see FIG. 3) at any position in the intake flow direction, whereas the curved downstream portion 5 has a cross section corresponding to the position in the intake flow direction. C2 (see FIGS. 4 and 5) is configured to change. That is, as is clear from a comparison between the cross section C1 (see FIG. 3) of the curved upstream portion 4 and the cross section C2 (see FIG. 4 or 5) of the curved downstream portion 5, the curved downstream portion 5 The intake passage inner surface 5a is bent with a constant radius of curvature R2a along the intake flow direction (arrow B direction), while the curved inner intake passage inner surface 5b gradually increases the curvature radius R2b along the intake flow direction. It is bent so that That is, the cross section C2 in FIG. 4 and the cross section C2 in FIG. 5 have different shapes. Here, the curvature radius R1a of the intake passage inner surface 4a of the curved upstream portion 4 and the curvature radius R2a of the intake passage inner surface 5a of the curved downstream portion 5 are equal (curvature radius R1a = curvature radius R2a). Is structured.

したがって、湾曲下流部5の吸気管1の延びる方向(吸気流れ方向)と直交する断面C2において、湾曲外側の吸気通路内面5aと湾曲内側の吸気通路内面5bとの間の間隔H2(図4および図5における矢印R方向の寸法)が湾曲下流部5の吸気流れ方向(矢印B方向)に沿って図4の状態から図5の状態へと徐々に小さくされるとともに、この間隔H2を有して対向する吸気通路内面5aおよび5bに直交して対向する吸気通路内面5cおよび5d間の間隔W2(図4および図5におけるX軸方向の寸法)が吸気流れ方向(矢印B方向)に沿って図4の状態から図5の状態へと徐々に大きくされている。すなわち、湾曲内側の吸気通路内面5bは、吸気流れ方向に沿って湾曲外側の吸気通路内面5aに徐々にせり上がっている。また、これによって、湾曲下流部5では、吸気流れ方向に沿って曲率半径R2bの曲率半径R2aに対する差が徐々に減少されるので、湾曲外側の吸気通路内面5a近傍での流路長と湾曲内側の吸気通路内面5b近傍での流路長との流路長差も減少される。流路長差の減少は、吸気流の吸気通路内面5a近傍での流速と吸気通路内面5b近傍での流速との差(流速差)を減少させる効果を生み出す。   Therefore, in the cross section C2 orthogonal to the direction (intake flow direction) in which the intake pipe 1 extends in the curved downstream portion 5, the distance H2 between the curved intake outer surface 5a and the curved intake passage inner surface 5b (see FIG. 4 and FIG. 4). The dimension in the direction of arrow R in FIG. 5 is gradually reduced from the state of FIG. 4 to the state of FIG. 5 along the intake flow direction (arrow B direction) of the curved downstream portion 5 and has this interval H2. The distance W2 (the dimension in the X-axis direction in FIGS. 4 and 5) between the intake passage inner surfaces 5c and 5d opposed perpendicular to the opposite intake passage inner surfaces 5a and 5b is along the intake flow direction (arrow B direction). It is gradually increased from the state of FIG. 4 to the state of FIG. That is, the intake passage inner surface 5b inside the curve gradually rises to the intake passage inner surface 5a outside the curve along the intake flow direction. This also gradually reduces the difference between the curvature radius R2b and the curvature radius R2a along the intake flow direction in the curved downstream portion 5, so that the flow path length and the curved inner side in the vicinity of the intake passage inner surface 5a outside the curve are reduced. The flow path length difference from the flow path length in the vicinity of the intake passage inner surface 5b is also reduced. The reduction in the flow path length difference has the effect of reducing the difference (flow velocity difference) between the flow velocity in the vicinity of the intake passage inner surface 5a and the flow velocity in the vicinity of the intake passage inner surface 5b.

そして、本実施形態では、湾曲下流部5の断面C2を図4の状態から図5の状態へと変化させる(間隔H2を徐々に減少させ、間隔W2を徐々に増加させる)ことによって、湾曲下流部5の断面C2の面積(以下、断面積Sと記載する)は、吸気流れ方向(矢印B方向)に沿って一定になるように構成されている。この場合、湾曲下流部5では、断面積Sおよび湾曲外側の吸気通路内面5aに関する曲率半径R2aを一定に保った状態で、湾曲内側の吸気通路内面5bに関する曲率半径R2bを吸気流れ方向に沿って徐々に増加させるようにして、断面C2の形状のみを変化させている。   In this embodiment, the section C2 of the curved downstream portion 5 is changed from the state shown in FIG. 4 to the state shown in FIG. 5 (the interval H2 is gradually decreased and the interval W2 is gradually increased). The area of the section C2 of the part 5 (hereinafter referred to as a sectional area S) is configured to be constant along the intake flow direction (arrow B direction). In this case, in the curved downstream portion 5, with the sectional area S and the curvature radius R2a relating to the intake passage inner surface 5a outside the curve being kept constant, the curvature radius R2b relating to the intake passage inner surface 5b inside the curve is set along the intake flow direction. Only the shape of the cross section C2 is changed so as to increase gradually.

湾曲上流部4との対比でこの断面形状変化を説明する。すなわち、図2に示すように、湾曲下流部5の吸気通路内面5bの曲率半径R2bは、湾曲上流部4の吸気通路内面4bの曲率半径R1bよりも大きい(R2b>R1b)。これにより、湾曲上流部4とは異なり、湾曲下流部5では曲率半径R2bを増加させて吸気通路内面5bが吸気通路内面5aに近付けられる。そして、湾曲上流部4の断面C1が示された図3と、湾曲下流部5の断面C2が示された図4または図5との比較からも明らかなように、湾曲下流部5では、吸気管1の延びる方向と直交する断面C2において、間隔H2(図4および図5参照)は、湾曲上流部4における吸気通路内面4aと吸気通路内面4bとの間の間隔H1(図3参照)よりも小さい(間隔H2<間隔H1)。   This cross-sectional shape change will be described in comparison with the curved upstream portion 4. That is, as shown in FIG. 2, the curvature radius R2b of the intake passage inner surface 5b of the curved downstream portion 5 is larger than the curvature radius R1b of the intake passage inner surface 4b of the curved upstream portion 4 (R2b> R1b). Thus, unlike the curved upstream portion 4, the curved downstream portion 5 increases the radius of curvature R2b to bring the intake passage inner surface 5b closer to the intake passage inner surface 5a. Then, as is clear from comparison between FIG. 3 in which the cross section C1 of the curved upstream portion 4 is shown and FIG. 4 or FIG. 5 in which the cross section C2 of the curved downstream portion 5 is shown, the curved downstream portion 5 In the cross section C2 orthogonal to the direction in which the pipe 1 extends, the interval H2 (see FIGS. 4 and 5) is larger than the interval H1 (see FIG. 3) between the intake passage inner surface 4a and the intake passage inner surface 4b in the curved upstream portion 4. Is also small (interval H2 <interval H1).

さらには、図5に示すように、湾曲下流部5の下流端5z近傍においては、徐々に減少された間隔H2(矢印R方向)が最も小さくなり、かつ、徐々に増加された間隔W2(X軸方向)が最も大きくなる。すなわち、湾曲下流部5は、下流端5z近傍において断面C2の形状が最もX軸方向に引き延ばされた扁平形状を有するように構成されている。なお、湾曲下流部5における断面C2の断面積Sは、湾曲上流部4における断面C1(図3参照)の断面積Sと等しい。また、湾曲上流部4における断面C1の断面積Sは、上流配管部2の断面積Sとも等しい。したがって、吸気流は、上流配管部2から湾曲下流部5までの区間においては、流路断面の拡大および縮小を一切起こすことなく断面積Sを一定に保ったまま流通される。   Further, as shown in FIG. 5, in the vicinity of the downstream end 5z of the curved downstream portion 5, the gradually decreased interval H2 (arrow R direction) becomes the smallest and the gradually increased interval W2 (X (Axis direction) is the largest. That is, the curved downstream portion 5 is configured to have a flat shape in which the shape of the cross section C2 is extended most in the X-axis direction in the vicinity of the downstream end 5z. The sectional area S of the section C2 in the curved downstream portion 5 is equal to the sectional area S of the section C1 (see FIG. 3) in the curved upstream section 4. Further, the cross-sectional area S of the cross-section C1 in the curved upstream portion 4 is equal to the cross-sectional area S of the upstream piping portion 2. Therefore, in the section from the upstream piping part 2 to the curved downstream part 5, the intake air flow is circulated while keeping the cross-sectional area S constant without causing any enlargement or reduction of the flow path cross section.

