JP2016027331A - Deterioration factor exposure amount measuring method of synthetic resin material - Google Patents

Deterioration factor exposure amount measuring method of synthetic resin material Download PDF

Info

Publication number
JP2016027331A
JP2016027331A JP2015129481A JP2015129481A JP2016027331A JP 2016027331 A JP2016027331 A JP 2016027331A JP 2015129481 A JP2015129481 A JP 2015129481A JP 2015129481 A JP2015129481 A JP 2015129481A JP 2016027331 A JP2016027331 A JP 2016027331A
Authority
JP
Japan
Prior art keywords
synthetic resin
resin material
surface portion
exposure
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015129481A
Other languages
Japanese (ja)
Other versions
JP6557895B2 (en
Inventor
貴之 甲斐
Takayuki Kai
貴之 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2015129481A priority Critical patent/JP6557895B2/en
Publication of JP2016027331A publication Critical patent/JP2016027331A/en
Application granted granted Critical
Publication of JP6557895B2 publication Critical patent/JP6557895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration factor exposure amount measuring method of a synthetic resin material capable of measuring the deterioration factor exposure amount of the synthetic resin material (existing material) actually exposed to the deterioration factor, by simple means without destroying the synthetic resin material.SOLUTION: Fine irregularities are formed on a surface part of a synthetic resin material, and the synthetic resin material is exposed to a deterioration factor. Then, the degree of smoothness on the surface part is measured, and the exposure amount of the deterioration factor is measured from data of a correlation, which was acquired beforehand, between the deterioration factor exposure amount and the degree of smoothness on the surface part.SELECTED DRAWING: None

Description

本発明は、合成樹脂材の劣化要素暴露量測定方法に関し、更に詳しくは、合成樹脂材の表面部の平滑化の程度を計測して劣化要素暴露量を測定する方法に関する。   The present invention relates to a method for measuring a deterioration factor exposure amount of a synthetic resin material, and more particularly, to a method of measuring a deterioration factor exposure amount by measuring a degree of smoothing of a surface portion of a synthetic resin material.

合成樹脂で成形した合成樹脂材は、光線(特に紫外線)、熱、水、酸素などの劣化要素に長時間暴露されると、機械的特性や光学的特性が劣化することが知られている。従って、合成樹脂材の劣化要素暴露量を簡便に測定できる方法が開発されれば、合成樹脂材の劣化の進行度合いを推量して、例えば合成樹脂材の交換時期などを知ることができるので、きわめて便利かつ有用である。   It is known that a synthetic resin material molded with a synthetic resin deteriorates mechanical characteristics and optical characteristics when exposed to deterioration factors such as light (particularly ultraviolet rays), heat, water, and oxygen for a long time. Therefore, if a method that can easily measure the deterioration factor exposure of the synthetic resin material is developed, the degree of progress of the deterioration of the synthetic resin material can be estimated, and for example, the replacement time of the synthetic resin material can be known. Very convenient and useful.

ところで、屋外構造物の特定箇所の紫外線量を測定する方法として、紫外線の照射量に比例した黄変度を示すポリカーボネート板に、超促進耐候試験機から紫外線を照射する促進劣化試験を実施して、ポリカーボネート板への紫外線照射量とポリカーボネート板の黄変度との相関関係を取得し、この相関関係に基づいて、屋外構造物の特定箇所に長期間配置したポリカーボネート板の黄変度から、特定箇所の長期間の紫外線量を測定する簡易紫外線量測定方法が知られている(特許文献1)。   By the way, as a method of measuring the amount of ultraviolet rays in a specific part of an outdoor structure, an accelerated deterioration test in which ultraviolet rays are irradiated from a super accelerated weathering tester is performed on a polycarbonate plate showing a yellowing degree proportional to the amount of ultraviolet rays. Acquire the correlation between the UV irradiation amount on the polycarbonate plate and the yellowing degree of the polycarbonate plate, and based on this correlation, specify from the yellowing degree of the polycarbonate plate placed in a specific place of the outdoor structure for a long time A simple ultraviolet ray amount measuring method for measuring the ultraviolet ray amount in a long period is known (Patent Document 1).

また、樹脂被膜が形成された樹脂成形品の耐候性評価方法として、赤外吸収分光法の全反射法によって樹脂被膜の吸収スペクトルを測定し、被膜成分に由来する吸光度と樹脂成形品の成分に由来する吸光度の比を計測して、樹脂被膜中における被膜成分の官能基量と樹脂成形品の成分の官能基量との割合を求めて耐候性を評価する方法が知られている(特許文献2)   In addition, as a method for evaluating the weather resistance of a resin molded product with a resin coating, the absorption spectrum of the resin coating is measured by the total reflection method of infrared absorption spectroscopy, and the absorbance derived from the coating component and the component of the resin molded product are measured. There is known a method for measuring weather resistance by measuring the ratio of the absorbance derived from the resin and determining the ratio between the functional group amount of the coating component in the resin coating and the functional group amount of the component of the resin molded product (Patent Literature). 2)

特開2009−250699号公報JP 2009-250699 A 特開2002−22648号公報JP 2002-22648 A

合成樹脂材の劣化要素暴露量を測定する方法は、以下に述べる直接性、非破壊性、現場性を具備することが望まれる。
即ち、合成樹脂材の劣化は、光線(特に紫外線)、熱、水、酸素などの劣化要素が複合的に関連して発生、進行するものであるため、合成樹脂材の使用環境や使用時間などによって劣化の進行度合いが大きく異なる。従って、正確な劣化要素暴露量を把握するためには、現に暴露を受けた合成樹脂材(現材)の劣化要素暴露量を直接的に把握する必要がある(直接性)。
また、現材から測定用の供試体を得る必要がある劣化要素暴露量測定方法では現材を破壊しなければならない場合があり、そのような場合は使用に問題がないと判断されたとしても、新しい合成樹脂材への交換が必要になるので、合理的であるとはいえない。従って、非破壊で劣化要素暴露量を測定できることが望まれる(非破壊性)。
さらに、合成樹脂材の使用現場において劣化要素暴露量を簡単に測定できれば、測定機の設置場所まで合成樹脂材を移動させる手間が省けるだけでなく、即時に合成樹脂材の劣化の進行度合いを推量して、例えばその場で新しい合成樹脂材と交換することも可能になるので望ましい(現場性)。
It is desired that the method for measuring the exposure amount of the deterioration factor of the synthetic resin material has the following directity, nondestructive property, and on-site property.
That is, the deterioration of the synthetic resin material is caused by the deterioration factors such as light rays (particularly ultraviolet rays), heat, water, oxygen, etc. occurring and proceeding in a complex manner. The degree of progress of deterioration varies greatly depending on. Therefore, in order to grasp the accurate exposure amount of the degradation factor, it is necessary to directly grasp the degradation factor exposure amount of the synthetic resin material (current material) that has actually been exposed (directness).
In addition, the degradation factor exposure measurement method that requires obtaining a specimen for measurement from the current material may require destruction of the current material. In such a case, even if it is determined that there is no problem in use. This is not reasonable because it requires replacement with a new synthetic resin material. Therefore, it is desirable to be able to measure the exposure amount of deteriorating elements without destruction (non-destructive).
Furthermore, if it is possible to easily measure the degradation factor exposure at the site where the synthetic resin material is used, not only will it be possible to save the trouble of moving the synthetic resin material to the place where the measuring instrument is installed, but it will also be possible to immediately estimate the degree of deterioration of the synthetic resin material. Thus, for example, it can be exchanged with a new synthetic resin material on the spot, which is desirable (on-site performance).

しかしながら、前記特許文献1の簡易紫外線量測定方法のように黄変度を紫外線量の測定に用いる方法は、黄変度の測定が、その測定方法に起因して、測定供試体を小片に加工しなければならないものであるため、この方法によって合成樹脂材の紫外線量を測定する場合は、合成樹脂材を破壊して小片の供試体を作成する必要があり、大きい合成樹脂材のまま黄変度を測定して紫外線量を求めることはできない。つまり、この方法は非破壊性が欠落する。また、黄変度の測定は合成樹脂材の使用現場で行うことができるものではないので、この方法は現場性も欠落する。   However, the method of using the yellowing degree for the measurement of the amount of ultraviolet rays as in the simple method for measuring the amount of ultraviolet ray in Patent Document 1 is that the measurement of the yellowing degree is caused by the measuring method, and the measurement specimen is processed into small pieces. Therefore, when measuring the amount of ultraviolet rays of a synthetic resin material by this method, it is necessary to destroy the synthetic resin material to create a small specimen, The degree of ultraviolet rays cannot be determined by measuring the degree. That is, this method lacks nondestructiveness. Moreover, since the measurement of yellowing degree cannot be performed at the use site of a synthetic resin material, this method lacks on-site property.

一方、前記特許文献2の耐候性評価方法は、樹脂被膜のない樹脂成形品の耐候性を評価する場合には採用できないものであり、しかも、この方法は紫外線等の暴露量を測定するものではなく、初期の樹脂被膜に含まれる被膜成分の官能基と樹脂成形品の成分の官能基との割合を求めることで、実暴露使用後の耐候性能を予測、評価するものである。従って、この方法は、合成樹脂材の実際の劣化要素暴露量を測定する上で、何の役にも立たない。   On the other hand, the weather resistance evaluation method of Patent Document 2 cannot be adopted when evaluating the weather resistance of a resin molded product without a resin coating, and this method does not measure the exposure amount of ultraviolet rays or the like. Rather, the ratio of the functional group of the coating component contained in the initial resin coating to the functional group of the component of the resin molded product is determined to predict and evaluate the weather resistance after actual exposure use. Therefore, this method has no use in measuring the actual exposure amount of the deterioration factor of the synthetic resin material.

本発明は、上記事情の下になされたものであって、その解決しようとする課題は、上記の直接性、非破壊性、現場性を担保し、現に劣化要素の暴露を受けた合成樹脂材(現材)の劣化要素暴露量を、合成樹脂材を破壊することなく、その場で簡便な手段により測定することができる、合成樹脂材の劣化要素暴露量測定方法を提供することにある。   The present invention has been made under the circumstances described above, and the problem to be solved is a synthetic resin material that guarantees the above-mentioned directness, non-destructive property, and on-site property and is actually exposed to deterioration elements. It is an object of the present invention to provide a method for measuring deterioration factor exposure of a synthetic resin material, which can measure the deterioration factor exposure amount of (current material) on the spot without destroying the synthetic resin material.

上記課題を解決するため、本発明に係る合成樹脂材の劣化要素暴露量測定方法は、合成樹脂材の表面部に微細な凹凸を形成し、該合成樹脂材を劣化要素に暴露した後、表面部の平滑化の程度を計測して、劣化要素の暴露量を測定することを特徴とするものである。ここで、凹凸とは、凹又は/及び凸を意味する。   In order to solve the above-described problem, the method for measuring the deterioration factor exposure amount of the synthetic resin material according to the present invention forms fine irregularities on the surface portion of the synthetic resin material, and after exposing the synthetic resin material to the deterioration element, the surface The degree of smoothing of the part is measured, and the exposure amount of the deteriorated element is measured. Here, the unevenness means concave or / and convex.

本発明の劣化要素暴露量測定方法においては、微細な凹凸を形成する表面部がポリカーボネート樹脂からなる表面部であることが望ましい。
また、表面部の微細な凹凸は、表面に微細な凹凸を形成した計測片を該表面部に取付けることによって形成してもよい。
更に、表面部の微細な凹凸の十点平均粗さRz(レーザー共焦点方式で非接触測定した十点平均粗さRz)が40〜200μmであることが望ましい。この十点平均粗さRzはJIS B 0601:1994に規定されたものであり、これはJIS B 0601:2013におけるRzJISに該当する。
また、表面部の平滑化の程度を計測する手段は、鏡面光沢度による計測であることが望ましい。
In the degradation element exposure measurement method of the present invention, it is desirable that the surface portion on which fine irregularities are formed is a surface portion made of polycarbonate resin.
Moreover, you may form the fine unevenness | corrugation of a surface part by attaching the measurement piece which formed the fine unevenness | corrugation on the surface to this surface part.
Furthermore, it is desirable that the ten-point average roughness Rz (ten-point average roughness Rz measured in a non-contact manner by a laser confocal method) of the fine irregularities on the surface portion is 40 to 200 μm. This ten-point average roughness Rz is defined in JIS B 0601: 1994, which corresponds to Rz JIS in JIS B 0601: 2013.
Moreover, it is desirable that the means for measuring the degree of smoothing of the surface portion is measurement based on specular gloss.

本発明に係る合成樹脂材の劣化要素暴露量測定方法は、微細な凹凸を有する合成樹脂材の表面部を劣化要素に暴露すると、微細な凹凸が低減して表面部の平滑化が進行し、劣化要素の暴露量が多くなるほど表面部の平滑化の程度が増すという新たな知見に基づいて完成されたものであって、予め、劣化要素の暴露量と表面部の平滑化の程度を計測して両者の相関関係を表すデータを取得しておき、現に劣化要素に暴露された合成樹脂材(現材)の微細な凹凸が形成されていた表面部の平滑化の程度を計測することで、上記の相関関係を表すデータから、現材の劣化要素の暴露量を現材を破壊することなく測定できるようにしたものである。そして、相関関係を表すデータにおいて、合成樹脂材の劣化による使用限界に相当する劣化要素暴露量を決定しておくと、現材の表面部の平滑化の程度を計測して劣化要素暴露量を測定したときに現材の劣化の進行度合いが即時に判るので、新しい合成樹脂材への交換時期を推定することも可能となる。   In the method for measuring the deterioration factor exposure amount of the synthetic resin material according to the present invention, when the surface portion of the synthetic resin material having fine unevenness is exposed to the deterioration element, the fine unevenness is reduced and the smoothing of the surface portion proceeds. It was completed based on the new knowledge that the degree of smoothing of the surface portion increases as the exposure amount of the deteriorating element increases, and the exposure amount of the deteriorating element and the degree of smoothing of the surface portion are measured in advance. By acquiring the data representing the correlation between the two, and measuring the degree of smoothing of the surface portion where the fine irregularities of the synthetic resin material (current material) that was actually exposed to the degradation element was formed, Based on the data representing the above correlation, the exposure amount of the deterioration factors of the current material can be measured without destroying the current material. Then, in the data representing the correlation, if the deterioration factor exposure corresponding to the use limit due to the deterioration of the synthetic resin material is determined, the degree of smoothing of the surface portion of the current material is measured to determine the deterioration factor exposure. Since the degree of progress of deterioration of the current material is immediately known when measured, it is possible to estimate the replacement time for a new synthetic resin material.

このように、本発明の劣化要素暴露量測定方法は、前述の直接性と非破壊性を担保しながら、合成樹脂材(現材)の劣化要素暴露量を、現材の表面部の平滑化の程度を計測するという簡便な手段で測定できるものであり、特に、表面部の平滑化の程度を鏡面光沢度で計測する場合は、合成樹脂材(現材)の使用(設置)現場において、例えばハンディタイプの光沢度計を現材の表面部に当てるだけで簡単に表面部の平滑化の程度を計測して劣化要素暴露量を測定できるので、前述の現場性も担保されることになる。また、鏡面光沢度は、光沢度計の光源から照射された光の反射光を利用して計測するものであるから、不透明ないし非透光性の合成樹脂材の表面部も計測が可能であり、現場での光学的な影響も受けにくいので、精度良く計測することができる。   Thus, the degradation factor exposure measurement method of the present invention smoothes the degradation factor exposure of the synthetic resin material (the current material) on the surface of the current material while ensuring the above-mentioned directness and non-destructiveness. It can be measured by a simple means of measuring the degree of the surface, especially when measuring the degree of smoothness of the surface portion with the specular gloss, on the site of use (installation) of the synthetic resin material (current material), For example, by simply applying a handy gloss meter to the surface part of the current material, the degree of smoothing of the surface part can be easily measured to measure the exposure amount of the deteriorated element, so the above-mentioned field property is also ensured. . In addition, the specular gloss is measured using the reflected light of the light emitted from the light source of the gloss meter, so it is possible to measure the surface of opaque or non-transparent synthetic resin materials. Because it is less susceptible to optical effects on site, it can be measured with high accuracy.

合成樹脂材の微細な凹凸を形成する表面部がポリカーボネート樹脂からなる表面部であると、後述するように、劣化要素の暴露量と、微細な凹凸が形成された表面部の平滑化の程度との相関関係を明確に把握できるため、表面部の平滑化の程度を鏡面光沢度などで計測することにより、合成樹脂材の劣化要素暴露量を精度良く測定することができる。   As described later, when the surface portion forming the fine unevenness of the synthetic resin material is a surface portion made of polycarbonate resin, the exposure amount of the deterioration element and the degree of smoothing of the surface portion on which the fine unevenness is formed Therefore, by measuring the degree of smoothing of the surface part by the specular gloss, the exposure amount of the deteriorated element of the synthetic resin material can be accurately measured.

また、表面部の微細な凹凸の十点平均粗さRz(レーザー共焦点方式で非接触測定した十点平均粗さRz)が40〜200μmであると、暴露による表面部の平滑化の程度を鏡面光沢度などで適切に計測して、合成樹脂材の劣化要素暴露量を精度良く測定することができる。   Further, when the ten-point average roughness Rz of the fine irregularities on the surface portion (ten-point average roughness Rz measured in a non-contact manner by a laser confocal method) is 40 to 200 μm, the degree of smoothing of the surface portion due to exposure can be reduced. Appropriately measured by specular gloss, etc., it is possible to accurately measure the amount of exposure of the deterioration element of the synthetic resin material.

更に、表面に微細な凹凸を形成した計測片を合成樹脂材の表面部に取付けることによって表面部に微細な凹凸を形成する場合は、合成樹脂材の所望の部位、例えば劣化要素の暴露量が最も多いと予想される部位を選択して、その表面部に計測片を取付け、該計測片の表面の平滑化の程度を計測することで、合成樹脂材に対する劣化要素の最大暴露量を測定することが可能となり、また、計測が難しい部位に計測片を取付けている場合は、計測片を取り外して、現場で計測片の表面の平滑化の程度を計測するか、又は、計測片を計測場所まで持ち帰って表面の平滑化の程度を計測することにより、劣化要素の暴露量を測定することが可能になる。しかも、合成樹脂材の表面部それ自体に微細な凹凸は形成されないので、合成樹脂材の美観が損なわれたり、製品設計の自由度が制限されたりする不都合も生じない。   Furthermore, when a fine unevenness is formed on the surface portion by attaching a measurement piece having fine unevenness on the surface to the surface portion of the synthetic resin material, the exposure amount of a desired portion of the synthetic resin material, for example, a deteriorated element, is reduced. Select the site that is expected to be the most, attach a measuring piece to the surface, and measure the degree of smoothness of the surface of the measuring piece, thereby measuring the maximum exposure of the deteriorating elements to the synthetic resin material. If the measuring piece is attached to a part that is difficult to measure, remove the measuring piece and measure the degree of smoothing of the surface of the measuring piece on site or It is possible to measure the amount of exposure of the deteriorating element by measuring the degree of smoothing of the surface by bringing it back. In addition, since fine irregularities are not formed on the surface portion of the synthetic resin material, there is no inconvenience that the aesthetic appearance of the synthetic resin material is impaired and the degree of freedom in product design is limited.

表面部に微細な凹凸を形成した合成樹脂材の劣化要素暴露前の断面図である。It is sectional drawing before the deterioration element exposure of the synthetic resin material which formed the fine unevenness | corrugation in the surface part. 同合成樹脂材の劣化要素暴露後の断面図である。It is sectional drawing after the deterioration element exposure of the synthetic resin material. 表面部に計測片を取付けることによって微細な凹凸を形成した合成樹脂材の劣化要素暴露前の断面図である。It is sectional drawing before the deterioration element exposure of the synthetic resin material which formed the fine unevenness | corrugation by attaching a measurement piece to the surface part. 同合成樹脂材の劣化要素暴露後の断面図である。It is sectional drawing after the deterioration element exposure of the synthetic resin material. 表面部に微細な凹凸を形成したポリカーボネート樹脂板の超促進耐候試験による劣化要素暴露前の表面部のSEM観察写真である。It is a SEM observation photograph of the surface part before the deterioration element exposure by the super accelerated weathering test of the polycarbonate resin board which formed the fine unevenness | corrugation in the surface part. 同ポリカーボネート樹脂板の超促進耐候試験による劣化要素暴露後の表面部のSEM観察写真である。It is a SEM observation photograph of the surface part after the deterioration element exposure by the super accelerated weathering test of the polycarbonate resin board.

以下、図面を参照して、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る合成樹脂材の劣化要素暴露量測定方法によれば、まず、図1に示すように合成樹脂材1の表面部1aに微細な凹凸2を形成し、この合成樹脂材1を劣化要素に暴露する。そうすると、劣化要素の暴露量(累積暴露量)が増加するにつれて、表面部1aの微細な凹凸2が光や水分などの劣化要素の作用で徐々に削られて低減し、図2に示すように合成樹脂材1の表面部1aの平滑化が進行する。そこで、暴露後の表面部1aの平滑化の程度を計測し、予め取得しておいた劣化要素の暴露量と表面部の平滑化の程度との相関関係を表すデータ(例えば相関関係を表した検量線など)に基づいて、合成樹脂材1の劣化要素暴露量を測定する。   According to the method for measuring a degradation factor exposure of a synthetic resin material according to the present invention, first, as shown in FIG. 1, fine irregularities 2 are formed on the surface portion 1a of the synthetic resin material 1, and this synthetic resin material 1 is deteriorated. Expose to the element. Then, as the exposure amount (cumulative exposure amount) of the deterioration element increases, the fine irregularities 2 of the surface portion 1a are gradually scraped and reduced by the action of the deterioration element such as light and moisture, as shown in FIG. Smoothing of the surface portion 1a of the synthetic resin material 1 proceeds. Therefore, the degree of smoothing of the surface portion 1a after exposure is measured, and data representing the correlation between the exposure amount of the deteriorated element acquired in advance and the degree of smoothing of the surface portion (for example, the correlation is expressed). Based on a calibration curve or the like, the deterioration factor exposure amount of the synthetic resin material 1 is measured.

対象となる合成樹脂材1としては、熱可塑性合成樹脂の成形品、特にポリカーボネート樹脂の成形品が好ましく使用される。また、ポリカーボネート樹脂からなる表面部を有する熱可塑性合成樹脂の成形品も好ましく使用される。そして、後述する計測片3を合成樹脂材の表面部に取付ける場合は、種々の合成樹脂の成形品、例えば、塩化ビニル樹脂、ポリエチレンやポリプロピレンなどのポリオレフィン樹脂、アクリル樹脂、ポリエステル樹脂などの成形品が全て使用可能である。   As the target synthetic resin material 1, a molded product of a thermoplastic synthetic resin, particularly a molded product of a polycarbonate resin is preferably used. A molded product of a thermoplastic synthetic resin having a surface portion made of a polycarbonate resin is also preferably used. And when attaching the measurement piece 3 mentioned later to the surface part of a synthetic resin material, various synthetic resin molded articles, for example, molded articles, such as polyolefin resins, such as a vinyl chloride resin, polyethylene, and a polypropylene, an acrylic resin, a polyester resin, etc. Are all usable.

ポリカーボネート樹脂の成形品や、ポリカーボネート樹脂からなる表面部を有する合成樹脂の成形品のように、微細な凹凸を形成する表面部がポリカーボネート樹脂からなる合成樹脂材は、表面部が他の合成樹脂からなる合成樹脂材に比べて、劣化要素の暴露量と、微細な凹凸が形成された表面部の平滑化の程度との相関関係が明確であるため、表面部の平滑化の程度を計測することで、合成樹脂材の劣化要素暴露量を精度良く測定できる利点がある。   Synthetic resin materials whose surface part that forms fine irregularities is made of polycarbonate resin, such as molded products of polycarbonate resin and synthetic resin parts that have a surface part made of polycarbonate resin, have surface parts made of other synthetic resins. Compared with synthetic resin material, the correlation between the exposure amount of deteriorating elements and the degree of smoothing of the surface with fine irregularities is clear, so measure the degree of smoothing of the surface. Thus, there is an advantage that it is possible to accurately measure the exposure amount of the deterioration element of the synthetic resin material.

合成樹脂材1の形状は、図1,図2に示すような平板形状に限定されるものではなく、波板形状、折板形状、シート形状、柱形状、異形立体形状など、所望の形状となし得るものであり、また、合成樹脂材1の製品形態も、屋根材、採光窓材、建材、道路用防音壁材、外装壁材、住宅や店舗等の外囲材、内装材、間仕切り材など、多岐にわたるものである。   The shape of the synthetic resin material 1 is not limited to a flat plate shape as shown in FIGS. 1 and 2, and a desired shape such as a corrugated plate shape, a folded plate shape, a sheet shape, a column shape, an irregular solid shape, and the like. In addition, the product form of the synthetic resin material 1 includes roofing materials, daylighting window materials, building materials, road soundproof wall materials, exterior wall materials, housing materials, interior materials, partition materials, etc. And so on.

合成樹脂材1の表面部1aに形成される微細な凹凸2の十点平均粗さRzは、二つの異なる測定方法で測定できる。
その一つは、触針方式による接触測定であり、例えば、(株)東京精密製のサーフコム130Aを用いて測定するものである。
他の一つは、レーザー共焦点方式による非接触測定であり、例えば、(株)キーエンス製のレーザー顕微鏡VK−X100を用いて測定するものである。その倍率は限定されないが、本実施形態では倍率5倍で測定している。このレーザー共焦点方式の非接触測定は、触針方式の接触測定では測定が困難な超微細な凹凸まで測定できる利点がある。
The ten-point average roughness Rz of the fine irregularities 2 formed on the surface portion 1a of the synthetic resin material 1 can be measured by two different measurement methods.
One of them is contact measurement by a stylus method, for example, using a Surfcom 130A manufactured by Tokyo Seimitsu Co., Ltd.
The other is non-contact measurement by the laser confocal method, for example, measurement is performed using a laser microscope VK-X100 manufactured by Keyence Corporation. Although the magnification is not limited, in this embodiment, the measurement is performed at a magnification of 5 times. This laser confocal non-contact measurement has an advantage that it can measure even very fine irregularities that are difficult to measure by stylus contact measurement.

合成樹脂材1の表面部1aに形成される微細な凹凸2は、レーザー共焦点方式で測定される十点平均粗さRzが40〜200μmの範囲内にあることが望ましく、微細な凹凸の平均間隔Smが20〜100μmの範囲内にあることが望ましい。Rz、Smが上記範囲内の微細な凹凸2をポリカーボネート樹脂板からなる合成樹脂材1の表面部1aに形成すると、下記の[表1]の試験データ(試験片2〜6の試験データ)に示すように、劣化要素暴露後の表面部1aの鏡面光沢度が劣化要素暴露前の表面部1aの鏡面光沢度よりも7以上高くなり、表面部1aの平滑化の程度が進んだことを明確に光沢度計で計測して確認できるようになる。
なお、微細な凹凸2の十点平均粗さRzを触針方式で測定する場合は、下記の[表1]の試験データ(試験片2〜6の試験データ)から判るように、十点平均粗さRzが5〜100μmの範囲内にあることが望ましい。
The fine irregularities 2 formed on the surface portion 1a of the synthetic resin material 1 desirably have a ten-point average roughness Rz measured by a laser confocal method in the range of 40 to 200 μm. It is desirable that the distance Sm is in the range of 20 to 100 μm. When the fine irregularities 2 having Rz and Sm within the above range are formed on the surface portion 1a of the synthetic resin material 1 made of a polycarbonate resin plate, the test data of [Table 1] below (test data of test pieces 2 to 6) is obtained. As shown, the specular glossiness of the surface portion 1a after exposure of the deteriorating element is 7 or more higher than the specular glossiness of the surface portion 1a before the deteriorating element exposure, and it is clear that the degree of smoothing of the surface portion 1a has advanced. It can be confirmed by measuring with a gloss meter.
In addition, when measuring the ten-point average roughness Rz of the fine irregularities 2 by the stylus method, as can be seen from the test data (test data of test pieces 2 to 6) shown below, the ten-point average roughness Rz The roughness Rz is desirably in the range of 5 to 100 μm.

即ち、この表1は、後述するポリシングロールによる転写によって、レーザー共焦点方式で測定される十点平均粗さRzが3.3〜607.7μmの範囲(触針方式で測定される十点平均粗さRsが3.0〜232.0μmの範囲)にあり、レーザー共焦点方式で測定される凹凸の平均間隔が17.1〜172.3μmの範囲にある微細な凹凸を表面部に形成したポリカーボネート樹脂からなる厚さ2mmの試験片1〜7について、超促進耐候試験[岩崎電気(株)製のアイスーパーUVテスターによる光・結露サイクルの480時間に及ぶ暴露試験]を行い、JIS Z 8741に基づいて計測した各試験片の暴露前と暴露後の鏡面光沢度(60度鏡面光沢度)と、暴露前後の鏡面光沢度の変化量と、目視による光沢度の変化の判別の可否を記載したものであって、◎は目視により光沢度の変化を明確に判別できることを、また、〇は目視により光沢度の変化を判別できることを、また、△は目視により光沢度の変化を判別し辛いことを表している。   That is, this Table 1 shows that the ten-point average roughness Rz measured by the laser confocal method is 3.3 to 607.7 μm by the transfer using the polishing roll described later (the ten-point average measured by the stylus method). Roughness Rs is in the range of 3.0 to 232.0 μm, and fine irregularities having an average interval of irregularities measured by the laser confocal method in the range of 17.1 to 172.3 μm are formed on the surface portion. Test pieces 1 to 7 having a thickness of 2 mm made of polycarbonate resin were subjected to a super accelerated weathering test [exposure test for 480 hours of light / condensation cycle using an i-super UV tester manufactured by Iwasaki Electric Co., Ltd.], and JIS Z 8741 The specular gloss before and after exposure (60 degree specular gloss), the amount of change in specular gloss before and after exposure, and whether or not the change in gloss visually can be discriminated. ◎ indicates that the change in glossiness can be clearly discerned visually, ○ indicates that the change in glossiness can be discerned visually, and △ indicates the change in glossiness visually. It represents a painful thing.

この表1を見れば、レーザー共焦点方式で測定される十点平均粗さRzが40μmより小さく(触針方式で測定される十点平均粗さRzが5μmより小さく)、凹凸の平均間隔Smが20μmより小さい試験片1と、レーザー共焦点方式で測定される十点平均粗さRzが200μmより大きく(触針方式で測定される十点平均粗さRzが100μmより大きく)、凹凸の平均間隔Smが100μmより大きい試験片7は、いずれも暴露前後の鏡面光沢度の変化量が5以下と小さく、表面部1aの平滑化の程度が進んだことを明確に光沢度計で計測して確認し難いことが判る。これに対し、レーザー共焦点方式で測定される十点平均粗さRzが40〜200μmの範囲(触針方式で測定される十点平均粗さRzが5〜100μmの範囲)にあり、凹凸の平均間隔Smが20〜100μmの範囲にある試験片2〜6は、暴露前後の鏡面光沢度の変化量が7以上と大きく、表面部1aの平滑化の程度が進んだことを明確に光沢度計で計測して確認できることが判る。特に、レーザー共焦点方式で測定される十点平均粗さRzが40〜110μmの範囲(触針方式で測定される十点平均粗さRzが8〜25μmの範囲)にあり、凹凸の平均間隔Smが20〜40μmの範囲にある試験片2,3,4は、暴露前後の鏡面光沢度の変化量が29以上と極めて大きく、表面部1aの平滑化の程度が進んだことを明確に光沢度計で計測して確認できることに加えて、目視によっても暴露前後の光沢度の変化を明確に判別することが可能となり、極めて好ましいことが判る。   According to Table 1, the ten-point average roughness Rz measured by the laser confocal method is smaller than 40 μm (the ten-point average roughness Rz measured by the stylus method is smaller than 5 μm), and the average interval Sm of the unevenness. Test piece 1 having a diameter of less than 20 μm, a ten-point average roughness Rz measured by the laser confocal method is larger than 200 μm (a ten-point average roughness Rz measured by the stylus method is larger than 100 μm), and the unevenness average All specimens 7 with a spacing Sm larger than 100 μm showed a small change in specular gloss before and after exposure as small as 5 or less, and clearly measured the degree of smoothing of the surface portion 1a with a gloss meter. It turns out that it is difficult to confirm. In contrast, the ten-point average roughness Rz measured by the laser confocal method is in the range of 40 to 200 μm (the ten-point average roughness Rz measured by the stylus method is in the range of 5 to 100 μm). Specimens 2 to 6 in which the average interval Sm is in the range of 20 to 100 μm have a large change in specular gloss before and after exposure of 7 or more, and it is clear that the degree of smoothing of the surface portion 1a has advanced. It can be seen that it can be confirmed by measuring. In particular, the ten-point average roughness Rz measured by the laser confocal method is in the range of 40 to 110 μm (the ten-point average roughness Rz measured by the stylus method is in the range of 8 to 25 μm), and the average spacing of the irregularities Specimens 2, 3 and 4 with Sm in the range of 20 to 40 μm have a very large change in specular gloss before and after exposure of 29 or more, and it is clear that the degree of smoothing of the surface portion 1a has progressed. In addition to being able to be confirmed by measuring with a photometer, it is possible to clearly determine the change in gloss before and after exposure by visual observation, which proves extremely preferable.

図1の合成樹脂材1では表面部1aの全域に微細な凹凸2を形成しているが、表面部1aの一部の領域、例えば角部や縁部の領域に微細な凹凸2を形成してもよい。微細な凹凸2を表面部1aの全域に形成すると、微細な凹凸2が光を乱反射して、表面部1aの艶がなくなったり白っぽく見えたりするので、合成樹脂材1の美観を損なう懸念もあるが、上記のように目立ちにくい角部や縁部の領域に微細な凹凸2を形成すれば、そのような懸念を払拭できる利点がある。微細な凹凸2を形成する一部の領域は、例えばハンディタイプの光沢度計で鏡面光沢度を計測できる、縦が40〜100mm程度、横が30〜100mm程度の大きさの方形の領域とするのがよい。
微細な凹凸(凹又は/及び凸)の形状は特に限定されるものではなく、所望の形状とすることができ、また、凹や凸を形成する密度についても特に限定されることはない。
In the synthetic resin material 1 shown in FIG. 1, the fine irregularities 2 are formed over the entire surface portion 1a. However, the fine irregularities 2 are formed in a part of the surface portion 1a, for example, a corner portion or an edge region. May be. When the fine irregularities 2 are formed over the entire surface portion 1a, the fine irregularities 2 diffusely reflect the light, and the surface portion 1a may become dull or look whitish, which may impair the aesthetic appearance of the synthetic resin material 1. However, if the fine irregularities 2 are formed in the corner and edge regions that are not easily noticeable as described above, there is an advantage that such concerns can be eliminated. The partial region forming the fine irregularities 2 is a rectangular region having a size of about 40 to 100 mm in length and about 30 to 100 mm in width, for which specular gloss can be measured with a handy type gloss meter, for example. It is good.
The shape of the fine irregularities (concave or / and convex) is not particularly limited, and can be a desired shape, and the density for forming the concave or convex is not particularly limited.

微細な凹凸2を合成樹脂材1の表面部1aに形成する方法としては、プレス成形に用いるプレス板の表面に凹凸を形成しておいたり、押出成形に用いるロール表面に凹凸を形成しておき、それらを合成樹脂材の表面に反転して転写するなど、種々の方法を採用できるが、その中でも、ポリシングロールの表面の全体又は一部に微細な凹凸をエッチングやサンドブラスト等の手段で形成し、合成樹脂材1の表面部1aの全域又は一部の領域にポリシングロールの微細な凹凸を転写する方法が好ましく採用される。   As a method for forming the fine irregularities 2 on the surface portion 1a of the synthetic resin material 1, irregularities are formed on the surface of the press plate used for press molding, or irregularities are formed on the roll surface used for extrusion molding. In addition, various methods can be adopted such as inverting and transferring them to the surface of the synthetic resin material. Among them, fine irregularities are formed on the entire surface or part of the surface of the polishing roll by means such as etching or sandblasting. A method of transferring fine irregularities of the polishing roll to the entire surface area 1a or a partial area of the surface portion 1a of the synthetic resin material 1 is preferably employed.

また、図3に示すように、表面に前記と同様の微細な凹凸2を形成した計測片3を合成樹脂材1の表面部1aの一部の領域に取付けることによって、合成樹脂材1の表面部1aの一部の領域に微細な凹凸2を形成してもよい。
計測片3としては、ポリシングロール表面の微細な凹凸を転写して微細な凹凸2を表面に形成したポリカーボネート樹脂からなる樹脂片の裏面に、粘着剤や接着剤などの貼着剤層を設けて剥離紙で被覆した3層構造の計測片が好ましく使用される。このような計測片は、剥離紙を剥がして合成樹脂材1の表面部1aの一部の領域に簡単に貼着できる利点があり、特に、裏面に粘着剤層を設けて合成樹脂材1に脱着可能に貼着するタイプの計測片は、必要に応じて合成樹脂材1の表面部1aから剥がして計測場所まで持ち帰り、計測場所で計測片表面の平滑化の程度を計測して劣化要素暴露量を測定した後、合成樹脂材1の表面部1aに再度貼着して劣化要素暴露量の測定に継続使用できる利点もある。
Further, as shown in FIG. 3, the surface of the synthetic resin material 1 is obtained by attaching a measurement piece 3 having a fine unevenness 2 similar to the above on the surface to a partial region of the surface portion 1 a of the synthetic resin material 1. You may form the fine unevenness | corrugation 2 in the one part area | region of the part 1a.
As the measuring piece 3, an adhesive layer such as an adhesive or an adhesive is provided on the back surface of a resin piece made of a polycarbonate resin having fine unevenness 2 formed on the surface by transferring fine unevenness on the surface of the polishing roll. A measurement piece having a three-layer structure covered with release paper is preferably used. Such a measurement piece has an advantage that it can be easily attached to a partial region of the front surface portion 1a of the synthetic resin material 1 by peeling off the release paper. In particular, the pressure sensitive adhesive layer is provided on the back surface of the synthetic resin material 1. Detachable measurement pieces that can be detachably attached are peeled off from the surface portion 1a of the synthetic resin material 1 if necessary and taken back to the measurement location, and the degree of smoothing of the measurement piece surface is measured at the measurement location and exposed to degradation elements. After measuring the amount, there is also an advantage that it can be used again for measurement of the exposure amount of the deteriorated element by sticking it again on the surface portion 1a of the synthetic resin material 1.

計測片3の大きさは特に限定されないが、縦40〜100mm程度、横30〜100mm程度、厚さ20μm〜50mm程度の大きさを有するものが好適である。この程度の大きさであれば、40×30mmの計測部を有する光沢度計で確実に鏡面光沢度を計測でき、光沢度の変化を肉眼で視認することもでき、また、大き過ぎないので合成樹脂材1の美観を損なう心配も少ないからである。   Although the magnitude | size of the measurement piece 3 is not specifically limited, What has a magnitude | size of about 40-100 mm in length, about 30-100 mm in width, and about 20 micrometers-50 mm in thickness is suitable. With this size, specular gloss can be reliably measured with a gloss meter having a 40 x 30 mm measuring unit, and changes in gloss can be visually recognized with the naked eye. This is because there is little fear of impairing the aesthetics of the resin material 1.

なお、合成樹脂材1の表面部1aへの計測片3の取付けは、係止、嵌合、ビス固定などの物理的手法で行ってもよく、また、固定しなくても計測片3の取付け位置が変化したり計測片3が紛失したりする懸念がない場合は、合成樹脂材1の表面部1aに計測片3を単に静置しておくだけでもよい。
更に、一つの合成樹脂材1に複数の計測片3を取付けたり、複数の合成樹脂材1の一つに一つの計測片3を取付けたりしてもよく、前者の場合は、劣化要素暴露量が部位によって異なる合成樹脂材1の各部位の暴露量を測定することが可能となり、また、後者の場合は、一つの計測片3で代表して複数の合成樹脂材1の劣化要素暴露量を測定することが可能となる。
The measurement piece 3 may be attached to the surface portion 1a of the synthetic resin material 1 by a physical method such as locking, fitting, screw fixing, or the measurement piece 3 may be attached without being fixed. If there is no concern that the position changes or the measurement piece 3 is lost, the measurement piece 3 may be simply left on the surface portion 1 a of the synthetic resin material 1.
Further, a plurality of measurement pieces 3 may be attached to one synthetic resin material 1 or one measurement piece 3 may be attached to one of the plurality of synthetic resin materials 1. It is possible to measure the exposure amount of each part of the synthetic resin material 1 depending on the part. In the latter case, the exposure amount of the deterioration factors of the plurality of synthetic resin materials 1 is represented by one measurement piece 3. It becomes possible to measure.

表面部1aに微細な凹凸2が形成された合成樹脂材1は、屋外又は屋内における所定の設置箇所に設置され、光線(特に紫外線)、水分、熱、酸素などの劣化要素に暴露される。このように合成樹脂材1が劣化要素に暴露されると、表面部1aの微細な凹凸2が劣化要素の作用で徐々に削られて低減し、合成樹脂材1の表面部1aの平滑化が進行する。
図5は、ポリカーボネート樹脂板の押出成形時にポリシングロール表面の微細な凹凸を転写することにより、レーザー共焦点方式で測定される十点平均粗さRzが83.5μm(触針方式で測定される十点平均粗さRzが23μm)の微細な凹凸を表面部に形成したポリカーボネート樹脂板(厚さ2mm)について、超促進耐候試験[岩崎電気(株)製のアイスーパーUVテスターによる光・結露サイクルの480時間に及ぶ暴露試験]を行ったときの暴露前の表面部のSEM観察写真であり、図6は暴露後の表面部のSEM観察写真である。この図5と図6のSEM観察写真を対比すれば、劣化要素の暴露により、ポリカーボネート樹脂板の表面部の微細な凹凸が削られて低減し、表面部の平滑化が進行することが明白である。
また、上記の超促進耐候試験を行うと、ポリカーボネート樹脂板の引張破壊時呼びひずみが暴露前の114%から16%に減少し、物性が大幅に低下する。
The synthetic resin material 1 having the fine irregularities 2 formed on the surface portion 1a is installed at a predetermined installation location outdoors or indoors, and is exposed to degradation factors such as light (particularly ultraviolet rays), moisture, heat, oxygen and the like. Thus, when the synthetic resin material 1 is exposed to the deteriorated element, the fine unevenness 2 of the surface portion 1a is gradually scraped and reduced by the action of the deteriorated element, and the surface portion 1a of the synthetic resin material 1 is smoothed. proceed.
FIG. 5 shows that the ten-point average roughness Rz measured by the laser confocal method is 83.5 μm (measured by the stylus method) by transferring fine irregularities on the surface of the polishing roll during extrusion molding of the polycarbonate resin plate. Super accelerated weathering test on polycarbonate resin plate (thickness 2mm) with fine irregularities with 10-point average roughness Rz of 23μm on the surface. Light / condensation cycle by Isuper UV tester manufactured by Iwasaki Electric Co., Ltd. Is an SEM observation photograph of the surface portion before exposure when the exposure test for 480 hours is performed, and FIG. 6 is an SEM observation photograph of the surface portion after exposure. If the SEM observation photograph of FIG. 5 and FIG. 6 is contrasted, it is clear that the fine unevenness | corrugation of the surface part of a polycarbonate resin board is shaved and reduced by exposure of a deterioration element, and the smoothing of a surface part advances. is there.
Further, when the above super accelerated weathering test is performed, the nominal strain at the time of tensile fracture of the polycarbonate resin plate is reduced from 114% before exposure to 16%, and the physical properties are greatly lowered.

そこで、合成樹脂材1の表面部1aの平滑化の程度を計測し、予め取得しておいた劣化要素の暴露量と表面部の平滑化の程度との相関関係を表すデータに基づいて、合成樹脂材1の劣化要素暴露量を測定し、合成樹脂材1の劣化の進行度合いを推定する。
表面部1aの平滑化の程度の計測は、JIS Z 8741に基づいて、鏡面光沢度を計測することが望ましい。具体的には、ハンディタイプの光沢度計[例えば、(株)堀場製作所製のIG−320など]を用いて、合成樹脂材1の設置現場で表面部1aの鏡面光沢度を計測することが望ましい。鏡面光沢度には、85度鏡面光沢度、75度鏡面光沢度、60度鏡面光沢度、45度鏡面光沢度、20度鏡面光沢度などがあるが、本発明では60度鏡面光沢度を採用している。
Therefore, the degree of smoothing of the surface portion 1a of the synthetic resin material 1 is measured, and based on the data representing the correlation between the exposure amount of the deteriorated element and the degree of smoothing of the surface portion acquired in advance. The deterioration factor exposure amount of the resin material 1 is measured, and the progress of the deterioration of the synthetic resin material 1 is estimated.
For the measurement of the degree of smoothing of the surface portion 1a, it is desirable to measure the specular glossiness based on JIS Z 8741. Specifically, the specular glossiness of the surface portion 1a can be measured at the installation site of the synthetic resin material 1 using a handy gloss meter [for example, IG-320 manufactured by Horiba, Ltd.]. desirable. The specular gloss includes 85 ° specular gloss, 75 ° specular gloss, 60 ° specular gloss, 45 ° specular gloss, 20 ° specular gloss, etc. In the present invention, 60 ° specular gloss is adopted. doing.

合成樹脂材1の表面部1aの平滑化の程度の計測は、JIS K 7136に基づいてヘーズを計測してもよいが、ヘーズを計測する場合は、合成樹脂材1が透明なものに限定されるという制約がある。この点、鏡面光沢度の場合は、光沢度計の光源からの反射光を用いて計測するため、不透明ないし非透光性の合成樹脂材1の表面部1aでも計測可能であり、現場で上記のハンディタイプの光沢度計を用いて簡便に計測できる上に、現場での光学的な影響を受けにくく精度良く計測できる利点がある。   The measurement of the degree of smoothing of the surface portion 1a of the synthetic resin material 1 may measure haze based on JIS K 7136. However, when measuring haze, the synthetic resin material 1 is limited to a transparent one. There is a restriction that In this respect, in the case of specular gloss, since it is measured using the reflected light from the light source of the gloss meter, it can be measured even on the surface portion 1a of the opaque or non-translucent synthetic resin material 1, and is described above on site. In addition to being able to measure easily using the handy-type glossiness meter, there is the advantage that it is less susceptible to optical influences in the field and can be measured accurately.

なお、単純に目視によって合成樹脂材1の表面部1aの平滑化の程度を判定したり、表面部1aの微細な凹凸2によって表した文字や図形の態様の変化(例えば文字が判別し難くなるなど)によって平滑化の程度を判定してもよいが、これらの場合は数値化されたデータが得られないので、劣化要素暴露量を精度良く測定することが難しい。   It should be noted that the degree of smoothing of the surface portion 1a of the synthetic resin material 1 is simply determined by visual observation, or changes in the form of characters and figures represented by the fine irregularities 2 of the surface portion 1a (for example, it becomes difficult to distinguish characters). However, in these cases, it is difficult to accurately measure the exposure amount of the deteriorated element because numerical data cannot be obtained.

合成樹脂材1の劣化要素暴露量の測定は、予め取得しておいた劣化要素の暴露量と表面部1aの平滑化の程度との相関関係を表すデータに基づいて行う。
下記の表2はそのような相関関係を表すデータの一例を示したものであって、レーザー共焦点方式で測定される十点平均粗さRzが83.5μm(触針方式で測定される十点平均粗さRzが23μm)の微細な凹凸を表面部に形成したポリカーボネート樹脂板について、超促進耐候試験[岩崎電気(株)製のアイスーパーUVテスターによる光・結露サイクルの暴露試験]を行ったときの暴露前、120時間暴露後、240時間暴露後、360時間暴露後、480時間暴露後におけるレーザー共焦点方式で測定される十点平均粗さRz及び触針方式で測定される十点平均粗さRzと、鏡面光沢度と、ヘーズを示したものである。
なお、鏡面光沢度はJIS Z 8741に基づいて計測した60度鏡面光沢度の値であり、ヘーズはJIS K 7136に基づいて計測した値である。
The measurement of the exposure amount of the deterioration element of the synthetic resin material 1 is performed based on data representing the correlation between the exposure amount of the deterioration element acquired in advance and the degree of smoothing of the surface portion 1a.
Table 2 below shows an example of data representing such a correlation. The ten-point average roughness Rz measured by the laser confocal method is 83.5 μm (the tenth measured by the stylus method). A super-accelerated weathering test [exposure test of light / condensation cycle using an i-super UV tester manufactured by Iwasaki Electric Co., Ltd.] was performed on a polycarbonate resin plate with fine irregularities with a surface roughness of 23 μm. Before exposure, after 120 hours exposure, after 240 hours exposure, after 360 hours exposure, after 480 hours exposure, ten point average roughness Rz measured by laser confocal method and ten points measured by stylus method The average roughness Rz, the specular gloss, and the haze are shown.
The specular gloss is a value of 60 degree specular gloss measured based on JIS Z 8741, and the haze is a value measured based on JIS K 7136.

この表2に示すような劣化要素暴露量(暴露時間)と、鏡面光沢度及びヘーズとの相関関係を表すデータを予め取得しておけば、屋外又は屋内で劣化要素に暴露されたポリカーボネート樹脂からなる合成樹脂材1[最初にレーザー共焦点方式で測定される十点平均粗さRzが83.5μm(触針方式で測定される十点平均粗さRzが23μm)の微細な凹凸を表面部に形成したもの]について、その鏡面光沢度をハンディタイプの光沢度計で計測し、その鏡面光沢度が例えば105であれば360時間分の暴露量があると測定することができ、また、そのヘーズが2.5%と計測されれば360時間分の暴露量があると測定することができる。そして、合成樹脂材1の劣化による使用限界に相当する劣化要素暴露量(時間)を種々検討して、例えば480時間の暴露量が使用限界に相当すると予め決定しておけば、この360時間の暴露を受けた合成樹脂材1の劣化が使用限界までの約3/4程度進行していると即時に判るので、新しい合成樹脂材1への交換時期などを推定することが可能となる。   If the data showing the correlation between the deterioration factor exposure amount (exposure time) as shown in Table 2 and the specular gloss and haze is acquired in advance, it can be obtained from the polycarbonate resin exposed to the deterioration element outdoors or indoors. The surface of the synthetic resin material 1 having a fine unevenness with a 10-point average roughness Rz measured by a laser confocal method of 83.5 μm (a 10-point average roughness Rz measured by a stylus method of 23 μm) , The specular glossiness is measured with a handy type glossiness meter, and if the specular glossiness is 105, for example, it can be determined that there is an exposure amount for 360 hours. If the haze is measured as 2.5%, it can be measured that there is an exposure amount for 360 hours. Then, by examining various deterioration element exposure amounts (time) corresponding to the use limit due to deterioration of the synthetic resin material 1, for example, if it is determined in advance that the exposure amount of 480 hours corresponds to the use limit, this 360 hour time Since it is immediately known that the deterioration of the exposed synthetic resin material 1 has progressed to about 3/4 of the use limit, it is possible to estimate the replacement time of the new synthetic resin material 1 and the like.

また、この表2のデータに基づいて、劣化要素暴露量(暴露時間)と、鏡面光沢度及びヘーズとの相関関係を表す検量線を作成しておけば、60〜120の範囲内の全ての鏡面光沢度に対応する暴露量(時間)と、28.4〜2.2%の範囲内の全てのヘーズに対応する暴露量(時間)を測定することが可能となる。
なお、表2の相関関係を表すデータは、暴露量(時間)の間隔が相当大きいので、おおまかな暴露量を測定できるだけであるが、もう少し暴露量(時間)の間隔を狭めて相関関係のデータを作成すれば、暴露量を精度良く測定できるようになる。
Moreover, if a calibration curve showing the correlation between the deterioration element exposure amount (exposure time), the specular glossiness and the haze is prepared based on the data of Table 2, all the values within the range of 60 to 120 are prepared. It becomes possible to measure the exposure amount (time) corresponding to the specular gloss and the exposure amount (time) corresponding to all hazes in the range of 28.4 to 2.2%.
In addition, the data showing the correlation in Table 2 can measure the rough exposure amount because the interval of exposure amount (time) is quite large, but the correlation data with a narrower interval of exposure amount (time). Can be used to accurately measure the amount of exposure.

また、種々の合成樹脂材1の表面部にポリカーボネート樹脂からなる計測片3を取付けた場合は、上記と同様にして計測片3の表面の鏡面光沢度等を計測することで合成樹脂材1の劣化要素暴露量を測定できるが、合成樹脂材1の劣化の進行度合いは、暴露量が同じでも合成樹脂の種類によって大きく異なるので、合成樹脂材1の合成樹脂の種類に応じて、使用限界に相当する劣化要素暴露量を予め決定しておき、それに基づいて劣化の進行度合いを推定することが必要になる。   Further, when the measurement piece 3 made of polycarbonate resin is attached to the surface portion of various synthetic resin materials 1, the specular gloss of the surface of the measurement piece 3 is measured in the same manner as described above, and the synthetic resin material 1. Although the amount of deterioration factor exposure can be measured, the degree of progress of deterioration of synthetic resin material 1 varies greatly depending on the type of synthetic resin even if the exposure amount is the same. It is necessary to determine the exposure amount of the corresponding deterioration element in advance and to estimate the progress of deterioration based on the exposure amount.

以上の説明から理解できるように、本発明に係る合成樹脂材の劣化要素暴露量測定方法は、前述の直接性、非破壊性、現場性を担保しながら、合成樹脂材(現材)の劣化要素暴露量を、現材の表面部の平滑化の程度を計測するという簡便な手段で測定し、合成樹脂材の劣化の進行度合いを即時に推定できるという優れた効果を奏し、頗る有用な発明である。   As can be understood from the above description, the method for measuring the degradation factor exposure of the synthetic resin material according to the present invention is the degradation of the synthetic resin material (current material) while ensuring the above-mentioned directness, non-destructive property, and on-site performance. A useful invention that measures the element exposure by a simple means of measuring the degree of smoothing of the surface part of the current material, and has an excellent effect of being able to immediately estimate the degree of deterioration of the synthetic resin material. It is.

1 合成樹脂材
1a 表面部
2 微細な凹凸
3 計測片
DESCRIPTION OF SYMBOLS 1 Synthetic resin material 1a Surface part 2 Fine unevenness 3 Measurement piece

Claims (5)

合成樹脂材の表面部に微細な凹凸を形成し、該合成樹脂材を劣化要素に暴露した後、表面部の平滑化の程度を計測して、劣化要素の暴露量を測定することを特徴とする、合成樹脂材の劣化要素暴露量測定方法。   Forming fine irregularities on the surface portion of the synthetic resin material, exposing the synthetic resin material to the deteriorated element, measuring the degree of smoothing of the surface portion, and measuring the exposure amount of the deteriorated element A method for measuring the amount of exposure of deteriorated elements of synthetic resin. 前記表面部がポリカーボネート樹脂からなることを特徴とする、請求項1に記載の劣化要素暴露量測定方法。   The deterioration element exposure measurement method according to claim 1, wherein the surface portion is made of a polycarbonate resin. 前記表面部の微細な凹凸が、表面に微細な凹凸を形成した計測片を前記表面部に取付けることによって形成されていることを特徴とする、請求項1又は請求項2に記載の劣化要素暴露量測定方法。   3. The deterioration element exposure according to claim 1, wherein the fine unevenness of the surface portion is formed by attaching a measurement piece having fine unevenness on the surface to the surface portion. Quantity measuring method. 前記表面部の微細な凹凸の十点平均粗さRz(レーザー共焦点方式で非接触測定した十点平均粗さRz)が40〜200μmであることを特徴とする、請求項1ないし請求項3のいずれかに記載の劣化要素暴露量測定方法。   The ten-point average roughness Rz (ten-point average roughness Rz measured in a non-contact manner by a laser confocal method) of the fine irregularities on the surface portion is 40 to 200 μm. Deterioration factor exposure measurement method according to any of the above. 前記表面部の平滑化の程度を計測する手段が、鏡面光沢度による計測であることを特徴とする、請求項1ないし請求項4のいずれかに記載の劣化要素暴露量測定方法。   5. The degradation element exposure measurement method according to claim 1, wherein the means for measuring the degree of smoothing of the surface portion is measurement based on specular gloss.
JP2015129481A 2014-06-30 2015-06-29 Method for measuring the amount of exposure of deterioration factors of synthetic resin materials Active JP6557895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129481A JP6557895B2 (en) 2014-06-30 2015-06-29 Method for measuring the amount of exposure of deterioration factors of synthetic resin materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014134771 2014-06-30
JP2014134771 2014-06-30
JP2015129481A JP6557895B2 (en) 2014-06-30 2015-06-29 Method for measuring the amount of exposure of deterioration factors of synthetic resin materials

Publications (2)

Publication Number Publication Date
JP2016027331A true JP2016027331A (en) 2016-02-18
JP6557895B2 JP6557895B2 (en) 2019-08-14

Family

ID=55352760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129481A Active JP6557895B2 (en) 2014-06-30 2015-06-29 Method for measuring the amount of exposure of deterioration factors of synthetic resin materials

Country Status (1)

Country Link
JP (1) JP6557895B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418345A (en) * 1990-05-14 1992-01-22 Asahi Chem Ind Co Ltd Impact-resistant acrylic resin laminated sheet improved in weatherability
JP2772331B2 (en) * 1992-11-18 1998-07-02 矢崎総業株式会社 Corrosion test method for materials in logistics environment
JP2004212380A (en) * 2002-11-14 2004-07-29 Nippon Paint Co Ltd Testing method
JP2005017132A (en) * 2003-06-26 2005-01-20 Toagosei Co Ltd Prediction method of deterioration of paint film
JP3888881B2 (en) * 2001-11-16 2007-03-07 アーキヤマデ株式会社 Tarpaulin deterioration monitoring method and tarpaulin deterioration monitoring tool used for the method
JP2010085117A (en) * 2008-09-29 2010-04-15 Sumitomo Bakelite Co Ltd Method for diagnosing resin-molded product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418345A (en) * 1990-05-14 1992-01-22 Asahi Chem Ind Co Ltd Impact-resistant acrylic resin laminated sheet improved in weatherability
JP2772331B2 (en) * 1992-11-18 1998-07-02 矢崎総業株式会社 Corrosion test method for materials in logistics environment
JP3888881B2 (en) * 2001-11-16 2007-03-07 アーキヤマデ株式会社 Tarpaulin deterioration monitoring method and tarpaulin deterioration monitoring tool used for the method
JP2004212380A (en) * 2002-11-14 2004-07-29 Nippon Paint Co Ltd Testing method
JP2005017132A (en) * 2003-06-26 2005-01-20 Toagosei Co Ltd Prediction method of deterioration of paint film
JP2010085117A (en) * 2008-09-29 2010-04-15 Sumitomo Bakelite Co Ltd Method for diagnosing resin-molded product

Also Published As

Publication number Publication date
JP6557895B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
KR101810824B1 (en) Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
DE10291985D2 (en) Method and device for the contactless examination of an object, in particular with regard to its surface shape
CN208187304U (en) A kind of flexible coating thickness measuring rule
JP2000329707A (en) Device and method for judging quality of construction surface
CN109072616A (en) The method and wall panel system of siding are installed
JP6557895B2 (en) Method for measuring the amount of exposure of deterioration factors of synthetic resin materials
ATE492799T1 (en) METHOD FOR VISUALLY INSPECTING A TRANSPARENT PROTECTIVE LAYER APPLIED TO A COLOR-PATTERNED SURFACE
DE502006006215D1 (en) Method and measuring arrangement for determining a pressure distribution on the surface of an object
CN105229464A (en) Detect method and the device of the wandering fibre end in paper
JP2005521261A5 (en)
US10787753B2 (en) Anodized substrates with dark laser markings
CN107917918B (en) Detection method for identifying surface flaws of ultrathin transparent plate based on specular reflection
TW201447270A (en) Method for evaluating optical characteristics of transparent substrate, and optical device
US20080129995A1 (en) Near infrared light diffuser
Määttä et al. Effect of coating on cleanability of glazed surfaces
ATE368839T1 (en) DEVICE AND METHOD FOR MEASURING THE THICKNESS OF A TRANSPARENT SAMPLE
WO2008113109A1 (en) Artificial substrate
Pereira et al. Global inspection, diagnosis and repair system for buildings: Homogenising the classification of diagnosis methods
EP2871441B1 (en) Method for the determination of a coating thickness
JP2019078629A (en) Method and device for measuring film thickness
US20060008619A1 (en) Liner with different impressments at opposing surfaces
Jäntsch et al. Functionality and durability of anti-graffiti-systems on concrete
Watanabe et al. Evaluation of near-infrared spectroscopy as a contactless method for health monitoring of resin-based coating materials applied to concrete surfaces
JP4305267B2 (en) Thin film layer adhesion evaluation method
JP2004198397A (en) Sheet for evaluating degradation of coating film, and method for evaluating degradation of the coating film using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6557895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250