JP5752101B2 - Porous ceramics - Google Patents

Porous ceramics Download PDF

Info

Publication number
JP5752101B2
JP5752101B2 JP2012232881A JP2012232881A JP5752101B2 JP 5752101 B2 JP5752101 B2 JP 5752101B2 JP 2012232881 A JP2012232881 A JP 2012232881A JP 2012232881 A JP2012232881 A JP 2012232881A JP 5752101 B2 JP5752101 B2 JP 5752101B2
Authority
JP
Japan
Prior art keywords
less
pore
vol
pore size
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012232881A
Other languages
Japanese (ja)
Other versions
JP2013209278A (en
Inventor
宗子 赤嶺
宗子 赤嶺
藤田 光広
光広 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2012232881A priority Critical patent/JP5752101B2/en
Priority to US13/972,040 priority patent/US9139448B2/en
Priority to KR1020130099821A priority patent/KR101506083B1/en
Priority to DE102013216912.4A priority patent/DE102013216912B4/en
Priority to CN201310374690.2A priority patent/CN103771851B/en
Priority to CN201510198912.9A priority patent/CN104844249B/en
Publication of JP2013209278A publication Critical patent/JP2013209278A/en
Application granted granted Critical
Publication of JP5752101B2 publication Critical patent/JP5752101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、多孔質セラミックスに関し、特に断熱特性に優れた断熱材として好適な多孔質セラミックスに関する。   The present invention relates to a porous ceramic, and more particularly to a porous ceramic suitable as a heat insulating material having excellent heat insulating properties.

多孔質セラミックスは、緻密なセラミックスに比べて嵩密度及び熱伝導率が低いことから、断熱材として広く用いられている。   Porous ceramics are widely used as heat insulating materials because they have lower bulk density and thermal conductivity than dense ceramics.

例えば、特許文献1には、超微細ヒュームド酸化物を主原料として含み、その他にセラミック超微粉、セラミックファイバーのいずれか少なくとも一種を含む原料を圧縮成形してなる断熱材であって、細孔径分布のグラフ上において、細孔径の大きさが0.01〜0.1μmの範囲及び10〜1000μmの範囲にはそれぞれ、山形のピークが存在するが、該細孔径分布のグラフ上において、細孔径の大きさが0.1〜10μmの範囲内には山形のピークがない細孔分布を示す粒子構造を有する高性能断熱材が開示されている。   For example, Patent Document 1 discloses a heat insulating material obtained by compression-molding a raw material containing ultrafine fumed oxide as a main raw material and at least one of ceramic ultrafine powder and ceramic fiber, and having a pore size distribution. In the graph, the peak of the pore diameter exists in the range of 0.01 to 0.1 μm and the range of 10 to 1000 μm, respectively. A high-performance heat insulating material having a particle structure showing a pore distribution with no peak in the range of 0.1 to 10 μm is disclosed.

特開2011−001204号公報JP 2011-001204 A

しかしながら、特許文献1の断熱材は、超微細ヒュームド酸化物を主原料としているため、1000℃未満の温度では相応の断熱材として使用できるものの、1000℃以上、特に1300℃以上の高温域では粒成長が生じ、細孔の減少による気孔率の低下や細孔径分布の変化により熱伝導率が上昇するため、当該温度領域での断熱性は決して十分と言えるものではなかった。また、高温域で生じる細孔の減少は、断熱材の変形や収縮を招来するため、当該温度領域において断熱材としての使用が困難となるおそれがある。   However, since the heat insulating material of Patent Document 1 uses an ultrafine fumed oxide as a main raw material, it can be used as a corresponding heat insulating material at a temperature of less than 1000 ° C. Since the growth occurred and the thermal conductivity increased due to the decrease in porosity due to the decrease in pores and the change in the pore diameter distribution, the heat insulation in the temperature region was never sufficient. Moreover, since the reduction | decrease of the pore which arises in a high temperature range causes the deformation | transformation and shrinkage | contraction of a heat insulating material, there exists a possibility that the use as a heat insulating material may become difficult in the said temperature range.

本発明は、上記技術的課題に鑑みてなされたものであり、断熱材として好適な材料であり、特に高温域での熱伝導率の温度依存性が小さい多孔質セラミックスを提供することを目的とするものである。   The present invention has been made in view of the above technical problems, and is a material suitable as a heat insulating material. It is an object of the present invention to provide a porous ceramic that has a low temperature dependency of thermal conductivity particularly in a high temperature range. To do.

本発明に係る多孔質セラミックスは、気孔率が65vol%以上90vol%以下であり、化学式XAl24で表されるスピネル質の多孔質セラミックスであって、前記化学式中のXがMgであり、孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%以下であり、孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの5vol%以上40vol%以下を占め、孔径0.14μm以上0.45μm未満の範囲内に少なくとも1つの気孔径分布ピークを有し、かつ、孔径0.45μm以上10μm以下の範囲内に少なくとも1つの気孔径分布ピークを有し、算出平均粒径が0.04μm以上1μm以下であるセラミックス粒子からなることを特徴とする。 The porous ceramic according to the present invention has a porosity of 65 vol% or more and 90 vol% or less, and is a spinel porous ceramic represented by the chemical formula XAl 2 O 4 , wherein X in the chemical formula is Mg, The coarse pores having a pore diameter of more than 1000 μm are 25 vol% or less of the total pore volume, the micropores having a pore diameter of 0.45 μm or less occupy 5 vol% or more and 40 vol% or less of the pore volume of 1000 μm or less, and the pore diameter is 0.14 μm. And having at least one pore size distribution peak in the range of less than 0.45 μm, and having at least one pore size distribution peak in the range of not less than 0.45 μm and not more than 10 μm, and the calculated average particle size is 0 0.04 μm or more and 1 μm or less of ceramic particles.

