JP2016025833A - Linear drive vibrating apparatus - Google Patents

Linear drive vibrating apparatus Download PDF

Info

Publication number
JP2016025833A
JP2016025833A JP2014163099A JP2014163099A JP2016025833A JP 2016025833 A JP2016025833 A JP 2016025833A JP 2014163099 A JP2014163099 A JP 2014163099A JP 2014163099 A JP2014163099 A JP 2014163099A JP 2016025833 A JP2016025833 A JP 2016025833A
Authority
JP
Japan
Prior art keywords
shaft
magnet
case
ring
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014163099A
Other languages
Japanese (ja)
Inventor
睦夫 平野
Mutsuo Hirano
睦夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014163099A priority Critical patent/JP2016025833A/en
Publication of JP2016025833A publication Critical patent/JP2016025833A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus capable of achieving high-output vibration drive and highly efficient power generation.SOLUTION: The linear vibration drive apparatus is structured so that shaft magnets are integrally arranged for efficient use of magnetic field flux of an induction coil of the vibration drive apparatus and a cooling fan is provided and to serve as a single or multiple vibratory mechanism, thereby increasing a driving force, and can be also utilized for power generation and as various types of sensors by reverse use.SELECTED DRAWING: Figure 8

Description

本発明は、ポンプやマッサージ器などのリニア駆動振動機構もしくはそれを含む装置等で回転モータに相当する機構を含むもので、駆動軸としてのマグネットシャフトとケースに固着された誘導コイルに印加する交番電流によって発生するコイル磁界磁束の変動により該シャフトを軸方向に往復動作をさせ、それら機構が組み込まれたケース自身を振動または該シャフトをポンプ機構などと組み合わせ、もしくは外部機構として、軸連結してポンプなどのリニア駆動をさせるもので、また逆に使用すれば発電等もでき各種センサーにもなるリニア駆動振動装置に関する。The present invention includes a linear drive vibration mechanism such as a pump or a massager or a mechanism corresponding to a rotary motor in a device including the same, and an alternating current applied to a magnet shaft as a drive shaft and an induction coil fixed to the case. The shaft is reciprocated in the axial direction due to the fluctuation of the magnetic field magnetic flux generated by the current, and the case in which these mechanisms are incorporated vibrates, or the shaft is combined with a pump mechanism or the like, or the shaft is connected as an external mechanism. The present invention relates to a linear drive vibration device that linearly drives a pump or the like, and can be used to generate power if used in reverse.

従来のリニア振動装置では駆動出力が誘導回転モータなどの同出力と比較してみると不足している。回転モータと同じ出力を得ようとするとマグネットやコイルの形状が大きく重くなったりする。さらに発電装置としても高い出力を求める場合さらに効率をあげる必要がある。これらの振動装置の効率を回転モータ以上に上げることにより駆動力が高くなり回転モータの代替品として使用でき、建物劣化センサー、タイヤ空気圧センサーや地震計等の感度が高いものへの応用が簡単にでき、交流発電システムも構築できる。従来機構ではボビン形状の誘導コイルは、音声や周波数発信器などの低域周波数の増幅交番電流でその内径部位に発生する変動磁界磁束を環内部に挿入されているシャフト中央に挿入固着されているマグネットの磁界磁束に吸引反発させてシャフトを左右に動作させているが,従来のリニア振動機構では誘導コイルに発生する磁束にマグネット磁束が平均的に十分に反映反応動作していない。また誘導コイル上下面交番磁界磁束と対面する方式のマグネット磁束を利用して左右に振動動作させる方式は大きな駆動出力を取り出されるが該出力を大きくするとマグネット面がコイル面に当たり異音発生や装置破損の原因となった。さらに高い周波数で駆動すると振幅が小さくなりシャフト動作連動の揺動ファン機構では振幅に比例して動作が縮小するので冷却効果が発揮できずマグネットの温度上昇により磁界磁束の劣化を招き、更なる温度上昇と磁束劣化の負の連鎖とない性能低下や破損の原因となる。In the conventional linear vibration device, the drive output is insufficient when compared with the output of an induction rotary motor or the like. When trying to obtain the same output as a rotary motor, the shape of the magnet or coil becomes large and heavy. Furthermore, when a high output is required as a power generation device, it is necessary to further increase the efficiency. By increasing the efficiency of these vibration devices beyond that of rotary motors, the driving force increases and can be used as a substitute for rotary motors. And an AC power generation system can be constructed. In the conventional mechanism, the bobbin-shaped induction coil is fixedly inserted into the center of the shaft where the variable magnetic field magnetic flux generated in the inner diameter portion by the amplified alternating current of the low frequency such as voice and frequency transmitter is inserted in the ring. The shaft is moved to the left and right by attracting and repelling the magnetic field magnetic flux of the magnet. However, in the conventional linear vibration mechanism, the magnetic flux does not sufficiently reflect and react to the magnetic flux generated in the induction coil on average. In addition, the system that vibrates left and right using the magnet magnetic flux that faces the alternating magnetic field magnetic flux on the top and bottom of the induction coil can extract a large drive output, but if the output is increased, the magnet surface will hit the coil surface and generate abnormal noise or damage the device. It became the cause of. When driven at a higher frequency, the amplitude decreases and the swinging fan mechanism linked to the shaft operation reduces the operation in proportion to the amplitude. Therefore, the cooling effect cannot be exhibited, and the magnetic flux rises due to the temperature rise of the magnet. A negative chain of rise and magnetic flux degradation, and no performance degradation or damage.

