JP2007211663A - Exhaust gas catalyst device and multi-cylinder internal combustion engine equipped with the same - Google Patents

Exhaust gas catalyst device and multi-cylinder internal combustion engine equipped with the same Download PDF

Info

Publication number
JP2007211663A
JP2007211663A JP2006031598A JP2006031598A JP2007211663A JP 2007211663 A JP2007211663 A JP 2007211663A JP 2006031598 A JP2006031598 A JP 2006031598A JP 2006031598 A JP2006031598 A JP 2006031598A JP 2007211663 A JP2007211663 A JP 2007211663A
Authority
JP
Japan
Prior art keywords
exhaust gas
passage
exhaust
flow
inlet end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006031598A
Other languages
Japanese (ja)
Other versions
JP4641952B2 (en
Inventor
Takahiro Shinkai
孝裕 新開
Takeshi Miyata
剛 宮田
Kazunori Okamatsu
和則 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006031598A priority Critical patent/JP4641952B2/en
Publication of JP2007211663A publication Critical patent/JP2007211663A/en
Application granted granted Critical
Publication of JP4641952B2 publication Critical patent/JP4641952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maintain good exhaust efficiency by controlling increase of resistance in an introduction passage, and make even exhaust gas flow at the inlet end area of the catalyst converter of an exhaust catalyst device. <P>SOLUTION: An introduction passage 41 for guiding exhaust gas from an outlet 6b of the collective exhaust port of a cylinder head 2 into the inlet end area 10a of a catalyst converter 10 is provided in an exhaust catalyst device A of a multi-cylinder internal combustion engine E. The introduction passage 41 comprises: an area 42 upstream the point of exhaust gas flowing into the passage 41; a curved part 44 where exhaust gas becomes curved streams; and an area 43 downstream the point of discharging the curved exhaust gas streams into an inlet end area 10a. A swelling part 45 is provided in the curved part 44. The swelling part 45 swells outwardly beyond the curve relative to an imaginary arc connecting the upstream area 42 with the downstream area 43. Part of the exhaust gas flow becomes a deflected flow after flowing along the wall surface of the swelling part 45, and the deflected flow is discharged from the swelling part 45 inwardly beyond the curve and toward the inlet end area 10a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば内燃機関などの燃焼装置において発生する排気ガスを浄化する排気浄化装置としての排気触媒装置および該排気触媒装置を備える多気筒内燃機関に関し、詳細には、排気ガスを排気ガス浄化用の排気浄化部材としての触媒コンバータに導くための通路構造に関する。   The present invention relates to an exhaust catalyst device as an exhaust gas purification device that purifies exhaust gas generated in a combustion device such as an internal combustion engine, and a multi-cylinder internal combustion engine equipped with the exhaust catalyst device. The present invention relates to a passage structure for leading to a catalytic converter as an exhaust gas purification member.

排気ガスを浄化する排気浄化装置としての排気触媒装置では、例えば内燃機関の直下型排気触媒装置のように、そのレイアウト上、排気ガス浄化用の触媒コンバータに排気ガスを導く通路が、所定角度、例えばほぼ直角に屈曲することがある。一方、触媒コンバータに流入する排気ガスの流れの状態は、触媒コンバータの入力端面において、局部的に偏ることなく、できる限り均一であることが、触媒コンバータの浄化性能および耐久性の観点から望ましい。このため、屈曲する導入通路が設けられた排気触媒装置において、触媒コンバータに流入する排気ガスの流れを均一化するための種々の技術が知られている(例えば特許文献1,2参照)。
特開2003−49640号公報 特開2005−240711号公報
In an exhaust catalyst device as an exhaust gas purification device that purifies exhaust gas, for example, like a direct exhaust catalyst device of an internal combustion engine, a passage that leads exhaust gas to a catalytic converter for exhaust gas purification has a predetermined angle on the layout, For example, it may be bent at a substantially right angle. On the other hand, it is desirable from the viewpoint of purification performance and durability of the catalytic converter that the state of the flow of the exhaust gas flowing into the catalytic converter is as uniform as possible without being locally biased at the input end face of the catalytic converter. For this reason, in the exhaust catalyst device provided with the bent introduction passage, various techniques for making the flow of the exhaust gas flowing into the catalytic converter uniform are known (for example, refer to Patent Documents 1 and 2).
JP 2003-49640 A JP 2005-240711 A

ところで、触媒コンバータの入口端部における排気ガスの流れを均一にするために、導入通路に整流板など挿入部材が設けられるものでは、通路抵抗が大きくなって排気効率が低下し、しかもコスト高となる。また、導入通路の壁面に流れを偏向するための突出部を設けることも、同様に通路抵抗が大きくなって、排気効率の低下を招来する。   By the way, in order to make the flow of exhaust gas uniform at the inlet end of the catalytic converter, an insertion member such as a rectifying plate is provided in the introduction passage, passage resistance increases, exhaust efficiency decreases, and cost increases. Become. In addition, providing a protrusion for deflecting the flow on the wall surface of the introduction passage similarly increases the passage resistance, leading to a reduction in exhaust efficiency.

本発明は、このような事情に鑑みてなされたものであり、請求項1〜4記載の発明は、導入通路での通路抵抗の増加を抑制して良好な排気効率を維持しつつ、排気浄化装置としての排気触媒装置の、排気浄化部材としての触媒コンバータの入口端面での排気ガスの流れを均一化することを目的とする。そして、請求項2記載の発明は、集合型排気ポートがシリンダヘッドに形成された多気筒内燃機関において、前述の目的の達成を図り、請求項4記載の発明は、さらに、排気触媒装置で発生する騒音の低減を図ることを目的とする。   The present invention has been made in view of such circumstances, and the invention according to claims 1 to 4 suppresses an increase in passage resistance in the introduction passage and maintains good exhaust efficiency while purifying exhaust. An object of the present invention is to make the flow of exhaust gas uniform at the inlet end face of a catalytic converter as an exhaust purification member of an exhaust catalyst device as a device. The invention according to claim 2 achieves the above object in a multi-cylinder internal combustion engine in which a collective exhaust port is formed in a cylinder head, and the invention according to claim 4 is further generated in an exhaust catalyst device. The purpose is to reduce noise.

請求項1記載の発明は、排気ガス浄化用の触媒コンバータと排気ガスを前記触媒コンバータの入口端面に導く導入通路とが設けられた排気触媒装置であって、前記導入通路が、排気ガスが流入する通路入口を有する上流部と、前記通路入口からの排気ガスが屈曲流となる屈曲部と、屈曲した後の排気ガスの流れを前記入口端面に向けて流出させる通路出口を有する下流部とから構成される排気触媒装置において、前記屈曲部には、側面視で、前記上流部の外側周部の最下流部と前記下流部の外側周部の最上流部と結ぶ仮想円弧よりも屈曲外方に膨出する膨出部が設けられ、前記屈曲部の排気ガスの一部は、前記膨出部の壁面に沿って流れることにより、前記通路入口での排気ガスの、側面視での流入方向に対して反転した偏向流となり、前記偏向流は屈曲内方かつ前記入口端面を指向して前記膨出部から流出する排気触媒装置である。   The invention according to claim 1 is an exhaust catalyst device provided with a catalytic converter for purifying exhaust gas and an introduction passage for introducing exhaust gas to an inlet end face of the catalytic converter, wherein the introduction passage is configured to receive exhaust gas. An upstream portion having a passage inlet, a bent portion in which exhaust gas from the passage inlet becomes a bent flow, and a downstream portion having a passage outlet for causing the flow of the exhaust gas after being bent to flow toward the inlet end face In the exhaust catalyst device configured, the bent portion is bent outwardly from a virtual arc connecting the most downstream portion of the outer peripheral portion of the upstream portion and the most upstream portion of the outer peripheral portion of the downstream portion in a side view. A bulging portion that bulges out, and a part of the exhaust gas of the bent portion flows along the wall surface of the bulging portion, whereby the inflow direction of the exhaust gas at the passage inlet in a side view The deflection flow is reversed with respect to Countercurrent is an exhaust catalyzer flowing out of the bulging portion directed bending inwardly and said inlet end face.

これによれば、排気ガスが導入通路の屈曲部で屈曲流となるために触媒コンバータの入口端面での排気ガスの流れが該入口端面の外側部分に偏る状態(以下、「流れの不均一状態」という。)を生じさせる主たる原因となる屈曲部の外側部分での流れが、膨出部により偏向流となって入口端面で内側部分に向かうので、触媒コンバータの入口端面の内側部分での排気ガスの流れが多くなる一方、入口端面の外側部分に向かう流れが少なくなる。また、膨出部により偏向流が発生するので、屈曲内方に突出して偏向流を発生させる突出壁とは異なり、偏向流を発生させるために通路抵抗が増加することがないうえ、導入通路の通路面積が膨出部の分だけ大きくなるので、導入通路での通路抵抗の増加が抑制される。さらに、膨出部は屈曲部に設けられているので、直線状の通路の側方に膨出部が設けられる場合に比べて、排気ガスが膨出部に流入しやすいので、指向性の強い偏向流を発生させることができる。   According to this, since the exhaust gas is bent at the bent portion of the introduction passage, the flow of the exhaust gas at the inlet end surface of the catalytic converter is biased toward the outer portion of the inlet end surface (hereinafter referred to as “non-uniform flow state”). The flow at the outer part of the bent part, which is the main cause of the occurrence of the above, becomes a deflected flow by the bulging part toward the inner part at the inlet end face, so that the exhaust at the inner part of the inlet end face of the catalytic converter While the gas flow increases, the flow toward the outer portion of the inlet end surface decreases. Further, since the deflected flow is generated by the bulging portion, unlike the protruding wall that protrudes inwardly to generate the deflected flow, the passage resistance is not increased to generate the deflected flow, and the introduction passage Since the passage area is increased by an amount corresponding to the bulging portion, an increase in passage resistance in the introduction passage is suppressed. Furthermore, since the bulging portion is provided at the bent portion, exhaust gas tends to flow into the bulging portion as compared with the case where the bulging portion is provided on the side of the linear passage, so that directivity is strong. A deflected flow can be generated.