なお、断面形状変化のない湾曲上流部4(図3参照)おけるX軸方向の中心線31(図3参照)をそのまま湾曲下流部5での断面C2にまで延長した場合、図4および図5に示すように、湾曲下流部5では、中心線31から湾曲内側の吸気通路内面5bまでの距離H2bは、中心線31(仮想線として図示)から湾曲外側の吸気通路内面5aまでの距離H2aよりも小さい。ここに、距離H2aは、断面C1(図3参照)における間隔H1の半分である。したがって、断面C2では、中心線31(仮想線)から吸気通路内面5aまでの距離H2aを一定に保ったまま(曲率半径R1a=曲率半径R2aとしたまま)、中心線31から吸気通路内面5bまでの距離H2bを吸気流れ方向(矢印B方向)に沿って徐々に減少させて、吸気通路内面5bを吸気通路内面5aに向けて徐々に近付けている。   When the center line 31 (see FIG. 3) in the X-axis direction in the curved upstream portion 4 (see FIG. 3) having no cross-sectional shape change is directly extended to the cross section C2 at the curved downstream portion 5, FIGS. In the curved downstream portion 5, the distance H2b from the center line 31 to the intake passage inner surface 5b inside the curve is larger than the distance H2a from the center line 31 (illustrated as a virtual line) to the intake passage inner surface 5a outside the curve. Is also small. Here, the distance H2a is half of the interval H1 in the cross section C1 (see FIG. 3). Therefore, in the cross section C2, the distance H2a from the center line 31 (imaginary line) to the intake passage inner surface 5a is kept constant (curvature radius R1a = curvature radius R2a), and from the center line 31 to the intake passage inner surface 5b. The distance H2b is gradually decreased along the intake flow direction (arrow B direction), and the intake passage inner surface 5b is gradually approached toward the intake passage inner surface 5a.

これにより、吸気管1では、上流配管部2を流通した吸気流(空気)は、湾曲上流部4にて所定角度(約60度)だけ反時計回りに曲げられた後、湾曲下流部5を所定角度(約60度)だけ反時計回りに曲げられながら通過する。なお、湾曲上流部4を通過する際は、湾曲外側と内側とで流速差が生じうる。これに対して、湾曲下流部5を通過する際は、吸気流の一部は、吸気流れ方向に沿って曲率半径R2bが徐々に増加された湾曲内側の吸気通路内面5bに沿って流れる。これにより、前述したように湾曲外側の吸気通路内面5a近傍における吸気流の流速と、湾曲内側の吸気通路内面5b近傍における吸気流の流速との差が縮小(減少)される。すなわち、吸気通路内面5b近傍での流れに乱れが生じない。また、吸気流は、湾曲下流部5で乱れを起こすことなく下流の戻し配管部6へと流通される。   Thus, in the intake pipe 1, the intake air flow (air) flowing through the upstream pipe portion 2 is bent counterclockwise by a predetermined angle (about 60 degrees) in the curved upstream portion 4, and then the curved downstream portion 5 Passes while being bent counterclockwise by a predetermined angle (about 60 degrees). Note that when passing through the curved upstream portion 4, a difference in flow velocity may occur between the outside and inside of the curve. On the other hand, when passing through the curved downstream portion 5, a part of the intake flow flows along the intake passage inner surface 5b inside the curve where the curvature radius R2b is gradually increased along the intake flow direction. Thus, as described above, the difference between the flow velocity of the intake flow near the intake passage inner surface 5a on the curved outer side and the flow velocity of the intake flow near the intake passage inner surface 5b on the curved inner side is reduced (reduced). That is, the flow in the vicinity of the intake passage inner surface 5b is not disturbed. In addition, the intake air flow is circulated to the downstream return pipe portion 6 without being disturbed in the curved downstream portion 5.

また、本実施形態では、図4および図5に示すように、吸気管1の湾曲下流部5は、吸気管1の延びる方向と直交する断面C2において間隔H2よりも間隔W2が大きいことに加えて、断面C2は、4隅に円弧形状部5e〜5hが設けられた長円形状の断面形状を有している。ここで、円弧形状部5eは、吸気通路内面5aおよび5cを繋ぐ部分であり、円弧形状部5fは、吸気通路内面5aおよび5dを繋ぐ部分である。また、円弧形状部5gは、吸気通路内面5bおよび5cを繋ぐ部分であり、円弧形状部5hは、吸気通路内面5bおよび5dを繋ぐ部分である。また、図4に示された断面C2においても図5に示された断面C2においても、吸気通路内面5bに接する2つの円弧形状部5gおよび5hの曲率半径Rbは、湾曲外側の吸気通路内面5aに接する2つの円弧形状部5eおよび5fの曲率半径Raよりも小さい(曲率半径Rb<曲率半径Ra)。また、この4隅の円弧形状部5e〜5hによって、4隅での流路抵抗は、さらに減少される。   Further, in the present embodiment, as shown in FIGS. 4 and 5, the curved downstream portion 5 of the intake pipe 1 has a larger interval W2 than the interval H2 in a cross section C2 orthogonal to the direction in which the intake pipe 1 extends. The cross section C2 has an oval cross section in which arc-shaped portions 5e to 5h are provided at four corners. Here, the arc-shaped portion 5e is a portion connecting the intake passage inner surfaces 5a and 5c, and the arc-shaped portion 5f is a portion connecting the intake passage inner surfaces 5a and 5d. The arc-shaped portion 5g is a portion connecting the intake passage inner surfaces 5b and 5c, and the arc-shaped portion 5h is a portion connecting the intake passage inner surfaces 5b and 5d. Further, in both the cross section C2 shown in FIG. 4 and the cross section C2 shown in FIG. 5, the curvature radii Rb of the two arc-shaped portions 5g and 5h contacting the intake passage inner surface 5b are the curved outer intake passage inner surfaces 5a. Is smaller than the radius of curvature Ra of the two arcuate portions 5e and 5f that are in contact with each other (curvature radius Rb <curvature radius Ra). Further, the flow path resistance at the four corners is further reduced by the arc-shaped portions 5e to 5h at the four corners.

このように、湾曲下流部5では、湾曲外側の吸気通路内面5a近傍での流路長(流速)と湾曲内側の吸気通路内面5b近傍での流路長との流路長差が減少され、かつ、吸気通路内面5a近傍における吸気流の流速と吸気通路内面5b近傍における吸気流の流速との差も減少される。したがって、吸気通路内面5b近傍の吸気流は、吸気通路内面5bから剥離することなく吸気通路内面5bの形状に沿って下流端5zまで流れる。また、吸気流の剥離現象が発生しないので、背後(後流領域)に剥離渦が発生するのが抑制され、湾曲下流部5には顕著な圧力損失が発生しない。   In this way, in the curved downstream portion 5, the flow path length difference between the flow path length (flow velocity) near the intake passage inner surface 5a outside the curve and the flow path length near the intake passage inner surface 5b inside the curve is reduced, In addition, the difference between the flow velocity of the intake flow near the intake passage inner surface 5a and the flow velocity of the intake flow near the intake passage inner surface 5b is also reduced. Accordingly, the intake flow in the vicinity of the intake passage inner surface 5b flows to the downstream end 5z along the shape of the intake passage inner surface 5b without being separated from the intake passage inner surface 5b. Further, since the separation phenomenon of the intake flow does not occur, the generation of separation vortices in the back (wake region) is suppressed, and no significant pressure loss occurs in the curved downstream portion 5.

