JP2016026982A - Heat insulating material - Google Patents

Heat insulating material Download PDF

Info

Publication number
JP2016026982A
JP2016026982A JP2015093775A JP2015093775A JP2016026982A JP 2016026982 A JP2016026982 A JP 2016026982A JP 2015093775 A JP2015093775 A JP 2015093775A JP 2015093775 A JP2015093775 A JP 2015093775A JP 2016026982 A JP2016026982 A JP 2016026982A
Authority
JP
Japan
Prior art keywords
less
heat insulating
insulating material
thermal conductivity
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015093775A
Other languages
Japanese (ja)
Other versions
JP6319769B2 (en
Inventor
宗子 赤嶺
Shuko Akamine
宗子 赤嶺
藤田 光広
Mitsuhiro Fujita
光広 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2015093775A priority Critical patent/JP6319769B2/en
Priority to DE102015211582.8A priority patent/DE102015211582B4/en
Priority to US14/747,020 priority patent/US9938195B2/en
Priority to KR1020150088972A priority patent/KR101729842B1/en
Priority to CN201510351921.7A priority patent/CN105315005A/en
Publication of JP2016026982A publication Critical patent/JP2016026982A/en
Application granted granted Critical
Publication of JP6319769B2 publication Critical patent/JP6319769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating material that suppresses an increase in thermal conductivity to maintain excellent thermal insulation properties even at a high temperature of 1,500°C or more, and is excellent in heat-resisting properties at 1,700°C or more.SOLUTION: In a heat insulating material made of a porous sintered body comprising MgAlOand having a porosity of not less than 60% and less than 73%, pores having a pore size of not less than 0.8 μm and less than 10 μm occupy not less than 70 vol% and less than 90 vol% of the total pore volume and pores having a pore size of not less than 0.01 μm and less than 0.8 μm occupy not less than 10 vol% and less than 20 vol% of the total pore volume, and the thermal conductivity at 1,000°C or more and 1500°C or less is made not to exceed 1.5 times the thermal conductivity at not less than 20°C and less than 1,000°C.SELECTED DRAWING: None

Description

本発明は、MgAl24の多孔質焼結体からなり、1000℃以上の高温における断熱性に優れた断熱材に関する。 The present invention relates to a heat insulating material comprising a porous sintered body of MgAl 2 O 4 and excellent in heat insulating properties at a high temperature of 1000 ° C. or higher.

断熱材は、熱伝導率が小さいことが求められ、ガラス繊維等の繊維系断熱材や、セラミックス多孔体等のかさ密度の低いセラミックス等が一般的に用いられている。熱伝導率に影響を及ぼす伝熱因子は、固体伝熱・気体伝熱・輻射伝熱に分けて考えることができる。   The heat insulating material is required to have low thermal conductivity, and fiber-based heat insulating materials such as glass fibers, ceramics having a low bulk density such as a ceramic porous body, and the like are generally used. The heat transfer factors that affect the thermal conductivity can be divided into solid heat transfer, gas heat transfer, and radiant heat transfer.

繊維系断熱材としては、例えば、特許文献1に、エアロゲルが充填された繊維体からなり、赤外線反射剤を含む断熱層を、多孔性の被覆層で被覆して、輻射伝熱を抑制することが記載されている。
しかしながら、このような断熱材は、主成分がシリカエアロゲルであり、耐熱性が低く、400℃以上の高温での熱伝導率も不明である。
As the fiber-based heat insulating material, for example, in Patent Document 1, a heat insulating layer made of a fiber body filled with airgel and including an infrared reflecting agent is coated with a porous covering layer to suppress radiant heat transfer. Is described.
However, such a heat insulating material is mainly composed of silica airgel, has low heat resistance, and the thermal conductivity at a high temperature of 400 ° C. or higher is unknown.

一方、セラミックス多孔体においては、高気孔率とすることにより、固体伝熱を抑制し、熱伝導率を低減させている。
しかしながら、400℃以上の高温では、輻射伝熱が及ぼす影響が大きくなるため、このような高温域での使用を目的とした断熱材においては、従来から、ジルコニア、チタニア等の金属酸化物や炭化ケイ素等、輻射率が高い材料を添加して、輻射伝熱を抑制することが行われている。
On the other hand, in a ceramic porous body, by setting it as a high porosity, solid heat transfer is suppressed and thermal conductivity is reduced.
However, since the influence of radiant heat transfer becomes large at a high temperature of 400 ° C. or higher, conventionally, in a heat insulating material intended for use in such a high temperature range, metal oxides such as zirconia and titania and carbonization have been conventionally used. A material having a high emissivity such as silicon is added to suppress radiant heat transfer.

さらに、本発明者らは、所定の気孔径分布を有するスピネル質セラミックス多孔体が、固体伝熱及び輻射伝熱を抑制することができ、1000℃以上の高温での耐熱性にも優れた断熱材として使用することができることを提案している(例えば、特許文献2、3参照)。   Furthermore, the inventors of the present invention have a spinel ceramic porous body having a predetermined pore size distribution that can suppress solid heat transfer and radiant heat transfer, and has excellent heat resistance at a high temperature of 1000 ° C. or higher. It has been proposed that it can be used as a material (for example, see Patent Documents 2 and 3).

特開2009−299893号公報JP 2009-299893 A 特開2012−229139号公報JP 2012-229139 A 特開2013−209278号公報JP 2013-209278 A

しかしながら、上記特許文献2、3に記載されたセラミックス多孔体は、従来よりも高温の1000℃以上での耐熱性が認められるものの、耐熱温度は高々1600℃であり、また、圧縮強さは0.8MPa程度に止まるものであった。   However, although the ceramic porous bodies described in Patent Documents 2 and 3 have heat resistance at 1000 ° C. or higher, which is higher than the conventional one, the heat resistant temperature is 1600 ° C. at most and the compressive strength is 0. It stopped at about 8 MPa.

