JP2016024090A - Crack detecting method - Google Patents

Crack detecting method Download PDF

Info

Publication number
JP2016024090A
JP2016024090A JP2014148925A JP2014148925A JP2016024090A JP 2016024090 A JP2016024090 A JP 2016024090A JP 2014148925 A JP2014148925 A JP 2014148925A JP 2014148925 A JP2014148925 A JP 2014148925A JP 2016024090 A JP2016024090 A JP 2016024090A
Authority
JP
Japan
Prior art keywords
crack
conductive layer
conductive member
electro
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014148925A
Other languages
Japanese (ja)
Inventor
鈴木 政治
Seiji Suzuki
政治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014148925A priority Critical patent/JP2016024090A/en
Publication of JP2016024090A publication Critical patent/JP2016024090A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crack detecting method that can accurately detect the time range in which a crack occurred.SOLUTION: In a crack detecting method for detecting any crack occurring in any constituent part of a rolling bearing under impact test, an electro-conductive member 10 having an electro-conductive layer whose electric resistance varies with the occurrence or growth of a crack and an insulating base layer that insulates the electro-conductive layer from the surface of the constituent element is arranged on the inner circumferential face of a holder 1. By causing an electric current to flow through the electro-conductive layer and measuring the electrified state of the electro-conductive layer, the occurrence of any crack is detected.SELECTED DRAWING: Figure 1

Description

本発明は亀裂検知方法に関する。   The present invention relates to a crack detection method.

振動を受ける条件下で使用される、鉄道車両用軸受や、鉄鋼用軸受、建機用軸受等においては、設計が妥当であるか確認するための衝撃試験を行うことが必須である。   For railway vehicle bearings, steel bearings, construction machinery bearings, etc. used under conditions subject to vibration, it is essential to conduct an impact test to confirm that the design is appropriate.

例えば、特許文献1には、保持器付きの転がり軸受の内輪が装着される軸と、転がり軸受の外輪が装着されるハウジングと、軸が転がり軸受でハウジングに支持されたユニットを組み立てた状態でその軸を回転させる駆動装置と、軸が駆動装置により回転させられた状態でユニットに振動又は衝撃を加える負荷発生装置と、を備えた保持器の強度評価試験装置が開示されている。   For example, in Patent Document 1, a shaft in which an inner ring of a rolling bearing with a cage is mounted, a housing in which an outer ring of the rolling bearing is mounted, and a unit in which the shaft is supported on the housing by the rolling bearing are assembled. A cage strength evaluation test device is disclosed that includes a drive device that rotates the shaft, and a load generator that applies vibration or impact to the unit while the shaft is rotated by the drive device.

特開2008−64730号公報JP 2008-64730 A

軸受が組み立てられた状態で実施する保持器の落下衝撃試験では、保持器に亀製が入ったことを試験中に確認できないため、亀裂の入ったときを正確に把握できない。このため、一定時間ごとに試験を中断し、軸受を分解して保持器の状況を確認するという労力を要していた。さらに、この場合、亀裂の発生時期の検知精度が、分解頻度に影響されるという欠点があった。   In the cage drop impact test conducted with the bearing assembled, it cannot be confirmed during the test that the cage is made of tortoise, so it is impossible to accurately grasp when the crack has occurred. For this reason, the test is interrupted at regular intervals, and labor is required to disassemble the bearing and check the condition of the cage. Furthermore, in this case, there is a drawback that the detection accuracy of the crack generation time is affected by the decomposition frequency.

本発明は上記事情に鑑みてなされたものであり、亀裂の発生時期を正確に検知可能な亀裂検知方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a crack detection method capable of accurately detecting the occurrence time of a crack.