また、戻し配管部6は、図2に示すように、吸気流れ方向(矢印B方向)に沿ってほぼ直線状に延びる吸気通路内面6aと、所定の曲率半径を有する内面を一部に含んで吸気流れ方向に延びる吸気通路内面6bとを有する。したがって、戻し配管部6は、下流端6zにおいては、図6に示すような断面C3を有しており、吸気通路内面6aおよび6bが間隔H3を有して矢印R方向に互いに対向している。なお、吸気通路内面6aおよび6bは、矢印R方向に互いに対向し、かつ、X軸に沿ってほぼ平行に延びた部分を含んでいる。また、戻し配管部6は、吸気通路内面6aおよび6bの対向方向(矢印R方向)に直交するX軸方向において間隔W3を有して互いに対向する吸気通路内面6cおよび6dをさらに有する。なお、吸気通路内面6cおよび6dは、X軸方向に互いに対向し、かつ、矢印R方向に沿ってほぼ平行に延びた部分を含んでいる。なお、間隔H3は、本発明の「湾曲小部第1間隔」の一例である。また、間隔W3は、本発明の「湾曲小部第2間隔」の一例である。なお、吸気通路内面6aおよび6bは、本発明の「下流部第1間隔に対応する湾曲小部の吸気通路内面」の一例である。また、吸気通路内面6cおよび6dは、本発明の「下流部第2間隔に対応する湾曲小部の吸気通路内面」の一例である。   As shown in FIG. 2, the return pipe portion 6 includes an intake passage inner surface 6 a extending substantially linearly along the intake flow direction (arrow B direction) and an inner surface having a predetermined radius of curvature. An intake passage inner surface 6b extending in the intake flow direction. Accordingly, the return pipe portion 6 has a cross section C3 as shown in FIG. 6 at the downstream end 6z, and the intake passage inner surfaces 6a and 6b face each other in the direction of the arrow R with a distance H3. . The intake passage inner surfaces 6a and 6b include portions that face each other in the direction of the arrow R and extend substantially parallel to the X axis. The return pipe portion 6 further includes intake passage inner surfaces 6c and 6d that are opposed to each other with an interval W3 in the X-axis direction orthogonal to the facing direction (arrow R direction) of the intake passage inner surfaces 6a and 6b. The intake passage inner surfaces 6c and 6d include portions that face each other in the X-axis direction and extend substantially in parallel along the arrow R direction. The interval H3 is an example of the “curved small portion first interval” in the present invention. The interval W3 is an example of the “curved small portion second interval” in the present invention. The intake passage inner surfaces 6a and 6b are examples of the “intake passage inner surface of a small curved portion corresponding to the first downstream interval” in the present invention. Further, the intake passage inner surfaces 6c and 6d are examples of the “intake passage inner surface of a small curved portion corresponding to the second downstream portion interval” of the present invention.

そして、本実施形態では、湾曲部3(湾曲下流部5)の下流端5zから戻し配管部6の下流に向かう矢印B方向に沿って、戻し配管部6の断面C3の縦横比(間隔H3と間隔W3との比率)が吸気流れ方向に沿って徐々に1に近づくように、間隔H2(図5参照)に対応する戻し配管部6の吸気通路内面6aおよび6b間の間隔H3が徐々に大きく変化されるとともに、間隔W2(図5参照)に対応する戻し配管部6の吸気通路内面6cおよび6d間の間隔W3が徐々に小さく変化されるように構成されている。なお、図6に示す断面C3では、戻し配管部6の全区間の中で最も縦横比が1に近づけられた状態である。すなわち、戻し配管部6は、湾曲下流部5の下流端5zでの断面C2(図5参照)を出発点として下流端6zにおける断面C3(図6参照)になるまで、その断面形状を扁平形状から徐々に扁平でない状態(縦横比が吸気流れ方向に沿って徐々に1に近づけられる状態)へと戻される。   In the present embodiment, the aspect ratio (interval H3 and interval H3) of the cross section C3 of the return pipe section 6 along the arrow B direction from the downstream end 5z of the curved section 3 (curved downstream section 5) to the downstream of the return pipe section 6. The interval H3 between the intake passage inner surfaces 6a and 6b of the return pipe portion 6 corresponding to the interval H2 (see FIG. 5) is gradually increased so that the ratio to the interval W3 gradually approaches 1 along the intake flow direction. While being changed, the interval W3 between the intake passage inner surfaces 6c and 6d of the return pipe portion 6 corresponding to the interval W2 (see FIG. 5) is gradually changed to be small. Note that, in the cross section C3 shown in FIG. 6, the aspect ratio is closest to 1 in the entire section of the return pipe section 6. That is, the cross-sectional shape of the return pipe portion 6 is a flat shape until the cross-section C3 (see FIG. 6) at the downstream end 6z starts from the cross-section C2 (see FIG. 5) at the downstream end 5z of the curved downstream portion 5. Is gradually returned to a non-flat state (a state in which the aspect ratio is gradually brought close to 1 along the intake flow direction).

これにより、吸気管1では、剥離を起こすことなく湾曲部3(湾曲下流部5)を流通した吸気流(空気)は、断面C2から断面C3へと断面形状が徐々に変化される戻し配管部6を下流端6zに向けて通過しながら最終的にシリンダヘッド91へと送られる。なお、下流端5z近傍では、断面C3が最も扁平形状になるため吸気通路内面の周長(吸気通路内面5aと吸気通路内面5bとの合計長さ)が極大値に達する。このため、吸気流と吸気通路内面(吸気通路内面5aおよび吸気通路内面5b)との間に壁面摩擦に起因した圧力損失が僅かながら生じる。しかしながら、下流端5zに接続される戻し配管部6を適切に利用して、この最も扁平となった断面C2を徐々に扁平でない状態へと断面形状が戻される。これにより、湾曲下流部5の下流端5zで周長の極大化に伴って発生する吸気流と吸気通路内面(吸気通路内面5aおよび吸気通路内面5b)との間の壁面摩擦に起因した圧力損失は、即座に解消される。   Thereby, in the intake pipe 1, the intake pipe (air) flowing through the curved portion 3 (curved downstream portion 5) without causing separation is a return pipe portion in which the cross-sectional shape is gradually changed from the cross-section C2 to the cross-section C3. 6 is finally sent to the cylinder head 91 while passing 6 toward the downstream end 6z. In the vicinity of the downstream end 5z, the cross-section C3 is flattened, so that the circumferential length of the intake passage inner surface (the total length of the intake passage inner surface 5a and the intake passage inner surface 5b) reaches a maximum value. For this reason, a slight pressure loss due to wall friction occurs between the intake air flow and the intake passage inner surface (the intake passage inner surface 5a and the intake passage inner surface 5b). However, the return pipe portion 6 connected to the downstream end 5z is appropriately used to gradually return the cross-sectional shape of the flattened cross section C2 to a non-flat state. As a result, the pressure loss due to the wall friction between the intake air flow and the intake passage inner surface (the intake passage inner surface 5a and the intake passage inner surface 5b) generated at the downstream end 5z of the curved downstream portion 5 as the circumference is maximized. Will be resolved immediately.

また、上流配管部2においては、図2に示すように、吸気流れ方向(矢印B方向)に沿って直線状に延びる吸気通路内面2a(上流配管部2での通路内面1b)を有する。すなわち、上流配管部2は、湾曲上流部4が開始される位置の断面C1(図3参照)と同じ断面形状を有した状態で、曲がり部分を有しないままサージタンク10まで延びている。また、吸気ポート部20は、フランジ部7がガスケット部材92を介してシリンダヘッド91に接続されている。   Further, as shown in FIG. 2, the upstream piping portion 2 has an intake passage inner surface 2 a (passage inner surface 1 b in the upstream piping portion 2) extending linearly along the intake flow direction (arrow B direction). That is, the upstream piping portion 2 has the same cross-sectional shape as the cross-section C1 (see FIG. 3) at the position where the curved upstream portion 4 is started, and extends to the surge tank 10 without having a bent portion. Further, the intake port portion 20 has a flange portion 7 connected to a cylinder head 91 via a gasket member 92.

また、図1に示すように、吸気ポート部20を構成する各々の吸気管1は、サージタンク10に対して並列的に接続されている。また、吸気装置100では、吸気路としての図示しないエアクリーナおよびスロットルを介して到達する吸気がサージタンク10に流入される。本実施形態における吸気装置100は、上記のように構成されている。   Further, as shown in FIG. 1, each intake pipe 1 constituting the intake port portion 20 is connected in parallel to the surge tank 10. Further, in intake device 100, intake air that reaches via an air cleaner and a throttle (not shown) as an intake passage flows into surge tank 10. The intake device 100 in the present embodiment is configured as described above.