請求項2記載の発明は、配列方向に並んだ複数の燃焼室からの排気ガスが集合する集合型排気ポートが形成されたシリンダヘッドと、前記集合型排気ポートの出口の直下流に接続されて排気ガスを浄化する直下型の排気触媒装置とを備える多気筒内燃機関であって、前記排気触媒装置には、排気ガス浄化用の触媒コンバータと排気ガスを前記触媒コンバータの入口端面に導く導入通路とが設けられ、前記導入通路が、排気ガスが流入する通路入口を有する上流部と、前記通路入口からの排気ガスが屈曲流となる屈曲部と、屈曲した後の排気ガスの流れを前記入口端面に向けて流出させる通路出口を有する下流部とから構成される排気触媒装置において、前記屈曲部には、側面視で、前記上流部の外側周部の最下流部と下流部の外側周部の最上流部と結ぶ仮想円弧よりも屈曲外方に膨出する膨出部が設けられ、前記屈曲部の排気ガスの一部は、前記膨出部の壁面に沿って流れることにより、前記通路入口での排気ガスの、側面視での流入方向に対して反転した偏向流となり、前記偏向流は屈曲内方かつ前記入口端面を指向して前記膨出部から流出する多気筒内燃機関である。   The invention according to claim 2 is connected to a cylinder head in which a collective exhaust port in which exhaust gases from a plurality of combustion chambers arranged in the arrangement direction gather and formed immediately downstream of the outlet of the collective exhaust port. A multi-cylinder internal combustion engine including a direct type exhaust catalyst device for purifying exhaust gas, wherein the exhaust catalyst device includes a catalytic converter for purifying exhaust gas and an introduction passage for guiding exhaust gas to an inlet end face of the catalytic converter. And the introduction passage has an upstream portion having a passage inlet through which exhaust gas flows, a bent portion where the exhaust gas from the passage inlet becomes a bent flow, and the flow of the exhaust gas after being bent flows into the inlet In the exhaust catalyst device comprising a downstream portion having a passage outlet that flows out toward the end surface, the bent portion includes, in a side view, the most downstream portion of the outer peripheral portion of the upstream portion and the outer peripheral portion of the downstream portion. Top of A bulging portion that bulges outward from a virtual arc connecting to the portion is provided, and a part of the exhaust gas of the bending portion flows along the wall surface of the bulging portion, thereby This is a multi-cylinder internal combustion engine in which the deflected flow is reversed with respect to the inflow direction of the exhaust gas as viewed from the side, and the deflected flow flows inwardly from the bulging portion toward the inlet end surface.

これによれば、集合型排気ポートが形成されたシリンダヘッドを備える多気筒内燃機関において、請求項1記載の発明と同様の作用がなされる。   According to this, in the multi-cylinder internal combustion engine including the cylinder head in which the collective exhaust port is formed, the same operation as that of the first aspect of the invention is performed.

請求項3記載の発明は、請求項2記載の多気筒内燃機関において、前記配列方向での前記膨出部の両壁面は、前記触媒コンバータの中心軸線方向から見て、排気ガスの流れ方向に先細に形成されて、特定の前記シリンダの前記燃焼室からの排気ガスの前記通路入口での流入方向にほぼ平行であるものである。   According to a third aspect of the present invention, in the multi-cylinder internal combustion engine according to the second aspect, both wall surfaces of the bulges in the arrangement direction are in the exhaust gas flow direction when viewed from the central axis direction of the catalytic converter. It is tapered and is substantially parallel to the inflow direction of the exhaust gas from the combustion chamber of the specific cylinder at the passage inlet.

これによれば、特定のシリンダからの排気ガスの主流は膨出部の壁面により偏向されることなく膨出部に流入するので、排気ガスが円滑に膨出部に流入し、しかもその円滑な流れが先細に形成された膨出部に集まるので、膨出部で比較的強い流れの偏向流を発生させることができる。   According to this, since the main flow of the exhaust gas from the specific cylinder flows into the bulging portion without being deflected by the wall surface of the bulging portion, the exhaust gas smoothly flows into the bulging portion, and the smooth Since the flow gathers at the bulging portion formed in a taper, a relatively strong deflection flow can be generated at the bulging portion.

請求項4記載の発明は、請求項1記載の排気触媒装置、または請求項2または3記載の多気筒内燃機関において、前記膨出部は、前記通路入口での排気ガスの流入方向で前記通路入口と対向する位置に設けられ、前記膨出部は緩やかな壁面で前記上流部に滑らかに連続するものである。   According to a fourth aspect of the present invention, there is provided the exhaust catalyst device according to the first aspect or the multi-cylinder internal combustion engine according to the second or third aspect, wherein the bulging portion has the passage in the inflow direction of exhaust gas at the passage inlet. Provided at a position facing the inlet, the bulging portion is a gentle wall surface and smoothly continues to the upstream portion.

これによれば、導入通路に流入する排気ガスは屈曲することが殆どなく、ほぼ一直線状に膨出部に流入するので、比較的強い偏向流を発生させることができ、また上流部と膨出部とが、緩やかな壁面に沿って滑らかに連続することから、膨出部がないために大きく屈曲する場合に比べて、緩やかに屈曲しつつ膨出部に流入するので、排気ガスが屈曲部および膨出部の壁面に当たることで発生する音が低減する。   According to this, since the exhaust gas flowing into the introduction passage hardly bends and flows into the bulging portion in a substantially straight line, a relatively strong deflection flow can be generated, and the swelled with the upstream portion. Part smoothly flows along the gentle wall surface, so that the exhaust gas flows into the bulging part while gently bending as compared with the case where it is bent largely because there is no bulging part. And the sound generated by hitting the wall surface of the bulging portion is reduced.

なお、明細書または特許請求の範囲において、「平面視」とは、排気浄化部材としての触媒コンバータの中心軸線方向もしくは入口端面に直交する方向から見ることを意味し、「側面視」とは、平面視で、または後述する対称面に直交する方向から見ることを意味し、「屈曲外方」および「屈曲内方」は、仮想円弧の中心である屈曲中心から遠ざかる方向および屈曲中心に近づく方向を意味し、部材や通路や流れなどにおける「外側」および「内側」は、該部材や通路や流れなどにおいて、屈曲中心から遠い部分および屈曲中心に近い部分をそれぞれ意味する。   In the specification or claims, the term “plan view” means viewing from the central axis direction or the direction orthogonal to the inlet end surface of the catalytic converter as the exhaust purification member, and “side view” This means viewing in a plan view or from a direction perpendicular to the symmetry plane described later, and “bending outward” and “bending inward” are directions away from the bending center that is the center of the virtual arc and directions approaching the bending center. The “outside” and “inside” in a member, passage, flow, etc. mean a portion far from the bending center and a portion near the bending center in the member, passage, flow, etc., respectively.

請求項1記載の発明によれば、次の効果が奏される。すなわち、膨出部により生じる偏向流により入口端面の内側部分の排気ガスの流れが多くなるので、入口端面での排気ガスの流れが均一化される。このため、触媒コンバータの浄化率が向上し、流れの不均一状態に起因する触媒コンバータの局部的な劣化が防止されて、触媒コンバータの耐久性が向上する。しかも、導入通路での通路抵抗の効果が抑制されるので、排気通路における背圧の増加が抑制されて、良好な排気効率を確保できる。さらに、膨出部が屈曲部に設けられるので、指向性の強い偏向流を発生させることができて、入口端面での排気ガスの流れの均一化に効果的な偏向流を発生させることができる。   According to invention of Claim 1, the following effect is show | played. That is, the flow of exhaust gas in the inner portion of the inlet end surface is increased by the deflected flow generated by the bulging portion, so that the flow of exhaust gas at the inlet end surface is made uniform. For this reason, the purification rate of the catalytic converter is improved, the local deterioration of the catalytic converter due to the non-uniform flow state is prevented, and the durability of the catalytic converter is improved. In addition, since the effect of the passage resistance in the introduction passage is suppressed, an increase in the back pressure in the exhaust passage is suppressed, and good exhaust efficiency can be ensured. Further, since the bulging portion is provided at the bent portion, a highly directional deflected flow can be generated, and a deflected flow effective for making the exhaust gas flow uniform at the inlet end surface can be generated. .

請求項2記載の発明によれば、集合型排気ポートが形成されたシリンダヘッドを備える多気筒内燃機関において、請求項1記載の発明と同様の効果が奏される。   According to the invention described in claim 2, in the multi-cylinder internal combustion engine including the cylinder head in which the collective exhaust port is formed, the same effect as that of the invention described in claim 1 is exerted.

請求項3記載の発明によれば、引用された請求項記載の発明の効果に加えて、次の効果が奏される。すなわち、排気ガスが円滑に膨出部に流入するので、膨出部による通路抵抗の増加が抑制され、しかも比較的強い偏向流により、流れの不均一状態が効果的に矯正されて、入口端面での流れが均一化され、しかも先細であることで膨出部が小型化される。   According to invention of Claim 3, in addition to the effect of the invention of the cited claim, there exist the following effects. That is, since the exhaust gas smoothly flows into the bulging portion, an increase in passage resistance due to the bulging portion is suppressed, and the non-uniform flow state is effectively corrected by the relatively strong deflection flow, and the inlet end face The flow at is made uniform, and the bulging portion is reduced in size by being tapered.

請求項4記載の発明によれば、引用された請求項記載の発明の効果に加えて、次の効果が奏される。すなわち、比較的強い偏向流により、流れの不均一状態が効果的に矯正されて、入口端面での流れが均一化され、しかも排気ガスが導入通路の壁面に当たることで発生する音が低減するので、導入通路を形成する部材、ひいては導入通路が設けられた排気触媒装置で発生する騒音が低減する。   According to invention of Claim 4, in addition to the effect of the invention of the cited claim, there exists the following effect. That is, the relatively strong deflected flow effectively corrects the non-uniform flow state, makes the flow at the inlet end surface uniform, and reduces the noise generated by the exhaust gas hitting the wall surface of the introduction passage. In addition, noise generated in the member that forms the introduction passage, and thus in the exhaust catalyst device provided with the introduction passage, is reduced.