本発明の上記目的は、下記の構成により達成される。
(1) 衝撃試験下において転がり軸受の構成部品に発生する亀裂を検知する亀裂検知方法であって、
前記構成部品の表面には、亀裂の発生又は進展によって電気抵抗が変化する導電層と、前記導電層と前記構成部品の表面との間を絶縁する絶縁下地層と、を有する導電性部材が配置され、
前記導電層に電流を流し、前記導電層の通電状態を測定することにより、亀裂の発生を検知する
ことを特徴とする亀裂検知方法。
(2) 前記導電性部材は、前記構成部品の表面に、塗布されることにより配置され、
前記導電性部材の塗布形状は、一筆書きの一本又は複数の線状である
ことを特徴とする(1)に記載の亀裂検知方法。
(3) 前記導電性部材の破断伸びは30%以上である
ことを特徴とする(1)又は(2)に記載の亀裂検知方法。
The above object of the present invention can be achieved by the following constitution.
(1) A crack detection method for detecting a crack generated in a component of a rolling bearing under an impact test,
On the surface of the component part, a conductive member having a conductive layer whose electrical resistance is changed by generation or progress of a crack and an insulating base layer that insulates between the conductive layer and the surface of the component part is disposed. And
A crack detection method characterized by detecting the occurrence of a crack by passing an electric current through the conductive layer and measuring an energization state of the conductive layer.
(2) The conductive member is disposed on the surface of the component by being applied,
(1) The crack detection method according to (1), wherein the application shape of the conductive member is a single stroke or a plurality of linear shapes.
(3) The crack detection method according to (1) or (2), wherein the breaking elongation of the conductive member is 30% or more.

本発明の亀裂検知装置によれば、導電層に電流を流し、当該導電層の通電状態を測定することにより、衝撃試験下において転がり軸受の構成部品に発生する亀裂を検知するので、亀裂の発生時期を正確に検知可能である。   According to the crack detection device of the present invention, a crack is generated in a component of a rolling bearing under an impact test by passing an electric current through the conductive layer and measuring an energization state of the conductive layer. The timing can be accurately detected.

本実施形態に係る保持器の斜視図である。It is a perspective view of the holder | retainer which concerns on this embodiment.

以下、本発明の実施形態に係る亀裂検知方法について、図面を用いて説明する。なお、転がり軸受の構成部品の一例として、保持器を挙げて説明するが、本発明は保持器に発生する亀裂の検知のみならず、外輪や内輪等の転がり軸受構成部品に発生する亀裂の検知にも適用することが可能である。また、保持器の種類も特に限定されない。   Hereinafter, a crack detection method according to an embodiment of the present invention will be described with reference to the drawings. In addition, although a cage is described as an example of a component of a rolling bearing, the present invention detects not only a crack generated in the cage but also a crack generated in a rolling bearing component such as an outer ring or an inner ring. It is also possible to apply to. Also, the type of cage is not particularly limited.

図1に示すように、本実施形態の亀裂検知方法によって亀裂の発生が検知される保持器1は、小径円環部3と、大径円環部5と、小径円環部3及び大径円環部5を連結し、周方向に所定間隔で配置された複数の柱部7と、小径円環部3、大径円環部5、及び複数の柱部7によって画成され、それぞれ円錐ころ(不図示)を収容する複数のポケット部9と、を備える円錐ころ軸受用保持器である。   As shown in FIG. 1, the cage 1 in which the occurrence of a crack is detected by the crack detection method of the present embodiment includes a small diameter annular portion 3, a large diameter annular portion 5, a small diameter annular portion 3, and a large diameter. The circular part 5 is connected, and is defined by a plurality of column parts 7 arranged at predetermined intervals in the circumferential direction, a small-diameter annular part 3, a large-diameter annular part 5, and a plurality of pillar parts 7. A tapered roller bearing retainer comprising a plurality of pocket portions 9 for accommodating rollers (not shown).

このような保持器1は、不図示の円錐ころ軸受の構成部品として、複数の円錐ころを転動自在に保持する。なお、当該円錐ころ軸受は、外輪と、内輪と、外輪及び内輪の間に配置される複数の円錐ころと、複数の円錐ころを複数のポケット部9によって保持する保持器1と、を備える。   Such a retainer 1 holds a plurality of tapered rollers in a rollable manner as components of a tapered roller bearing (not shown). The tapered roller bearing includes an outer ring, an inner ring, a plurality of tapered rollers disposed between the outer ring and the inner ring, and a cage 1 that holds the plurality of tapered rollers by a plurality of pocket portions 9.