前記多孔質セラミックスは、孔径10μm超1000μm以下の範囲内に、さらに少なくとも1つの気孔径分布ピークを有していることがより好ましい。   It is more preferable that the porous ceramic has at least one pore size distribution peak in a range of more than 10 μm and not more than 1000 μm.

本発明に係る多孔質セラミックスは、1000℃以上、特に1300℃以上の高温域においても熱伝導率が低く、かつ、熱伝導率の温度依存性も小さいため、優れた断熱特性を有しており、しかも、上記のような高温域においても気孔径分布の変化が少なく、耐熱性が高いため、優れた断熱材として安定して使用することができる。
さらに、本発明に係る断熱材を各種構造材や耐火材に適用すれば、これらの構造材や耐火材においても、本発明に係る断熱材の持つ優れた効果を発揮し得る。
The porous ceramic according to the present invention has excellent heat insulation properties because it has a low thermal conductivity even in a high temperature range of 1000 ° C. or higher, particularly 1300 ° C. or higher, and the temperature dependency of the thermal conductivity is small. In addition, even in the high temperature range as described above, there is little change in pore size distribution and high heat resistance, so that it can be stably used as an excellent heat insulating material.
Furthermore, if the heat insulating material according to the present invention is applied to various structural materials and refractory materials, the excellent effects of the heat insulating materials according to the present invention can also be exhibited in these structural materials and refractory materials.

本発明の一態様に係る多孔質セラミックスから切り出した部材の断面の走査型電子顕微鏡(SEM)写真画像である。It is a scanning electron microscope (SEM) photograph image of the section of the member cut out from porous ceramics concerning one mode of the present invention. 図1のSEM写真画像の粒子の外縁をマーキングした写真である。It is the photograph which marked the outer edge of the particle | grains of the SEM photograph image of FIG. 実施例1に係る多孔質セラミックスの水銀ポロシメータによる気孔径分布を示したグラフである。2 is a graph showing the pore size distribution of a porous ceramic according to Example 1 using a mercury porosimeter. 実施例1と従来例についての温度と熱伝導率の関係を示したグラフである。It is the graph which showed the relationship between the temperature and thermal conductivity about Example 1 and a prior art example. 実施例2に係る多孔質セラミックスを、大気中、1500℃で24時間の熱処理する前後における気孔径分布を示したグラフである。It is the graph which showed the pore diameter distribution before and behind heat-processing the porous ceramic which concerns on Example 2 at 1500 degreeC for 24 hours. 実施例12に係る多孔質セラミックスの水銀ポロシメータによる気孔径分布を示したグラフである。14 is a graph showing the pore size distribution of a porous ceramic according to Example 12 using a mercury porosimeter.

以下、本発明を、より詳細に説明する。
本発明に係る多孔質セラミックスは、気孔率が65vol%以上90vol%以下であり、化学式XAl24で表されるスピネル質の多孔質セラミックスであって、前記化学式中のXがZn、Fe、Mg、Ni及びMnのうちのいずれかであり、孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%以下であり、孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの5vol%以上40vol%以下を占め、孔径0.14μm以上10μm以下の範囲内に気孔径分布ピークを少なくとも1つ有し、算出平均粒径が0.04μm以上1μm以下であるセラミックス粒子からなる。
Hereinafter, the present invention will be described in more detail.
The porous ceramic according to the present invention has a porosity of 65 vol% or more and 90 vol% or less and is a spinel porous ceramic represented by the chemical formula XAl 2 O 4 , wherein X in the chemical formula is Zn, Fe, One of Mg, Ni, and Mn, the coarse pores having a pore size larger than 1000 μm are 25 vol% or less of the total pore volume, and the micropores having a pore size of 0.45 μm or less of the pores having a pore size of 1000 μm or less It consists of ceramic particles that occupy 5 vol% or more and 40 vol% or less, have at least one pore size distribution peak in the range of pore size 0.14 μm or more and 10 μm or less, and have a calculated average particle size of 0.04 μm or more and 1 μm or less.