以下、本発明の実施形態を図1〜図6を参照して説明する。
図1,図2を参照すると、本発明が適用された排気浄化装置としての排気触媒装置Aは、燃焼装置、例えば2以上の所定数のシリンダを備える水冷式の多気筒内燃機関としての直列4気筒4ストローク内燃機関Eに備えられる。内燃機関Eは、配列方向に並んだ4つの第1〜第4シリンダが一体成形されたシリンダブロック1と、該シリンダブロック1の上端部に結合されるシリンダヘッド2とから構成される機関本体を備える。
なお、この明細書において、上下方向および前後方向は、図1に図示された方向であるとし、上下方向は、後述する触媒コンバータ10の中心軸線に平行な方向である。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
Referring to FIGS. 1 and 2, an exhaust catalyst device A as an exhaust purification device to which the present invention is applied is a series 4 as a combustion device, for example, a water-cooled multi-cylinder internal combustion engine having a predetermined number of cylinders of two or more. A cylinder four-stroke internal combustion engine E is provided. The internal combustion engine E includes an engine body including a cylinder block 1 in which four first to fourth cylinders arranged in the arrangement direction are integrally formed, and a cylinder head 2 coupled to an upper end portion of the cylinder block 1. Prepare.
In this specification, the up-down direction and the front-rear direction are directions shown in FIG. 1, and the up-down direction is a direction parallel to the central axis of the catalytic converter 10 described later.

シリンダヘッド2には、前記各シリンダに摺動可能に嵌合するピストンに対向して位置する燃焼室C1〜C4と、燃焼室C1〜C4に開口する1対の吸気口3aを有する吸気ポート3とが、前記シリンダ毎に形成され、さらに、各燃焼室C1〜C4に開口する1対の排気口5aを有する個別の排気ポート5と各排気ポート5からの排気ガスが集合する1つの集合部としての集合ポート6とにより構成される集合型排気ポート4が形成される。内燃機関Eにおいて、4つの前記シリンダにそれぞれ対応して、4つの燃焼室C1〜C4が前記配列方向に一列に並んでいる。さらに、シリンダヘッド2には、燃焼室C1〜C4毎に、吸気口3aおよび排気口5aをそれぞれ開閉する1対の吸気弁および1対の排気弁(いずれも図示されず)と、該吸気弁および該排気弁を内燃機関Eのクランク軸の回転に同期して所定のタイミングで開閉駆動するカム軸を備える頭上カム軸型の動弁装置とが設けられる。   The cylinder head 2 has an intake port 3 having combustion chambers C1 to C4 positioned facing pistons slidably fitted in the cylinders and a pair of intake ports 3a that open to the combustion chambers C1 to C4. Is formed for each cylinder, and further includes an individual exhaust port 5 having a pair of exhaust ports 5a that open to the respective combustion chambers C1 to C4, and one collecting portion in which the exhaust gas from each exhaust port 5 gathers. As a result, a collective exhaust port 4 is formed. In the internal combustion engine E, four combustion chambers C1 to C4 are arranged in a line in the arrangement direction corresponding to the four cylinders, respectively. Further, the cylinder head 2 includes, for each of the combustion chambers C1 to C4, a pair of intake valves and a pair of exhaust valves (both not shown) that open and close the intake port 3a and the exhaust port 5a, respectively, There is also provided an overhead camshaft type valve gear having a camshaft that opens and closes the exhaust valve at a predetermined timing in synchronization with the rotation of the crankshaft of the internal combustion engine E.

そして、各吸気ポート3の入口が開口するシリンダヘッド2の吸気側側壁2iに接続される吸気装置においてスロットル弁により流量制御された吸入空気と燃料噴射弁から供給された燃料とにより形成された混合気は、各吸気ポート3を通って前記各吸気弁の開弁時に燃焼室C1〜C4に流入し、燃焼室C1〜C4内でシリンダヘッド2に設けられる点火栓(図示されず)により点火されて燃焼する。そして、発生した燃焼ガスの圧力により駆動されて往復運動する前記ピストンがコンロッドを介して前記クランク軸を回転駆動する。また、燃焼ガスは、排気ガスとして前記排気弁の開弁時に排気ポート5に流入し、さらに集合ポート6を経て出口6bから流出することで集合型排気ポート4から流出する。集合型排気ポート4から流出した排気ガスは、シリンダヘッド2の排気側側壁2eに接続された直下型の排気触媒装置A、さらには床下型の排気触媒装置(図示されず)を流通して浄化された後、内燃機関Eの外部に排出される。   Then, in the intake device connected to the intake side wall 2i of the cylinder head 2 where the inlet of each intake port 3 opens, the mixture formed by the intake air whose flow rate is controlled by the throttle valve and the fuel supplied from the fuel injection valve The air flows into the combustion chambers C1 to C4 through the intake ports 3 when the intake valves are opened, and is ignited by ignition plugs (not shown) provided in the cylinder head 2 in the combustion chambers C1 to C4. And burn. The piston, which is driven by the pressure of the generated combustion gas and reciprocates, drives the crankshaft through a connecting rod. Further, the combustion gas flows into the exhaust port 5 as the exhaust gas when the exhaust valve is opened, and further flows out from the outlet 6b through the collective port 6 and out of the collective exhaust port 4. Exhaust gas flowing out from the collective exhaust port 4 is circulated through a direct exhaust catalyst device A connected to the exhaust side wall 2e of the cylinder head 2, and further, an underfloor exhaust catalyst device (not shown) for purification. And then discharged outside the internal combustion engine E.

排気触媒装置Aは、排気ガス浄化用の排気浄化部材としての触媒コンバータ10と、該触媒コンバータ10を保持すると共に収納する本体部としての収納ケース11と、排気ポート5からの排気ガスを触媒コンバータ10に導く導入通路41を形成する導入部としての導入コーン21と、触媒コンバータ10を通過して浄化された排気ガスを排気触媒装置Aの下流に配置される装置に接続される排気管に導く導出通路34を形成する導出部としての導出コーン31とを備える。そして、導入コーン21は、上流端部22でシリンダヘッド2にフランジ7(図3(A),(B)も参照)を介して接続され、下流端部23で収納ケース11に接続される。一方、導出コーン31は、上流端部32で収納ケース11に接続され、下流端部33で前記排気管に接続される。それゆえ、排気触媒装置Aには、導入通路41、触媒コンバータ10および導出通路34が設けられる。   The exhaust catalyst device A includes a catalytic converter 10 as an exhaust purification member for purifying exhaust gas, a storage case 11 as a main body for holding and storing the catalytic converter 10, and exhaust gas from an exhaust port 5 as a catalytic converter. An introduction cone 21 as an introduction part that forms an introduction passage 41 leading to 10 and exhaust gas purified by passing through the catalytic converter 10 are led to an exhaust pipe connected to a device disposed downstream of the exhaust catalyst device A. A lead-out cone 31 as a lead-out portion that forms the lead-out passage 34 is provided. The introduction cone 21 is connected to the cylinder head 2 via the flange 7 (see also FIGS. 3A and 3B) at the upstream end 22 and to the storage case 11 at the downstream end 23. On the other hand, the lead-out cone 31 is connected to the storage case 11 at the upstream end 32 and is connected to the exhaust pipe at the downstream end 33. Therefore, the exhaust catalyst device A is provided with the introduction passage 41, the catalytic converter 10, and the outlet passage 34.

中心軸線Lc(図5,図6も参照)を有する筒状、ここでは円筒状の触媒コンバータ10は、多数のセルが形成されたハニカム構造を有する担体と、該担体に担持される白金やロジウムなどの触媒物質とにより構成される。触媒コンバータ10は、排気ガスが導入通路41から流入する入口端面10aと、触媒コンバータ10で浄化された後の排気ガスが導出通路34に流出する出口端面10bとを有する。   A cylindrical catalytic converter 10 having a central axis Lc (see also FIGS. 5 and 6), in this case, a cylindrical catalytic converter 10 includes a carrier having a honeycomb structure in which a large number of cells are formed, and platinum and rhodium carried on the carrier. It is comprised with catalyst materials, such as. The catalytic converter 10 has an inlet end face 10a through which exhaust gas flows from the introduction passage 41, and an outlet end face 10b through which exhaust gas purified by the catalytic converter 10 flows out to the outlet passage 34.

集合型排気ポート4の出口6bに接続して、集合ポート6の直下流の排気ガスを触媒コンバータ10の入口端面10aに導く導入通路41は、排気ガスが流入する通路入口42aを有する上流部42と、出口6bと整合する形状を有する通路入口42aから流入した排気ガスの流れが屈曲流となる屈曲部44と、屈曲部44と入口端面10bとの間にあって屈曲部44で屈曲した後の排気ガスを入口端面10aに向けて流出させる通路出口43bを有する下流部43と、を有する。入口端面10aに対して、上流部42はほぼ平行にほぼ一直線状に延び、下流部43はほぼ直交する方向にほぼ一直線状に延びる。また、通路面積が下流に向かって拡大する下流部43は、中心軸線Lcとほぼ一致する中心軸線を有する通路断面を有する。
そして、導入通路41の通路入口42aでの排気ガスの流入方向と、導入通路41の通路出口43bでの排気ガスの流出方向とがなす屈曲角度はほぼ直角である。それゆえ、導入通路41または導入コーン21において、排気ガスは、屈曲部44により、ほぼ直角に屈曲して流れる。
An introduction passage 41 connected to the outlet 6b of the collective exhaust port 4 and leading exhaust gas immediately downstream of the collective port 6 to the inlet end surface 10a of the catalytic converter 10 has an upstream portion 42 having a passage inlet 42a into which exhaust gas flows. And the bent portion 44 in which the flow of the exhaust gas flowing in from the passage inlet 42a having a shape matching the outlet 6b becomes a bent flow, and the exhaust after being bent at the bent portion 44 between the bent portion 44 and the inlet end face 10b. And a downstream portion 43 having a passage outlet 43b through which gas flows out toward the inlet end face 10a. The upstream portion 42 extends substantially in a straight line substantially parallel to the inlet end face 10a, and the downstream portion 43 extends in a substantially straight line in a direction substantially perpendicular to the inlet end surface 10a. Further, the downstream portion 43 whose passage area increases toward the downstream has a passage cross section having a central axis substantially coincident with the central axis Lc.
The bending angle between the inflow direction of the exhaust gas at the passage inlet 42a of the introduction passage 41 and the outflow direction of the exhaust gas at the passage outlet 43b of the introduction passage 41 is substantially perpendicular. Therefore, in the introduction passage 41 or the introduction cone 21, the exhaust gas flows while being bent at a substantially right angle by the bent portion 44.