そして、保持器1は、円錐ころ軸受が組み立てられた状態のままで、衝撃試験が行われて強度評価される。衝撃試験としては、例えば落下衝撃試験が挙げられる。   The cage 1 is subjected to an impact test and evaluated for strength while the tapered roller bearing is assembled. Examples of the impact test include a drop impact test.

ここで、保持器1に亀裂が入ったことを、衝撃試験中に、軸受を分解することなく、正確に把握できることが望ましい。そこで、本実施形態の保持器1の内周面には、亀裂の発生又は進展によって電気抵抗が変化する導電層と、当該導電層と保持器1の内周面との間を絶縁する絶縁下地層と、を有する導電性部材10が配置される。   Here, it is desirable that the cage 1 can be accurately grasped during the impact test without disassembling the bearing. Therefore, the inner peripheral surface of the cage 1 of the present embodiment is provided with an insulating layer that insulates between the conductive layer whose electrical resistance changes due to the occurrence or development of a crack and the conductive layer and the inner peripheral surface of the cage 1. A conductive member 10 having a formation is disposed.

導電性部材10は、保持器1の内周面に塗布されることによって配置されており、一筆書きの一本の線状である。より具体的に導電性部材10は、大径円環部5上において、隣り合う柱部7の間を結ぶように周方向に延びる複数の大径周方向延出部11と、大径周方向延出部11の周方向両端部に接続し、柱部7上において軸方向に延びる複数の軸方向延出部12と、隣り合う軸方向延出部12を接続し、小径円環部3上を周方向に延びる複数の小径周方向延出部13と、からなる。すなわち、隣り合う一対のポケット部9において、一方のポケット部9を画成する大径円環部5の内周面には、大径周方向延出部11が塗装され、他方のポケット部9を画成する小径円環部3の内周面には、小径周方向延出部13が塗装され、全ての柱部7の内周面には、軸方向延出部12が塗装される。   The electroconductive member 10 is arrange | positioned by apply | coating to the internal peripheral surface of the holder | retainer 1, and is one line of one-stroke writing. More specifically, the conductive member 10 includes a plurality of large-diameter circumferentially extending portions 11 extending in the circumferential direction so as to connect adjacent column portions 7 on the large-diameter annular portion 5, and a large-diameter circumferential direction. A plurality of axially extending portions 12 extending in the axial direction on the column portion 7 and the adjacent axially extending portions 12 are connected to both ends in the circumferential direction of the extending portion 11, and on the small-diameter annular portion 3 And a plurality of small-diameter circumferentially extending portions 13 extending in the circumferential direction. That is, in a pair of adjacent pocket portions 9, a large-diameter circumferentially extending portion 11 is painted on the inner peripheral surface of the large-diameter annular portion 5 that defines one pocket portion 9, and the other pocket portion 9. A small-diameter circumferentially extending portion 13 is coated on the inner peripheral surface of the small-diameter annular portion 3 that defines the above, and an axially extending portion 12 is painted on the inner peripheral surfaces of all the column portions 7.

そして、導電性部材10の導電層に不図示の電極によって電流を流し、当該導電層の通電状態を測定することにより、すなわち導電層の抵抗値をモニタリングすることにより、落下衝撃試験による亀裂の発生時期を検知する。したがって、従来技術のように、一定時間毎に試験を中断して軸受を分解する必要がなく、亀裂の発生時期を容易且つ正確に検知可能である。さらに、導電性部材10の塗布形状を、一筆書きの線状としたので、外部への出力も1ヶ所で済む事から配線の簡素化という効果がある。   Then, a current is caused to flow through the conductive layer of the conductive member 10 by an electrode (not shown), and the state of conduction of the conductive layer is measured, that is, the resistance value of the conductive layer is monitored. Detect the time. Therefore, unlike the prior art, it is not necessary to discontinue the test at regular intervals and disassemble the bearing, and it is possible to easily and accurately detect the occurrence time of the crack. Furthermore, since the application shape of the conductive member 10 is a one-stroke line, the output to the outside is only required in one place, which has the effect of simplifying the wiring.