上記のように、本発明に係る多孔質セラミックスは、気孔率が65vol%以上90vol%以下である。
前記気孔率が65vol%未満では、多孔質セラミックス中における基材部の占める割合が高いため、固体伝熱が増加し、低い熱伝導率を得るには不十分である。気孔率が高いほど、固体伝熱の影響が小さくなり、熱伝導率を低くすることができるが、前記気孔率が90%を超えると、多孔質セラミックス中における基材部の占める割合が相対的に低下し、脆弱となり、断熱材としての使用に耐えられなくなる。
なお、前記気孔率は、JIS R 2614「耐火断熱れんがの比重及び真気孔率の測定方法」にて算出されるものである。
As described above, the porous ceramic according to the present invention has a porosity of 65 vol% or more and 90 vol% or less.
When the porosity is less than 65 vol%, the ratio of the base material portion in the porous ceramics is high, so that the solid heat transfer increases and it is insufficient to obtain a low thermal conductivity. The higher the porosity, the smaller the effect of solid heat transfer and the lower the thermal conductivity. However, when the porosity exceeds 90%, the proportion of the base material portion in the porous ceramics is relative. It becomes fragile and becomes unusable for use as a heat insulating material.
The porosity is calculated according to JIS R 2614 “Method for measuring specific gravity and true porosity of refractory heat-insulating brick”.

前記スピネル質の多孔質セラミックスは、化学式XAl24で表される化学組成からなり、XはMg、Mn、Fe、Ni及びZnのうちのいずれかである。すなわち、MgAl24、MnAl24、FeAl24、NiAl24及びZnAl24のうちのいずれかである。これらは、本発明に係る多孔質セラミックスの特定の構造を損なわない限り、1種又は複数種が混在するものであってもよい。上記化学組成の中でも、特に、MgAl24、すなわち、マグネシアスピネルが、高温での強度に優れていることから好ましい。
このようなスピネル質の多孔質セラミックスは、耐熱性が高く、高温での強度に優れているため、粒成長や粒界の結合によって生じる気孔の形状や大きさの変動の影響を低減させることができ、熱伝導率の温度依存性の抑制効果を長期間維持することができる。
したがって、1000℃以上、特に1300℃以上の高温域での構造安定性が高く、等方的な結晶構造を有するため、高温に曝された場合でも、特異な収縮を示さないため、高温用の断熱材として適している。
なお、前記化学組成及びスピネル質の構造は、例えば、粉末X線回折法により測定及び同定することができる。
The spinel porous ceramic has a chemical composition represented by the chemical formula XAl 2 O 4 , where X is any one of Mg, Mn, Fe, Ni, and Zn. That is, it is one of MgAl 2 O 4 , MnAl 2 O 4 , FeAl 2 O 4 , NiAl 2 O 4 and ZnAl 2 O 4 . As long as these do not impair the specific structure of the porous ceramic according to the present invention, one kind or a plurality of kinds may be mixed. Among the above chemical compositions, MgAl 2 O 4 , that is, magnesia spinel is particularly preferable because of its excellent strength at high temperatures.
Since such spinel porous ceramics have high heat resistance and excellent strength at high temperatures, it is possible to reduce the effects of fluctuations in pore shape and size caused by grain growth and grain boundary bonding. It is possible to maintain the effect of suppressing the temperature dependence of the thermal conductivity for a long period of time.
Therefore, it has a high structural stability at a high temperature range of 1000 ° C. or higher, particularly 1300 ° C. or higher, and has an isotropic crystal structure. Therefore, even when exposed to high temperatures, it does not show any specific shrinkage. Suitable as heat insulating material.
The chemical composition and the spinel structure can be measured and identified by, for example, a powder X-ray diffraction method.

前記多孔質セラミックスの気孔は、孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%以下であり、孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの5vol%以上40vol%以下を占めている。
孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%を超えると、赤外線の散乱効果が低い粗大気孔が増加することによって輻射の影響が大きくなり、断熱効果が不十分となり、また、強度が著しく低下する。
As for the pores of the porous ceramics, coarse pores having a pore diameter larger than 1000 μm are 25 vol% or less of the total pore volume, and micropores having a pore diameter of 0.45 μm or less are 5 vol% or more and 40 vol% of the pore volume having a pore diameter of 1000 μm or less. It occupies the following.
If the coarse pores having a pore diameter of more than 1000 μm exceed 25 vol% of the total pore volume, the influence of radiation increases due to an increase in the coarse pores with low infrared scattering effect, the heat insulation effect becomes insufficient, and the strength is remarkable. descend.

また、孔径0.45μm以下の微小気孔を有することで、単位体積あたりの気孔数を多くすることができ、このような微小気孔数が多くなることにより、赤外線の散乱効果を高めることができる。これは、特に、高温時の熱伝導率に大きな影響を与える輻射伝熱の抑制に有効であり、熱伝導率の温度依存性を小さくすることができる。
前記微小気孔が孔径1000μm以下の気孔の容積に占める割合が5vol%未満であると、単位体積あたりの気孔数が少なく、赤外線散乱効果が十分に得られない。一方、前記微小気孔が孔径1000μm以下の気孔の容積に占める割合が40vol%を超えると、該多孔質セラミックスの気孔率を65vol%以上にすることが困難となり、熱伝導率を低下させる効果が得られない。
Further, by having micropores having a pore diameter of 0.45 μm or less, the number of pores per unit volume can be increased, and by increasing the number of such micropores, the infrared scattering effect can be enhanced. This is particularly effective in suppressing radiant heat transfer that has a large effect on the thermal conductivity at high temperatures, and the temperature dependence of the thermal conductivity can be reduced.
When the proportion of the fine pores in the volume of pores having a pore diameter of 1000 μm or less is less than 5 vol%, the number of pores per unit volume is small, and the infrared scattering effect cannot be sufficiently obtained. On the other hand, when the proportion of the micropores in the pore volume with a pore diameter of 1000 μm or less exceeds 40 vol%, it becomes difficult to increase the porosity of the porous ceramic to 65 vol% or more, and the effect of reducing the thermal conductivity is obtained. I can't.