本実施形態では、以下のような効果を得ることができる。   In the present embodiment, the following effects can be obtained.

すなわち、本実施形態では、上記のように、湾曲下流部5の吸気管1の延びる方向と直交する断面C2(図4および図5参照)において、湾曲下流部5における湾曲外側の吸気通路内面5aと湾曲内側の吸気通路内面5bとの間の間隔H2を吸気流れ方向(矢印B方向)に沿って徐々に小さくするとともに、間隔H2を有して対向する吸気通路内面5aおよび5bに直交して対向する吸気通路内面5cおよび5d間の間隔W2を吸気流れ方向(矢印B方向)に沿って徐々に大きくする。そして、湾曲下流部5の断面C2の断面積Sが吸気流れ方向に沿って一定になるように吸気管1の湾曲部3を構成する。これにより、吸気流の剥離が発生しやすい湾曲下流部5において、吸気通路内面5aおよび5b間の間隔H2を小さくすることにより、吸気通路内面5a近傍での流路長と吸気通路内面5b近傍での流路長との差が減少されるので、吸気流が湾曲内側の吸気通路内面5bから剥離するのが抑制される。さらに、湾曲下流部5の吸気通路内面5aおよび5b間の間隔H2を急激に変化させることなく徐々に変化させることによって、吸気通路内面5a近傍での流路長と吸気通路内面5b近傍での流路長との差を急激に減少させることなく徐々に減少させることができるので、吸気流が湾曲内側の吸気通路内面5bから剥離するのをより効果的に抑制することができる。その結果、吸気管1の湾曲部3における圧力損失を効果的に低減することができる。また、吸気通路内面5aおよび5b間の間隔H2を減少させるように断面C2の形状を変化させた場合にも、間隔W2を増加させることにより断面積Sを一定に保つことによって、間隔H2が細められた湾曲下流部5での吸気流の圧力損失が増加するのを効果的に抑制することができる。これによっても、吸気管1の湾曲部3における圧力損失を効果的に低減することができる。   That is, in the present embodiment, as described above, in the cross-section C2 (see FIGS. 4 and 5) orthogonal to the direction in which the intake pipe 1 extends in the curved downstream portion 5, the intake passage inner surface 5a outside the curved portion in the curved downstream portion 5. And the intake passage inner surface 5b on the curved inner side are gradually reduced along the intake flow direction (arrow B direction) and perpendicular to the opposed intake passage inner surfaces 5a and 5b with the interval H2. The interval W2 between the opposing intake passage inner surfaces 5c and 5d is gradually increased along the intake flow direction (arrow B direction). The curved portion 3 of the intake pipe 1 is configured so that the cross-sectional area S of the cross-section C2 of the curved downstream portion 5 is constant along the intake flow direction. Accordingly, in the curved downstream portion 5 where the separation of the intake flow is likely to occur, the distance H2 between the intake passage inner surfaces 5a and 5b is reduced, so that the flow path length in the vicinity of the intake passage inner surface 5a and the vicinity of the intake passage inner surface 5b are reduced. Therefore, the separation of the intake flow from the curved inner surface of the intake passage 5b is suppressed. Further, by gradually changing the interval H2 between the intake passage inner surfaces 5a and 5b of the curved downstream portion 5 without rapidly changing, the flow path length in the vicinity of the intake passage inner surface 5a and the flow in the vicinity of the intake passage inner surface 5b are changed. Since the difference from the path length can be gradually decreased without rapidly decreasing, it is possible to more effectively suppress the intake air flow from separating from the intake passage inner surface 5b on the curved inner side. As a result, the pressure loss in the curved portion 3 of the intake pipe 1 can be effectively reduced. Further, even when the shape of the cross section C2 is changed so as to reduce the interval H2 between the intake passage inner surfaces 5a and 5b, the interval H2 is narrowed by keeping the cross sectional area S constant by increasing the interval W2. It is possible to effectively suppress an increase in the pressure loss of the intake air flow in the curved downstream portion 5 formed. Also by this, the pressure loss in the curved portion 3 of the intake pipe 1 can be effectively reduced.

また、本実施形態では、湾曲下流部5の湾曲内側の吸気通路内面5bの曲率半径R2bを、湾曲上流部4の湾曲内側の吸気通路内面4bの曲率半径R1bよりも大きく(曲率半径R2b>曲率半径R1b)構成する。そして、吸気管1の延びる方向と直交する断面C2において、間隔H2を、湾曲上流部4における吸気通路内面4aと吸気通路内面4bとの間の間隔H1よりも小さく構成する。これにより、吸気流の剥離が発生しやすい湾曲下流部5において、吸気通路内面5bの曲率半径R2bを増加させて吸気通路内面5aに容易に近付けることができるので、湾曲上流部4における間隔H1に対して湾曲下流部5における間隔H2を容易に減少させることができる。すなわち、湾曲上流部4において湾曲外側の吸気通路内面4a近傍での流路長と湾曲内側の吸気通路内面4b近傍での流路長との差が比較的大きい状態から、湾曲下流部5においては湾曲内側の吸気通路内面5b近傍での流路長を増加させて湾曲外側の吸気通路内面5a近傍での流路長に近付けてその差を容易に減少させることができる。これにより、湾曲内側の吸気通路内面5bから吸気流が剥離するのを抑制可能な湾曲下流部5を容易に設けることができる。   In the present embodiment, the curvature radius R2b of the intake passage inner surface 5b inside the curve of the curved downstream portion 5 is larger than the curvature radius R1b of the intake passage inner surface 4b inside the curve of the curved upstream portion 4 (curvature radius R2b> curvature). Radius R1b). In the cross section C2 orthogonal to the direction in which the intake pipe 1 extends, the interval H2 is configured to be smaller than the interval H1 between the intake passage inner surface 4a and the intake passage inner surface 4b in the curved upstream portion 4. Accordingly, in the curved downstream portion 5 where the separation of the intake flow is likely to occur, the radius of curvature R2b of the intake passage inner surface 5b can be increased to easily approach the intake passage inner surface 5a. On the other hand, the interval H2 in the curved downstream portion 5 can be easily reduced. That is, from the state in which the difference between the flow path length in the vicinity of the intake passage inner surface 4a on the curved outer side and the flow path length in the vicinity of the intake passage inner surface 4b on the curved inner side in the curved upstream portion 4 is relatively large, It is possible to increase the flow path length in the vicinity of the curved inner intake passage inner surface 5b to approach the flow path length in the vicinity of the curved outer intake passage inner surface 5a and easily reduce the difference. Accordingly, the curved downstream portion 5 that can suppress the separation of the intake air flow from the intake passage inner surface 5b inside the curve can be easily provided.

また、本実施形態では、湾曲下流部5の下流端5zにおいて、間隔H2が最も小さく、かつ、間隔W2が最も大きくなるように湾曲下流部5を構成する。これにより、湾曲下流部5においては下流端5zでの断面C3における間隔H2を最も細める(最も扁平形状にする)ことによって、湾曲外側の吸気通路内面5a近傍における吸気流の流速と湾曲内側の吸気通路内面5b近傍における吸気流の流速との差を最も小さくすることができるので、湾曲下流部5の下流端5zにおいて吸気流の剥離が低減された状態を維持することができる。   In the present embodiment, the curved downstream portion 5 is configured so that the interval H2 is the smallest and the interval W2 is the largest at the downstream end 5z of the curved downstream portion 5. As a result, in the curved downstream portion 5, the flow rate of the intake air flow in the vicinity of the intake passage inner surface 5a on the outer side of the curve and the intake air on the inner side of the curve are reduced by narrowing the interval H2 in the cross section C3 at the downstream end 5z. Since the difference with the flow velocity of the intake flow in the vicinity of the passage inner surface 5b can be minimized, the state where the separation of the intake flow is reduced at the downstream end 5z of the curved downstream portion 5 can be maintained.