近年、さらに高性能な断熱材のニーズがあり、より高温である1800℃程度でも、耐熱性を有し、高強度であり、かつ、熱伝導率が小さく、断熱性が保持された断熱材が求められている。   In recent years, there has been a need for higher performance heat insulating materials, and heat insulating materials having heat resistance, high strength, low thermal conductivity, and heat insulating properties even at a higher temperature of about 1800 ° C. It has been demanded.

本発明は、上記技術的課題に鑑みてなされたものであり、従来の断熱材特性をより向上させたものとして、1800℃でも優れた耐熱性を有し、かつ、高強度であり、1000℃以上の高温でも熱伝導率の増加が抑制され、優れた断熱性が保持された断熱材を提供することを目的とするものである。   The present invention has been made in view of the above technical problem, and has improved heat insulation properties as a conventional material, has excellent heat resistance even at 1800 ° C., has high strength, and is 1000 ° C. An object of the present invention is to provide a heat insulating material in which an increase in thermal conductivity is suppressed even at the above high temperature and excellent heat insulating properties are maintained.

本発明に係る断熱材は、MgAl24からなる気孔率60%以上73%未満の多孔質焼結体からなり、孔径0.8μm以上10μm未満の気孔が全気孔容積のうちの70vol%以上90vol%未満を占め、かつ、孔径0.01μm以上0.8μm未満の気孔が全気孔容積のうちの10vol%以上20vol%未満を占め、1000℃以上1500℃以下における熱伝導率が、20℃以上1000℃未満における熱伝導率の1.5倍を超えないことを特徴とする。
このような気孔構成を備えた多孔質焼結体は、1000℃以上1500℃以下の高温でも熱伝導率の増加が抑制され、1800℃でも耐熱性及び圧縮強さが保持された断熱材として好適である。
The heat insulating material according to the present invention is made of a porous sintered body made of MgAl 2 O 4 with a porosity of 60% or more and less than 73%, and pores having a pore diameter of 0.8 μm or more and less than 10 μm are 70 vol% or more of the total pore volume. The pores having a pore diameter of less than 90 vol% and pore diameters of 0.01 μm or more and less than 0.8 μm occupy 10 vol% or more and less than 20 vol% of the total pore volume, and the thermal conductivity at 1000 ° C. or more and 1500 ° C. or less is 20 ° C. or more. It is characterized by not exceeding 1.5 times the thermal conductivity at less than 1000 ° C.
A porous sintered body having such a pore structure is suitable as a heat insulating material in which an increase in thermal conductivity is suppressed even at a high temperature of 1000 ° C. or higher and 1500 ° C. or lower, and heat resistance and compressive strength are maintained even at 1800 ° C. It is.

前記断熱材は、好ましくは、圧縮強さが1MPa以上である。
この程度の圧縮強さを有する断熱材は、高温での高強度が求められる用途において好適である。
The heat insulating material preferably has a compressive strength of 1 MPa or more.
A heat insulating material having such a compressive strength is suitable for applications requiring high strength at high temperatures.

前記断熱材は、高温での熱伝導率が小さいほど、優れた断熱効果が得られることから、1000℃以上1500℃以下における熱伝導率が0.45W/(m・K)以下であることが好ましく、より好ましくは、0.40W/(m・K)以下である。   The heat insulating material has an excellent heat insulating effect as the thermal conductivity at high temperature is smaller. Therefore, the thermal conductivity at 1000 ° C. or higher and 1500 ° C. or lower is 0.45 W / (m · K) or lower. Preferably, it is 0.40 W / (m · K) or less.

また、高温での熱伝導率の増加が抑制されているほど、高温域においても優れた断熱効果が得られることから、1000℃以上1500℃以下における熱伝導率は、20℃以上1000℃以下における熱伝導率の1.2倍を超えないことが好ましい。   Moreover, since the heat insulation effect which was excellent also in the high temperature range is acquired, so that the increase in the heat conductivity at high temperature is suppressed, the heat conductivity in 1000 to 1500 degreeC is 20 to 1000 degreeC. It is preferable not to exceed 1.2 times the thermal conductivity.

本発明に係る断熱材は、従来よりも断熱材特性が向上されたものであり、1800℃でも優れた耐熱性を有し、圧縮強さが向上され、かつ、1000℃以上の高温でも熱伝導率の増加が抑制され、優れた断熱性が保持されているため、高温域で使用するための断熱材として好適である。
したがって、本発明に係る断熱材は、1800℃程度の高温環境で高い断熱性が求められる各種構造材や、耐火材、例えば、セラミックス、ガラス、鉄鋼、または非鉄等の炉材においても、好適に適用することができる。
The heat insulating material according to the present invention has improved heat insulating material characteristics than before, has excellent heat resistance even at 1800 ° C, has improved compressive strength, and conducts heat even at a high temperature of 1000 ° C or higher. Since the increase in rate is suppressed and excellent heat insulating properties are maintained, it is suitable as a heat insulating material for use in a high temperature range.
Therefore, the heat insulating material according to the present invention is also suitable for various structural materials that are required to have high heat insulating properties in a high temperature environment of about 1800 ° C. and furnace materials such as refractory materials such as ceramics, glass, steel, and non-ferrous metals. Can be applied.