なお、孔径1000μm以下の気孔容積は、JIS R 1655「ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法」により測定されるものである。また、孔径が1000μmより大きい気孔の割合は、上述した「耐火断熱れんがの比重及び真気孔率の測定方法」にて算出した気孔率から、「ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法」にて測定を行った孔径1000μm以下の気孔率を差し引いた値として求められるものである。   The pore volume with a pore diameter of 1000 μm or less is measured according to JIS R 1655 “Method for testing pore size distribution of compacts by mercury intrusion method of fine ceramics”. In addition, the ratio of pores having a pore diameter of more than 1000 μm is calculated based on the porosity calculated in the above-mentioned “Method for measuring specific gravity and true porosity of refractory heat-insulating bricks”. It is obtained as a value obtained by subtracting the porosity having a pore diameter of 1000 μm or less measured by “Method”.

また、前記多孔質セラミックスは、孔径0.14μm以上10μm以下の範囲内に気孔径分布ピークを少なくとも1つ有している。
このような気孔径分布を有していることにより、赤外線の散乱による輻射伝熱抑制効果がより高まり、熱伝導率の温度依存性を小さくすることができる。
上記孔径範囲内の気孔径分布ピークは、1つであってもよく、あるいは、2つ以上あってもよい。
Further, the porous ceramic has at least one pore size distribution peak within a pore size range of 0.14 μm to 10 μm.
By having such a pore size distribution, the effect of suppressing radiant heat transfer due to infrared scattering can be further increased, and the temperature dependence of the thermal conductivity can be reduced.
The pore size distribution peak within the pore size range may be one, or two or more.

前記多孔質セラミックスは、好ましくは、孔径0.14μm以上0.45μm未満の範囲内に少なくとも1つの気孔径分布ピークを有し、かつ、孔径0.45μm以上10μm以下の範囲内に少なくとも1つの気孔径分布ピークを有している。
これにより、孔径0.45μm以下の微小気孔を含みつつ、かつ、気孔率を容易に増加させることができる。
The porous ceramic preferably has at least one pore size distribution peak in the range of pore diameters of 0.14 μm or more and less than 0.45 μm and at least one pore in the range of pore diameters of 0.45 μm or more and 10 μm or less. It has a pore size distribution peak.
Thereby, the porosity can be easily increased while including micropores having a pore diameter of 0.45 μm or less.

さらに、孔径10μm超1000μm以下の範囲内にも、気孔径分布ピークを有していることが、より好ましい。
このような気孔径分布を有していることにより、強度を維持しつつ、該多孔質セラミックス全体の気孔率がより高くなるため、より軽量で、固体伝熱の寄与が小さい低熱伝導率の断熱材が得られる。
Furthermore, it is more preferable to have a pore size distribution peak in the range of more than 10 μm and 1000 μm or less.
By having such a pore size distribution, the porosity of the entire porous ceramic becomes higher while maintaining the strength. Therefore, the heat insulation is lighter and has a low thermal conductivity that contributes less to solid heat transfer. A material is obtained.

また、前記多孔質セラミックスは、算出平均粒径が0.04μm以上1μm以下であるセラミックス粒子からなる。
このような粒子で構成することにより、単位体積当たりの粒界数を多くし、フォノンの粒界散乱効果を高めることができ、熱伝導率を低くすることができる。
The porous ceramic is made of ceramic particles having a calculated average particle size of 0.04 μm or more and 1 μm or less.
By comprising such particles, the number of grain boundaries per unit volume can be increased, the phonon grain boundary scattering effect can be increased, and the thermal conductivity can be lowered.

前記算出平均粒径が0.04μm未満では、高温での使用時に粒成長が起こり、気孔が塞がれて、微小気孔が減少する傾向にあり、輻射伝熱を抑制する効果が不十分となる。一方、前記算出平均粒径が1μmを超えると、粒界の結合が強化され、固体伝熱の影響が大きくなり、熱伝導率が高くなる。   When the calculated average particle size is less than 0.04 μm, grain growth occurs during use at a high temperature, pores are blocked, and micropores tend to decrease, and the effect of suppressing radiant heat transfer becomes insufficient. . On the other hand, when the calculated average particle size exceeds 1 μm, the bonding of grain boundaries is strengthened, the influence of solid heat transfer becomes large, and the thermal conductivity increases.