また、本実施形態では、吸気管1に湾曲部3の下流端5zに接続され湾曲度合いが湾曲部3(湾曲上流部5および湾曲下流部5)よりも小さい戻し配管部6を設ける。そして、湾曲部3の下流端5zから戻し配管部6の下流に向かって、戻し配管部6の断面C3の縦横比(間隔H3と間隔W3との比率)が吸気流れ方向(矢印B方向)に沿って徐々に1に近づくように、間隔H2に対応する戻し配管部6の吸気通路内面間の間隔H3が徐々に大きくなるとともに、間隔W2に対応する戻し配管部6の吸気通路内面6aおよび6b間の間隔W3が徐々に小さくなるように戻し配管部6を構成する。ここで、湾曲下流部5の下流端5z近傍では、断面C3が最も扁平形状になることから流路断面における吸気通路内面の周長(吸気通路内面5aと吸気通路内面5bとの合計長さ)が極大値となるため、吸気流と吸気通路内面(吸気通路内面5aおよび5b)との間に壁面摩擦に起因した圧力損失が僅かながら生じる。しかしながら、湾曲下流部5の下流端5zに接続される戻し配管部6をその断面C3の縦横比が吸気流れ方向に沿って徐々に1に近づくように吸気通路内面6aおよび6b間の間隔H3を徐々に増加させかつ間隔W3を徐々に減少させることによって、湾曲下流部5の下流端5zにおいて最も扁平となった断面C2を徐々に扁平でない状態(間隔H3と間隔W3との比率が吸気流れ方向に沿って徐々に1に近づけられる状態)へと戻すことができる。これにより湾曲下流部5の下流端5zで周長の極大化に伴って発生する吸気流と吸気通路内面(吸気通路内面5aおよび5b)との間の壁面摩擦に起因した圧力損失を即座に解消することができる。その結果、吸気流の剥離の低減と、壁面摩擦の低減とを両立させることができるので、湾曲部3を含めた吸気管1の圧力損失を最小限に抑えることができる。   Further, in the present embodiment, the intake pipe 1 is provided with a return pipe portion 6 that is connected to the downstream end 5z of the bending portion 3 and has a bending degree smaller than that of the bending portion 3 (the bending upstream portion 5 and the bending downstream portion 5). Then, from the downstream end 5z of the curved portion 3 toward the downstream of the return pipe portion 6, the aspect ratio (ratio between the interval H3 and the interval W3) of the cross section C3 of the return pipe portion 6 is in the intake flow direction (arrow B direction). The interval H3 between the intake passage inner surfaces of the return pipe portion 6 corresponding to the interval H2 gradually increases so as to gradually approach 1 along the intake passage inner surfaces 6a and 6b of the return pipe portion 6 corresponding to the interval W2. The return pipe portion 6 is configured so that the interval W3 therebetween becomes gradually smaller. Here, in the vicinity of the downstream end 5z of the curved downstream portion 5, the cross section C3 is the flattest shape, so that the circumferential length of the intake passage inner surface in the flow passage section (the total length of the intake passage inner surface 5a and the intake passage inner surface 5b). Therefore, a slight pressure loss is caused between the intake air flow and the intake passage inner surfaces (intake passage inner surfaces 5a and 5b) due to wall friction. However, the return pipe portion 6 connected to the downstream end 5z of the curved downstream portion 5 has an interval H3 between the intake passage inner surfaces 6a and 6b so that the aspect ratio of the cross section C3 gradually approaches 1 along the intake flow direction. By gradually increasing and gradually decreasing the interval W3, the flattened cross section C2 at the downstream end 5z of the curved downstream portion 5 is not gradually flattened (the ratio between the interval H3 and the interval W3 is the direction of intake air flow) The state can be gradually returned to 1). As a result, the pressure loss due to the wall friction between the intake air flow and the intake passage inner surfaces (intake passage inner surfaces 5a and 5b) generated at the downstream end 5z of the curved downstream portion 5 due to the maximization of the circumference is immediately eliminated. can do. As a result, it is possible to achieve both the reduction of the separation of the intake flow and the reduction of the wall friction, so that the pressure loss of the intake pipe 1 including the curved portion 3 can be minimized.

また、本実施形態では、吸気管1の延びる方向と直交する断面C2において、間隔H2よりも間隔W2が大きく、かつ、4隅に円弧形状部5e〜5hが設けられた長円形状の断面形状を有するように吸気管1の湾曲下流部5を構成する。これにより、4隅に円弧形状部5e〜5hが設けられた断面では、4隅に円弧形状部5e〜5hが設けられていない断面と比較して、吸気通路内面5aと吸気通路内面5bとの合計長さ(周長:吸気通路内面の面積)をより少なくすることができるとともに、4隅の円弧形状部5e〜5hにより、4隅での流路抵抗を減少させることができる。したがって、吸気流と吸気通路内面(吸気通路内面5aおよび吸気通路内面5b)との間の壁面摩擦をさらに低減することができるので、湾曲部3における圧力損失をさらに低減することができる。   In the present embodiment, in the cross section C2 orthogonal to the direction in which the intake pipe 1 extends, the interval W2 is larger than the interval H2, and the oval cross-sectional shape is provided with the arc-shaped portions 5e to 5h at the four corners. The curved downstream portion 5 of the intake pipe 1 is configured to have Thereby, in the cross section in which the arc-shaped portions 5e to 5h are provided in the four corners, the intake passage inner surface 5a and the intake passage inner surface 5b are compared with the cross section in which the arc-shaped portions 5e to 5h are not provided in the four corners. The total length (peripheral length: area of the inner surface of the intake passage) can be further reduced, and the flow path resistance at the four corners can be reduced by the arcuate portions 5e to 5h at the four corners. Therefore, the wall friction between the intake air flow and the intake passage inner surface (the intake passage inner surface 5a and the intake passage inner surface 5b) can be further reduced, so that the pressure loss in the curved portion 3 can be further reduced.

また、本実施形態では、吸気管1の延びる方向と直交する断面C2において、湾曲内側の吸気通路内面5bに接する2つの円弧形状部5gおよび5hの曲率半径Rbが、湾曲外側の吸気通路内面5aに接する2つの円弧形状部5eおよび5fの曲率半径Raよりも小さくなるように吸気管1の湾曲下流部5を構成する。これにより、間隔H2を減少させかつ間隔W2を増加させるような流路断面形状を湾曲下流部5に容易に形成することができる。すなわち、湾曲下流部5における湾曲内側の吸気通路内面5bを湾曲外側の吸気通路内面5aに向かって容易に近付けることができる。   Further, in the present embodiment, in the cross section C2 orthogonal to the direction in which the intake pipe 1 extends, the curvature radii Rb of the two arcuate portions 5g and 5h that are in contact with the intake passage inner surface 5b on the curved inner side are the intake passage inner surface 5a on the curved outer side. The curved downstream portion 5 of the intake pipe 1 is configured so as to be smaller than the curvature radius Ra of the two arc-shaped portions 5e and 5f that are in contact with each other. Thereby, the flow path cross-sectional shape that decreases the interval H2 and increases the interval W2 can be easily formed in the curved downstream portion 5. That is, the intake passage inner surface 5b inside the curve in the curved downstream portion 5 can be easily brought closer to the intake passage inner surface 5a outside the curve.

また、本実施形態では、湾曲下流部5の湾曲外側の吸気通路内面5aの曲率半径R2aと、湾曲上流部4の湾曲外側の吸気通路内面4aの曲率半径R1aとを等しく構成する。これにより、湾曲上流部4における吸気通路内面4a近傍での吸気流の流線(流れの状態)を湾曲下流部5の吸気通路内面5a近傍においても維持することができる。そして、この状態で、湾曲下流部5における湾曲内側の吸気通路内面5bを湾曲外側の吸気通路内面5aに徐々に近付けることができるので、この点でも、湾曲内側の吸気通路内面5b近傍において吸気流が剥離するのを抑制することができる。   In the present embodiment, the curvature radius R2a of the intake passage inner surface 5a outside the curve of the curved downstream portion 5 and the curvature radius R1a of the intake passage inner surface 4a outside the curve of the curved upstream portion 4 are configured to be equal. Thereby, the flow line (flow state) of the intake flow in the vicinity of the intake passage inner surface 4 a in the curved upstream portion 4 can be maintained also in the vicinity of the intake passage inner surface 5 a of the curved downstream portion 5. In this state, the inner intake passage inner surface 5b in the curved downstream portion 5 can be gradually brought closer to the outer intake passage inner surface 5a in the curved outer portion. Can be prevented from peeling.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

たとえば、上記実施形態では、直線的に延びた上流配管部2および戻し配管部6が湾曲部3の上流側および下流側にそれぞれ接続されて吸気管1を構成した例について示したが、本発明はこれに限られない。たとえば、本発明の「吸気通路」の一例としての吸気管201を、図7に示す第1変形例のように構成してもよい。   For example, in the above-described embodiment, an example in which the intake pipe 1 is configured by connecting the upstream piping section 2 and the return piping section 6 extending linearly to the upstream side and the downstream side of the bending section 3 has been described. Is not limited to this. For example, the intake pipe 201 as an example of the “intake passage” of the present invention may be configured as in the first modification shown in FIG.