ここで、落下衝撃試験下における亀裂検知では、保持器1が衝撃によって常に繰り返し変形を受ける環境の中で、亀裂検知を行う必要がある。そのため、導電性部材10が、試験中の衝撃による弾性変形では破断せず、保持器1に亀裂が発生したとき初めて破断する必要がある。このため、本実施形態では、導電性部材10の破断伸びが、非常に高い数値である30%以上に設定されている。これにより、試験中の衝撃による弾性変形では導電性部材10が破断しないので、誤検知を防止することができる。一方、亀裂が発生した場合には、保持器1が試験による衝撃で亀裂部が大きく開口するため、導電性部材10が破断して、適格に亀裂検知を行うことが可能である。なお、導電性部材10の破断伸びを30%以上の範囲に設定すれば、鋼製保持器、黄銅製保持器等の金属製保持器であっても、樹脂製保持器であっても、亀裂検知を正確に行うことができる。   Here, in the crack detection under the drop impact test, it is necessary to perform the crack detection in an environment where the cage 1 is constantly repeatedly deformed by the impact. Therefore, the conductive member 10 does not break due to the elastic deformation due to the impact during the test, and needs to be broken only when the cage 1 is cracked. For this reason, in this embodiment, the breaking elongation of the conductive member 10 is set to 30% or more, which is a very high numerical value. Thereby, since the electroconductive member 10 does not fracture | rupture by the elastic deformation by the impact in a test, a misdetection can be prevented. On the other hand, when a crack occurs, the cage 1 is greatly opened due to the impact of the test, so that the conductive member 10 is broken and the crack can be properly detected. In addition, if the breaking elongation of the conductive member 10 is set to a range of 30% or more, even if it is a metal cage such as a steel cage and a brass cage, or a resin cage, it will crack. Detection can be performed accurately.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜変更、改良等が可能である。   In addition, this invention is not limited to embodiment mentioned above, A change, improvement, etc. are possible suitably.

例えば、上述の実施形態においては、導電性部材10は、保持器1の内周面に配置されていたが、保持器1の表面であれば何処に配置してもよく、例えば外周面や軸方向側面に配置しても構わない。   For example, in the above-described embodiment, the conductive member 10 is disposed on the inner circumferential surface of the cage 1, but may be disposed anywhere on the surface of the cage 1, for example, the outer circumferential surface or the shaft. You may arrange | position to a direction side surface.

また、導電性部材10の塗布形状は、一筆書きの一本の線状に限定されず、一筆書きの複数の線状としてもよい。すなわち、本実施形態のような保持器1の内周面に塗布された一筆書きの一本の線状の導電性部材10に加えて、保持器1の外周面に一筆書きの一本の線状の導電性部材10を塗布しても構わない。   Moreover, the application | coating shape of the electroconductive member 10 is not limited to one line shape of one-stroke drawing, It is good also as a several line shape of one-stroke writing. That is, in addition to the single line-shaped conductive member 10 written on the inner peripheral surface of the cage 1 as in the present embodiment, the single line written on the outer peripheral surface of the cage 1. The conductive member 10 may be applied.

1 保持器(構成部品)
3 小径円環部
5 大径円環部
7 柱部
9 ポケット部
10 導電性部材
11 大径周方向延出部
12 軸方向延出部
13 小径周方向延出部
1 Cage (component)
3 Small-diameter annular portion 5 Large-diameter annular portion 7 Column portion 9 Pocket portion 10 Conductive member 11 Large-diameter circumferential extension portion 12 Axial extension portion 13 Small-diameter circumferential extension portion

Claims (3)