併せて、図3,図4を参照すると、導入コーン21は、入口端面10aにほぼ平行に延びる上流端部22と、入口端面10aにほぼ直交する方向に延びると共に入口端面10aに向かって円錐状に拡径する下流端部23と、下流端部23と上流端部22との間でほぼ直角に屈曲する中間部24とを備える。上流端部22は、出口6bに対応して前記配列方向に細長い長円形状の扁平な形状である通路入口42aと、通路入口42aと同様に前記配列方向に長細い長円形状の通路断面を有する上流部42を形成する。   3 and 4, the introduction cone 21 has an upstream end 22 extending substantially parallel to the inlet end face 10a, a direction extending substantially perpendicular to the inlet end face 10a, and a conical shape toward the inlet end face 10a. A downstream end portion 23 having a diameter that is larger than the downstream end portion 23 and an intermediate portion 24 that is bent at a substantially right angle between the downstream end portion 23 and the upstream end portion 22. The upstream end 22 has a passage inlet 42a that is oblong and elongated in the arrangement direction corresponding to the outlet 6b, and a passage section that is oblong and elongated in the arrangement direction like the passage inlet 42a. An upstream portion 42 is formed.

上流端部22は、シリンダヘッド2における出口6bの位置に対応して、一列に並んだすべての燃焼室C1〜C4に対して、前記配列方向での中央部に配置される(図2参照)。このため、前記第1シリンダの燃焼室C1および第2シリンダの燃焼室C2からの排気ガスは、それぞれ、第4シリンダの燃焼室C4および第3シリンダの燃焼室C3からの排気ガスと、中央面Hに面対称となる形態で、上流部42に流入する。ここで、中央面Hとは、シリンダ軸線方向から見て、4つの燃焼室C1〜C4を前記配列方向で二等分する平面である。   The upstream end portion 22 is disposed at the central portion in the arrangement direction with respect to all the combustion chambers C1 to C4 arranged in a row corresponding to the position of the outlet 6b in the cylinder head 2 (see FIG. 2). . For this reason, the exhaust gas from the combustion chamber C1 of the first cylinder and the combustion chamber C2 of the second cylinder is different from the exhaust gas from the combustion chamber C4 of the fourth cylinder and the combustion chamber C3 of the third cylinder, respectively. It flows into the upstream portion 42 in a form symmetric with respect to H. Here, the center plane H is a plane that bisects the four combustion chambers C1 to C4 in the arrangement direction as viewed from the cylinder axis direction.

下流端部23は、入口端面10aに対応した形状である円形状の通路出口43bと、円形状の通路断面を有する下流部43とを形成する。また、上流端部22には排気成分を検出することにより空燃比を検出する空燃比センサとしての酸素濃度センサ8が取り付けられる。酸素濃度センサ8は、上流部42において前記配列方向での中央部にその検知部8aが位置するように、上流端部22の挿入孔Kを通じて上流部42内に挿入されている。   The downstream end portion 23 forms a circular passage outlet 43b having a shape corresponding to the inlet end surface 10a, and a downstream portion 43 having a circular passage section. An oxygen concentration sensor 8 as an air-fuel ratio sensor that detects an air-fuel ratio by detecting an exhaust component is attached to the upstream end portion 22. The oxygen concentration sensor 8 is inserted into the upstream portion 42 through the insertion hole K of the upstream end portion 22 so that the detection portion 8a is located at the central portion in the arrangement direction in the upstream portion 42.

また、屈曲部44には、側面視で、屈曲中心Bを中心として、上流部42の外側周部(外側の周部分)の最下流部42b1と下流部43の外側周部の最上流部43a1と結ぶ仮想円弧R(図3(B)参照)よりも屈曲外方に膨出する膨出部45が設けられる。膨出部45は、中間部24の一部である膨出形成部25により形成され、膨出形成部25は中間部24において、また膨出部45は屈曲部44において、それぞれ瘤状に、かつ側面視で円弧状に膨出している。   In addition, the bent portion 44 includes, as viewed from the side, the most downstream portion 42b1 of the outer peripheral portion (outer peripheral portion) of the upstream portion 42 and the most upstream portion 43a1 of the outer peripheral portion of the downstream portion 43 around the bent center B. A bulging portion 45 is provided that bulges outward from the bending with respect to a virtual arc R (see FIG. 3B). The bulging portion 45 is formed by a bulging forming portion 25 which is a part of the intermediate portion 24, the bulging forming portion 25 is in the intermediate portion 24, and the bulging portion 45 is in the shape of a knob in the bent portion 44, respectively. And it bulges out in an arc shape in a side view.

膨出部45は、特定のシリンダである前記第2,第3シリンダの燃焼室C2,C3からの排気ガスの、通路入口42aでの流入方向D2,D3(図2も参照)で、上流部42または通路入口42aと対向する位置に設けられ、かつ上流部42に、緩やかな湾曲面または傾斜面からなる屈曲部44の壁面24sに沿って滑らかに連続し、さらに下流部43にも鋭い角を有することなく滑らかに連続する。また、膨出部45の壁面25s(すなわち、膨出形成部25の内面)は、鋭い角がない滑らかな凹曲面または平面になっている。導入通路41の一部を構成する膨出部45は、屈曲部44の外側周部に、屈曲外方に凹んで形成された凹空間であり、膨出部45が形成される分、屈曲部44の通路面積が増加する。   The bulging portion 45 is an upstream portion in the inflow directions D2 and D3 (see also FIG. 2) of the exhaust gas from the combustion chambers C2 and C3 of the second and third cylinders, which are specific cylinders, at the passage inlet 42a. 42 or a position opposite to the passage entrance 42a, and smoothly continues to the upstream portion 42 along the wall surface 24s of the bent portion 44 having a gently curved surface or inclined surface, and also has a sharp corner on the downstream portion 43. Smoothly and continuously. Further, the wall surface 25s of the bulging portion 45 (that is, the inner surface of the bulging forming portion 25) is a smooth concave curved surface or flat surface having no sharp corners. The bulging portion 45 that constitutes a part of the introduction passage 41 is a concave space that is formed in the outer peripheral portion of the bending portion 44 so as to be bent outwardly. 44 passage areas increase.

図1,図3,図4を参照すると、導入コーン21は、金属製の板材にプレス加工を施すことで形成された第1,第2半体21a,21bから構成され、側面視で、導入通路41の中心線にほぼ沿って分割される。第1,第2半体21a,21bは、その嵌合部21a1,21b1同士で嵌合された後、溶接等により結合される。第1半体21aは、上流端部22の上部、中間部24の上部から後部に渡る部分および下流端部23の後部を有し、第2半体21bは、上流端部22の下部、中間部24の下部から前部に渡る部分および下流端部23の前部を有する。このため、入口端面10aにおける排気ガスの流れを均一化する手段である膨出部45を形成する膨出形成部25を有する第1半体21aが、プレス加工で製造されるので、コストが削減される。   Referring to FIG. 1, FIG. 3 and FIG. 4, the introduction cone 21 is composed of first and second halves 21a and 21b formed by pressing a metal plate material. It is divided substantially along the center line of the passage 41. The first and second halves 21a and 21b are fitted together by their fitting portions 21a1 and 21b1, and then joined by welding or the like. The first half 21a has an upper part of the upstream end part 22, a part extending from the upper part of the intermediate part 24 to the rear part, and a rear part of the downstream end part 23, and the second half 21b is a lower part of the upstream end part 22 and an intermediate part. A portion extending from the lower part to the front part of the part 24 and a front part of the downstream end part 23 are provided. For this reason, since the first half body 21a having the bulging portion 25 that forms the bulging portion 45, which is a means for equalizing the flow of exhaust gas at the inlet end face 10a, is manufactured by pressing, the cost is reduced. Is done.

膨出部45を上流側部分45aおよび下流側部分45bにほぼ二等分したとき、上流側部分45aは、流入方向D2,D3で通路入口42aと対向する位置に設けられ、下流側部分45bは、流入方向D2,D3で通路入口42aと対向することなく、かつ中心軸線Lc方向で通路入口42aよりも触媒コンバータ10寄りで、下流部43の直上流に位置する。それゆえ、上流側部分45aには通路入口42aでの流れ方向を維持している排気ガスが流入する。そして、集合ポート6および通路入口42aに流入する排気ガスは、各燃焼室C1〜C4に対応してその主流の流入方向は異なるが、この実施形態では、図2に示されるように、前記配列方向で両端部の燃焼室C1,C4の間にある複数である2つの燃焼室C2,C3からの排気ガスの主流F2,F3が、一直線状に、集合ポート6および通路入口42aを流通し、上流側部分45aに達する。なお、すべての燃焼室C1〜C4からの排気ガスが、一直線状に、集合ポート6および通路入口42aを流通し、上流側部分に達するように、排気ポート5の形状が形成されてもよい。   When the bulging portion 45 is divided into two substantially equal to the upstream portion 45a and the downstream portion 45b, the upstream portion 45a is provided at a position facing the passage inlet 42a in the inflow directions D2 and D3, and the downstream portion 45b is In the inflow directions D2 and D3, they are located directly upstream of the downstream portion 43 without facing the passage inlet 42a and closer to the catalytic converter 10 than the passage inlet 42a in the central axis Lc direction. Therefore, the exhaust gas maintaining the flow direction at the passage inlet 42a flows into the upstream portion 45a. The exhaust gas flowing into the collecting port 6 and the passage inlet 42a differs in the mainstream inflow direction corresponding to each of the combustion chambers C1 to C4. In this embodiment, as shown in FIG. The main flows F2, F3 of the exhaust gas from the plurality of combustion chambers C2, C3 that are between the combustion chambers C1, C4 at both ends in the direction flow in a straight line through the collecting port 6 and the passage inlet 42a, It reaches the upstream portion 45a. The shape of the exhaust port 5 may be formed so that the exhaust gas from all the combustion chambers C1 to C4 flows in a straight line through the collecting port 6 and the passage inlet 42a and reaches the upstream portion.