具体的には、図7(第1変形例)に示すように、吸気管201は、所定の曲率半径を有して曲げられた上流配管部202と、所定の曲率半径を有して曲げられた戻し配管部206とが湾曲部3の上流側および下流側にそれぞれ接続されて構成されている。ここで、上流配管部202および戻し配管部206の各々の曲率半径は、湾曲部3の曲率半径よりも大きい。特に、戻し配管部206における湾曲外側の吸気通路内面206aの曲率半径は、湾曲下流部5の吸気通路内面5aの曲率半径R2aよりも十分に大きい。また、湾曲内側の吸気通路内面206bの曲率半径は、湾曲下流部5の吸気通路内面5bの曲率半径R2bよりも十分に大きい。この場合も、戻し配管部206を利用して、湾曲下流部5の最も扁平となった断面C2を徐々に扁平でない状態へと徐々に戻すことができるので、湾曲下流部5での吸気流と吸気通路内面(吸気通路内面5aおよび5b)との間の壁面摩擦に起因した圧力損失を容易に解消することができる。なお、戻し配管部206は、本発明の「湾曲小部」の一例である。また、吸気通路内面206aおよび206bは、本発明の「下流部第1間隔に対応する湾曲小部の吸気通路内面」の一例である。   Specifically, as shown in FIG. 7 (first modification), the intake pipe 201 is bent with a predetermined curvature radius and an upstream pipe section 202 bent with a predetermined curvature radius. The return pipe portion 206 is connected to the upstream side and the downstream side of the bending portion 3, respectively. Here, the curvature radii of the upstream piping part 202 and the return piping part 206 are larger than the curvature radii of the bending part 3. In particular, the curvature radius of the intake passage inner surface 206a outside the curved portion in the return pipe portion 206 is sufficiently larger than the curvature radius R2a of the intake passage inner surface 5a of the curved downstream portion 5. Further, the radius of curvature of the intake passage inner surface 206b on the curved inner side is sufficiently larger than the radius of curvature R2b of the intake passage inner surface 5b of the curved downstream portion 5. Also in this case, the return pipe portion 206 can be used to gradually return the flattened cross section C2 of the curved downstream portion 5 to a non-flat state. Pressure loss due to wall friction between the intake passage inner surfaces (intake passage inner surfaces 5a and 5b) can be easily eliminated. The return piping part 206 is an example of the “curved small part” in the present invention. The intake passage inner surfaces 206a and 206b are an example of the “inner surface of the intake passage having a small curved portion corresponding to the first interval at the downstream portion” in the present invention.

また、上記実施形態では、断面C2(図4および図5参照)において、間隔H2よりも間隔W2が大きく、かつ、4隅に円弧形状部5e〜5hが設けられた長円形状の断面形状を有するように湾曲下流部5を構成した例について示したが、本発明はこれに限られない。たとえば、本発明の「湾曲下流部」の一例としての湾曲下流部205を、図8に示す第2変形例のように構成してもよい。   Moreover, in the said embodiment, in the cross section C2 (refer FIG. 4 and FIG. 5), the space | interval W2 is larger than the space | interval H2, and the elliptical cross-sectional shape by which the arc-shaped part 5e-5h was provided in four corners is used. Although the example in which the curved downstream portion 5 is configured to have the above is shown, the present invention is not limited to this. For example, the curved downstream portion 205 as an example of the “curved downstream portion” of the present invention may be configured as in the second modified example shown in FIG.

具体的には、図8(第2変形例)に示すように、湾曲下流部205は、4隅に円弧形状部205e〜205hが設けられた長方形形状の断面C2aを有している。すなわち、断面C2aは、断面C2(図4および図5参照)と比較して、全体的により四角形状(長方形形状)に近づけられた吸気通路内面205a〜205dを有している。湾曲部3に、このような断面C2aを有する湾曲下流部205が含まれるような吸気ポート部220に対しても、湾曲下流部205での断面積Sを一定に保ちつつ、吸気通路内面205aおよび205bの間隔H2を吸気流れ方向に沿って徐々に小さくするとともに、吸気通路内面205cおよび205dの間隔W2を吸気流れ方向に沿って徐々に大きくするように構成してもよい。製造プロセス上、断面C2aを有するように長方形形状に形成される部分を含む吸気ポート部230が形成される場合も十分にありうる。断面C2aにおいても4隅の円弧形状部205e〜205hにより4隅での流路抵抗を減少させることができる。なお、吸気通路内面205aは、本発明の「湾曲外側の吸気通路内面」の一例であり、吸気通路内面205bは、本発明の「湾曲内側の吸気通路内面」の一例である。また、吸気通路内面205cおよび205dは、本発明の「直交して対向する吸気通路内面」の一例である。   Specifically, as shown in FIG. 8 (second modification), the curved downstream portion 205 has a rectangular cross section C2a in which arc-shaped portions 205e to 205h are provided at four corners. That is, the cross section C2a has intake passage inner surfaces 205a to 205d that are made closer to a square shape (rectangular shape) as a whole compared to the cross section C2 (see FIGS. 4 and 5). Even with respect to the intake port portion 220 in which the curved portion 3 includes the curved downstream portion 205 having such a cross section C2a, the intake passage inner surface 205a and the intake passage inner surface 205a and the curved portion 3 are kept constant. The interval H2 of 205b may be gradually decreased along the intake flow direction, and the interval W2 between the intake passage inner surfaces 205c and 205d may be gradually increased along the intake flow direction. In the manufacturing process, there may be a case where the intake port portion 230 including a portion formed in a rectangular shape so as to have the cross section C2a is formed. Also in the cross section C2a, the flow path resistance at the four corners can be reduced by the arc-shaped portions 205e to 205h at the four corners. The intake passage inner surface 205a is an example of the “curved outer intake passage inner surface” in the present invention, and the intake passage inner surface 205b is an example of the “curved inner intake passage inner surface” in the present invention. In addition, the intake passage inner surfaces 205c and 205d are examples of the “inversely opposed intake passage inner surfaces” of the present invention.

また、上記実施形態では、管壁部1cの厚みを上流配管部2、湾曲部3および戻し配管部6までの全区間に亘っておおよそ一定であるように吸気管1を構成した例について示したが、本発明はこれに限られない。すなわち、管壁部1cの厚みが場所によって異なるように構成された湾曲部3に対しても、本発明を適用することができる。管壁部1cの厚みに関係なく、湾曲下流部5での断面積Sを一定に保ちつつ、吸気通路内面5aおよび5bの間隔H2を吸気流れ方向に沿って徐々に小さくするとともに、吸気通路内面5cおよび5dの間隔W2を吸気流れ方向に沿って徐々に大きくするように構成してもよい。   Moreover, in the said embodiment, the example which comprised the intake pipe 1 so that the thickness of the pipe wall part 1c was substantially constant over all the sections to the upstream piping part 2, the curved part 3, and the return piping part 6 was shown. However, the present invention is not limited to this. That is, the present invention can also be applied to the bending portion 3 configured such that the thickness of the tube wall portion 1c varies depending on the location. Regardless of the thickness of the pipe wall portion 1c, the interval H2 between the intake passage inner surfaces 5a and 5b is gradually reduced along the intake flow direction while keeping the cross-sectional area S at the curved downstream portion 5 constant, and the intake passage inner surface The interval W2 between 5c and 5d may be gradually increased along the intake flow direction.