実施例及び比較例に係る各多孔質焼結体又は断熱レンガの水銀ポロシメータによる気孔径分布を示したグラフである。It is the graph which showed the pore diameter distribution by the mercury porosimeter of each porous sintered compact or heat insulation brick concerning an Example and a comparative example. 実施例及び比較例に係る各多孔質焼結体又は断熱レンガについての温度と熱伝導率の関係を示したグラフである。It is the graph which showed the relationship between the temperature and thermal conductivity about each porous sintered compact or heat insulation brick which concerns on an Example and a comparative example.

以下、本発明を、より詳細に説明する。
本発明に係る断熱材は、MgAl24からなる気孔率60%以上73%未満の多孔質焼結体からなる断熱材である。そして、孔径0.8μm以上10μm未満の気孔が全気孔容積のうちの70vol%以上90vol%未満を占め、かつ、孔径0.01μm以上0.8μm未満の気孔が全気孔容積のうちの10vol%以上20vol%未満を占め、さらに、1000℃以上1500℃以下における熱伝導率が、20℃以上1000℃未満における熱伝導率の1.5倍を超えないことを特徴とするものである。
本発明は、多孔質焼結体の気孔構成に着目し、特定の微細気孔が高温域での耐熱性及び断熱性に影響を及ぼすことを見出したことに基づくものである。すなわち、本発明に係る断熱材は、MgAl24からなる多孔質焼結体において、特定の微細気孔の量を制御することにより、1800℃でも耐熱性が保持され、かつ、圧縮強さが向上し、しかも、1000℃以上の高温でも熱伝導率の増加が抑制され、優れた断熱性を保持することができる。
Hereinafter, the present invention will be described in more detail.
The heat insulating material according to the present invention is a heat insulating material made of a porous sintered body made of MgAl 2 O 4 and having a porosity of 60% or more and less than 73%. The pores having a pore diameter of 0.8 μm or more and less than 10 μm occupy 70 vol% or more and less than 90 vol% of the total pore volume, and the pores having a pore diameter of 0.01 μm or more and less than 0.8 μm are 10 vol% or more of the total pore volume. It occupies less than 20 vol%, and further, the thermal conductivity at 1000 ° C. or higher and 1500 ° C. or lower does not exceed 1.5 times the thermal conductivity at 20 ° C. or higher and lower than 1000 ° C.
The present invention focuses on the pore structure of a porous sintered body, and is based on the finding that specific fine pores affect the heat resistance and heat insulation properties in a high temperature range. That is, in the heat insulating material according to the present invention, in the porous sintered body made of MgAl 2 O 4 , the heat resistance is maintained even at 1800 ° C. and the compressive strength is controlled by controlling the amount of specific fine pores. In addition, an increase in thermal conductivity is suppressed even at a high temperature of 1000 ° C. or higher, and excellent heat insulation can be maintained.

したがって、本発明に係る断熱材は、従来の断熱材に比べて、耐熱性及び圧縮強さの向上が図られたものであり、また、同じ厚さであっても、より高い断熱性が得られ、省エネルギー化に寄与し得る。
例えば、前記断熱材を炉壁等の大型設備に適用する場合、薄くても十分な強度及び断熱性が得られ、設備の省スペース化を図ることができる。また、炉体の表面積の低減化により、炉体表面からの放熱量も低減させることができる。さらに、前記断熱材は、低熱容量であるため、従来の断熱レンガよりも優れた省エネルギー効果が得られる。
Therefore, the heat insulating material according to the present invention is improved in heat resistance and compressive strength as compared with conventional heat insulating materials, and higher heat insulating properties can be obtained even with the same thickness. And can contribute to energy saving.
For example, when the heat insulating material is applied to large equipment such as a furnace wall, sufficient strength and heat insulating properties can be obtained even if it is thin, and space saving of the equipment can be achieved. In addition, the amount of heat released from the surface of the furnace body can be reduced by reducing the surface area of the furnace body. Furthermore, since the said heat insulating material is a low heat capacity, the energy saving effect superior to the conventional heat insulation brick is acquired.

本発明に係る断熱材の材質は、スピネル質のMgAl24である。
スピネル質の多孔質焼結体は、耐熱性が高く、高温での強度に優れているため、高温での粒成長や粒界の結合によって生じる気孔の形状や大きさの変動を低減させることができ、熱伝導率の変動を抑制する効果を長期間維持することができる。特に、MgAl24、すなわち、マグネシアスピネルは、1000℃以上の高温域での構造安定性が高く、等方的な結晶構造を有するため、高温に曝された場合でも特異な粒成長や収縮を示さない。このため、本発明の特徴である特定の気孔構成を維持することができ、高温で使用される断熱材に好適な材質である。
なお、前記化学組成及びスピネル質の構造は、例えば、粉末X線回折法により測定及び同定することができる。
The material of the heat insulating material according to the present invention is spinel MgAl 2 O 4 .
Spinel porous sintered bodies have high heat resistance and excellent strength at high temperatures, which can reduce fluctuations in pore shape and size caused by grain growth and grain boundary bonding at high temperatures. And the effect of suppressing fluctuations in thermal conductivity can be maintained for a long time. In particular, MgAl 2 O 4 , that is, magnesia spinel, has a high structural stability in a high temperature region of 1000 ° C. or higher and has an isotropic crystal structure, so that unique grain growth and shrinkage even when exposed to high temperatures. Not shown. For this reason, it is a material suitable for the heat insulating material which can maintain the specific pore structure which is the feature of the present invention and is used at a high temperature.
The chemical composition and the spinel structure can be measured and identified by, for example, a powder X-ray diffraction method.