ここで、前記算出平均粒径は、次のようにして求めたものである。まず、多孔質セラミックスの任意の断面で顕微鏡画像撮影を行い、この断面画像内から、長径と短径の計測が可能である粒子を100個無作為抽出する。そして、画像の濃淡からこれらの粒子の外縁をマーキングして、長径と短径を画像にて計測する。1個の粒子についての長径と短径の平均値を該粒子の粒径とみなし、粒子100個の平均値を求め、これを算術平均直径とする。
なお、前記顕微鏡画像撮影の方法は、特に限定されないが、解析の容易さを考慮すると、走査型電子顕微鏡(SEM)を用いることが好ましい。
図1に、SEM写真画像の一例を示し、図2に、図1のSEM写真画像の粒子の外縁を上述した手法によりマーキングしたものを示す。
Here, the calculated average particle diameter is obtained as follows. First, a microscopic image is taken at an arbitrary cross section of the porous ceramic, and 100 particles capable of measuring a major axis and a minor axis are randomly extracted from the cross-sectional image. Then, the outer edges of these particles are marked from the density of the image, and the major axis and the minor axis are measured with the image. The average value of the major axis and the minor axis for one particle is regarded as the particle size of the particle, the average value of 100 particles is obtained, and this is defined as the arithmetic average diameter.
The method for taking a microscope image is not particularly limited, but it is preferable to use a scanning electron microscope (SEM) in consideration of the ease of analysis.
FIG. 1 shows an example of an SEM photographic image, and FIG. 2 shows an example in which the outer edges of the particles of the SEM photographic image of FIG. 1 are marked by the method described above.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
(実施例1)
水硬性アルミナ粉末(BK−112;住友化学株式会社製)11molに対して、酸化マグネシウム粉末(MGO11PB;株式会社高純度化学研究所製)9molの割合で混合し、純水を加えてスラリーを調製した。これに、造孔材として直径10μmのアクリル樹脂をスラリーに対して50vol%加えて混合し、水硬にて成形を行い、75mm×105mm×厚さ30mmの板状の成形体を得た。この成形体を、大気中、1500℃で3時間焼成し、多孔質セラミックスを得た。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
Example 1
A slurry is prepared by adding pure water to 11 mol of hydraulic alumina powder (BK-112; manufactured by Sumitomo Chemical Co., Ltd.) at a ratio of 9 mol of magnesium oxide powder (MGO11PB; manufactured by Kojundo Chemical Laboratory Co., Ltd.). did. An acrylic resin having a diameter of 10 μm as a pore former was added to and mixed with 50 vol% of the slurry, and molded by hydraulic to obtain a plate-shaped molded body of 75 mm × 105 mm × thickness 30 mm. This molded body was fired at 1500 ° C. for 3 hours in the air to obtain a porous ceramic.

上記において得られた多孔質セラミックスについて、X線回折(X線源:CuKα、電圧:40kV、電流:0.3A、走査速度:0.06°/s)にて結晶相を同定したところ、マグネシアスピネル相が観察された。
また、図3に、この多孔質セラミックスの気孔径分布を示す。図3に示した気孔径分布のグラフから、孔径0.20μmと孔径3.80μmに、それぞれピークが確認された。
About the porous ceramic obtained above, when the crystal phase was identified by X-ray diffraction (X-ray source: CuKα, voltage: 40 kV, current: 0.3 A, scanning speed: 0.06 ° / s), magnesia A spinel phase was observed.
FIG. 3 shows the pore size distribution of this porous ceramic. From the pore size distribution graph shown in FIG. 3, peaks were observed at a pore size of 0.20 μm and a pore size of 3.80 μm.

表1に、前記多孔質セラミックスについての各種評価結果をまとめて示す。なお、比較のため、ムライト質の繊維構造からなる市販の断熱材について、材質、主構造及び耐熱温度はカタログ記載の値を、その他は実測値を、従来例として併記した。   Table 1 summarizes various evaluation results for the porous ceramics. For comparison, with regard to a commercially available heat insulating material having a mullite fiber structure, the material, main structure, and heat resistance temperature are shown in the catalog, and other values are shown as conventional examples.

また、熱伝導率は、JIS R 2252−1「耐火物の熱伝導率の試験方法−第1部:熱線法(直交法)」に基づいて、50mm×70mm×厚さ20mmの試料にて、熱線に白金ロジウム合金線(87%Pt、13%Rh)を用い、R熱電対を使用して、最高1500℃までの測定を行った。
図4に、実施例1と前記従来例の熱伝導率の測定結果のグラフを示す。
In addition, the thermal conductivity is a sample of 50 mm × 70 mm × thickness 20 mm based on JIS R 2252-1 “Testing method of thermal conductivity of refractory-Part 1: Hot wire method (orthogonal method)” A platinum rhodium alloy wire (87% Pt, 13% Rh) was used as the heat ray, and measurement was performed up to 1500 ° C. using an R thermocouple.
In FIG. 4, the graph of the measurement result of the heat conductivity of Example 1 and the said prior art example is shown.

図4に示したグラフから分かるように、市販の断熱材(従来例)は、温度上昇に伴って輻射伝熱の増加が見られ、熱伝導率が大きく上昇した。
これに対して、実施例1は、熱伝導率が0.19〜0.22W/m・Kの範囲内にあり、温度依存性は見られず、1000℃以上、特に1300℃以上の高温域でも低熱伝導率であることが確認された。また、1500℃までの昇温時とその後の降温時の測定での熱伝導率の相違は認められず、このことから、1500℃の高温に曝された後でも、断熱性は変化しないことが確認された。
As can be seen from the graph shown in FIG. 4, in the commercially available heat insulating material (conventional example), an increase in radiant heat transfer was observed with an increase in temperature, and the thermal conductivity significantly increased.
On the other hand, in Example 1, the thermal conductivity is in the range of 0.19 to 0.22 W / m · K, no temperature dependence is seen, and the high temperature range is 1000 ° C. or higher, particularly 1300 ° C. or higher. However, it was confirmed that the thermal conductivity was low. In addition, no difference in thermal conductivity was observed between the temperature rise to 1500 ° C. and the subsequent temperature fall, and from this, the thermal insulation may not change even after exposure to a high temperature of 1500 ° C. confirmed.

(実施例2〜11、比較例1〜8)
下記表2に示すような各構造を有する多孔質セラミックスを作製した。
各多孔質セラミックスの構造は、原料の水硬性アルミナ粉末の平均粒径、酸化マグネシウム粉末の混合比、造孔材の添加量、焼成温度及び焼成時間を変更することにより調整した。
表2に、各多孔質セラミックスについての各種評価結果をまとめて示す。
(Examples 2-11, Comparative Examples 1-8)
Porous ceramics having each structure as shown in Table 2 below were prepared.
The structure of each porous ceramic was adjusted by changing the average particle diameter of the raw hydraulic alumina powder, the mixing ratio of the magnesium oxide powder, the added amount of the pore former, the firing temperature and the firing time.
Table 2 summarizes various evaluation results for each porous ceramic.

表2に示した評価結果から分かるように、実施例1〜11は、1300℃及び1500℃のいずれの場合も、熱伝導率が従来例の0.29W/m・K及び0.40W/m・Kよりも低く、温度上昇による熱伝導率の増加もほとんどないことが確認された。
なお、気孔率が高いほど熱伝導率が低くなるが、気孔率90%を超える(気孔率92%を目標として製造した)多孔質セラミックス(比較例2)は、脆弱で十分な強度を有するものを作製することができなかった。
As can be seen from the evaluation results shown in Table 2, in Examples 1 to 11, the thermal conductivity is 0.29 W / m · K and 0.40 W / m of the conventional example in both cases of 1300 ° C. and 1500 ° C. -It was confirmed that it is lower than K and there is almost no increase in thermal conductivity due to temperature rise.
The higher the porosity is, the lower the thermal conductivity is, but the porous ceramics (Comparative Example 2) exceeding the porosity of 90% (manufactured with a porosity of 92% as a target) is brittle and has sufficient strength. Could not be produced.

また、実施例3は、孔径0.14μm以上10μm以下の範囲内の気孔径分布ピークは1つであるが、実施例のうち、気孔率は最も低く、熱伝導率は最も高かった。
それ以外の実施例は、孔径0.14μm以上0.45μm未満の範囲内と、孔径0.45μm以上10μm以下の範囲内に、それぞれ1つずつ気孔径分布ピークを有しており、気孔率は70vol%以上であり、本発明のより好ましい形態による効果が確認された。
In Example 3, there was one pore size distribution peak in the range of pore size of 0.14 μm or more and 10 μm or less, but among the examples, the porosity was the lowest and the thermal conductivity was the highest.
The other examples have pore size distribution peaks one by one in the range of pore diameters of 0.14 μm or more and less than 0.45 μm and in the range of pore diameters of 0.45 μm or more and 10 μm or less, respectively. It was 70 vol% or more, and the effect of the more preferred embodiment of the present invention was confirmed.

また、図5に、実施例2で作製した多孔質セラミックスについて、大気中、1500℃で24時間の熱処理を行う前後での気孔径分布のグラフを示す。
図5の気孔径分布のグラフに示したように、熱処理前後での気孔径分布の変化は見られないことから、本発明に係る多孔質セラミックスは1500℃の高温に曝されても、その気孔径は変化せず、耐熱性に優れていることが認められる。
FIG. 5 shows a graph of pore size distribution before and after the porous ceramic produced in Example 2 is subjected to heat treatment at 1500 ° C. for 24 hours in the atmosphere.
As shown in the pore size distribution graph of FIG. 5, no change in the pore size distribution was observed before and after the heat treatment. Therefore, even when the porous ceramic according to the present invention was exposed to a high temperature of 1500 ° C., It is recognized that the pore diameter does not change and is excellent in heat resistance.

(実施例12)
実施例1に準じた方法により、下記表3の実施例12に示すように、孔径0.14μm以上10μm以下の範囲内と、さらに、孔径10μm超1000μm以下の範囲内にも気孔径分布ピークを有する多孔質セラミックスを、造孔材の直径及び添加量を適宜調整することにより作製した。
表3に、この多孔質セラミックスについての各種評価結果を示す。比較のため、実施例1、5の評価結果も併せて示す。
なお、表3における圧縮強度は、各多孔質セラミックスを一辺20mmの立方体に加工した測定試料について、JIS R 2615「耐火断熱れんがの圧縮強さ試験方法」による方法で評価した。
また、図6に、この多孔質セラミックスの気孔径分布を示す。
(Example 12)
By the method according to Example 1, as shown in Example 12 of Table 3 below, a pore size distribution peak was also observed in the pore diameter range of 0.14 μm or more and 10 μm or less, and also in the pore diameter range of 10 μm or more and 1000 μm or less. The porous ceramic was prepared by appropriately adjusting the diameter and addition amount of the pore former.
Table 3 shows various evaluation results of this porous ceramic. For comparison, the evaluation results of Examples 1 and 5 are also shown.
In addition, the compressive strength in Table 3 was evaluated by a method according to JIS R 2615 “Test method for compressive strength of refractory heat-insulating brick” for a measurement sample obtained by processing each porous ceramic into a cube having a side of 20 mm.
FIG. 6 shows the pore size distribution of this porous ceramic.

表3に示した評価結果から分かるように、実施例12は、実施例5と比較して、気孔率及び熱伝導率は同程度であるが、圧縮強度が高かった。これは、気孔率が同程度の場合、孔径が大きい気孔を有する方が、基材骨格部が太くなるため、強度が増加したためであると考えられる。
したがって、実施例1と実施例12との比較から分かるように、孔径10μm超1000μm以下の範囲内に、さらに気孔径分布ピークを有することにより、圧縮強度を損なうことなく、より気孔率が高く、低熱伝導率の多孔質セラミックスを得ることが可能となる。
As can be seen from the evaluation results shown in Table 3, Example 12 had the same degree of porosity and thermal conductivity as Example 5, but had higher compressive strength. This is considered to be due to the increase in strength because the base material skeleton becomes thicker in the case of having pores with a large pore diameter when the porosity is similar.
Therefore, as can be seen from the comparison between Example 1 and Example 12, by having a pore size distribution peak in the range of more than 10 μm and 1000 μm or less, the porosity is higher without impairing the compressive strength, It becomes possible to obtain porous ceramics with low thermal conductivity.

なお、上記実施例では、MgAl24のみについて説明したが、上述したとおり、本発明では、ZnAl24、FeAl24、NiAl24、MnAl24のいずれかのスピネル質セラミックスでも、同様の効果が得られる。これらは、順に、ZnO+Al23、Fe23+Al23、NiO+Al23、MnO+Al23の組み合わせによる原料を用いること以外は、上述したMgAl24とほぼ同様にして製造することができる。 In the above embodiment, only MgAl 2 O 4 has been described. However, as described above, in the present invention, any spinel material of ZnAl 2 O 4 , FeAl 2 O 4 , NiAl 2 O 4 , or MnAl 2 O 4 is used. The same effect can be obtained with ceramics. These are manufactured in substantially the same manner as the MgAl 2 O 4 described above, except that the raw materials in combination of ZnO + Al 2 O 3 , Fe 2 O 3 + Al 2 O 3 , NiO + Al 2 O 3 , MnO + Al 2 O 3 are used in this order. can do.

Claims (2)

気孔率が65vol%以上90vol%以下であり、化学式XAl24で表されるスピネル質の多孔質セラミックスであって、
前記化学式中のXがMgであり、
孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%以下であり、
孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの5vol%以上40vol%以下を占め、
孔径0.14μm以上0.45μm未満の範囲内に少なくとも1つの気孔径分布ピークを有し、かつ、孔径0.45μm以上10μm以下の範囲内に少なくとも1つの気孔径分布ピークを有し、
算出平均粒径が0.04μm以上1μm以下であるセラミックス粒子からなることを特徴とする多孔質セラミックス。
A porosity of 65 vol% or more and 90 vol% or less, and a spinel porous ceramic represented by the chemical formula XAl 2 O 4 ,
X in the chemical formula is Mg,
Coarse atmospheric pores having a pore diameter of more than 1000 μm are 25 vol% or less of the total pore volume,
Micropores having a pore diameter of 0.45 μm or less occupy 5 vol% or more and 40 vol% or less of the volume of pores having a pore diameter of 1000 μm or less,
Having at least one pore size distribution peak in the range of pore size 0.14 μm or more and less than 0.45 μm, and having at least one pore size distribution peak in the range of pore size 0.45 μm or more and 10 μm or less,
A porous ceramic comprising a ceramic particle having a calculated average particle size of 0.04 μm or more and 1 μm or less.
孔径10μm超1000μm以下の範囲内に、さらに少なくとも1つの気孔径分布ピークを有していることを特徴とする請求項1に記載の多孔質セラミックス。 The pore size of 10μm ultra 1000μm within the following range, further porous ceramic according possible to Claim 1 you wherein having at least one pore diameter distribution peak.
JP2012232881A 2012-02-29 2012-10-22 Porous ceramics Active JP5752101B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012232881A JP5752101B2 (en) 2012-02-29 2012-10-22 Porous ceramics
US13/972,040 US9139448B2 (en) 2012-10-22 2013-08-21 Heat-insulating material
KR1020130099821A KR101506083B1 (en) 2012-10-22 2013-08-22 Heat-insulating material
DE102013216912.4A DE102013216912B4 (en) 2012-10-22 2013-08-26 Thermal insulation material
CN201310374690.2A CN103771851B (en) 2012-10-22 2013-08-26 Thermal insulation material
CN201510198912.9A CN104844249B (en) 2012-10-22 2013-08-26 Heat-insulating material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012043847 2012-02-29
JP2012043847 2012-02-29
JP2012232881A JP5752101B2 (en) 2012-02-29 2012-10-22 Porous ceramics

Publications (2)

Publication Number Publication Date
JP2013209278A JP2013209278A (en) 2013-10-10
JP5752101B2 true JP5752101B2 (en) 2015-07-22

Family

ID=49527516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232881A Active JP5752101B2 (en) 2012-02-29 2012-10-22 Porous ceramics

Country Status (1)

Country Link
JP (1) JP5752101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174118B2 (en) 2021-07-26 2022-11-17 中外炉工業株式会社 Fan shaft cooling mechanism

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152220B2 (en) * 2014-03-14 2017-06-21 大日精化工業株式会社 Resin composition and coating liquid
JP6319909B2 (en) * 2014-11-07 2018-05-09 クアーズテック株式会社 Insulation
JP6319769B2 (en) * 2014-06-24 2018-05-09 クアーズテック株式会社 Insulation
US9938195B2 (en) 2014-06-24 2018-04-10 Coorstek Kk Heat insulating material containing a porous sintered body formed of MgAl2O4
KR101729842B1 (en) 2014-06-24 2017-04-24 쿠어스택 가부시키가이샤 Heat insulating material
JP6211479B2 (en) * 2014-07-30 2017-10-11 クアーズテック株式会社 Composite insulation
US9784403B2 (en) 2014-07-02 2017-10-10 Coorstek Kk Heat insulator
JP6214518B2 (en) * 2014-12-22 2017-10-18 クアーズテック株式会社 Insulation
JP6214514B2 (en) * 2014-07-02 2017-10-18 クアーズテック株式会社 Insulation
JP2016030710A (en) * 2014-07-29 2016-03-07 クアーズテック株式会社 Insulating fire brick
JP6188027B2 (en) * 2014-07-29 2017-08-30 クアーズテック株式会社 Indefinite refractory
JP6320872B2 (en) * 2014-08-05 2018-05-09 クアーズテック株式会社 Hollow particles and thermal insulation containing hollow particles
JP6478894B2 (en) * 2014-10-22 2019-03-06 クアーズテック株式会社 Porous ceramics
JP6127353B2 (en) * 2015-03-16 2017-05-17 ニチアス株式会社 Insulating material and manufacturing method thereof
WO2016147665A1 (en) * 2015-03-16 2016-09-22 ニチアス株式会社 Heat insulator and method for producing same
JP6456857B2 (en) 2016-01-29 2019-01-23 クアーズテック株式会社 Particles for irregular refractories
JP6545641B2 (en) * 2016-02-22 2019-07-17 クアーズテック株式会社 Reflective material
WO2018070374A1 (en) * 2016-10-12 2018-04-19 日本碍子株式会社 Middle member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131587A (en) * 1978-04-04 1979-10-12 Toyoda Chuo Kenkyusho Kk Carrier and its manufacture
CA1267164A (en) * 1985-12-13 1990-03-27 Harold G. Sowman Microcrystalline transition metal oxide spinel articles
JPH09263445A (en) * 1996-03-27 1997-10-07 Ngk Insulators Ltd Refractory for baking ferrite
JP4029170B2 (en) * 2002-07-16 2008-01-09 株式会社村田製作所 Manufacturing method of negative characteristic thermistor
JP4737594B2 (en) * 2004-02-18 2011-08-03 日立金属株式会社 Ceramic honeycomb filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174118B2 (en) 2021-07-26 2022-11-17 中外炉工業株式会社 Fan shaft cooling mechanism

Also Published As

Publication number Publication date
JP2013209278A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5752101B2 (en) Porous ceramics
KR101506083B1 (en) Heat-insulating material
US9188397B2 (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
Bodišová et al. Grain growth suppression in alumina via doping and two-step sintering
JP6621422B2 (en) Production method of transparent alumina sintered body
US20130299749A1 (en) Composite ceramic body, and component member for semiconductor manufacturing apparatus
JP5877821B2 (en) Composite fireproof insulation
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
CN112912447A (en) Magnesium oxide, method for producing same, highly thermally conductive magnesium oxide composition, and magnesium oxide ceramic using same
US9938195B2 (en) Heat insulating material containing a porous sintered body formed of MgAl2O4
JP6349100B2 (en) Alumina sintered body and manufacturing method thereof
JP5673794B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2007284314A (en) Corrosion resistant magnesia-based sintered compact, member for heat treatment formed from the same, and method for producing the sintered compact
JP6319769B2 (en) Insulation
JP2016030710A (en) Insulating fire brick
JP6320872B2 (en) Hollow particles and thermal insulation containing hollow particles
JP6319909B2 (en) Insulation
JP6214518B2 (en) Insulation
JP6188027B2 (en) Indefinite refractory
JP6214514B2 (en) Insulation
KR20160004214A (en) Heat insulator
JP6211479B2 (en) Composite insulation
JP5602820B2 (en) Manufacturing method of ZnO sintered body
JP2017149632A (en) Reflector
Li et al. Fabrication and thermal properties of Al2TiO5/Al2O3 composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141020

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150519

R150 Certificate of patent or registration of utility model

Ref document number: 5752101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250