また、上記実施形態では、湾曲上流部4における湾曲外側の吸気通路内面4aの曲率半径R1aと、湾曲下流部5における湾曲外側の吸気通路内面5aの曲率半径R2aとを等しく構成した例について示したが、本発明はこれに限られない。すなわち、湾曲下流部5において断面積Sを一定にしたまま間隔H2を徐々に小さくしかつ間隔W2を徐々に大きくするのであれば、吸気通路内面5aの曲率半径R2aを吸気通路内面4aの曲率半径R1aとは異ならせるようにして湾曲部3を構成してもよい。   Moreover, in the said embodiment, the curvature radius R1a of the intake passage inner surface 4a outside the curve in the curved upstream portion 4 and the curvature radius R2a of the intake passage inner surface 5a outside the curve in the curved downstream portion 5 were shown to be equal. However, the present invention is not limited to this. That is, if the interval H2 is gradually decreased and the interval W2 is gradually increased while the cross-sectional area S is kept constant in the curved downstream portion 5, the curvature radius R2a of the intake passage inner surface 5a is set to the curvature radius of the intake passage inner surface 4a. The bending portion 3 may be configured differently from R1a.

また、上記実施形態では、湾曲下流部5の断面C2(図4および図5参照)において、湾曲内側の吸気通路内面5bに接する2つの円弧形状部5gおよび5hの曲率半径Rbを湾曲外側の吸気通路内面5aに接する2つの円弧形状部5eおよび5fの曲率半径Raよりも小さく構成した例について示したが、本発明はこれに限られない。すなわち、円弧形状部5gおよび5hの曲率半径Rbと円弧形状部5eおよび5fの曲率半径Raとを等しくしてもよい。   Moreover, in the said embodiment, in the cross section C2 (refer FIG. 4 and FIG. 5) of the curved downstream part 5, the curvature radius Rb of the two circular arc-shaped parts 5g and 5h which contact | connect the curved intake inner surface 5b is taken out of the curved outer intake. Although an example in which the two arcuate portions 5e and 5f that are in contact with the passage inner surface 5a are configured to be smaller than the curvature radius Ra has been described, the present invention is not limited thereto. That is, the curvature radius Rb of the arc-shaped portions 5g and 5h may be equal to the curvature radius Ra of the arc-shaped portions 5e and 5f.

また、上記実施形態および上記実施形態の第1および第2変形例では、吸気ポート部20(230)を樹脂(ポリアミド樹脂)製とした例について示したが、本発明はこれに限られない。すなわち、吸気管1(201)を含む吸気ポート部20(230)は、金属製であってもよい。   In the above embodiment and the first and second modifications of the above embodiment, the example in which the intake port portion 20 (230) is made of resin (polyamide resin) is shown, but the present invention is not limited to this. That is, the intake port portion 20 (230) including the intake pipe 1 (201) may be made of metal.

また、上記実施形態では、本発明の「吸気装置」を、自動車用の直列4気筒エンジンに適用した例について示したが、本発明はこれに限られない。本発明の吸気装置を、自動車用のエンジン以外の内燃機関に適用してもよい。また、自動車用のエンジンであっても、直列4気筒エンジン以外の直列多気筒エンジン、V型多気筒エンジンや水平対向エンジンなどに本発明を適用してもよい。   In the above embodiment, an example in which the “intake device” of the present invention is applied to an in-line four-cylinder engine for automobiles is shown, but the present invention is not limited to this. The intake device of the present invention may be applied to an internal combustion engine other than an automobile engine. Further, the present invention may be applied to an in-line multi-cylinder engine other than an in-line four-cylinder engine, a V-type multi-cylinder engine, a horizontally opposed engine, and the like even for an automobile engine.

また、上記実施形態では、多気筒エンジンからなる内燃機関90に接続される吸気装置100に対して本発明を適用した例について示したが、本発明はこれに限られない。たとえば、単気筒エンジン用の吸気装置に対して本発明を適用してもよい。また、内燃機関90としては、ガソリンエンジン、ディーゼルエンジンおよびガスエンジンなどが適用可能である。   In the above-described embodiment, the example in which the present invention is applied to the intake device 100 connected to the internal combustion engine 90 including a multi-cylinder engine has been described. However, the present invention is not limited to this. For example, the present invention may be applied to an intake device for a single cylinder engine. As the internal combustion engine 90, a gasoline engine, a diesel engine, a gas engine, or the like can be applied.

1、201 吸気管(吸気通路)
1a 通路外面
1b 通路内面
1c 管壁部
2、202 上流配管部
3 湾曲部
4 湾曲上流部
4a 吸気通路内面(湾曲外側の吸気通路内面)
4b 吸気通路内面(湾曲内側の吸気通路内面)
5、205 湾曲下流部
5a、205a 吸気通路内面(湾曲外側の吸気通路内面)
5b、205b 吸気通路内面(湾曲内側の吸気通路内面)
5c、5d、205c、205d 吸気通路内面(直交して対向する吸気通路内面)
5e、5f、5g、5h、205e、205f、205g、205h 円弧形状部
6、206 戻し配管部(湾曲小部)
6a、6b、206a、206b 吸気通路内面(下流部第1間隔に対応する湾曲小部の吸気通路内面)
6c、6d 吸気通路内面(下流部第2間隔に対応する湾曲小部の吸気通路内面)
7 フランジ部
10 サージタンク
20、230 吸気ポート部
90 内燃機関
100 吸気装置
C1、C2、C2a、C3 断面
H1 間隔(上流部第1間隔)
H2 間隔(下流部第1間隔)
H3 間隔(湾曲小部第1間隔)
W1 間隔
W2 間隔(下流部第2間隔)
W3 間隔(湾曲小部第2間隔)
1,201 Intake pipe (intake passage)
DESCRIPTION OF SYMBOLS 1a Passage outer surface 1b Passage inner surface 1c Pipe wall part 2,202 Upstream piping part 3 Curved part 4 Curved upstream part 4a Intake passage inner surface (intake passage inner surface of the curve outer side)
4b Inner surface of intake passage (inner surface of intake passage inside curve)
5, 205 Curved downstream portion 5a, 205a Inner surface of intake passage (inner surface of intake passage outside curve)
5b, 205b Inner surface of intake passage (inner surface of intake passage inside curve)
5c, 5d, 205c, 205d Intake passage inner surface (intake passage inner surface facing orthogonally)
5e, 5f, 5g, 5h, 205e, 205f, 205g, 205h Arc-shaped part 6, 206 Return pipe part (curved small part)
6a, 6b, 206a, 206b Inner surface of intake passage (inner surface of intake passage of small curved portion corresponding to first interval of downstream portion)
6c, 6d Inner surface of intake passage (inner surface of intake passage of curved small portion corresponding to second interval in downstream portion)
7 Flange portion 10 Surge tank 20, 230 Intake port portion 90 Internal combustion engine 100 Intake device C1, C2, C2a, C3 Cross section H1 interval (upstream portion first interval)
H2 interval (downstream first interval)
H3 interval (curved small part first interval)
W1 interval W2 interval (downstream second interval)
W3 interval (curved small part second interval)

Claims (7)