従来、この種に近い電気振動製品は体感音響振動装置、バイブレータや各種発電センサー装置や駆動装置が公開または一部特許になっているが実用製品としてあまり知られていない。いずれも誘導コイル面とマグネット面の吸引・反発もしくはコイル環に挿入されたシャフトマグネットとの磁束磁界の変動を利用している。また反発機構に機械的板バネを使用しているものもあり寿命を考慮する必要があり騒音も出る。類似特許に下記のような公開特許や特許がある。
Conventionally, an electric vibration product close to this type has been disclosed or partially patented for a sensory acoustic vibration device, a vibrator, various power generation sensor devices, and a drive device, but is not well known as a practical product. In either case, the induction coil surface and the magnet surface are attracted and repelled, or the magnetic flux magnetic field fluctuation between the shaft magnet inserted in the coil ring is utilized. In addition, there is a mechanism that uses a mechanical leaf spring for the repulsion mechanism, so it is necessary to consider the life and noise is generated. Similar patents include the following published patents and patents.

出願番号 特願2011−64941 多機能振動装置 出願番号 特表2002521185号広報 出願番号 特願2005−118898 往復運動リニア装置 特表200251185広報や特眼2005−118898での構造は微少駆動では反応するが駆動出力が大きくなると出力が制限されコイル面にマグネットが当たり異音や破損をまねき実用性がない。 Application No. Japanese Patent Application No. 2011-64941 Multifunctional Vibration Device Application No. Special Table No. 200252185 Application No. Japanese Patent Application No. 2005-118898 Reciprocating linear device The structure disclosed in JP-T-20011185 and JP-A-2005-118898 responds with minute driving, but when the driving output becomes large, the output is limited and the magnet hits the coil surface, causing abnormal noise and breakage, and is not practical.

従来の同期振動装置は体感音響同期振動装置や人体マッサージ振動器に使用する場合は小出力なので問題ないが、ポンプなどの駆動装置として利用する場合や発電機機能では高い発電能力が要求され、大きな駆動力でリニア動作させる必用があり、回転モータの同じ駆動出力と比較すると出力不足にあった。本発明の目的は前記課題に鑑み、振動器の新たなる構造を発明し、従来のリニア振動駆動装置の磁気誘導回路機構の効率向上にあり多方面の応用製品に展開することにある。The conventional synchronous vibration device is not a problem because it is a small output when used in a sensory acoustic synchronous vibration device or a human body massage vibrator, but when used as a drive device such as a pump or a generator function, high power generation capacity is required, It was necessary to operate linearly with the driving force, and the output was insufficient when compared with the same driving output of the rotary motor. In view of the above problems, an object of the present invention is to invent a new structure of a vibrator, to improve the efficiency of a magnetic induction circuit mechanism of a conventional linear vibration driving device, and to develop it in various application products.

本発明は前記課題を解決するため、請求項1の発明に係わるリニア駆動振動装置は、ケース左右軸受け環中央部シャフトに位置する誘導コイル環よりわずかに大きい幅のスキマをとり上下に着磁しコイル幅の長さの第一リングマグネットをシャフト左右にスキマを挟んで互いに磁束反発状態で挿入接着固着し、シャフト上の該マグネット外端に誘導コイル面の磁極に反応するようにコイル環内径よりも大きくコイル外径よりも小さい小幅の第二リングマグネットを第一マグネットに着磁させ接着剤等で固着し、ストローク距離位置の両ケース端の軸受けで支持するとともに該シャフト上の第2マグネット磁界に磁束反発する反発リングマグネットをシャフトに自由貫通する内径で該軸受けまたはケース側に配置固着した構造とし、ポンプや振動器としての一体装置としてさらにケース外にシャフトを延長して軸継ぎ手でポンプ装置等と連結や、風車、水車などと連結した逆利用で発電機や地震計などの各種センサーなどに組み込める。In order to solve the above-mentioned problems, the linear drive vibration device according to the present invention has a gap slightly wider than the induction coil ring located in the central shaft of the case left and right bearing ring and is vertically magnetized. The first ring magnet with a coil width is inserted and bonded in a magnetic flux repulsion state with a gap on the left and right sides of the shaft, and the outer ring magnet on the shaft reacts to the magnetic pole of the induction coil surface from the inner diameter of the coil ring. A second ring magnet, which is larger and smaller than the outer diameter of the coil, is magnetized on the first magnet and fixed with an adhesive or the like, supported by bearings at both case ends at the stroke distance position, and a second magnet magnetic field on the shaft. A rebound ring magnet that repels magnetic flux is arranged and fixed on the bearing or case side with an inner diameter that freely penetrates the shaft. Coupling and a pump device or the like in the axial coupling by extending the shaft further to the outside of the case as an integral device as vessels, windmills, incorporated like various sensors such as generators and seismometers in reverse use linked like a water wheel.

請求項2の発明に係わる振動装置はケース中央部に複数の振動機構を構成する誘導コイルとシャフトマグネットユニットを放射状に均等配置し、各誘導コイルを固定包含するシリンダーを配置し、リンダー中央の間隙部には冷却用ファンモータ機構もしくは装置を備え、シリンダーをはさんでストローク距離分をとって対峙させた円板を左右に配置し、該円板は冷却扇にもなるアルミや耐熱樹脂等でできた薄板円板で各機構部のシャフトをネジ等の締結要素で固定する。複数個の振動ユニットの誘導コイルには交番電流を単独もしくは複数同時印加の選択回路経由で配電され駆動力を増減できる機構とした。左右の円板の中心の外側には往復運動するシャフトを設けストローク距離をとった位置のケース側に軸受けを配置しシャフトを支持している。誘導コイル印加交番電流によって各ユニットの固定シャフト連結固定の円板の動作移動と連動してシャフトは軸受け間を往復動作するようにシャフトに貫通挿入する反発用リングマグネットもしくはシャフトを中心に放射状に対向面の円板に固着されるマグネット群と同位置に反発マグネットを左右ケース側面に配置固着し固定円板のマグネット磁界磁束に反発させるので無信号時はつねに各軸受け間シャフト中央がコイル環中心にくるようにできる。該反発マグネットの配置やその磁束は非駆動装置の状況に合わせて設定する。In the vibration device according to the second aspect of the present invention, the induction coil and the shaft magnet unit constituting the plurality of vibration mechanisms are arranged radially and uniformly in the center portion of the case, the cylinders including the induction coils are arranged, and the gap in the center of the linder is arranged. The unit is equipped with a cooling fan motor mechanism or device, and discs that are opposed to each other with a stroke distance sandwiched between cylinders are arranged on the left and right. The discs are made of aluminum or heat-resistant resin that also serves as a cooling fan. The shaft of each mechanism part is fixed with fastening elements, such as a screw, with the thin disk discs made. The induction coil of a plurality of vibration units has a mechanism capable of increasing / decreasing the driving force by distributing the alternating current through a selection circuit that applies single or multiple alternating currents. A reciprocating shaft is provided outside the center of the left and right discs, and a bearing is disposed on the case side at a position where a stroke distance is taken to support the shaft. In response to an alternating current applied to the induction coil, the shaft is linked to the movement of the fixed shaft connected to the fixed shaft of each unit. The rebound magnets are placed and secured on the sides of the left and right cases at the same position as the magnet group fixed to the disk on the surface, and repel the magnet magnetic field magnetic flux of the fixed disk, so the center of the shaft between each bearing is always a coil ring when there is no signal. It can be centered. The arrangement of the repulsion magnet and its magnetic flux are set according to the situation of the non-driving device.

請求項3の発明に係わる振動装置は前記1項および2項記載の振動装置において、高い周波数で該装置を駆動する場合、出力を大きくすると装置冷却が必用になる。そのため音声または駆動周波数増幅電流を誘導コイルに印可する電流を分岐しケース内に設けた電子整流器で直流に変えて一定電流を直流モータに配電し、片側もしくは両側軸にファンを取り付け、冷却風を装置内部におくり冷却駆動する機構ないし装置を該ケース内または該ケース端に備えた。According to a third aspect of the present invention, in the vibration device according to the first and second aspects, when the device is driven at a high frequency, the device must be cooled when the output is increased. Therefore, the current that applies the voice or drive frequency amplification current to the induction coil is branched and converted into direct current by an electronic rectifier provided in the case, and a constant current is distributed to the direct current motor. A mechanism or device for driving inside the device for cooling is provided in the case or at the end of the case.

以上説明したように、請求項1の発明によれば、シャフトに固着されたマグネット形状構造により誘導コイルの変動磁界磁束を利用するマグネット極形態を従来のマグネット構造と比較するとコイル上下面に生じる磁束と内径部に発生する磁束両面を有効磁界とし同時利用できるので平均的に高い効率で、コイル変動磁束を利用できるので回転モータ以上の駆動出力を出せる振動装置となる。この機構を応用すれば簡単構造で高い駆動力の直接組み込みのポンプや振動器もできさらに逆接続で発電機や地震計や振動計などの各種センサーもできる。As described above, according to the first aspect of the present invention, the magnetic pole shape that uses the variable magnetic field magnetic flux of the induction coil by the magnet-shaped structure fixed to the shaft is compared with the conventional magnet structure, and the magnetic flux generated on the upper and lower surfaces of the coil. Since both sides of the magnetic flux generated in the inner diameter portion can be used as effective magnetic fields at the same time, the coil fluctuation magnetic flux can be used with high efficiency on average, so that the vibration device can output a drive output higher than that of the rotary motor. By applying this mechanism, it is possible to produce pumps and vibrators with a simple structure and high driving force, and various sensors such as generators, seismometers and vibrometers can be connected in reverse.

請求項2の発明によれば、第1項の振動機構を複数組み込んだシリンダー両側にストローク距離をとった各機構シャフトの固定をした冷却団扇機能のある円板を左右に配置し中央に左右外側に向かって往復シャフトを配置しケース軸受けで支持したので大きな駆動力が出せ、また必要により各振動ユニットを選択作動させることができ省エネにつながる。さらにシリンダー中央部隙間にファンモータ装置ないし同機構を設けファン冷却を適正に作動することができるので装置温度が上がらず性能が安定し寿命や信頼性が増す。According to the second aspect of the present invention, the discs having the function of cooling fan with the mechanism shafts fixed at the stroke distances on both sides of the cylinder incorporating the plurality of vibration mechanisms according to the first aspect are arranged on the left and right sides, and the left and right outer sides in the center. Since a reciprocating shaft is arranged toward and supported by a case bearing, a large driving force can be produced, and if necessary, each vibration unit can be selectively operated, leading to energy saving. Further, a fan motor device or mechanism is provided in the center clearance of the cylinder so that fan cooling can be operated properly, so that the temperature of the device does not rise and the performance is stabilized and the life and reliability are increased.

請求項3の発明によれば、第1項記載、第2項記載のリニア駆動振動装置において交番交流信号や音声信号の高い周波数で電流増幅をすると振幅が小さくなりシャフトマグネットの往復動作による冷却動作が減少するためマグネットや装置の熱上昇をまねき磁界磁束の減少やコイルの劣化破損を招くが、該装置の内部に直流モータファンを配置しその電源を交流誘導コイル電流から分岐し電子整流器で直流変換し駆動電圧をほぼ一定でモータに配電することにより安定的にファン動作ができ、周波数に関係なく冷却能力を一定に維持することができ性能や寿命の永い信頼性の高い装置になる。According to a third aspect of the invention, in the linear drive vibration device according to the first and second aspects, when the current is amplified at a high frequency of the alternating AC signal or the audio signal, the amplitude becomes small, and the cooling operation by the reciprocating operation of the shaft magnet. However, the magnetic flux is reduced and the coil is deteriorated and damaged. However, a DC motor fan is placed inside the device and its power supply is branched from the AC induction coil current. By converting and distributing the drive voltage to the motor with a substantially constant voltage, the fan can operate stably, and the cooling capacity can be maintained constant regardless of the frequency, resulting in a highly reliable device with long performance and long life.

第一実施形態に係わる振動装置断面組図Cross-sectional assembly drawing of vibration device according to the first embodiment 第一実施形態に係わる振動装置の全体外観図Overall external view of the vibration device according to the first embodiment 第一実施形態に係わるマグネットとコイル磁極変動右側上死点状態図Magnet and coil magnetic pole fluctuation right top dead center state diagram according to the first embodiment 第一実施形態に係わるマグネットとコイル磁極中立状態図Magnet and coil magnetic pole neutral state diagram according to the first embodiment 第一実施形態に係わるマグネットとコイル磁極変動左側上死点状態図Magnet and coil magnetic pole fluctuation left top dead center state diagram according to the first embodiment 第二実施形態に係わる多連複合振動駆動装置外観図External view of multiple composite vibration drive device according to second embodiment 第二実施形態に係わる多連複合振動駆動装置正面外観図Front view of multiple composite vibration drive device according to second embodiment 第二実施形態に係わる多連複合振動駆動装置断面図Cross-sectional view of a multiple complex vibration drive device according to the second embodiment 多連複合振動装置右正面外形&一部断面図Multiple complex vibration device right front outline & partial sectional view 多連複合振動装置左正面部分断面図Multiple composite vibrator left front partial cross section

実施例図1に示される振動装置は第1項発明の全体図である。片側シャフト先端部には軸継ぎ手が示され非駆動体であるポンプや発電時の水車や風車の軸と連結されもしくは発電機や各種センサーとして利用する。実施例図8は第2項発明の多連複合振動駆動装置の側面全体断面図で図1と同様に軸継ぎ手22が図示されている。実施例図1および実施例図8は直流モータにも代替できるファン機構図にもなっている。図3、4および図5は振動駆動装置シャフト動作のコイルとマグネットの磁極変動状態を示し、無信号時は誘導コイル4に電流が印加されないのでシャフトマグネット5は中立を保ったままの図4であるが、交番電流が誘導コイル4に印加されるとコイル環左右端4にプラス磁極とマイナス磁極ができる。その状態はコイル中央でほぼ左右領域に分けられる。中心にいくほど減磁し、越えると反対の磁極域になる。一方両コイル環端面の磁束は円周外側に向かって弱くなるが反対磁極らない。本発明はこの2領域を同時にシャフトマグネット磁界磁束に感応させることにより従来構造の1.5−2倍の駆動磁束を可能とした。両端の磁極磁束を面域で利用するには誘導コイル面にマグネットが衝突するなどの欠点があったがコイル内径環の磁極磁束を同時利用することによりシャフトの加速度運動に対し終点域で反対域磁極磁束がブレーキングして働き無駄が少なく駆動力が倍加する。第5図は誘導コイル4に電流が印加され右側環にS極磁束、左側環にN極磁束が構成されシャフト側の誘導コイル環幅よりわずかに長い隙間23をとり配置されている両マグネット磁束が反応し同極状態のシャフトは右に移動しケース反発マグネット磁界に第二マグネット外側磁界と反発するまで動作する。一方シャフト左マグネット磁界は異極対向しているので引き合いシャフトを右に移動動作する。そのとき第一マグネット外側N極は第二マグネットS極と着磁と同時接着固定されて面磁束Sに感応する。しかし第一マグネット中側S極はコイル他端の磁極磁束S極にブレーキングされる。第3図行程を繰り返しシャフトはスムースに往復駆動する。図8,図9および図10は多連複合機構の振動駆動装置の側面断面図、正面部分断面図とシャフト固定円板部分図を示す。1 is an overall view of the first aspect of the present invention. A shaft joint is shown at the tip of the one-side shaft and is connected to a pump as a non-driving body, a shaft of a water turbine or a wind turbine during power generation, or used as a generator or various sensors. Embodiment FIG. 8 is a cross-sectional view of the entire side surface of the multiple complex vibration drive device of the second aspect of the present invention, in which a shaft joint 22 is shown as in FIG. Embodiment FIG. 1 and FIG. 8 are also fan mechanism diagrams that can be substituted for a DC motor. 3, 4 and 5 show the state of fluctuation of the magnetic poles of the coil and magnet in the vibration drive device shaft operation, and no current is applied to the induction coil 4 when there is no signal, so that the shaft magnet 5 remains neutral in FIG. However, when an alternating current is applied to the induction coil 4, positive and negative magnetic poles are formed at the left and right ends 4 of the coil ring. The state is roughly divided into left and right regions at the center of the coil. The demagnetization goes to the center, and the opposite magnetic pole region is reached when it exceeds. On the other hand, the magnetic fluxes at the end faces of both coil rings become weaker toward the outer circumference, but are not opposite to each other. The present invention makes it possible to generate a driving magnetic flux 1.5-2 times that of the conventional structure by simultaneously sensitizing these two regions to the shaft magnet magnetic field magnetic flux. To use the magnetic pole magnetic flux at both ends in the surface area, there was a drawback such as a magnet colliding with the induction coil surface, but by using the magnetic pole magnetic flux of the inner ring of the coil at the same time, the opposite area in the end point area with respect to the acceleration motion of the shaft The magnetic pole magnetic flux is braked and the working force is reduced and the driving force is doubled. FIG. 5 shows both magnet magnetic fluxes in which a current is applied to the induction coil 4, an S pole magnetic flux is formed on the right ring, an N pole magnetic flux is formed on the left ring, and a gap 23 slightly longer than the induction coil ring width on the shaft side is arranged. Reacts and the shaft in the same polarity state moves to the right and operates until the case repulsive magnet magnetic field repels the second magnet outer magnetic field. On the other hand, since the shaft left magnet magnetic field is opposite to the opposite pole, the attracting shaft is moved to the right. At that time, the first magnet outer N-pole is bonded and fixed simultaneously with the second magnet S-pole and is sensitive to the surface magnetic flux S. However, the first magnet middle S pole is braked to the magnetic pole magnetic flux S pole at the other end of the coil. The process of FIG. 3 is repeated and the shaft is smoothly driven to reciprocate. 8, FIG. 9 and FIG. 10 show a side sectional view, a front partial sectional view and a shaft fixing disk partial view of a vibration driving device of a multiple composite mechanism.

産業上の利用の可能性Industrial applicability

本発明装置はモータ駆動の振動装置や発電機構に勝るとも劣らない駆動力でポンプ装置や振動装置に利用できその逆利用で発電装置や各種センサー機器に応用できるものである。産業用機器だけでなくマッサージャーなど民生用としても幅広く利用できる機構である。The device of the present invention can be used for a pump device or a vibration device with a driving force not inferior to that of a motor-driven vibration device or power generation mechanism, and can be applied to a power generation device or various sensor devices by using the reverse. This mechanism can be used not only for industrial equipment but also for consumer use such as massagers.

1…第一リングマグネット
2…第二リングマグネット
3…反発マグネット
4…誘導コイル
5…シャフト
6…軸受け
7…シリンダー
8…ジョイントバネ
9…ケース
10…軸連結器
11…モータ
12…ファン
13…電子整流器
14…保護キャップ
15…リード線
16…固定シャフト
17…連結シリンダー
18…中間隙間リング
19ファンモータ固定ゴム
20…中間隙間リング
21…入力ケーブル
22…空気孔
23…シャフト中央隙間
24…シャフト円板
25…シャフト固定ネジ
26…止め輪
27…固定シャフト
28…シリンダーコイル固定板
29…コイル固定板止めネジ
30…コイル環挿入穴
DESCRIPTION OF SYMBOLS 1 ... 1st ring magnet 2 ... 2nd ring magnet 3 ... Repulsion magnet 4 ... Inductive coil 5 ... Shaft 6 ... Bearing 7 ... Cylinder 8 ... Joint spring 9 ... Case 10 ... Shaft coupling 11 ... Motor 12 ... Fan 13 ... Electronics Rectifier 14 ... Protective cap 15 ... Lead wire 16 ... Fixed shaft 17 ... Connecting cylinder 18 ... Intermediate gap ring 19 Fan motor fixing rubber 20 ... Intermediate gap ring 21 ... Input cable 22 ... Air hole 23 ... Shaft center gap 24 ... Shaft disc 25 ... Shaft fixing screw 26 ... Retaining ring 27 ... Fixed shaft 28 ... Cylinder coil fixing plate 29 ... Coil fixing plate set screw 30 ... Coil ring insertion hole

Claims (3)

ポンプや発電機の駆動または発電モータに代わりリニア駆動源またはリニア発電機となる振動装置の環状誘導コイルの交番電流によって生じる変動磁界磁力に反応し往復運動をするシャフトマグネットにおいて、該装置の中心に位置する誘導コイル環内のシャフト中心にコイル幅より少し長いスキマ距離をとり誘導コイル環幅の長さの第一のリングマグネットを左右に反発磁極で配置しシャフトに接着剤等で固着し、さらにコイル環内径よりも大きくケース内径より小さい外径の第二の円板状リングマグネットをシャフトに挿入し第1のマグネット外面に着磁接着しシャフト固着しコイル環に挿入後同様反対の第一リングマグネットに第二リングマグネットを同様挿入固着し、ストローク距離をとったケース側に軸受を設けシャフトを支持させ、該シャフト上の第二マグネット外側磁極に反発するように反発リングマグネットを配置し、その内口径はシャフトが自由貫通するサイズとした構造でさらにケース外側シャフトを延長し軸結合器を配置した装置で地震計や各種センサー機器や振動器としてまたはポンプ駆動装置や逆利用で発電機にもなるリニア振動駆動装置。In the shaft magnet that reciprocates in response to the changing magnetic field magnetic force generated by the alternating current of the annular induction coil of the vibration device that becomes the linear drive source or linear generator instead of the pump or generator drive or generator motor, at the center of the device The first ring magnet of the length of the induction coil ring width is arranged with repulsive magnetic poles on the left and right, and fixed to the shaft with adhesive etc. A second disc-shaped ring magnet having an outer diameter larger than the inner diameter of the coil ring and smaller than the inner diameter of the case is inserted into the shaft, and is magnetized and bonded to the outer surface of the first magnet. The second ring magnet is inserted and fixed in the same way to the magnet, and a bearing is provided on the case side where the stroke distance is taken to support the shaft. A device in which a rebound ring magnet is arranged so as to repel the second magnet outer magnetic pole on the shaft, the inner diameter of the shaft is a size that allows the shaft to freely penetrate, and the case outer shaft is further extended to provide a shaft coupler. A linear vibration drive device that can also be used as a seismometer, various sensor devices and vibrators, or as a pump drive device and reversely used as a generator. 前記第1項記載の振動器の複数機構に関するもので,振動器ユニットを構成する誘導コイルとシャフトマグネットユニットを放射状に複数個均等包含するシリンダーをはさんでストローク距離分をとって対峙する2枚の冷却扇にもなるアルミや耐熱樹脂等でできた薄板でできた円板は各ユニットのシャフトの固定板とし、シリンダー中央の間隙部には冷却用ファンモータ機構を備え、円板の中心からケ−ス外に伸びたシャフトはストローク距離をとった位置にケース軸受けで支持され反発リングマグネットを抱き該反発マグネットは軸受けまたはケースに固着され、もしくはケース側面にシャフトを中心に放射状に対向面の円板に固着されるマグネット群と同位置に磁界反発させその距離をネジ機構等で調節できるようにし反発磁束を調整し、無信号時はつねにシャフト中央がコイル環中心にくるようにしもしくは非駆動装置の状況に合わせるように反発磁束調節し、ケース外側シャフト延長上にポンプ等の機構や発電用駆動機構を軸連結できる機構をもったもしくは各種センサーや発電装置に利用されるリニア駆動振動装置。2 related to a plurality of mechanisms of the vibrator according to the above item 1, wherein two sheets are opposed to each other by taking a stroke distance between cylinders that radially include a plurality of induction coils and shaft magnet units that constitute the vibrator unit. A thin disk made of aluminum or heat-resistant resin, which also serves as a cooling fan, is used as a fixed plate for the shaft of each unit, and a cooling fan motor mechanism is provided in the gap in the center of the cylinder from the center of the disk. The shaft extending out of the case is supported by a case bearing at a stroke distance and holds a repulsion ring magnet, and the repulsion magnet is fixed to the bearing or the case, or the side surface of the case is radially opposed to the shaft. Repel the magnetic field at the same position as the magnet group fixed to the disk, and adjust the repulsive magnetic flux so that the distance can be adjusted with a screw mechanism etc. When there is no signal, the center of the shaft is always at the center of the coil ring or the repulsive magnetic flux is adjusted so that it matches the situation of the non-drive device, and the mechanism such as a pump or power generation drive mechanism can be connected to the shaft extension on the case outer shaft extension Linear drive vibration device used for various sensors and power generators. 前記第1項および2項記載の振動駆動装置に関するもので、第1項記載の単一振動器や第2項記載の複合装置において、該装置ケ−ス内部に直流モータファンを配置しその電源を誘導コイル電流から分岐しケース内部に設ける電子整流器で直流変換し一定電圧で駆動するファン機構とし周波数に関係なく冷却能力を一定に維持することができる装置とし、ケース外側シャフト延長上にポンプ等の機構や発電用駆動機構を軸連結でき、もしくは各種センサーやポンプ等の一体化した装置にもなるリニア駆動振動装置。The present invention relates to the vibration drive device according to the first and second aspects, and in the single vibrator according to the first item or the composite device according to the second item, a DC motor fan is disposed inside the device case and the power supply thereof. A fan mechanism that branches from the induction coil current and is converted to direct current by an electronic rectifier provided inside the case and driven at a constant voltage, and a device that can maintain a constant cooling capacity regardless of frequency, such as a pump on the outside shaft extension A linear drive vibration device that can be connected to a power generation mechanism or a power generation drive mechanism, or can be an integrated device such as various sensors and pumps.
JP2014163099A 2014-07-24 2014-07-24 Linear drive vibrating apparatus Pending JP2016025833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014163099A JP2016025833A (en) 2014-07-24 2014-07-24 Linear drive vibrating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014163099A JP2016025833A (en) 2014-07-24 2014-07-24 Linear drive vibrating apparatus