衝撃試験下において転がり軸受の構成部品に発生する亀裂を検知する亀裂検知方法であって、
前記構成部品の表面には、亀裂の発生又は進展によって電気抵抗が変化する導電層と、前記導電層と前記構成部品の表面との間を絶縁する絶縁下地層と、を有する導電性部材が配置され、
前記導電層に電流を流し、前記導電層の通電状態を測定することにより、亀裂の発生を検知する
ことを特徴とする亀裂検知方法。
A crack detection method for detecting a crack generated in a component of a rolling bearing under an impact test,
On the surface of the component part, a conductive member having a conductive layer whose electrical resistance is changed by generation or progress of a crack and an insulating base layer that insulates between the conductive layer and the surface of the component part is disposed. And
A crack detection method characterized by detecting the occurrence of a crack by passing an electric current through the conductive layer and measuring an energization state of the conductive layer.
前記導電性部材は、前記構成部品の表面に、塗布されることにより配置され、
前記導電性部材の塗布形状は、一筆書きの一本又は複数の線状である
ことを特徴とする請求項1に記載の亀裂検知方法。
The conductive member is disposed by being applied to the surface of the component,
The crack detection method according to claim 1, wherein the application shape of the conductive member is one or more lines drawn with a single stroke.
前記導電性部材の破断伸びは30%以上である
ことを特徴とする請求項1又は2に記載の亀裂検知方法。
The crack detection method according to claim 1, wherein the breaking elongation of the conductive member is 30% or more.
JP2014148925A 2014-07-22 2014-07-22 Crack detecting method Pending JP2016024090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148925A JP2016024090A (en) 2014-07-22 2014-07-22 Crack detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148925A JP2016024090A (en) 2014-07-22 2014-07-22 Crack detecting method

Publications (1)

Publication Number Publication Date
JP2016024090A true JP2016024090A (en) 2016-02-08

Family

ID=55270952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148925A Pending JP2016024090A (en) 2014-07-22 2014-07-22 Crack detecting method

Country Status (1)

Country Link
JP (1) JP2016024090A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528146A (en) * 2017-07-24 2020-09-17 ファオデーエーハー−ベトリープスフォルシュングスインスティトゥート ゲゼルシャフト ミット ベシュレンクテル ハフツングVDEh−Betriebsforschungsinstitut Gesellschaft mit beschraenkter Haftung Equipment for identifying the condition of mechanical parts, use of measuring equipment for identifying the condition of mechanical parts, systems, methods
CN113418702A (en) * 2021-07-26 2021-09-21 重庆大学 Pitch-changing bearing high-strength steel crack simulation monitoring test device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528146A (en) * 2017-07-24 2020-09-17 ファオデーエーハー−ベトリープスフォルシュングスインスティトゥート ゲゼルシャフト ミット ベシュレンクテル ハフツングVDEh−Betriebsforschungsinstitut Gesellschaft mit beschraenkter Haftung Equipment for identifying the condition of mechanical parts, use of measuring equipment for identifying the condition of mechanical parts, systems, methods
US11371910B2 (en) 2017-07-24 2022-06-28 Vdeh-Betriebsforschungsinstitut Gmbh Device for determining the state of a mechanical component, use of a measuring appliance, system, and method for determining the state of a mechanical component
CN113418702A (en) * 2021-07-26 2021-09-21 重庆大学 Pitch-changing bearing high-strength steel crack simulation monitoring test device

Similar Documents

Publication Publication Date Title
JP5910971B2 (en) Looseness detection device for tightening and fixing members
Kulkarni et al. Experimental investigation for distributed defects in ball bearing using vibration signature analysis
US20090223083A1 (en) Bearing including sensor and drying drum including same
US9134358B2 (en) Cable fatigue monitor and method thereof
JP2008185339A (en) Bearing state inspection device and bearing state inspection method
JP2016024090A (en) Crack detecting method
US20160223604A1 (en) Method for inspecting insulator for spark plug
WO2008149520A1 (en) Bearing device
JP2005091212A (en) Testing device for rolling bearing
JP6241657B2 (en) Bolt damage detection device
JP2016059970A (en) Deterioration determination system of sliding member
JP2015152584A (en) Distance sensor and measurement method
JP5895799B2 (en) Oil seal inspection device
JP2008281388A (en) Bearing with bearing load measuring device, and method of measuring bearing load
JP2003177080A (en) Apparatus for detecting damage in bearing
JP7022619B2 (en) Insulation resistance measuring jig and insulation resistance measuring method for insulated bearings
CN103901084A (en) Surface adsorption hydrogen rapid detection method of high-strength steel hydrogen damages
JP2014122649A (en) Roller bearing
JP6255945B2 (en) Shape measuring device
JP2018155383A (en) Sealing device
JP7318262B2 (en) Voltage detector check support tool
JP6374805B2 (en) Torque detection device and torque detection method
JP2009216477A (en) Method and apparatus for measuring film thickness and contact state
JP5935490B2 (en) Load estimation method for rolling bearings
JP2007298527A (en) Main spindle support device