また、本発明に係る断熱材を構成するMgAl24からなる多孔質焼結体の気孔率は、60%以上73%未満とする。
前記気孔率が60%未満では、前記多孔質焼結体中においてMgAl24の占める割合が高く、固体伝熱が増加し、熱伝導率を小さくすることが困難となることがある。一方、73%以上の場合は、前記多孔質焼結体中においてMgAl24の占める割合が相対的に低くなるため、脆弱となり、十分な耐熱性が得られないことがある。
なお、前記気孔率は、JIS R 2614「耐火断熱れんがの比重及び真気孔率の測定方法」にて算出されるものである。
Moreover, the porosity of the porous sintered body made of MgAl 2 O 4 constituting the heat insulating material according to the present invention is 60% or more and less than 73%.
If the porosity is less than 60%, the proportion of MgAl 2 O 4 in the porous sintered body is high, solid heat transfer increases, and it may be difficult to reduce the thermal conductivity. On the other hand, in the case of 73% or more, since the proportion of MgAl 2 O 4 in the porous sintered body is relatively low, it becomes brittle and sufficient heat resistance may not be obtained.
The porosity is calculated according to JIS R 2614 “Method for measuring specific gravity and true porosity of refractory heat-insulating brick”.

前記多孔質焼結体の気孔構成は、孔径0.8μm以上10μm未満の気孔が全気孔容積のうちの70vol%以上90vol%未満を占め、かつ、孔径0.01μm以上0.8μm未満の気孔が全気孔容積のうちの10vol%以上20vol%未満を占めている。
このように、前記多孔質焼結体の気孔は、ほとんどが孔径10μm未満の小気孔である。孔径10μm以上の気孔が多く存在する場合は、赤外線の散乱効果が低下し、輻射伝熱の影響が大きくなり、高温における十分な断熱効果が得られず、また、断熱材の強度低下を招くおそれがある。
好ましくは、孔径0.8μm以上10μm未満の範囲内に少なくとも1つの気孔径分布ピークを有する。
The pore structure of the porous sintered body is such that pores having a pore diameter of 0.8 μm or more and less than 10 μm occupy 70 vol% or more and less than 90 vol% of the total pore volume, and pores having a pore diameter of 0.01 μm or more and less than 0.8 μm. It accounts for 10 vol% or more and less than 20 vol% of the total pore volume.
Thus, most of the pores of the porous sintered body are small pores having a pore diameter of less than 10 μm. When there are many pores having a pore diameter of 10 μm or more, the effect of scattering infrared rays is reduced, the influence of radiant heat transfer is increased, and a sufficient heat insulation effect at a high temperature cannot be obtained, and the strength of the heat insulating material may be reduced. There is.
Preferably, it has at least one pore size distribution peak in the range of 0.8 μm or more and less than 10 μm.

前記断熱材は、特に、前記多孔質焼結体の気孔のうち、孔径0.01μm以上0.8μm未満の気孔(微小気孔)が全気孔容積のうちの10vol%以上20vol%未満を占めているものとする。
このような微小気孔が上記のような割合で存在していることにより、単位体積当たりの気孔数を多くすることができ、赤外線の散乱効果を高めることができる。特に、高温域での熱伝導率に大きな影響を及ぼす輻射伝熱の抑制に有効であり、高温での熱伝導率の増加も抑制され、優れた断熱効果が得られる。
In the heat insulating material, among the pores of the porous sintered body, pores (micropores) having a pore diameter of 0.01 μm or more and less than 0.8 μm occupy 10 vol% or more and less than 20 vol% of the total pore volume. Shall.
The presence of such micropores in the above-described proportion can increase the number of pores per unit volume and enhance the infrared scattering effect. In particular, it is effective for suppressing radiant heat transfer that greatly affects the thermal conductivity in a high temperature region, and an increase in thermal conductivity at a high temperature is also suppressed, so that an excellent heat insulating effect can be obtained.

前記微小気孔が全気孔容積に占める割合が10vol%未満であると、単位体積当たりの気孔数が少なく、赤外線散乱効果が十分に得られないことがある。一方、前記微小気孔が全気孔容積に占める割合が20vol%以上では、断熱材の強度低下を招くおそれがある。
なお、前記多孔質焼結体中の気孔径分布は、JIS R 1655「ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法」により測定することができる。
When the proportion of the micropores in the total pore volume is less than 10 vol%, the number of pores per unit volume is small, and the infrared scattering effect may not be sufficiently obtained. On the other hand, if the proportion of the micropores in the total pore volume is 20 vol% or more, the strength of the heat insulating material may be reduced.
The pore size distribution in the porous sintered body can be measured according to JIS R 1655 “Method for testing pore size distribution of molded ceramics by mercury porosimetry”.

前記断熱材の熱伝導率は、具体的には、1000℃以上1500℃以下における熱伝導率が、20℃以上1000℃未満における熱伝導率の1.5倍を超えないものとし、好ましくは、1.2倍を超えないものとする。
このように高温域における熱伝導率の増加が抑制された断熱材は、1000℃以上の高温域においても、より低温の場合と同等の断熱効果が保持され、高温域でも好適に適用することができる。
Specifically, the thermal conductivity of the heat insulating material is that the thermal conductivity at 1000 ° C. or higher and 1500 ° C. or lower does not exceed 1.5 times the thermal conductivity at 20 ° C. or higher and lower than 1000 ° C., It shall not exceed 1.2 times.
Thus, the heat insulating material in which the increase in the thermal conductivity in the high temperature region is suppressed can maintain the same heat insulating effect as in the case of the lower temperature even in the high temperature region of 1000 ° C. or higher, and can be suitably applied even in the high temperature region. it can.