さらに、壁面25sにおいて下流側部分45bを形成する部分において、中心軸線Lcを含む平面上で、壁面の法線が、中心軸線方向で入口端面10aとは反対方向を指向する壁面である棚部25s3は、排気ガスの上流に向かって拡径するほぼ円錐状の一部である部分円錐形状である。これにより、屈曲流となる排気ガスが中心軸線Lc回りの旋回を伴う場合には、棚部25s3においても旋回が維持される。そして、棚部25s3の奥行Wまたは膨出部45の膨出の度合いは、中心軸線Lcを中心とする周方向で後述する対称面Hcから離れるにつれて小さくなる(図3(C),図4参照)。さらに、中心軸線Lcを含む平面上での棚部25s3の、下流部43の直上流近傍での接線M(図5(A)参照)は、入口端面10aでの中心N(入口端面10aと中心軸線Lcとの交点)または該中心Nよりも膨出部45から遠い位置で入口端面10aと交差する。   Further, in the portion forming the downstream portion 45b in the wall surface 25s, the shelf portion 25s3 is a wall surface in which the normal of the wall surface is directed in the direction opposite to the inlet end surface 10a in the central axis direction on the plane including the central axis Lc. Is a partial conical shape which is a part of a substantially conical shape whose diameter increases toward the upstream side of the exhaust gas. As a result, when the exhaust gas that becomes the bent flow is swiveled around the central axis Lc, the swivel is maintained also in the shelf portion 25s3. Then, the depth W of the shelf 25s3 or the degree of bulging of the bulging portion 45 decreases as the distance from a symmetry plane Hc described later in the circumferential direction about the central axis Lc decreases (see FIGS. 3C and 4). ). Further, the tangent line M (see FIG. 5A) in the vicinity of the upstream portion of the downstream portion 43 of the shelf portion 25s3 on the plane including the central axis Lc is the center N (the inlet end surface 10a and the center) at the inlet end surface 10a. Intersects with the inlet end face 10a at a position farther from the bulging portion 45 than the center N).

また、膨出部45は、触媒コンバータ10の中心軸線Lcを含む平面を対称面Hc(この実施形態では中央面Hに一致する。)としてほぼ対称に形成され、通路入口42aおよび上流部42も該対称面Hcを有する形状に形成される。そして、図3(C)に示されるように、前記配列方向または対称面Hcに直交する方向での膨出部45の両壁面25s1,25s2および該両壁面25s1,25s2にそれぞれ連なる屈曲部44の両壁面24s1,24s2、さらには上流部42の両壁面22s1,22s2(または、膨出形成部25、中間部24および上流端部22の通路壁)は、触媒コンバータ10の中心軸線方向(以下、「平面視」という。)から見て、排気ガスの流れ方向に先細に形成されて、2つの燃焼室C2,C3からの排気ガスの流入方向D2,D3に、それぞれほぼ平行(図2も参照)である。   The bulging portion 45 is formed substantially symmetrically with a plane including the central axis Lc of the catalytic converter 10 as a symmetry plane Hc (in this embodiment, coincides with the center plane H), and the passage inlet 42a and the upstream portion 42 are also formed. A shape having the symmetry plane Hc is formed. Then, as shown in FIG. 3C, both the wall surfaces 25s1, 25s2 of the bulging portion 45 in the arrangement direction or the direction orthogonal to the symmetry plane Hc and the bent portions 44 respectively connected to the both wall surfaces 25s1, 25s2 are provided. Both wall surfaces 24s1, 24s2, and both wall surfaces 22s1, 22s2 of upstream portion 42 (or passage walls of bulge forming portion 25, intermediate portion 24, and upstream end portion 22) are in the direction of the central axis of catalytic converter 10 (hereinafter, (Referred to as “plan view”), it is tapered in the flow direction of the exhaust gas and substantially parallel to the inflow directions D2 and D3 of the exhaust gas from the two combustion chambers C2 and C3 (see also FIG. 2). ).

さらに、膨出部45は、中心軸線Lcを中心とする径方向で、入口端面10aとほぼ同心の下流部43の最上流部43aよりも外方に膨出している。そして、膨出部45の膨出の程度は、側面視で、最大膨出部分の膨出量Pが最上流部43aの通路断面の通路径の約1/3〜約1/2の範囲である。   Furthermore, the bulging portion 45 bulges outward from the most upstream portion 43a of the downstream portion 43 that is substantially concentric with the inlet end face 10a in the radial direction about the central axis Lc. The degree of bulging of the bulging portion 45 is such that, in a side view, the bulging amount P of the largest bulging portion is in the range of about 1/3 to about 1/2 of the passage diameter of the passage section of the most upstream portion 43a. is there.

次に、前述のように構成された実施形態の作用および効果について説明する。
図2,図5を参照すると、前記配列方向で対称面Hcに近い各燃焼室C2,3からの排気ガスの主流F2,F3は、排気ポート5からの流出方向と同じ方向である流入方向D2,D3で通路入口42aに流入し、壁面22s1,22s2にほぼ平行に上流部42を一直線状に流通する。これら燃焼室C1〜C4からの排気ガスは、通路入口42aでの流入方向で上流部42または通路入口42aと対向する屈曲部44および膨出部45に流入するために、または対称面Hcに対して小さい傾斜角で屈曲部44および膨出部45に流入するために、触媒コンバータ10の入口端面10aでの流れの不均一状態を生じさせやすい流れである。
Next, operations and effects of the embodiment configured as described above will be described.
2 and 5, the main flow F2, F3 of the exhaust gas from the combustion chambers C2, 3 close to the symmetry plane Hc in the arrangement direction is the same direction as the outflow direction from the exhaust port 5, the inflow direction D2. , D3 flows into the passage inlet 42a and flows in a straight line through the upstream portion 42 substantially parallel to the wall surfaces 22s1, 22s2. The exhaust gases from the combustion chambers C1 to C4 flow into the upstream portion 42 or the bent portion 44 and the bulging portion 45 facing the passage inlet 42a in the inflow direction at the passage inlet 42a, or with respect to the symmetry plane Hc. Since the air flows into the bent portion 44 and the bulging portion 45 at a small inclination angle, the flow tends to cause a non-uniform state of the flow at the inlet end surface 10a of the catalytic converter 10.

屈曲部44での排気ガスの一部は、壁面24s1,24s2および壁面25s1,25s2に沿って膨出部45に、平面視で一直線状に流入し、膨出部45内で、膨出部45の壁面25sに沿って流れることにより、通路入口42aでの排気ガスの、側面視での流入方向F2a,F3a(図5(A)参照)に対して反転した偏向流Fa、すなわち該流入方向F2a,F3aとは反対方向の速度成分を有する流れとなる。そして、偏向流Faは、下流部43の最上流部43aの直上流から屈曲内方かつ入口端面10aを指向して、より具体的には、壁面25sの棚部25s3の接線Mが、入口端面10aの中心Nまたは中心Nよりも膨出部45から遠い位置で入口端面10aと交差することにより、中心軸線Lcを含む平面において中心Nまたは中心Nよりも屈曲内方の部分を指向して流出する。   Part of the exhaust gas at the bent portion 44 flows straight into the bulging portion 45 along the wall surfaces 24s1, 24s2 and the wall surfaces 25s1, 25s2, and in the bulging portion 45, the bulging portion 45 Of the exhaust gas at the passage inlet 42a is reversed with respect to the inflow directions F2a and F3a (see FIG. 5A) in a side view, that is, the inflow direction F2a. , F3a has a velocity component in the opposite direction. The deflected flow Fa is directed from the upstream of the most upstream portion 43a of the downstream portion 43 toward the bent inner side and the inlet end surface 10a. More specifically, the tangent M of the shelf portion 25s3 of the wall surface 25s is the inlet end surface. The center N of 10a or a position farther from the bulging portion 45 than the center N crosses the inlet end face 10a, and flows out toward the center N or a bent inward portion from the center N in a plane including the center axis Lc. To do.

このように、集合型排気ポート4が形成されたシリンダヘッド2を備える内燃機関Eの排気触媒装置Aにおける導入通路41の屈曲部44には、側面視で、上流部42の外側周部の最下流部42b1と下流部43の外側周部の最上流部43a1と結ぶ仮想円弧Rよりも屈曲外方に膨出する膨出部45が設けられることから、排気ガスが導入通路41の屈曲部44で屈曲流となるために入口端面10aでの排気ガスの流れが入口端面10aの外側部分に偏る状態(すなわち流れの不均一状態)を生じさせる主たる原因となる屈曲部44の外側部分での流れが、膨出部45により偏向流Faとなって入口端面10aで内側部分に向かうので、膨出部45がない導入通路41に比べて、入口端面10aの内側部分での排気ガスの流れが多くなる一方、入口端面10aの外側部分に向かう流れが少なくなる。   As described above, the bent portion 44 of the introduction passage 41 in the exhaust catalyst device A of the internal combustion engine E including the cylinder head 2 in which the collective exhaust port 4 is formed has the outermost peripheral portion of the upstream portion 42 in a side view. Since the bulging portion 45 bulging outward from the virtual arc R connecting the downstream portion 42b1 and the most upstream portion 43a1 of the outer peripheral portion of the downstream portion 43 is provided, the bent portion 44 of the introduction passage 41 has the exhaust gas. Therefore, the flow of the exhaust gas at the inlet end face 10a is biased toward the outer portion of the inlet end face 10a (that is, the non-uniform flow state). However, since the bulging portion 45 becomes a deflection flow Fa toward the inner portion at the inlet end surface 10a, the flow of exhaust gas at the inner portion of the inlet end surface 10a is larger than that of the introduction passage 41 without the bulging portion 45. On the other hand, the flow toward the outer portion of the inlet end face 10a is reduced.

