JP2016023851A - Precise temperature and humidity adjustment method - Google Patents

Precise temperature and humidity adjustment method Download PDF

Info

Publication number
JP2016023851A
JP2016023851A JP2014147607A JP2014147607A JP2016023851A JP 2016023851 A JP2016023851 A JP 2016023851A JP 2014147607 A JP2014147607 A JP 2014147607A JP 2014147607 A JP2014147607 A JP 2014147607A JP 2016023851 A JP2016023851 A JP 2016023851A
Authority
JP
Japan
Prior art keywords
air
condenser
evaporator
humidity
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014147607A
Other languages
Japanese (ja)
Other versions
JP2016023851A5 (en
Inventor
福太郎 山口
Fukutaro Yamaguchi
福太郎 山口
佐竹 晃
Akira Satake
晃 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2014147607A priority Critical patent/JP2016023851A/en
Publication of JP2016023851A publication Critical patent/JP2016023851A/en
Publication of JP2016023851A5 publication Critical patent/JP2016023851A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a precise temperature and humidity adjustment method excellent in energy saving property.SOLUTION: In a precise temperature and humidity adjustment method, in an outside air and inside air confluence duct OA+RA1 that connects an inside air circulation duct RA connected to an air-conditioned room and an outside air intake duct OA to make outside air confluent to inside air, an evaporator 12, a condenser 15 and a blower 19 are installed; a humidifier 30 is installed in an air supply duct SA connected to the downstream side of the blower 19 and supplying air to the air-conditioned room; a compressor 16 and a heating and cooling device 20 are connected to the evaporator 13 and the condenser 14; and the compressor 16 is controlled based on the temperature of the air-conditioned room. In the precise temperature and humidity adjustment method, the blower 19 is controlled based on the humidity of the air-conditioned room.SELECTED DRAWING: Figure 2

Description

本発明は、空調対象室に対する精密な温湿度の調整方法に関する。   The present invention relates to a precise temperature and humidity adjustment method for a room to be air-conditioned.

従来の恒温恒湿室向け精密温湿度調整装置は、処理空気を冷却コイルで過冷却除湿した後に電気ヒータで再熱し電極式蒸気加湿器等で加湿する方法により室の温湿度を調整する。この装置の冷熱源である空気熱源式ヒートポンプ冷凍機は、圧縮機が一定回転数で運転される場合が多い(以下、従来方式と呼ぶ)。
なお、冬期等は、冷却コイルでの除湿(圧縮機の運転)を停止する省エネルギー手法が用いられている。
A conventional temperature and humidity control device for a constant temperature and humidity chamber adjusts the temperature and humidity of the chamber by a method in which the processing air is supercooled and dehumidified with a cooling coil and then reheated with an electric heater and humidified with an electrode-type steam humidifier. In an air heat source type heat pump refrigerator that is a cold heat source of this apparatus, the compressor is often operated at a constant rotation speed (hereinafter referred to as a conventional method).
In winter and the like, an energy saving method for stopping dehumidification (operation of the compressor) in the cooling coil is used.

また近年、省エネルギーを目的とした方法または装置として、次の1)〜3)の技術がある。
1)冷凍機の圧縮機回転数を装置出口温度に基づき調節する方法(特許文献1参照)。
2)空間の冷却負荷と顕熱比SHFに基づき装置出口の露点温度目標値を定めて冷凍機圧縮機回転数と送風機回転数を調節する方法(特許文献2参照)。
3)冷媒レヒートと噴霧式加湿器によって電気ヒータや電極式蒸気加湿器等を用いずに再熱加湿する装置(特許文献3参照)。
In recent years, the following techniques 1) to 3) are available as methods or apparatuses for energy saving.
1) A method of adjusting the compressor rotational speed of the refrigerator based on the apparatus outlet temperature (see Patent Document 1).
2) A method of determining the dew point temperature target value at the outlet of the apparatus based on the cooling load of the space and the sensible heat ratio SHF, and adjusting the refrigerator compressor rotation speed and the fan rotation speed (see Patent Document 2).
3) An apparatus that reheats and humidifies a refrigerant reheat and a spray-type humidifier without using an electric heater or an electrode-type steam humidifier (see Patent Document 3).

特許第2599632(特開平3‐168556)号公報Japanese Patent No. 2599632 (Japanese Patent Laid-Open No. 3-168556) 特許第3873218(特開2005‐140467)号公報Japanese Patent No. 3873218 (Japanese Patent Laid-Open No. 2005-140467) 特開2013‐122350号公報JP 2013-122350 A

前述した従来方式は、冷凍機の圧縮機回転数が定速であるため、中間期、夏期に必要以上に処理空気を過冷却除湿するとともに、室内温度分布や室内清浄度確保に必要となる空気循環量の全てを過冷却除湿するため、電気ヒータや電極式蒸気加湿器等のエネルギー効率が低い電熱器による再熱加湿のための電力が非常に大きく、また、冬期の加熱加湿電力も大きい問題がある。   In the conventional method described above, since the compressor rotation speed of the refrigerator is constant, the air that is necessary for supercooling and dehumidifying the treated air more than necessary in the intermediate and summer seasons, as well as ensuring the indoor temperature distribution and cleanliness. Since the entire circulation volume is supercooled and dehumidified, the electric power required for reheating and humidification by electric heaters with low energy efficiency, such as electric heaters and electrode-type steam humidifiers, is very large, and the heating and humidifying power in winter is also large. There is.