さらに、前記断熱材は、1000℃以上1500℃以下の高温域における熱伝導率が0.45W/(m・K)以下であることが好ましく、0.40W/(m・K)以下であることがより好ましい。
このような1000℃以上の高温でも熱伝導率が増加することなく抑制されている断熱材は、高温でも断熱効果の変動が少なく、好適に使用することができる。
Furthermore, the heat insulating material preferably has a thermal conductivity of 0.45 W / (m · K) or less in a high temperature range of 1000 ° C. or more and 1500 ° C. or less, and is 0.40 W / (m · K) or less. Is more preferable.
Such a heat insulating material that is suppressed without increasing the thermal conductivity even at a high temperature of 1000 ° C. or higher has little variation in the heat insulating effect even at a high temperature and can be suitably used.

なお、孔径10μm以上の範囲内に気孔径分布ピークを有していても差し支えないが、粗大な気孔は輻射伝熱により断熱性の低下を招くため、孔径1000μm超の気孔の存在は好ましくない。
このような気孔径分布であれば、強度を維持しつつ、固体伝熱の寄与が小さい低熱伝導率の断熱材とすることができる。
It should be noted that the pore diameter distribution peak may be within the range of the pore diameter of 10 μm or more. However, since coarse pores cause a decrease in heat insulation due to radiant heat transfer, the presence of pores having a pore diameter of more than 1000 μm is not preferable.
With such a pore size distribution, it is possible to obtain a heat insulating material with low thermal conductivity that contributes less to solid heat transfer while maintaining strength.

また、前記多孔質焼結体は、任意の断面において粒径が100μmより大きい一次粒子が観察されないことが好ましい。より好ましくは、粒径が50μmより大きい一次粒子が存在しないものである。
このように、結晶粒子の成長を抑制することにより、上記のような微小な気孔を有する気孔構造を維持することができ、高温での断熱性が保持される。
In the porous sintered body, it is preferable that primary particles having a particle size larger than 100 μm are not observed in an arbitrary cross section. More preferably, there are no primary particles having a particle size larger than 50 μm.
Thus, by suppressing the growth of crystal grains, the pore structure having the minute pores as described above can be maintained, and the heat insulation at high temperature is maintained.

上記のような本発明に係る断熱材の製造方法は、特に限定されるものではなく、公知の多孔質焼結体の製造方法を適用することができる。気孔構造の形成・調整は、例えば、造孔材や起泡剤の添加等により行うことができる。   The method for producing the heat insulating material according to the present invention as described above is not particularly limited, and a known method for producing a porous sintered body can be applied. Formation and adjustment of the pore structure can be performed, for example, by adding a pore former or a foaming agent.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.

(実施例1)
水硬性アルミナ粉末(BK−112;住友化学株式会社製)11molに対して、酸化マグネシウム粉末(MGO11PB;株式会社高純度化学研究所製)9molの割合で混合し、これに水硬性アルミナと酸化マグネシウムの合計重量に対して等倍の重量の純水を加え、均一に分散させてスラリーを調製した。
そして、造孔材として直径10μmの粒状のアクリル樹脂を前記スラリーに対して50vol%加えて混合、成形し、60mm×70mm×20mmの成形体を得た。
この成形体を、大気中、1800℃で3時間焼成し、多孔質焼結体を作製した。
Example 1
11 mol of hydraulic alumina powder (BK-112; manufactured by Sumitomo Chemical Co., Ltd.) is mixed at a ratio of 9 mol of magnesium oxide powder (MGO11PB; manufactured by Kojundo Chemical Laboratory Co., Ltd.), and this is mixed with hydraulic alumina and magnesium oxide. A slurry was prepared by adding equal weight of pure water to the total weight of and uniformly dispersing pure water.
Then, 50 vol% of a granular acrylic resin having a diameter of 10 μm was added to the slurry as a pore former and mixed and molded to obtain a molded body of 60 mm × 70 mm × 20 mm.
This molded body was fired in the atmosphere at 1800 ° C. for 3 hours to produce a porous sintered body.

上記において得られた多孔質焼結体について、X線回折(X線回折装置:株式会社リガク製 RINT2500、X線源:CuKα、電圧:40kV、電流:0.3A、走査速度:0.06°/s)にて結晶相を同定したところ、マグネシアスピネル相が観察された。
また、この多孔質焼結体について、水銀ポロシメータ(株式会社島津製作所製 オートポア49500)を用いて気孔容積を測定した。図1に、この多孔質焼結体の気孔径分布を示す。
The porous sintered body obtained above was subjected to X-ray diffraction (X-ray diffractometer: RINT2500 manufactured by Rigaku Corporation, X-ray source: CuKα, voltage: 40 kV, current: 0.3 A, scanning speed: 0.06 ° When the crystal phase was identified at / s), a magnesia spinel phase was observed.
Moreover, the pore volume of this porous sintered body was measured using a mercury porosimeter (manufactured by Shimadzu Corporation, Autopore 49500). FIG. 1 shows the pore size distribution of this porous sintered body.

(実施例2及び比較例1,2)
実施例1において、酸化マグネシウム配合割合及び純水添加率は変更せず、造孔材の径及び添加量、焼成温度及び焼成時間を適宜変更し、それ以外は実施例1と同様の方法により、下記表1の実施例2、比較例1、2にそれぞれ示すような気孔構成を有する多孔質焼結体を作製した。
(Example 2 and Comparative Examples 1 and 2)
In Example 1, the magnesium oxide blending ratio and the pure water addition rate are not changed, the diameter and the amount of the pore former, the firing temperature and the firing time are appropriately changed, and the other methods are the same as in Example 1, A porous sintered body having a pore structure as shown in Example 2 and Comparative Examples 1 and 2 in Table 1 below was prepared.

(比較例3)
市販のアルミナ質耐火断熱レンガ(耐熱温度1650℃)を比較例3とした。
(Comparative Example 3)
A commercially available alumina fireproof insulating brick (heat resistant temperature 1650 ° C.) was used as Comparative Example 3.