内燃機関に接続され、通路外面および通路内面が共に湾曲する湾曲部を有する吸気通路を備え、
前記吸気通路の前記湾曲部は、前記湾曲部の上流側の部分である湾曲上流部と、前記湾曲部の下流側の部分である湾曲下流部とを含み、
前記湾曲下流部の前記吸気通路の延びる方向と直交する断面において、前記湾曲下流部における湾曲外側の吸気通路内面と湾曲内側の吸気通路内面との間の下流部第1間隔を前記湾曲下流部の吸気流れ方向に沿って徐々に小さくするとともに、前記下流部第1間隔を有して対向する吸気通路内面に直交して対向する吸気通路内面間の下流部第2間隔を吸気流れ方向に沿って徐々に大きくすることによって、前記湾曲下流部の断面積が吸気流れ方向に沿って一定になるように構成されている、吸気装置。
An intake passage which is connected to the internal combustion engine and has a curved portion in which both the outer surface of the passage and the inner surface of the passage are curved;
The curved portion of the intake passage includes a curved upstream portion that is a portion on the upstream side of the curved portion, and a curved downstream portion that is a portion on the downstream side of the curved portion,
In a cross section perpendicular to the direction in which the intake passage extends in the curved downstream portion, a downstream first interval between the curved outer intake passage inner surface and the curved inner intake passage inner surface in the curved downstream portion is defined as the curved downstream portion. While gradually decreasing along the intake flow direction, the downstream second interval between the intake passage inner surfaces facing each other perpendicularly to the opposed intake passage inner surface with the downstream first interval is arranged along the intake flow direction. An air intake apparatus configured such that the cross-sectional area of the curved downstream portion becomes constant along the direction of intake air flow by gradually increasing the size.
前記湾曲下流部の湾曲内側の吸気通路内面は、前記湾曲上流部の湾曲内側の吸気通路内面よりも大きい曲率半径を有しており、
前記吸気通路の延びる方向と直交する断面において、前記下流部第1間隔は、前記湾曲上流部における湾曲外側の吸気通路内面と湾曲内側の吸気通路内面との間の上流部第1間隔よりも小さい、請求項1に記載の吸気装置。
The inner surface of the intake passage inside the curved downstream portion has a larger radius of curvature than the inner surface of the intake passage inside the curved upstream portion.
In the cross section orthogonal to the direction in which the intake passage extends, the first downstream interval is smaller than the first upstream interval between the inner surface of the intake passage outside the curve and the inner surface of the intake passage inside the curve. The air intake device according to claim 1.
前記湾曲下流部の下流端において、前記下流部第1間隔が最も小さく、かつ、前記下流部第2間隔が最も大きくなるように構成されている、請求項1または2に記載の吸気装置。   3. The intake device according to claim 1, wherein at the downstream end of the curved downstream portion, the downstream portion first interval is the smallest and the downstream portion second interval is the largest. 前記吸気通路は、前記湾曲部の下流端に接続され湾曲度合いが前記湾曲部よりも小さい湾曲小部をさらに含み、
前記湾曲部の下流端から前記湾曲小部の下流に向かって、前記湾曲小部の前記断面の縦横比が吸気流れ方向に沿って徐々に1に近づくように、前記下流部第1間隔に対応する前記湾曲小部の吸気通路内面間の湾曲小部第1間隔が徐々に大きくなるとともに、前記下流部第2間隔に対応する前記湾曲小部の吸気通路内面間の湾曲小部第2間隔が徐々に小さくなっている、請求項3に記載の吸気装置。
The intake passage further includes a small curved portion connected to a downstream end of the curved portion and having a curved degree smaller than that of the curved portion,
Corresponds to the downstream first interval so that the aspect ratio of the cross section of the curved small portion gradually approaches 1 along the intake flow direction from the downstream end of the curved portion toward the downstream of the curved small portion. The curved small portion first interval between the intake passage inner surfaces of the curved small portion gradually increases, and the curved small portion second interval between the intake passage inner surfaces of the curved small portion corresponding to the downstream second interval is The intake device according to claim 3, which is gradually reduced.
前記吸気通路の前記湾曲下流部は、前記吸気通路の延びる方向と直交する断面において、前記下流部第1間隔よりも前記下流部第2間隔が大きく、かつ、4隅に円弧形状部が設けられた長方形形状、または長円形状の断面形状を有する、請求項1〜4のいずれか1項に記載の吸気装置。   The curved downstream portion of the intake passage has a cross section perpendicular to the direction in which the intake passage extends, the downstream portion second interval being larger than the downstream portion first interval, and arc-shaped portions at four corners. The intake device according to any one of claims 1 to 4, wherein the intake device has a rectangular shape or an elliptical cross-sectional shape. 前記吸気通路の前記湾曲下流部は、前記吸気通路の延びる方向と直交する断面において、前記湾曲内側の吸気通路内面に接する2つの前記円弧形状部が、前記湾曲外側の吸気通路内面に接する2つの前記円弧形状部よりも小さい半径を有する、請求項5に記載の吸気装置。   In the cross section orthogonal to the direction in which the intake passage extends, the curved downstream portion of the intake passage has two arc-shaped portions in contact with the inner surface of the intake passage on the inner side of the curve. The intake device according to claim 5, wherein the intake device has a smaller radius than the arcuate portion. 前記湾曲下流部の湾曲外側の吸気通路内面は、前記湾曲上流部の湾曲外側の吸気通路内面と同じ曲率半径を有する、請求項1〜6のいずれか1項に記載の吸気装置。   The intake device according to any one of claims 1 to 6, wherein an inner surface of the intake passage on the outer side of the curved downstream portion has the same radius of curvature as an inner surface of the intake passage on the outer side of the curved portion.
JP2014154447A 2014-07-30 2014-07-30 Intake device Expired - Fee Related JP6394154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154447A JP6394154B2 (en) 2014-07-30 2014-07-30 Intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154447A JP6394154B2 (en) 2014-07-30 2014-07-30 Intake device

Publications (2)

Publication Number Publication Date
JP2016031060A true JP2016031060A (en) 2016-03-07
JP6394154B2 JP6394154B2 (en) 2018-09-26

Family

ID=55441586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154447A Expired - Fee Related JP6394154B2 (en) 2014-07-30 2014-07-30 Intake device

Country Status (1)

Country Link
JP (1) JP6394154B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168749A (en) * 2017-03-29 2018-11-01 ヤンマー株式会社 Engine device
JP2020008025A (en) * 2019-10-18 2020-01-16 ヤンマー株式会社 Engine device
JP2021099032A (en) * 2019-12-19 2021-07-01 株式会社クボタ Intake system for diesel engine
WO2021177025A1 (en) * 2020-03-05 2021-09-10 トヨタ紡織株式会社 Air intake duct
CN114981535A (en) * 2020-02-01 2022-08-30 Tvs电机股份有限公司 Motor vehicle with internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7384110B2 (en) * 2020-05-18 2023-11-21 トヨタ紡織株式会社 intake device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579415A (en) * 1991-09-13 1993-03-30 Yamaha Motor Co Ltd Intake device for engine
JP2008513671A (en) * 2004-09-21 2008-05-01 ボルボ ラストバグナー アーベー Pipeline for turbocharger system of internal combustion engine
JP2013177869A (en) * 2012-02-29 2013-09-09 Aisan Industry Co Ltd Intake manifold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579415A (en) * 1991-09-13 1993-03-30 Yamaha Motor Co Ltd Intake device for engine
JP2008513671A (en) * 2004-09-21 2008-05-01 ボルボ ラストバグナー アーベー Pipeline for turbocharger system of internal combustion engine
JP2013177869A (en) * 2012-02-29 2013-09-09 Aisan Industry Co Ltd Intake manifold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168749A (en) * 2017-03-29 2018-11-01 ヤンマー株式会社 Engine device
JP2020008025A (en) * 2019-10-18 2020-01-16 ヤンマー株式会社 Engine device
JP2021099032A (en) * 2019-12-19 2021-07-01 株式会社クボタ Intake system for diesel engine
CN114981535A (en) * 2020-02-01 2022-08-30 Tvs电机股份有限公司 Motor vehicle with internal combustion engine
WO2021177025A1 (en) * 2020-03-05 2021-09-10 トヨタ紡織株式会社 Air intake duct

Also Published As

Publication number Publication date
JP6394154B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6394154B2 (en) Intake device
JP4933082B2 (en) Butterfly valve
JP2007211663A (en) Exhaust gas catalyst device and multi-cylinder internal combustion engine equipped with the same
US20200263642A1 (en) Cobra head air intake ports and intake manifolds
WO2018198510A1 (en) Air intake device
JP2017014943A (en) Intake manifold of internal combustion engine
JP2008014222A (en) Intake manifold
US11143149B2 (en) Cobra head air intake ports
US9784167B2 (en) Exhaust pipe
JP2018084158A (en) Intake pipe structure
JP6700225B2 (en) Silencer
JP5938975B2 (en) Venturi
JP5855495B2 (en) Intake manifold
US9238992B2 (en) Exhaust system having a flow rotation element and method for operation of an exhaust system
JP7384110B2 (en) intake device
JP2011074862A (en) Intake manifold
JP2020002833A (en) Intake pipe and intake manifold for internal combustion engine including the same
JP7376525B2 (en) Internal combustion engine intake duct
JP7384104B2 (en) intake device
JP4075494B2 (en) Engine intake system
JP2019203449A (en) Intake manifold
WO2021177025A1 (en) Air intake duct
JP2007255229A (en) Intake pipe of multicylinder engine
JP6783166B2 (en) Internal combustion engine intake system
JP4424019B2 (en) Exhaust manifold for internal combustion engines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R151 Written notification of patent or utility model registration

Ref document number: 6394154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees