JP2016027261A - Actuator and pump using actuator - Google Patents

Actuator and pump using actuator Download PDF

Info

Publication number
JP2016027261A
JP2016027261A JP2015129744A JP2015129744A JP2016027261A JP 2016027261 A JP2016027261 A JP 2016027261A JP 2015129744 A JP2015129744 A JP 2015129744A JP 2015129744 A JP2015129744 A JP 2015129744A JP 2016027261 A JP2016027261 A JP 2016027261A
Authority
JP
Japan
Prior art keywords
electrode
gas
actuating device
electrolysis
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015129744A
Other languages
Japanese (ja)
Inventor
浩一 市来
Koichi Ichiki
浩一 市来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Priority to JP2015129744A priority Critical patent/JP2016027261A/en
Priority to PCT/JP2015/068732 priority patent/WO2016002734A1/en
Publication of JP2016027261A publication Critical patent/JP2016027261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To overcome conventional problems that there is no other methods but use of hydrogen or oxygen as generated gas and efficiency is low in the field of pumps controlling a fluid by gas generated by electrolysis of water, and that high efficiency is demanded particularly for small pumps.SOLUTION: Both hydrogen and oxygen as generated gas are used. An electrode material for use in electrolysis is a material that does not act as a catalyst for recombination of hydrogen and oxygen.SELECTED DRAWING: Figure 1

Description

本発明は、微少な流体制御を行うガス式作動装置およびこれを用いたポンプに関する。   The present invention relates to a gas actuator that performs minute fluid control and a pump using the same.

ガスを発生させてその圧力で流体微少制御をする装置として、ガスの発生源を水の電気分解に求めるものが提案されている。(US4522698、特開平08−010605、など)   As an apparatus for generating gas and performing minute fluid control with its pressure, an apparatus for obtaining the gas generation source by electrolysis of water has been proposed. (US Pat. No. 4,522,698, Japanese Patent Laid-Open No. 08-010605, etc.)

米国特許No.4522698公報U.S. Pat. No. 4522698 特開平08−010605公報Japanese Patent Laid-Open No. 08-010605

従来より、この種の電極の材料としては白金が用いられてきている。白金は水の電気分解電圧が低いため水の電気分解の効率が良いためである。しかしながら、電気分解によって発生した水素および酸素が混合された状態においては、電極材料の白金が持つ触媒作用によって水素と酸素の再結合が促され、発生したガス(水素および酸素)が減少してしまう。この再結合は電気分解後も時間の経過と共に進行する。よって、電気分解時の発生ガス量は供給した電流量に比例することが判っていながらも、その後再結合によってガス量が変化し、結果として流体の制御の精度が悪化するという問題があった。(再結合問題)   Conventionally, platinum has been used as a material for this type of electrode. This is because platinum has a low electrolysis voltage of water and therefore has a high electrolysis efficiency of water. However, in a state where hydrogen and oxygen generated by electrolysis are mixed, recombination of hydrogen and oxygen is promoted by the catalytic action of platinum of the electrode material, and the generated gas (hydrogen and oxygen) decreases. . This recombination proceeds with time even after electrolysis. Therefore, although it is known that the amount of gas generated at the time of electrolysis is proportional to the amount of current supplied, there is a problem that the amount of gas is changed by recombination thereafter, and as a result, the accuracy of fluid control deteriorates. (Recombination problem)

そこで、発生したガス(水素および酸素)の再結合を抑制するために特許文献1(US4522698)で示されるようにカチオン交換膜を介して水素および酸素を分離させて一方のガスのみで駆動させる方法や、同様に特許文献2(特開平08−010605)で示されるようにカチオン交換膜を介して水素および酸素を分離させ、水素吸蔵合金を用いて水素を吸蔵せしめ、酸素のみで駆動されることでカチオン交換膜を介して生じる再結合を抑制し駆動精度を上げかつ放出される水素の爆発を抑制する方法などが提案されている。
しかしながら、これらの方法はどちらかの電極で発生したガスのみを使用するためガス利用効率の面で問題があった。(ガス利用効率問題)
Therefore, in order to suppress recombination of the generated gases (hydrogen and oxygen), as shown in Patent Document 1 (US Pat. No. 4,522,698), a method of separating hydrogen and oxygen through a cation exchange membrane and driving with only one gas. Similarly, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 08-010605), hydrogen and oxygen are separated through a cation exchange membrane, and hydrogen is occluded using a hydrogen occlusion alloy, which is driven only by oxygen. A method has been proposed in which recombination that occurs through a cation exchange membrane is suppressed, driving accuracy is increased, and explosion of released hydrogen is suppressed.
However, these methods have a problem in terms of gas utilization efficiency because only the gas generated at either electrode is used. (Gas utilization efficiency problem)

本発明は、上記の課題を解決ために成されたものであり、従来、一方の電極で発生したガスのみで駆動させて効率を低下させていた問題点を解決し、更に再結合による精度低下を防止することで、高効率、高精度のガス発生型の作動装置およびポンプを提供することにある。   The present invention has been made to solve the above-mentioned problems, and has solved the problem of reducing the efficiency by driving only with the gas generated in one of the electrodes, and further reducing the accuracy due to recombination. It is an object of the present invention to provide a highly efficient and highly accurate gas generating type operating device and pump.

上述の問題を解決すべく本発明が成された。   The present invention has been made to solve the above problems.

本発明の作動装置は、ガス室と、ガス室内に設置され水を電気分解する電極と、を有し、電気分解で発生したガスによりガス室を加圧することで駆動する作動装置であって、電極材料が水素と酸素の結合触媒として作用しない材料であることを特徴としている。
この特徴により、電気分解で得られるガス(水素および酸素)を全て駆動目的に使用することができ、ガスの再結合も図ることができる。
The operating device of the present invention is an operating device that has a gas chamber and an electrode that is installed in the gas chamber to electrolyze water, and is driven by pressurizing the gas chamber with gas generated by electrolysis, The electrode material is a material that does not act as a combined catalyst of hydrogen and oxygen.
With this feature, all the gas (hydrogen and oxygen) obtained by electrolysis can be used for driving purposes, and gas recombination can be achieved.

更に本発明の作動装置は、電極材料が金またはカーボンであることを特徴としている。
この特徴により、電極材料が具体的に特定され、発明の実施が容易となる。
Furthermore, the actuating device of the present invention is characterized in that the electrode material is gold or carbon.
With this feature, the electrode material is specifically specified, and the implementation of the invention becomes easy.

加えて本発明の作動装置は、電極が櫛形状であることを特徴としている。
この特徴により、両電極の相対する総線長が極大となり、電気分解電圧が低下することで効率が向上し、小型化も容易とすることが可能となる。
In addition, the operating device of the present invention is characterized in that the electrodes are comb-shaped.
With this feature, the total line length of the electrodes facing each other is maximized, and the electrolysis voltage is reduced, so that the efficiency is improved and the miniaturization can be facilitated.

更に本発明の作動装置は、櫛形状の電極の電極幅および電極間隔が0.1mm以下であることを特徴としている。
同一面積内に電極を形成する場合、電極幅、および電極間隔が微細であるほど、総線長が増大し、かつ、電極間距離が短くなることで電気分解電圧が低下する。また、電極間距離が0.1mm以下の場合その影響が顕著に表れる。
電極間距離を微小として更に電気分解の効率を向上することが可能となる。
Furthermore, the actuating device of the present invention is characterized in that the electrode width and the electrode interval of the comb-shaped electrodes are 0.1 mm or less.
When the electrodes are formed within the same area, the finer the electrode width and the electrode interval, the greater the total line length and the shorter the inter-electrode distance, thereby lowering the electrolysis voltage. In addition, when the distance between the electrodes is 0.1 mm or less, the influence appears remarkably.
Electrolytic efficiency can be further improved by reducing the distance between the electrodes.

また本発明の作動装置は、含水する固体電解質を介して電気分解が行われることを特徴としている。
この特徴により、電気分解を行う対象の液体が重力方向の制限を受けることが無くなり、作動装置の姿勢を自由に設定することが可能となる。
The operating device of the present invention is characterized in that electrolysis is performed via a solid electrolyte containing water.
With this feature, the liquid to be electrolyzed is not restricted in the direction of gravity, and the posture of the actuator can be freely set.

本発明の作動装置は、固体電解質がプロトン伝導体であることを特徴としている。
この特徴により、固体電解質の具体的物質が特定され、発明の実施が容易になる。プロトン伝導体としては例としてNafionがあげられる。
The actuating device of the present invention is characterized in that the solid electrolyte is a proton conductor.
This feature identifies the specific substance of the solid electrolyte and facilitates the implementation of the invention. An example of a proton conductor is Nafion.

本発明の作動装置は、電極の陽極および陰極が異なる電極材料で構成されており、陽極は酸素過電圧の低い電極材料であり、陰極は水素過電圧の低い電極材料であることを特徴としている。
この特徴により、更に電気分解の効率を高めることが可能となる。
The actuating device of the present invention is characterized in that the anode and cathode of the electrode are composed of different electrode materials, the anode is an electrode material having a low oxygen overvoltage, and the cathode is an electrode material having a low hydrogen overvoltage.
This feature makes it possible to further increase the efficiency of electrolysis.

本発明の作動装置を使用したポンプは、ポンプの流体貯蔵庫内に作動装置のガス室が変形可能な状態で設けられていることを特徴としている。
この特徴により、電気分解によって発生したガスを効率良く精度高く駆動可能な作動装置をポンプの流体貯蔵庫内に設けられ、総体としてポンプも効率良く精度高く動作させることが可能となる。
The pump using the actuating device of the present invention is characterized in that the gas chamber of the actuating device is provided in a deformable state in the fluid reservoir of the pump.
Due to this feature, an operating device capable of driving the gas generated by electrolysis efficiently and accurately is provided in the fluid reservoir of the pump, and as a whole, the pump can also be operated efficiently and accurately.

本発明により高効率・高精度な作動装置が実現可能となり、これを用いたポンプにおいて再結合問題・ガス利用効率問題が解決できる。   According to the present invention, a highly efficient and highly accurate actuator can be realized, and a recombination problem and a gas utilization efficiency problem can be solved in a pump using the actuator.

本発明の一実施形態のガス式作動装置のボンプの構成を示す図であり、発生したガスが少ない状態を示す図である。It is a figure which shows the structure of the bomb of the gas type operating device of one Embodiment of this invention, and is a figure which shows the state with few generated gas. 本発明一実施形態のガス式作動装置の構成を示す図であり、発生したガスが多い状態を示す図である。It is a figure which shows the structure of the gas type operating device of one Embodiment of this invention, and is a figure which shows the state with much generated gas. 櫛状の電極を示す図である。It is a figure which shows a comb-shaped electrode.

以下、本発明の実施の形態を図面を参照して説明する。図1は、本発明の一実施の形態の流体送出の制御を行うガス式送出装置の流体ポンプの構造を示すもので、ガスが少ない状態を示している。図2は、ガスが多い状態を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of a fluid pump of a gas type delivery device that controls fluid delivery according to an embodiment of the present invention, and shows a state where gas is low. FIG. 2 shows a state where there is a lot of gas.

図1に示すように、この流体ポンプは、送出される流体(主に液体)が貯蔵される送出液貯蔵庫となる送出液格納室2と、この送出液格納室2にガスを供給するガス室となる電解液格納室3を備えている。送出液格納室2には、電解液格納室3から供給されるガスにより送出液格納室2内で膨張あるいは縮小するベローズ(気密提灯)21が設けられている。このベローズ21の外側には、送出する送出液22が格納されている。送出液22は、例を挙げれば、微量で継続的に送出制御されるのが好ましい医療用の「薬液」や「輸液」である。
電解液格納室3には、電極31が設けられ、電解液32が入れられている。送出液格納室2と電解液格納室3との間の隔壁にはガスが透過できるガス透過膜4が設けられており、電解液格納室3で発生したガスをベローズ21に導くことができる。
送出液格納室2には、送出液の送出口5が設けられており、送出口5には、送出液の逆流防止のための逆止弁51が設けられている。
As shown in FIG. 1, the fluid pump includes a delivery liquid storage chamber 2 serving as a delivery liquid storage for storing a fluid to be delivered (mainly liquid), and a gas chamber for supplying gas to the delivery liquid storage chamber 2. An electrolytic solution storage chamber 3 is provided. The delivery solution storage chamber 2 is provided with a bellows (airtight lantern) 21 that expands or contracts in the delivery solution storage chamber 2 by the gas supplied from the electrolyte solution storage chamber 3. A delivery liquid 22 to be delivered is stored outside the bellows 21. For example, the delivery solution 22 is a medical “medical solution” or “infusion solution” that is preferably controlled to be delivered in a small amount continuously.
An electrode 31 is provided in the electrolytic solution storage chamber 3 and an electrolytic solution 32 is placed therein. A gas permeable membrane 4 through which gas can permeate is provided in the partition wall between the delivery solution storage chamber 2 and the electrolyte solution storage chamber 3, and the gas generated in the electrolyte solution storage chamber 3 can be guided to the bellows 21.
The delivery liquid storage chamber 2 is provided with a delivery liquid outlet 5, and the delivery outlet 5 is provided with a check valve 51 for preventing backflow of the delivery liquid.

送出液格納室2から送出液22は逆止弁51を通過して外部へ送出される。従って、送出液格納室2の容量以上の液体を送出する場合には送出液格納室2へ外部より液体を補充する。
電解液格納室3内には電極と電気分解してガスを発生させる素となる液体(本実施の形態では水、前述のポンプとして送出する液体とは別)が内包されている。
なお、本発明では、電気分解の対象となる液体を「電解液」、ポンプとして送出する対象となる液体を「送出液」、と定義する。
The sending liquid 22 is sent from the sending liquid storage chamber 2 to the outside through the check valve 51. Therefore, when the liquid exceeding the capacity of the delivery liquid storage chamber 2 is delivered, the liquid is replenished to the delivery liquid storage chamber 2 from the outside.
The electrolyte storage chamber 3 contains a liquid that is electrolyzed with the electrode to generate a gas (in this embodiment, water, separate from the liquid sent out as the above-described pump).
In the present invention, the liquid to be electrolyzed is defined as “electrolyte”, and the liquid to be delivered as a pump is defined as “delivery liquid”.

送出液格納室2および電解液格納室3は、密閉構造であり、電極31に電圧を印加して電気分解を行うと、ガス(水素と酸素)が発生するがガス透過膜4を通過して、そのままベローズ21内に留まり、ベローズ21内の圧力を上昇させる。圧力上昇に伴いベローズ21が膨張し、送出液格納室2内の送出液22が押圧され、逆止弁51を通して外部へ送出される。
送出液22が外部へ送出されることにより送出液格納室2内の送出液22の残量が減り、ベローズ21の容積が増え、ベローズ21内の圧力が低下する。ベローズ21内の圧力が外部気圧と平衡した時点で送出液22の送出が停止する。
The delivery solution storage chamber 2 and the electrolyte solution storage chamber 3 have a sealed structure. When a voltage is applied to the electrode 31 to perform electrolysis, gas (hydrogen and oxygen) is generated, but passes through the gas permeable membrane 4. Then, it remains in the bellows 21 as it is, and the pressure in the bellows 21 is increased. As the pressure rises, the bellows 21 expands, the delivery liquid 22 in the delivery liquid storage chamber 2 is pressed, and is sent to the outside through the check valve 51.
By sending the delivery liquid 22 to the outside, the remaining amount of the delivery liquid 22 in the delivery liquid storage chamber 2 decreases, the volume of the bellows 21 increases, and the pressure in the bellows 21 decreases. When the pressure in the bellows 21 is balanced with the external atmospheric pressure, the delivery of the delivery liquid 22 is stopped.

この送出された送出液22の容量は電解液格納室3内で発生したガス(水素と酸素)の量と等しい。また、発生したガスの量は電極31間(陽極−陰極)に流れた電荷に比例する。その為、外部の制御装置で電流量を計測できれば発生するガスの量を正確に計算でき、送出する送出液の量を精度高く制御することができる。   The volume of the delivered liquid 22 is equal to the amount of gas (hydrogen and oxygen) generated in the electrolyte storage chamber 3. The amount of gas generated is proportional to the charge flowing between the electrodes 31 (anode-cathode). Therefore, if the amount of current can be measured by an external control device, the amount of gas generated can be accurately calculated, and the amount of the delivery liquid to be delivered can be controlled with high accuracy.

本実施の形態においては、電解液は水を想定している。常温では電気分解により水から1300倍近い体積のガス(水素と酸素)を発生させることができる。電解液格納室3を密閉構造としてあっても電解液格納室3内の電解液の量からかなりの体積のガスを発生することができ、同量の送出液22を外部へ送出する能力を持つことができる。   In the present embodiment, the electrolytic solution is assumed to be water. At room temperature, gas (hydrogen and oxygen) having a volume close to 1300 times can be generated from water by electrolysis. Even if the electrolytic solution storage chamber 3 has a sealed structure, a considerable volume of gas can be generated from the amount of the electrolytic solution in the electrolytic solution storage chamber 3, and the ability to send out the same amount of the delivery solution 22 to the outside. be able to.

このように、本実施の形態のベローズ21の内部では水素と酸素が混在する状況であるため、電極に白金などの再結合触媒機能を有する材料を使うことは、送出制御の精度を悪化させることになる。電極として金やカーボンを使用すると白金と比べ電気分解電圧が高いので効率が悪いように見えるが、本発明実施の形態のような作動装置(およびポンプ)の使用状況においては電気分解後のガスの再結合による損失も考慮せねばならず、総合的に金やカーボンの方が安定した精度と効率が実現できるのである。   As described above, since hydrogen and oxygen are mixed inside the bellows 21 of the present embodiment, using a material having a recombination catalytic function such as platinum for the electrode deteriorates the accuracy of the delivery control. become. When gold or carbon is used as an electrode, the efficiency of electrolysis is higher than that of platinum, so it seems that the efficiency is poor. However, in the usage state of the operating device (and pump) as in the embodiment of the present invention, Loss due to recombination must also be taken into account, and gold and carbon can achieve more stable accuracy and efficiency overall.

また、電解液格納室3の電極は櫛形状とし陽極と陰極とを対向して配置されるようにしても良い。
この櫛形状の電極の例を図3に示す。図3に示すように、櫛の歯状の陽極11−pと、陰極11−mとを対向して配置する電極構造とする。この様にすることで電極の表面面積を広く取ることができ、電気分解の効率を更に向上することが可能となる。
Further, the electrode of the electrolytic solution storage chamber 3 may have a comb shape, and the anode and the cathode may be arranged to face each other.
An example of this comb-shaped electrode is shown in FIG. As shown in FIG. 3, the electrode structure is such that a comb-teeth-like anode 11-p and a cathode 11-m are arranged to face each other. By doing in this way, the surface area of an electrode can be taken large and it becomes possible to further improve the efficiency of electrolysis.

加えて、この櫛形状電極の電極幅および電極間隔を微小とすると更に電気分解の効率が向上する。従来の白金電極を用いた電気分解において電極間距離を微小とすると、陽極および陰極において発生したガス(水素と酸素)も発生時点から近接することになり、発生直後より電極の触媒作用が強く機能して再結合を催すという不都合があり、本来であれば電気分解の効率向上を狙った電極間距離の微小化が逆効果となっていた。
本発明では電極間距離の微小化は直接的に効率向上に貢献することができる。
微小化とは具体的には0.1mm以下の様な微細なものを意味する。
In addition, the efficiency of electrolysis is further improved if the electrode width and electrode interval of this comb-shaped electrode are made minute. In conventional electrolysis using platinum electrodes, if the distance between the electrodes is very small, the gas (hydrogen and oxygen) generated at the anode and cathode will also be close from the time of generation, and the catalytic action of the electrode will function strongly immediately after the generation. Thus, there is a disadvantage that recombination is caused. Originally, miniaturization of the distance between the electrodes aimed at improving the efficiency of electrolysis has had an adverse effect.
In the present invention, miniaturization of the distance between the electrodes can directly contribute to improvement of efficiency.
More specifically, miniaturization means a minute object such as 0.1 mm or less.

また、電解液を単にイオン質を含んだ水のみとせず、含水する固体電解質としても良い。
この様な物質を採用することで電解液の鉛直方向に対する留意を不要とすることができ、作動装置(およびこれを用いたポンプ)の姿勢を自由に設定することが可能となる。
また、固体電解質としてはプロトン伝導体、特にNafionなどが好適である。
Further, the electrolytic solution may be not only water containing ionic substances but also a solid electrolyte containing water.
By adopting such a substance, attention to the vertical direction of the electrolytic solution can be eliminated, and the posture of the actuator (and the pump using the same) can be freely set.
Further, as the solid electrolyte, a proton conductor, particularly Nafion is suitable.

更には、電極材料は前述の金やカーボンなどの再結合作用の無いもの一種類に揃えて陽極と陰極に採用する必要は無く、陽極と陰極とで異なる材料を用いても良い。その際に、陽極は酸素過電圧の低い電極材料であり陰極は水素過電圧の低い電極材料であるというような選択をしても良い。   Furthermore, the electrode material does not need to be used for the anode and the cathode in line with the above-mentioned one having no recombination action such as gold or carbon, and different materials may be used for the anode and the cathode. At that time, the anode may be an electrode material having a low oxygen overvoltage and the cathode may be an electrode material having a low hydrogen overvoltage.

上述の説明では、電解液格納室3から供給されるガスで膨張または収縮する構造として袋状のベローズを用いる例で説明したが、ガスによって送出液格納室内で膨縮する構造であればどのようなものであってもよく、例えばバルーンのようなものでもよい。また、膨張したベローズで送出液を送出するようにしたが、逆に送出液を収縮する袋状の容器に入れて、外からのガスの圧力により送出するようにしてもよい。さらに、図1、図2の送出液格納室2、電解液格納室3の形状は角張っているが、液体送出ポンプとしての機能を果たせれば、その形状には限定がなく、また送出液格納室2や電解液格納室3の材料も、外部から例えば針を用いて送出液等を補充できるものが好ましい。   In the above description, an example in which a bag-shaped bellows is used as a structure that expands or contracts with a gas supplied from the electrolyte storage chamber 3 has been described. For example, a balloon may be used. In addition, the sending liquid is sent out by the expanded bellows, but conversely, the sending liquid may be put in a bag-like container that shrinks and sent out by the pressure of the gas from the outside. Further, the shapes of the delivery liquid storage chamber 2 and the electrolyte solution storage chamber 3 in FIGS. 1 and 2 are square, but the shape is not limited as long as the function as a liquid delivery pump can be performed. The material of the chamber 2 and the electrolyte solution storage chamber 3 is also preferably a material that can be replenished with a delivery solution from the outside using, for example, a needle.

以上、本発明について好適な実施の形態を挙げて説明したが、本発明はこれらの実施の形態に限定されるものではなく、発明の精神を逸脱しない限り多くの改変を施すことが可能であるのは勿論である。   Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. Of course.

量産可能な作動装置およびこれを使用するポンプによって流体の制御を高効率・高精度で実現でき、高い経済性と広い応用可能性を得られるなどの効果を有している。   The fluid control can be realized with high efficiency and high accuracy by a mass production actuator and a pump using the actuator, and there is an effect that high economy and wide applicability can be obtained.

1 ガス式作動装置
2 送出液格納室
3 電解液格納室
4 ガス透過膜
5 送出口
21 ベローズ
22 送出液
31 電極
32 電解液
51 逆止弁
DESCRIPTION OF SYMBOLS 1 Gas type actuator 2 Delivery liquid storage chamber 3 Electrolyte storage chamber 4 Gas permeable membrane 5 Outlet 21 Bellows 22 Delivery liquid 31 Electrode 32 Electrolytic solution 51 Check valve

Claims (8)

ガス室と、該ガス室内に設置され水を電気分解する電極と、を有し、
電気分解で発生したガスにより該ガス室を加圧することで駆動する作動装置であって、
前記電極材料は、水素と酸素の結合触媒として作用しない材料である、
ことを特徴とする作動装置。
A gas chamber, and an electrode installed in the gas chamber for electrolyzing water,
An operating device that is driven by pressurizing the gas chamber with gas generated by electrolysis,
The electrode material is a material that does not act as a combined catalyst of hydrogen and oxygen.
An actuating device.
前記電極材料が金またはカーボンである、
ことを特徴とする請求項1の作動装置。
The electrode material is gold or carbon;
The actuating device according to claim 1, wherein:
前記電極が櫛形状である、
ことを特徴とする請求項1または請求項2に記載の作動装置。
The electrode has a comb shape;
The actuating device according to claim 1 or 2, characterized in that
前記櫛形状の電極の電極幅および電極間隔が0.1mm以下である、
ことを特徴とする請求項3に記載の作動装置。
The electrode width and electrode interval of the comb-shaped electrodes are 0.1 mm or less,
The actuating device according to claim 3.
含水する固体電解質を介して電気分解が行われる、
ことを特徴とする請求項1から請求項4のいずれか一項に記載の作動装置。
Electrolysis is performed through a solid electrolyte containing water,
The actuating device according to any one of claims 1 to 4, wherein the actuating device is provided.
前記固体電解質がプロトン伝導体である、
ことを特徴とする請求項5記載の作動装置。
The solid electrolyte is a proton conductor;
The actuating device according to claim 5.
請求項1から請求項6のうち一項に記載の作動装置であって、
前記電極の陽極および陰極が異なる電極材料で構成されており、
前記陽極は酸素過電圧の低い電極材料であり、
前記陰極は水素過電圧の低い電極材料である、
ことを特徴とする作動装置。
The actuating device according to one of claims 1 to 6,
The anode and cathode of the electrode are composed of different electrode materials,
The anode is an electrode material having a low oxygen overvoltage,
The cathode is an electrode material having a low hydrogen overvoltage.
An actuating device.
請求項1から請求項7のいずれか一項に記載の作動装置を使用したポンプであり、
該ポンプの流体貯蔵庫内に前記作動装置のガス室が変形可能な状態で設けられている、
ことを特徴とするポンプ。
A pump using the actuator according to any one of claims 1 to 7,
The gas chamber of the operating device is provided in a deformable state in the fluid reservoir of the pump.
A pump characterized by that.
JP2015129744A 2014-06-30 2015-06-29 Actuator and pump using actuator Pending JP2016027261A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015129744A JP2016027261A (en) 2014-06-30 2015-06-29 Actuator and pump using actuator
PCT/JP2015/068732 WO2016002734A1 (en) 2014-06-30 2015-06-29 Actuator and pump utilizing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014134691 2014-06-30
JP2014134691 2014-06-30
JP2015129744A JP2016027261A (en) 2014-06-30 2015-06-29 Actuator and pump using actuator

Publications (1)

Publication Number Publication Date
JP2016027261A true JP2016027261A (en) 2016-02-18

Family

ID=55019266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129744A Pending JP2016027261A (en) 2014-06-30 2015-06-29 Actuator and pump using actuator

Country Status (2)

Country Link
JP (1) JP2016027261A (en)
WO (1) WO2016002734A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128189A (en) * 2018-01-23 2019-08-01 三菱電機株式会社 Oil gas analyzer, oil gas analysis system equipped with the same, and oil gas analysis method using oil gas analyzer
WO2022186291A1 (en) * 2021-03-03 2022-09-09 国立研究開発法人宇宙航空研究開発機構 Gas-liquid separation device, gas-liquid separation method, electrolysis device, and electrolysis method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08979A (en) * 1994-06-23 1996-01-09 Japan Storage Battery Co Ltd Fluid feeding tool
JPH0957090A (en) * 1995-08-25 1997-03-04 Japan Storage Battery Co Ltd Fluid feeder
EA031847B1 (en) * 2010-04-08 2019-03-29 ЭДВАНСТ ФЬЮЭЛ ТЕКНОЛОДЖИЗ ЮКей ЛИМИТЕД Fuel enrichment method and device
JP5830527B2 (en) * 2011-04-04 2015-12-09 株式会社日立製作所 Semiconductor device, hydrogen production system, and methane or methanol production system
JP2014095115A (en) * 2012-11-08 2014-05-22 Suntec Inc Gas generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128189A (en) * 2018-01-23 2019-08-01 三菱電機株式会社 Oil gas analyzer, oil gas analysis system equipped with the same, and oil gas analysis method using oil gas analyzer
WO2022186291A1 (en) * 2021-03-03 2022-09-09 国立研究開発法人宇宙航空研究開発機構 Gas-liquid separation device, gas-liquid separation method, electrolysis device, and electrolysis method

Also Published As

Publication number Publication date
WO2016002734A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
US11682783B2 (en) Electrochemical system with confined electrolyte
JP5897512B2 (en) Method for electrolytic concentration of heavy water
US20180371630A1 (en) High pressure electrochemical cell
US6387228B1 (en) Electrochemical generation of carbon dioxide and hydrogen from organic acids
JP2006506215A (en) Fluid transport device having an electrochemical pump with an anion exchange membrane and associated method
JP5079513B2 (en) Method and system for generating mechanical energy
JP6332792B2 (en) Water electrolysis method and water electrolysis apparatus
WO2021054255A1 (en) Hydrogen generation system control method, and hydrogen generation system
WO2016002734A1 (en) Actuator and pump utilizing same
JP2018068531A (en) Hydrogen gas supply device for organism
JP7284344B6 (en) cross flow water electrolysis
KR20200138715A (en) Water electrolysis process strengthening system
CN108603298A (en) The method and device of electrochemically reducing carbon dioxide
JP6587061B2 (en) Hydrogen water production equipment
JP2017052987A (en) Water electrolysis device and electrolysis method of water
JP6503054B2 (en) Electrolyzed water generating device, electrode unit, and electrolytic water generating method
JP2017110279A (en) Hydrogen peroxide production device
JP2020147843A (en) Electrolytic tank and hydrogen production apparatus
JP2797423B2 (en) Infusion pump
JP2021046601A (en) Method for controlling organic hydride generation system, and organic hydride generation system
JP2015128755A (en) Device for generating ozonized water
JP6952246B2 (en) Gas generator and gas generation method
LV14698B (en) System for liquid leveling
RU131727U1 (en) ELECTROLYZER FOR PRODUCING FLUORINE
WO2024036353A3 (en) Electrolysis device with natural circulation