Publications (1)

Publication Number Publication Date
JP2016025833A true JP2016025833A (en) 2016-02-08

Family

ID=55272158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014163099A Pending JP2016025833A (en) 2014-07-24 2014-07-24 Linear drive vibrating apparatus

Country Status (1)

Country Link
JP (1) JP2016025833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022520897A (en) * 2019-04-05 2022-04-01 ジェネルゴ エス.アール.エル. A system for generating linear movements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022520897A (en) * 2019-04-05 2022-04-01 ジェネルゴ エス.アール.エル. A system for generating linear movements

Similar Documents

Publication Publication Date Title
KR102085846B1 (en) Non-resonant high power hybrid energy harvester
CN101944821B (en) Permanent-magnet damping linear generator
EP2503677B1 (en) Reciprocal vibration type power generator equipped with inner columnar and outer annular magnetic motion block
JP2006325381A (en) Reciprocating linear engine
JP2013187928A (en) Oscillation power generator
CN104811008A (en) Cylindrical permanent magnet flux-switching linear oscillation motor
CN103047283A (en) Large-air gap five-freedom degree miniature magnetic bearing and working method
US5341055A (en) Combination reciprocating motor and inverter
US20130229080A1 (en) Rotary Continuous Permanent Magnet Motor
JP2016025833A (en) Linear drive vibrating apparatus
CN107612266A (en) A kind of electromagnetic vibration energy transducer based on radial magnetic field
JP3214266U (en) Micro linear vibrator
US20110050019A1 (en) Torque generating device
CN107131124B (en) Driving integrated screw rotor
CN110165864A (en) Linear motion motor and application method
CN113489377B (en) Bistable vortex-induced vibration power generation device based on balance adjustment of permanent magnet
CN106602760B (en) Rare earth permanent magnet magnetic suspension motor
CN201830126U (en) Permanent magnet damping linear generating set
US11218053B2 (en) Method and apparatus to drive a rotor and generate electrical power
CN107370326A (en) A kind of electromagnetic vibration machine
CN209170248U (en) A kind of gyromagnet Exciting-simulator system piezoelectric generating device
CN207504786U (en) Rotary type travelling wave ultrasonic motor and driver in a kind of face
JP2018046619A (en) Linear vibration motor
JP5428938B2 (en) Vibration generator
JP2015233397A (en) Rotational power producing device and electric power generator