また、膨出部45により偏向流Faが発生するので、屈曲内方に突出して偏向流を発生させる突出壁とは異なり、偏向流Faを発生させるために通路抵抗が増加することがないうえ、導入通路41の通路面積が膨出部45の分だけ大きくなるので、導入通路41での通路抵抗の増加が抑制される。さらに、膨出部45は屈曲部44に設けられているので、直線状の通路の側方に膨出する部分が設けられる場合に比べて、排気ガスが膨出部45に流入しやすいので、指向性の強い偏向流Faを発生させることができる。
この結果、膨出部45により生じる偏向流Faで入口端面10aの内側部分の排気ガスの流れが多くなって、入口端面10aでの排気ガスの流れが均一化される。このため、触媒コンバータ10の浄化率が向上し、流れの不均一状態に起因する触媒コンバータ10の局部的な劣化が防止されて、触媒コンバータ10の耐久性が向上する。しかも、導入通路41での通路抵抗の効果が抑制されるので、排気通路における背圧の増加が抑制されて、良好な排気効率を確保できる。さらに、膨出部45が屈曲部44に設けられるので、指向性の強い偏向流Faを発生させることができて、入口端面10aでの排気ガスの流れの均一化に効果的な偏向流Faを発生させることができる。
Further, since the deflection flow Fa is generated by the bulging portion 45, unlike the protruding wall that protrudes inwardly to generate the deflection flow, the passage resistance does not increase in order to generate the deflection flow Fa. Since the passage area of the introduction passage 41 is increased by the bulging portion 45, an increase in passage resistance in the introduction passage 41 is suppressed. Furthermore, since the bulging portion 45 is provided in the bent portion 44, the exhaust gas easily flows into the bulging portion 45 as compared with the case where a portion bulging to the side of the linear passage is provided. A highly directional deflected flow Fa can be generated.
As a result, the flow of exhaust gas in the inner portion of the inlet end face 10a is increased by the deflected flow Fa generated by the bulging portion 45, and the flow of exhaust gas on the inlet end face 10a is made uniform. For this reason, the purification rate of the catalytic converter 10 is improved, the local deterioration of the catalytic converter 10 due to the non-uniform flow state is prevented, and the durability of the catalytic converter 10 is improved. In addition, since the effect of the passage resistance in the introduction passage 41 is suppressed, an increase in the back pressure in the exhaust passage is suppressed, and good exhaust efficiency can be ensured. Further, since the bulging portion 45 is provided in the bent portion 44, a highly directional deflected flow Fa can be generated, and the deflected flow Fa effective for uniforming the flow of exhaust gas at the inlet end face 10a can be generated. Can be generated.

また、前記配列方向での膨出部45の両壁面25s1,25s2は、平面視で、排気ガスの流れ方向に先細に形成されて、第2,第3シリンダの燃焼室C2,C3からの排気ガスの、通路入口42aでの流入方向D2,D3にほぼ平行であることにより、燃焼室C2,C3からの排気ガスの主流F2,F3は、上流部42の壁面22s1,22s2および屈曲部44の壁面24s1,24s2により偏向されることが殆どなく膨出部45に流入し、さらに膨出部45においても壁面25s1,25s2により偏向されることが殆どない。このため、排気ガスが円滑に膨出部45に流入し、しかもその円滑な流れが先細に形成された膨出部45に集まるので、膨出部45で比較的強い流れの偏向流Faを発生させることができる。この結果、排気ガスが円滑に膨出部45に流入するので、膨出部45による通路抵抗の増加が抑制され、しかも比較的強い偏向流Faにより、流れの不均一状態が効果的に矯正されて、入口端面10aでの流れが均一化され、しかも先細であることで膨出部45が小型化される。   Further, both wall surfaces 25s1, 25s2 of the bulging portions 45 in the arrangement direction are tapered in the flow direction of the exhaust gas in a plan view, and exhaust from the combustion chambers C2, C3 of the second and third cylinders. By being substantially parallel to the inflow directions D2 and D3 of the gas at the passage inlet 42a, the main flows F2 and F3 of the exhaust gas from the combustion chambers C2 and C3 are caused by the wall surfaces 22s1 and 22s2 of the upstream portion 42 and the bent portions 44, respectively. Almost no deflection is caused by the wall surfaces 24 s 1 and 24 s 2, and the air flows into the bulging portion 45. Further, the bulging portion 45 is hardly deflected by the wall surfaces 25 s 1 and 25 s 2. For this reason, the exhaust gas smoothly flows into the bulging portion 45 and the smooth flow gathers at the bulging portion 45 formed in a taper, so that the bulging portion 45 generates a relatively strong flow deflection flow Fa. Can be made. As a result, since the exhaust gas smoothly flows into the bulging portion 45, an increase in passage resistance due to the bulging portion 45 is suppressed, and the nonuniform flow state is effectively corrected by the relatively strong deflection flow Fa. Thus, the flow at the inlet end face 10a is made uniform, and the bulging portion 45 is reduced in size by being tapered.

膨出部45は、燃焼室C2,C3からの排気ガスの、通路入口42aでの流入方向F2,F3で、該通路入口42aと対向する位置に設けられ、膨出部45は緩やかな壁面24sで上流部42に滑らかに連続することにより、燃焼室C2,C3から導入通路41に流入する排気ガスは屈曲することが殆どなく、ほぼ一直線状に膨出部45に流入するので、比較的強い偏向流Faを発生させることができ、また上流部42と膨出部45とが、緩やかな湾曲面または傾斜面からなる壁面24sに沿って滑らかに連続することから、膨出部45がないために大きく屈曲する場合に比べて、緩やかに屈曲しつつ膨出部45に流入するので、排気ガスが屈曲部44および膨出部45の壁面24s,25sに当たることで発生する音が低減する。この結果、比較的強い偏向流Faにより、流れの不均一状態が効果的に矯正されて、入口端面10aでの流れが均一化され、しかも排気ガスが導入通路41の壁面24s,25sに当たることで発生する音が低減するので、導入通路41を形成する部材、ひいては導入通路41が設けられた排気触媒装置Aで発生する騒音が低減する。   The bulging portion 45 is provided at a position facing the passage inlet 42a in the inflow directions F2 and F3 of the exhaust gas from the combustion chambers C2 and C3 at the passage inlet 42a, and the bulging portion 45 has a gentle wall surface 24s. Therefore, the exhaust gas flowing from the combustion chambers C2 and C3 into the introduction passage 41 hardly bends and flows into the bulging portion 45 in a substantially straight line, so that it is relatively strong. Since the deflection flow Fa can be generated, and the upstream portion 42 and the bulging portion 45 are smoothly continuous along the wall surface 24s formed of a gently curved surface or an inclined surface, there is no bulging portion 45. Compared with the case where the gas is greatly bent, the gas flows into the bulging portion 45 while being bent gently, so that the sound generated when the exhaust gas hits the wall surfaces 24s, 25s of the bulging portion 44 and the bulging portion 45 is reduced. As a result, the non-uniform flow state is effectively corrected by the relatively strong deflected flow Fa, the flow at the inlet end surface 10a is made uniform, and the exhaust gas strikes the wall surfaces 24s and 25s of the introduction passage 41. Since the generated sound is reduced, the noise generated in the exhaust catalyst device A provided with the introduction passage 41 and thus the exhaust passage device 41 provided with the introduction passage 41 is reduced.

図2,図6を参照すると、各燃焼室C2,C3に比べ、前記配列方向で対称面Hcから遠い各燃焼室C1,C4からの排気ガスの主流F1,F4は、排気ポート5からの流出方向と同じ方向である流入方向D1,D4で一直線状に通路入口42aに流入し、上流部42の壁面22s2,22s1または屈曲部44の壁面24s2,24s1で偏向され、燃焼室C1〜C4からの排気ガスに比べて強い旋回成分を有する流れとなって屈曲部44を流れる。   Referring to FIGS. 2 and 6, the main flows F1 and F4 of the exhaust gas from the combustion chambers C1 and C4 farther from the symmetry plane Hc in the arrangement direction than the combustion chambers C2 and C3 flow out from the exhaust port 5, respectively. Inflow directions D1 and D4, which are the same as the directions, flow into the passage inlet 42a in a straight line, and are deflected by the wall surfaces 22s2 and 22s1 of the upstream portion 42 or the wall surfaces 24s2 and 24s1 of the bent portion 44 and from the combustion chambers C1 to C4 A flow having a stronger swirl component than the exhaust gas flows through the bent portion 44.

屈曲部44での排気ガスの一部は、強い旋回成分を有する状態で膨出部45に流入し、膨出部45内で、旋回しつつ屈曲内方に反転した偏向流Fbとなる。この偏向流Fbは、燃焼室C2,C3からの排気ガスにより発生する偏向流Faに比べて、指向性が弱く、流速も小さい流れである。   A part of the exhaust gas in the bent portion 44 flows into the bulging portion 45 in a state having a strong swirling component, and becomes a deflected flow Fb that is swung in the bulging portion 45 and reversed to the bent inward. This deflection flow Fb is a flow having a weak directivity and a small flow velocity compared to the deflection flow Fa generated by the exhaust gas from the combustion chambers C2 and C3.