上記実施例及び比較例の各多孔質焼結体又は断熱レンガについて、水銀ポロシメータを用いて気孔容積を測定した。図1に、それぞれの気孔径分布を示す。
また、上記実施例及び比較例の各多孔質焼結体又は断熱レンガについて、JIS R 2616を参考にして熱伝導率の測定を行った。また、JIS R 2615「耐火断熱れんがの圧縮強さ試験方法」を参考にして、圧縮強さの評価を行った。
各種評価結果を下記表1にまとめて示す。
About each porous sintered compact or heat insulation brick of the said Example and comparative example, the pore volume was measured using the mercury porosimeter. FIG. 1 shows each pore size distribution.
Moreover, about each porous sintered compact or heat insulation brick of the said Example and comparative example, the heat conductivity was measured with reference to JISR2616. Further, the compressive strength was evaluated with reference to JIS R 2615 “Testing method for compressive strength of fireproof insulating brick”.
Various evaluation results are summarized in Table 1 below.

Figure 2016026982
Figure 2016026982

表1、及び図1、2に示した評価結果から、1000℃以上1500℃以下では0.4W/(m・K)以下であり、高温域でも熱伝導率の増加が抑制されていることが確認された。
これに対して、孔径0.01μm以上0.8μm未満の範囲内の微小気孔が全気孔容積の20vol%以上である場合(比較例1)、熱伝導率は小さいものの、圧縮強さが低かった。また、孔径0.01μm以上0.8μm未満の範囲内の微小気孔が全気孔容積の10vol%未満である場合(比較例2)、圧縮強さは高いものの、熱伝導率は、20℃以上1000℃未満の低温域及び1000℃以上1500℃以下の高温域のいずれの領域でも、実施例1,2と比べて非常に高かった。
また、市販の耐火断熱レンガ(比較例3)は、実施例1、2のような微小気孔を有するものではないため、温度上昇に伴って輻射伝熱の増加が見られ、熱伝導率が大きく上昇した。
From the evaluation results shown in Table 1 and FIGS. 1 and 2, it is 0.4 W / (m · K) or less at 1000 ° C. or more and 1500 ° C. or less, and the increase in thermal conductivity is suppressed even in a high temperature range. confirmed.
On the other hand, when the micropores in the pore diameter range of 0.01 μm or more and less than 0.8 μm are 20 vol% or more of the total pore volume (Comparative Example 1), although the thermal conductivity is small, the compressive strength is low. . Moreover, when the micropores in the pore diameter range of 0.01 μm or more and less than 0.8 μm are less than 10 vol% of the total pore volume (Comparative Example 2), although the compressive strength is high, the thermal conductivity is 20 ° C. or more and 1000 It was very high compared with Examples 1 and 2 in any of the low temperature range below 1000C and the high temperature range of 1000 ° C to 1500 ° C.
Moreover, since a commercially available fireproof heat insulation brick (comparative example 3) does not have a micropore like Example 1, 2, the increase in radiant heat transfer is seen with a temperature rise, and thermal conductivity is large. Rose.

ところで、特許文献2では「水硬にて成形」しているのに対して(実施例の(実験1)参照)、本発明の一実施形態は、単に「成形」とするものである(例えば、実施例1参照)。   By the way, in Patent Document 2, “molding is performed with hydraulics” (see (Experiment 1) in the Examples), but one embodiment of the present invention is simply “molding” (for example, See Example 1).

詳しく言えば、本発明の一実施形態における「成形」は、水硬にてスラリーを固化させる段階で公知の脱泡処理を施して、粗大な気孔を除去した後に、所定の形状に成形したものである。このようにしたのは、前述の通り、本発明は、粗大な気孔は輻射伝熱により断熱性の低下を招くため、孔径1000μm超の気孔の存在は好ましくないことによるものである。   More specifically, the “molding” in one embodiment of the present invention is a process in which a known defoaming process is performed at a stage where the slurry is solidified by hydraulic to remove coarse pores and then molded into a predetermined shape. It is. This is because, as described above, the present invention is because the presence of pores having a pore diameter of more than 1000 μm is not preferable because coarse pores cause a decrease in heat insulation due to radiant heat transfer.

ここで、孔径1000μm超の気孔、すなわち粗大な気孔は、容易に目視で確認する事が可能である。粗大な気孔は、例えば、特許文献2[表4]試料No.3−Dでは目視で確認でき、本発明の一実施形態では、目視で確認できないものであった。   Here, pores having a pore diameter exceeding 1000 μm, that is, coarse pores, can be easily visually confirmed. Coarse pores are disclosed in, for example, Patent Document 2 [Table 4] Sample No. In 3-D, it can be visually confirmed, and in one embodiment of the present invention, it cannot be visually confirmed.

なお、本発明の一実施形態は、スラリーに公知の脱泡処理を施したものであるが、本発明は、これに限定されるものではなく、粗大な気孔を除去できるのであれば、その他広く公知の手法を適用でき、一例としてプレス成形も適用が可能である。   Although one embodiment of the present invention is a slurry obtained by subjecting a slurry to a known defoaming treatment, the present invention is not limited to this, and any other wide variety can be used as long as coarse pores can be removed. A known method can be applied, and press molding is also applicable as an example.

参考までに、特許文献3[表2]に記載されている実施例3、4の多孔質セラミックスにおける孔径0.8μm以上10μm未満の気孔、及び孔径0.01μm以上0.8μm未満の気孔の比率を算出すると、孔径0.8μm以上10μm未満の気孔が全気孔容積のうちの65%(特許文献3[表2]実施例3)、62%(特許文献3[表2]実施例4)、かつ、孔径0.01μm以上0.8μm未満の気孔が全気孔容積のうちの32%(特許文献3[表2]実施例3)、27%(特許文献3[表2]実施例4)であり、いずれも、本発明の範囲外である。   For reference, the ratio of pores having a pore diameter of 0.8 μm or more and less than 10 μm and pores having a pore diameter of 0.01 μm or more and less than 0.8 μm in the porous ceramics of Examples 3 and 4 described in Patent Document 3 [Table 2] Calculated, pores having a pore diameter of 0.8 μm or more and less than 10 μm account for 65% (Patent Document 3 [Table 2] Example 3), 62% (Patent Document 3 [Table 2] Example 4) of the total pore volume, In addition, pores having a pore diameter of 0.01 μm or more and less than 0.8 μm are 32% (Patent Document 3 [Table 2] Example 3) and 27% (Patent Document 3 [Table 2] Example 4) of the total pore volume. All are outside the scope of the present invention.

また、特許文献3の実施例3、4では、焼成温度が1300℃または1400℃であるのに対して、本発明の一実施形態では1800℃としている。焼成温度をより高くすることにより、MgAl24粒子間での焼結が進行し、粒子同士が強く結合するので、多孔質焼結体全体の圧縮強さが向上したものと言える。ここで、特許文献3の実施例3、4の圧縮強さは、いずれも0.9MPaであった。(実施例3、4の多孔質セラミックスについての各種評価結果については[表2]を参照。) In Examples 3 and 4 of Patent Document 3, the firing temperature is 1300 ° C. or 1400 ° C., whereas in one embodiment of the present invention, the temperature is 1800 ° C. By increasing the firing temperature, sintering between the MgAl 2 O 4 particles proceeds and the particles are strongly bonded to each other, so that it can be said that the compressive strength of the entire porous sintered body is improved. Here, the compressive strengths of Examples 3 and 4 of Patent Document 3 were both 0.9 MPa. (Refer to [Table 2] for various evaluation results for the porous ceramics of Examples 3 and 4.)

なお、本発明では、焼成温度を1800℃としているが、圧縮強さをより向上させる目的においては、焼成温度は1500℃以上あれば、本発明のような気孔分布を有する多孔質焼結体において、これより低い焼成温度と比較して、十分な圧縮強さの向上が図られると言える。   In the present invention, the firing temperature is 1800 ° C., but for the purpose of further improving the compressive strength, if the firing temperature is 1500 ° C. or higher, the porous sintered body having pore distribution as in the present invention is used. It can be said that sufficient compression strength can be improved as compared with a lower firing temperature.

本発明においては、粗大な気孔の低減と焼成温度の向上を、共に、かつ適切に取り入れることで、より適切に強度を向上させることができるが、強度向上と低熱伝導率維持は、互いに相反する特性であり、本発明においても、気孔容積比の調整と合わせこれら3つの条件を最適化することで、所望の特性を有する断熱材を得ることが可能となる。   In the present invention, it is possible to improve the strength more appropriately by taking both the reduction of coarse pores and the improvement of the firing temperature together and appropriately, but the improvement in strength and the maintenance of low thermal conductivity are mutually contradictory. In the present invention, it is possible to obtain a heat insulating material having desired characteristics by optimizing these three conditions together with the adjustment of the pore volume ratio.

Claims (5)

MgAl24からなる気孔率60%以上73%未満の多孔質焼結体からなり、
孔径0.8μm以上10μm未満の気孔が全気孔容積のうちの70vol%以上90vol%未満を占め、かつ、孔径0.01μm以上0.8μm未満の気孔が全気孔容積のうちの10vol%以上20vol%未満を占め、
1000℃以上1500℃以下における熱伝導率が、20℃以上1000℃未満における熱伝導率の1.5倍を超えないことを特徴とする断熱材。
A porous sintered body composed of MgAl 2 O 4 with a porosity of 60% or more and less than 73%,
The pores having a pore diameter of 0.8 μm or more and less than 10 μm occupy 70 vol% or more and less than 90 vol% of the total pore volume, and the pores having a pore diameter of 0.01 μm or more and less than 0.8 μm are 10 vol% or more and 20 vol% of the total pore volume. Less than,
A heat insulating material characterized in that the thermal conductivity at 1000 ° C. or higher and 1500 ° C. or lower does not exceed 1.5 times the thermal conductivity at 20 ° C. or higher and lower than 1000 ° C.
圧縮強さが1MPa以上であることを特徴とする請求項1に記載の断熱材。   The heat insulating material according to claim 1, wherein the compressive strength is 1 MPa or more. 1000℃以上1500℃以下における熱伝導率が0.45W/(m・K)以下であることを特徴とする請求項1又は2に記載の断熱材。   The heat insulating material according to claim 1 or 2, wherein the heat conductivity at 1000 ° C or more and 1500 ° C or less is 0.45 W / (m · K) or less. 1000℃以上1500℃以下における熱伝導率が0.40W/(m・K)以下であることを特徴とする請求項1〜3のいずれか一項に記載の断熱材。   The heat conductivity in 1000 degreeC or more and 1500 degrees C or less is 0.40 W / (m * K) or less, The heat insulating material as described in any one of Claims 1-3 characterized by the above-mentioned. 1000℃以上1500℃以下における熱伝導率が、20℃以上1000℃未満における熱伝導率の1.2倍を超えないことを特徴とする請求項1〜4のいずれか一項に記載の断熱材。   The heat conductivity in 1000 degreeC or more and 1500 degrees C or less does not exceed 1.2 times the heat conductivity in 20 degreeC or more and less than 1000 degreeC, The heat insulating material as described in any one of Claims 1-4 characterized by the above-mentioned. .
JP2015093775A 2014-06-24 2015-05-01 Insulation Active JP6319769B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015093775A JP6319769B2 (en) 2014-06-24 2015-05-01 Insulation
DE102015211582.8A DE102015211582B4 (en) 2014-06-24 2015-06-23 thermal insulation material
US14/747,020 US9938195B2 (en) 2014-06-24 2015-06-23 Heat insulating material containing a porous sintered body formed of MgAl2O4
KR1020150088972A KR101729842B1 (en) 2014-06-24 2015-06-23 Heat insulating material
CN201510351921.7A CN105315005A (en) 2014-06-24 2015-06-24 Heat insulating material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014128735 2014-06-24
JP2014128735 2014-06-24
JP2015093775A JP6319769B2 (en) 2014-06-24 2015-05-01 Insulation

Publications (2)

Publication Number Publication Date
JP2016026982A true JP2016026982A (en) 2016-02-18
JP6319769B2 JP6319769B2 (en) 2018-05-09

Family

ID=55352577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015093775A Active JP6319769B2 (en) 2014-06-24 2015-05-01 Insulation

Country Status (1)

Country Link
JP (1) JP6319769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030710A (en) * 2014-07-29 2016-03-07 クアーズテック株式会社 Insulating fire brick
CN113735553A (en) * 2021-09-13 2021-12-03 中国科学技术大学 Porous aerogel material, preparation method thereof and electronic cigarette atomization core

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013430A (en) * 2006-06-07 2008-01-24 Nippon Steel Corp Method of manufacturing heat insulating material, heat insulating material, kiln vessel, method of applying heat insulating material and method of recycling heat insulating material
JP2008069050A (en) * 2006-09-15 2008-03-27 Kyoto Univ Porous product, its manufacturing method, sintered product and its manufacturing method
JP2009023848A (en) * 2007-07-17 2009-02-05 Sumitomo Chemical Co Ltd Method for producing magnesia spinel molded article
JP2009512620A (en) * 2005-10-21 2009-03-26 セラマテック・インク Method for manufacturing ceramic insulating member
JP2012229139A (en) * 2011-04-26 2012-11-22 Covalent Materials Corp Porous body ceramics, and method of manufacturing the same
JP2012254910A (en) * 2011-06-10 2012-12-27 Hinomaru Yogyo Kk Heat-insulating firebrick
JP2013209278A (en) * 2012-02-29 2013-10-10 Covalent Materials Corp Porous ceramic
JP2015000838A (en) * 2013-06-18 2015-01-05 コバレントマテリアル株式会社 Heat insulation material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512620A (en) * 2005-10-21 2009-03-26 セラマテック・インク Method for manufacturing ceramic insulating member
JP2008013430A (en) * 2006-06-07 2008-01-24 Nippon Steel Corp Method of manufacturing heat insulating material, heat insulating material, kiln vessel, method of applying heat insulating material and method of recycling heat insulating material
JP2008069050A (en) * 2006-09-15 2008-03-27 Kyoto Univ Porous product, its manufacturing method, sintered product and its manufacturing method
JP2009023848A (en) * 2007-07-17 2009-02-05 Sumitomo Chemical Co Ltd Method for producing magnesia spinel molded article
JP2012229139A (en) * 2011-04-26 2012-11-22 Covalent Materials Corp Porous body ceramics, and method of manufacturing the same
JP2012254910A (en) * 2011-06-10 2012-12-27 Hinomaru Yogyo Kk Heat-insulating firebrick
JP2013209278A (en) * 2012-02-29 2013-10-10 Covalent Materials Corp Porous ceramic
JP2015000838A (en) * 2013-06-18 2015-01-05 コバレントマテリアル株式会社 Heat insulation material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030710A (en) * 2014-07-29 2016-03-07 クアーズテック株式会社 Insulating fire brick
CN113735553A (en) * 2021-09-13 2021-12-03 中国科学技术大学 Porous aerogel material, preparation method thereof and electronic cigarette atomization core

Also Published As

Publication number Publication date
JP6319769B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP5735046B2 (en) Insulation
Ding et al. Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding
Yan et al. Effect of TiO2 addition on microstructure and strength of porous spinel (MgAl2O4) ceramics prepared from magnesite and Al (OH) 3
Ma et al. Preparation and properties of Al2O3–MgAl2O4 ceramic foams
JP5752101B2 (en) Porous ceramics
Kim et al. Processing and properties of glass-bonded silicon carbide membrane supports
JP6602827B2 (en) Insulating material and manufacturing method thereof
Fu et al. Effect of nano-alumina sol on the sintering properties and microstructure of microporous corundum
Yuan et al. A novel aqueous gel-casting for fabricating Al2O3-bonded fibrous mullite ceramics
Yuan et al. Fabrication and microstructure of porous SiC ceramics with Al2O3 and CeO2 as sintering additives
JP6319769B2 (en) Insulation
US20170336014A1 (en) Heat insulator
US9938195B2 (en) Heat insulating material containing a porous sintered body formed of MgAl2O4
Pratapa et al. Infiltration-processed, functionally graded aluminium titanate/zirconia–alumina compositePart I Microstructural characterization and physical properties
JP6319909B2 (en) Insulation
JP5877821B2 (en) Composite fireproof insulation
KR101729842B1 (en) Heat insulating material
JP2016030710A (en) Insulating fire brick
JP6214514B2 (en) Insulation
JP6214518B2 (en) Insulation
Akamine et al. Heat insulating material containing a porous sintered body formed of MgAl 2 O 4
JP6320872B2 (en) Hollow particles and thermal insulation containing hollow particles
JP6478894B2 (en) Porous ceramics
KR101850585B1 (en) Heat insulator
Eom et al. Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180328

R150 Certificate of patent or registration of utility model

Ref document number: 6319769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250