このため、下流部43の最上流部43aでは旋回成分による影響が大きいために、円錐形に拡径する下流部43において、排気ガスの流れは、燃焼室C2,C3からの場合に比べて、より均一な流れになっている。そして、偏向流Fbと旋回流とが相俟って、触媒コンバータ10の入口端面10aでの排気ガスの流れが均一化される。   For this reason, since the effect of the swirl component is large in the most upstream portion 43a of the downstream portion 43, the flow of the exhaust gas in the downstream portion 43 expanding in a conical shape is larger than that from the combustion chambers C2 and C3. The flow is more uniform. Then, the deflection flow Fb and the swirl flow are combined, and the flow of the exhaust gas at the inlet end surface 10a of the catalytic converter 10 is made uniform.

以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
導入コーン21は、集合型排気ポート4が形成されたシリンダヘッド2に一体成形されてもよい。
内燃機関Eは、シリンダヘッド2に集合型排気ポート4が形成されことなく、シリンダヘッド2に取り付けられて各燃焼室C1〜C4からの排気を集合する排気マニホルドを備えるものであってもよく、この場合、導入コーン21は該排気マニホルドの排気集合部に接続される。さらに、導入コーン21が前記排気マニホルドに一体成形されてもよい。
屈曲部44による導入通路41での排気ガスの流れの屈曲角度(側面視で、通路入口42aでの流れ方向と通路出口43bでの流れ方向とがなす角度)は、前記実施形態ではほぼ直角であったが、鋭角または鈍角であってもよい。
また、膨出部45の壁面25sは、圧力損失が前記実施形態に比べて余り増加しない範囲で、多数の平面により凹面に形成されてもよい。
排気浄化装置は、触媒物質を使用しない排気浄化部材を備えるものであってもよい。
内燃機関Eは、各バンクが1つのシリンダまたは直列に配列された複数のシリンダを備えるV型内燃機関であってもよく、さらには単気筒内燃機関であってもよい。また、排気触媒装置Aは内燃機関以外の燃焼装置に備えられてもよい。
内燃機関Eは、前記実施形態では車両に使用されるものであったが、鉛直方向を指向するクランク軸を備える船外機等の船舶推進装置に使用されるものであってもよい。
Hereinafter, an embodiment in which a part of the configuration of the above-described embodiment is changed will be described with respect to the changed configuration.
The introduction cone 21 may be integrally formed with the cylinder head 2 in which the collective exhaust port 4 is formed.
The internal combustion engine E may include an exhaust manifold that is attached to the cylinder head 2 and collects exhaust gas from each of the combustion chambers C1 to C4 without forming the collective exhaust port 4 in the cylinder head 2. In this case, the introduction cone 21 is connected to the exhaust collecting portion of the exhaust manifold. Further, the introduction cone 21 may be integrally formed with the exhaust manifold.
The bending angle of the flow of the exhaust gas in the introduction passage 41 by the bending portion 44 (the angle formed by the flow direction at the passage inlet 42a and the flow direction at the passage outlet 43b in a side view) is substantially a right angle in the above embodiment. However, it may be acute or obtuse.
Further, the wall surface 25s of the bulging portion 45 may be formed as a concave surface by a large number of planes within a range in which the pressure loss does not increase much compared to the embodiment.
The exhaust purification device may include an exhaust purification member that does not use a catalyst substance.
The internal combustion engine E may be a V-type internal combustion engine including a single cylinder or a plurality of cylinders arranged in series, or may be a single-cylinder internal combustion engine. Further, the exhaust catalyst device A may be provided in a combustion device other than the internal combustion engine.
Although the internal combustion engine E is used for a vehicle in the embodiment, it may be used for a ship propulsion device such as an outboard motor having a crankshaft oriented in the vertical direction.

本発明が適用された排気触媒装置を備える多気筒内燃機関の側面視での要部の図であり、機関本体が模式的に示される。1 is a view of a main part in a side view of a multi-cylinder internal combustion engine provided with an exhaust catalyst device to which the present invention is applied, and schematically shows an engine body. 図1の概ねII−II線断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1. 図1の排気触媒装置の導入コーンの図であり、(A)は図1のIIIa矢視図であり、(B)は(A)のb矢視図(側面視での図)であり、(C)は(B)のc矢視図であり、(D)は(B)のd矢視図である。It is a figure of the introduction cone of the exhaust-catalyst apparatus of FIG. 1, (A) is a IIIa arrow directional view of FIG. 1, (B) is a b arrow directional view (figure in a side view) of (A), (C) is a c arrow view of (B), (D) is a d arrow view of (B). 図3(B)のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 図1の排気触媒装置において、シミュレーションで得られた導入通路での、第2,第3シリンダの燃焼室からの排気ガスの流れを示す模式図である。(A)は図3(C)のVa−Va線断面での流れを示し、(B)は図1のVb−Vb線断面での第2,第3シリンダの燃焼室から流れを別個に示す。FIG. 2 is a schematic diagram showing a flow of exhaust gas from combustion chambers of second and third cylinders in an introduction passage obtained by simulation in the exhaust catalyst device of FIG. 1. (A) shows the flow in the section taken along the line Va-Va in FIG. 3 (C), and (B) shows the flow separately from the combustion chambers of the second and third cylinders in the section taken along the line Vb-Vb in FIG. . 図5と同様のシミュレーションで得られた導入通路での、第1,第4シリンダの燃焼室からの排気ガスの流れを示す模式図である。(A)は図5(A)に対応する図であり、(B)は図5(B)に対応する図である。It is a schematic diagram which shows the flow of the exhaust gas from the combustion chamber of a 1st, 4th cylinder in the introduction channel | path obtained by the simulation similar to FIG. FIG. 5A is a diagram corresponding to FIG. 5A, and FIG. 5B is a diagram corresponding to FIG.

符号の説明Explanation of symbols

1…シリンダブロック、2…シリンダヘッド、3…吸気ポート、4…集合型排気ポート、5…排気ポート、6…集合ポート、7…フランジ、8…酸素濃度センサ、10…触媒コンバータ、10a…入口端面、11…収納ケース、21…導入コーン、22…上流端部、23…下流端部、24…中間部、25…膨出形成部、31…導出コーン、32…上流端部、33…下流端部、34…導出通路、41…導入通路、42…上流部、42a…通路入口、43…下流部、44…屈曲部、45…膨出部、45s…壁面、
E…内燃機関、A…排気触媒装置、C1〜C4…燃焼室、Lc…中心軸線、H…中央面、Hc…対称面、K…挿入孔、B…屈曲中心、R…仮想円弧、D1〜D4…流入方向、W…奥行、N…中心、F1〜F4…主流、M…接線、P…膨出量。
DESCRIPTION OF SYMBOLS 1 ... Cylinder block, 2 ... Cylinder head, 3 ... Intake port, 4 ... Collective exhaust port, 5 ... Exhaust port, 6 ... Collective port, 7 ... Flange, 8 ... Oxygen concentration sensor, 10 ... Catalytic converter, 10a ... Inlet End face, 11: storage case, 21 ... introduction cone, 22 ... upstream end, 23 ... downstream end, 24 ... middle part, 25 ... bulge forming part, 31 ... outlet cone, 32 ... upstream end, 33 ... downstream End part, 34 ... Derivation passage, 41 ... Introduction passage, 42 ... Upstream part, 42a ... Passage inlet, 43 ... Downstream part, 44 ... Bending part, 45 ... Swelling part, 45s ... Wall surface,
E: Internal combustion engine, A: Exhaust catalyst device, C1 to C4: Combustion chamber, Lc: Center axis, H ... Center plane, Hc: Symmetric plane, K ... Insertion hole, B ... Bending center, R ... Virtual arc, D1 D4 ... Inflow direction, W ... Depth, N ... Center, F1-F4 ... Mainstream, M ... Tangent, P ... Swelling amount.

Claims (4)

排気ガス浄化用の触媒コンバータと排気ガスを前記触媒コンバータの入口端面に導く導入通路とが設けられた排気触媒装置であって、前記導入通路が、排気ガスが流入する通路入口を有する上流部と、前記通路入口からの排気ガスが屈曲流となる屈曲部と、屈曲した後の排気ガスの流れを前記入口端面に向けて流出させる通路出口を有する下流部とから構成される排気触媒装置において、
前記屈曲部には、側面視で、前記上流部の外側周部の最下流部と前記下流部の外側周部の最上流部と結ぶ仮想円弧よりも屈曲外方に膨出する膨出部が設けられ、前記屈曲部の排気ガスの一部は、前記膨出部の壁面に沿って流れることにより、前記通路入口での排気ガスの、側面視での流入方向に対して反転した偏向流となり、前記偏向流は屈曲内方かつ前記入口端面を指向して前記膨出部から流出することを特徴とする排気触媒装置。
An exhaust catalyst device provided with a catalytic converter for purifying exhaust gas and an introduction passage for introducing exhaust gas to an inlet end face of the catalytic converter, wherein the introduction passage has an upstream portion having a passage inlet through which exhaust gas flows. In the exhaust catalyst device comprising a bent portion in which the exhaust gas from the passage inlet becomes a bent flow, and a downstream portion having a passage outlet for flowing the flow of the exhaust gas after bending toward the inlet end surface,
The bent portion has a bulging portion that bulges outward from the virtual arc connecting the most downstream portion of the outer peripheral portion of the upstream portion and the most upstream portion of the outer peripheral portion of the downstream portion in a side view. A part of the exhaust gas at the bent portion flows along the wall surface of the bulging portion, thereby forming a deflected flow that is reversed with respect to the inflow direction of the exhaust gas at the passage entrance in a side view. The exhaust catalyst device according to claim 1, wherein the deflected flow flows out of the bulging portion in a bent inward direction toward the inlet end surface.
配列方向に並んだ複数の燃焼室からの排気ガスが集合する集合型排気ポートが形成されたシリンダヘッドと、前記集合型排気ポートの出口の直下流に接続されて排気ガスを浄化する直下型の排気触媒装置とを備える多気筒内燃機関であって、前記排気触媒装置には、排気ガス浄化用の触媒コンバータと排気ガスを前記触媒コンバータの入口端面に導く導入通路とが設けられ、前記導入通路が、排気ガスが流入する通路入口を有する上流部と、前記通路入口からの排気ガスが屈曲流となる屈曲部と、屈曲した後の排気ガスの流れを前記入口端面に向けて流出させる通路出口を有する下流部とから構成される排気触媒装置において、
前記屈曲部には、側面視で、前記上流部の外側周部の最下流部と下流部の外側周部の最上流部と結ぶ仮想円弧よりも屈曲外方に膨出する膨出部が設けられ、前記屈曲部の排気ガスの一部は、前記膨出部の壁面に沿って流れることにより、前記通路入口での排気ガスの、側面視での流入方向に対して反転した偏向流となり、前記偏向流は屈曲内方かつ前記入口端面を指向して前記膨出部から流出することを特徴とする多気筒内燃機関。
A cylinder head formed with a collective exhaust port in which exhaust gases from a plurality of combustion chambers arranged in the arrangement direction gather, and a direct type that is connected directly downstream of the outlet of the collective exhaust port to purify exhaust gas A multi-cylinder internal combustion engine including an exhaust catalyst device, wherein the exhaust catalyst device is provided with a catalytic converter for purifying exhaust gas and an introduction passage for guiding exhaust gas to an inlet end face of the catalytic converter, and the introduction passage Are an upstream portion having a passage inlet into which exhaust gas flows, a bent portion in which the exhaust gas from the passage inlet becomes a bent flow, and a passage outlet for causing the flow of the bent exhaust gas to flow out toward the inlet end surface. In the exhaust catalyst device comprising a downstream portion having
The bent portion is provided with a bulging portion that bulges outward from the virtual arc connecting the most downstream portion of the outer peripheral portion of the upstream portion and the most upstream portion of the outer peripheral portion of the downstream portion in a side view. A part of the exhaust gas in the bent portion flows along the wall surface of the bulging portion, thereby becoming a deflected flow reversed with respect to the inflow direction in a side view of the exhaust gas at the passage entrance, The multi-cylinder internal combustion engine characterized in that the deflected flow flows out of the bulging portion while being bent inward and directed toward the inlet end face.
前記配列方向での前記膨出部の両壁面は、前記触媒コンバータの中心軸線方向から見て、排気ガスの流れ方向に先細に形成されて、特定の前記シリンダの前記燃焼室からの排気ガスの前記通路入口での流入方向にほぼ平行であることを特徴とする請求項2記載の多気筒内燃機関。   Both wall surfaces of the bulging portions in the arrangement direction are tapered in the flow direction of the exhaust gas when viewed from the central axis direction of the catalytic converter, and the exhaust gas from the combustion chamber of a specific cylinder The multi-cylinder internal combustion engine according to claim 2, wherein the multi-cylinder internal combustion engine is substantially parallel to an inflow direction at the passage entrance. 前記膨出部は、前記通路入口での排気ガスの流入方向で前記通路入口と対向する位置に設けられ、前記膨出部は緩やかな壁面で前記上流部に滑らかに連続することを特徴とする請求項1記載の排気触媒装置、または請求項2または3記載の多気筒内燃機関。

The bulging portion is provided at a position facing the passage inlet in the exhaust gas inflow direction at the passage inlet, and the bulging portion smoothly continues to the upstream portion with a gentle wall surface. The exhaust catalyst device according to claim 1 or the multi-cylinder internal combustion engine according to claim 2 or 3.

JP2006031598A 2006-02-08 2006-02-08 Multi-cylinder internal combustion engine having an exhaust catalyst device Active JP4641952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006031598A JP4641952B2 (en) 2006-02-08 2006-02-08 Multi-cylinder internal combustion engine having an exhaust catalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006031598A JP4641952B2 (en) 2006-02-08 2006-02-08 Multi-cylinder internal combustion engine having an exhaust catalyst device

Publications (2)

Publication Number Publication Date
JP2007211663A true JP2007211663A (en) 2007-08-23
JP4641952B2 JP4641952B2 (en) 2011-03-02

Family

ID=38490329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006031598A Active JP4641952B2 (en) 2006-02-08 2006-02-08 Multi-cylinder internal combustion engine having an exhaust catalyst device

Country Status (1)

Country Link
JP (1) JP4641952B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068415A (en) * 2007-09-13 2009-04-02 Hino Motors Ltd Exhaust emission control device
WO2010053033A1 (en) * 2008-11-05 2010-05-14 トヨタ自動車株式会社 Exhaust purifying device for internal combustion engine
CN102630269A (en) * 2009-12-01 2012-08-08 丰田自动车株式会社 Exhaust purification device
JP2012215100A (en) * 2011-03-31 2012-11-08 Daihatsu Motor Co Ltd Cylinder head structure and exhaust manifold structure
US20130133311A1 (en) * 2011-11-25 2013-05-30 Honda Motor Co., Ltd. Exhaust apparatus for internal combustion engine
WO2014032685A1 (en) * 2012-08-31 2014-03-06 Volvo Group Sweden Ab A gas flow unit, a gas treatment device and a combustion engine provided therewith
US8795013B1 (en) 2011-04-07 2014-08-05 Yamaha Hatsudoki Kabushiki Kaisha Outboard motor
US9273641B2 (en) 2012-08-14 2016-03-01 Volvo Truck Corporation Gas flow unit, a gas treatment device and a combustion engine provided therewith
WO2017047319A1 (en) * 2015-09-18 2017-03-23 フタバ産業株式会社 Exhaust pipe and method for manufacturing exhaust pipe
JP2019031964A (en) * 2017-08-10 2019-02-28 スズキ株式会社 Exhaust structure of internal combustion engine
JP2019035349A (en) * 2017-08-10 2019-03-07 本田技研工業株式会社 Exhaust emission control device of internal combustion engine
WO2021230147A1 (en) * 2020-05-13 2021-11-18 株式会社ユタカ技研 Exhaust catalyst device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054435A (en) * 2000-08-11 2002-02-20 Aichi Mach Ind Co Ltd Exhaust manifold
JP2004052546A (en) * 1999-01-12 2004-02-19 Honda Motor Co Ltd Multi-cylinder engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052546A (en) * 1999-01-12 2004-02-19 Honda Motor Co Ltd Multi-cylinder engine
JP2002054435A (en) * 2000-08-11 2002-02-20 Aichi Mach Ind Co Ltd Exhaust manifold

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068415A (en) * 2007-09-13 2009-04-02 Hino Motors Ltd Exhaust emission control device
WO2010053033A1 (en) * 2008-11-05 2010-05-14 トヨタ自動車株式会社 Exhaust purifying device for internal combustion engine
JP5104960B2 (en) * 2008-11-05 2012-12-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN102630269A (en) * 2009-12-01 2012-08-08 丰田自动车株式会社 Exhaust purification device
JP2012215100A (en) * 2011-03-31 2012-11-08 Daihatsu Motor Co Ltd Cylinder head structure and exhaust manifold structure
US8795013B1 (en) 2011-04-07 2014-08-05 Yamaha Hatsudoki Kabushiki Kaisha Outboard motor
JP2013113103A (en) * 2011-11-25 2013-06-10 Honda Motor Co Ltd Exhaust apparatus for internal combustion engine
US20130133311A1 (en) * 2011-11-25 2013-05-30 Honda Motor Co., Ltd. Exhaust apparatus for internal combustion engine
US9273589B2 (en) * 2011-11-25 2016-03-01 Honda Motor Co., Ltd. Exhaust apparatus for internal combustion engine
US9273641B2 (en) 2012-08-14 2016-03-01 Volvo Truck Corporation Gas flow unit, a gas treatment device and a combustion engine provided therewith
WO2014032685A1 (en) * 2012-08-31 2014-03-06 Volvo Group Sweden Ab A gas flow unit, a gas treatment device and a combustion engine provided therewith
WO2017047319A1 (en) * 2015-09-18 2017-03-23 フタバ産業株式会社 Exhaust pipe and method for manufacturing exhaust pipe
JP2019031964A (en) * 2017-08-10 2019-02-28 スズキ株式会社 Exhaust structure of internal combustion engine
JP2019035349A (en) * 2017-08-10 2019-03-07 本田技研工業株式会社 Exhaust emission control device of internal combustion engine
WO2021230147A1 (en) * 2020-05-13 2021-11-18 株式会社ユタカ技研 Exhaust catalyst device for internal combustion engine

Also Published As

Publication number Publication date
JP4641952B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4641952B2 (en) Multi-cylinder internal combustion engine having an exhaust catalyst device
US6725655B2 (en) Exhaust manifold for internal combustion engine
JP2007187110A (en) Multicylinder internal combustion engine equipped with cylinder head having collection type exhaust port
US7669412B2 (en) Exhaust manifold for internal combustion engine
JP5978584B2 (en) Exhaust system for multi-cylinder engine
JP2014211112A (en) Exhaust pipe structure with catalyst for engine
US9488091B2 (en) Exhaust pipe structure with catalyst for engine
JP2019127884A (en) Engine cylinder head
JP2013155690A (en) Cylinder head of internal combustion engine
JP5496145B2 (en) Muffler for general-purpose internal combustion engine
JP4811117B2 (en) Engine exhaust gas recirculation system
EP3722588A1 (en) Air intake system for internal combustion engine
JP4158516B2 (en) Exhaust pipe structure of internal combustion engine
JP2007303341A (en) Plastic intake manifold of internal combustion engine and internal combustion engine
JP2021080911A (en) engine
JP5881413B2 (en) Air supply manifold for internal combustion engines
JP6410630B2 (en) Cylinder head and engine
JPH08218938A (en) Intake/exhaust port for internal combustion engine
WO2016035154A1 (en) Exhaust device for internal combustion engine
JP2012172602A (en) Air-fuel ratio detecting device of internal combustion engine
WO2016035155A1 (en) Exhaust device for internal combustion engine
JP2017066888A (en) Exhaust gas recirculation device for internal combustion engine
JP6416489B2 (en) Exhaust receiver structure and internal combustion engine system including the same
JP4424018B2 (en) Exhaust manifold for internal combustion engines
KR20220123778A (en) Exhaust manifold with improved assembly between runner and diffuser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101130

R150 Certificate of patent or registration of utility model

Ref document number: 4641952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250