これに対して、前述した特許文献1〜3の方法や装置では、以下の問題がある。
先ず、特許文献1の方法は、夏や中間期の加湿電力が削減されるが、電熱器による中間期の再熱電力や冬期の加熱加湿電力が大きい問題が残る。
また、特許文献2の方法は、室内の冷房顕熱負荷が小さく、潜熱負荷が大きい場合に処理風量が少なくなるため、室内の温度分布や清浄度の問題が残り、その他に上記特許文献1の方法と同様の電熱器の効率の低さの問題が残る。
また、特許文献3の装置は、冷媒レヒートや圧縮機回転数の可変制御により電力削減されるが、処理風量が一定であることから、再熱加湿や冬の加熱加湿電力の削減の余地が残る。
On the other hand, the methods and apparatuses of Patent Documents 1 to 3 described above have the following problems.
First, although the method of patent document 1 reduces the humidification electric power of summer or an intermediate period, the problem that the reheating electric power of the intermediate period by an electric heater and the heating humidification electric power of a winter season remains large.
Further, the method of Patent Document 2 has a problem of indoor temperature distribution and cleanliness because the cooling air heat load in the room is small and the processing air volume decreases when the latent heat load is large. The problem of the inefficiency of the electric heater similar to the method remains.
In addition, the apparatus of Patent Document 3 is reduced in electric power by variable control of refrigerant reheat and compressor rotation speed, but since the processing air volume is constant, there remains room for reduction of reheat humidification and winter heating and humidification electric power. .

本発明の課題は、省エネルギー性に優れた精密温湿度調整方法を提供することである。   The subject of this invention is providing the precise temperature / humidity adjustment method excellent in energy-saving property.

以上の課題を解決するため、請求項1に記載の発明は、
空調対象室に接続した内気循環ダクトと外気取入れダクトとを接続して内気に外気を合流させる外気内気合流ダクトに、蒸発器と凝縮器と送風機を設置するとともに、その送風機の下流側に接続されて前記空調対象室に空気を供給する空気供給ダクトに加湿器を設置し、
前記蒸発器及び凝縮器に圧縮機と加熱冷却装置を接続して、前記空調対象室の温度に基づいて前記圧縮機を制御する方法において、
前記空調対象室の湿度に基づいて前記送風機を制御することを特徴とする。
In order to solve the above problems, the invention described in claim 1
An evaporator, a condenser, and a blower are installed in the outside air / inside air merging duct that connects the inside air circulation duct and the outside air intake duct connected to the air-conditioning target room and joins the outside air to the inside air, and is connected to the downstream side of the blower. Installing a humidifier in the air supply duct that supplies air to the air-conditioned room,
In a method of connecting a compressor and a heating / cooling device to the evaporator and the condenser, and controlling the compressor based on the temperature of the air-conditioning target room,
The blower is controlled based on the humidity of the air-conditioned room.

請求項2に記載の発明は、
請求項1に記載の精密温湿度調整方法であって、
冷媒管に第1蒸発器、第2蒸発器、第1凝縮器、第2凝縮器、前記圧縮機、比例弁、及び一対の膨張弁を設け、
前記第1蒸発器と第2蒸発器を直列に設けて、前記第1凝縮器と第2凝縮器を直列に設け、
前記第1蒸発器及び第2蒸発器間と前記第1凝縮器及び第2凝縮器間との間に前記圧縮機を設け、
前記圧縮機と前記第1凝縮器との間に前記比例弁を設けて、前記圧縮機と前記第2凝縮器との間に前記比例弁を設け、
前記第1凝縮器と前記第1蒸発器との間に前記膨張弁を設けて、前記第2凝縮器と前記第2蒸発器との間に前記膨張弁を設け、
前記第1蒸発器と前記第2凝縮器を前記外気内気合流ダクトに設けて、前記第2凝縮器の下流側に前記送風機を設けることを特徴とする。
The invention described in claim 2
The precise temperature and humidity adjustment method according to claim 1,
The refrigerant pipe is provided with a first evaporator, a second evaporator, a first condenser, a second condenser, the compressor, a proportional valve, and a pair of expansion valves;
The first evaporator and the second evaporator are provided in series, the first condenser and the second condenser are provided in series,
Providing the compressor between the first evaporator and the second evaporator and between the first condenser and the second condenser;
Providing the proportional valve between the compressor and the first condenser; providing the proportional valve between the compressor and the second condenser;
Providing the expansion valve between the first condenser and the first evaporator, and providing the expansion valve between the second condenser and the second evaporator;
The first evaporator and the second condenser are provided in the outside-air-air merging duct, and the blower is provided on the downstream side of the second condenser.

請求項3に記載の発明は、
空調対象室に接続した内気循環ダクトと外気取入れダクトとを接続して内気に外気を合流させる外気内気合流ダクトに、蒸発器と電気ヒータと送風機を設置するとともに、その送風機の下流側に接続されて前記空調対象室に空気を供給する空気供給ダクトに加湿器を設置し、
前記蒸発器にヒートポンプ式冷凍機を接続して、前記空調対象室の温度に基づいて前記電気ヒータを制御する方法において、
前記空調対象室の湿度に基づいて前記送風機を制御することを特徴とする。
The invention according to claim 3
An evaporator, an electric heater, and a blower are installed in the outside air / inside air merging duct that connects the inside air circulation duct and the outside air intake duct connected to the air-conditioning target room and joins the outside air to the inside air, and is connected to the downstream side of the blower. Installing a humidifier in the air supply duct that supplies air to the air-conditioned room,
In a method of connecting a heat pump refrigerator to the evaporator and controlling the electric heater based on the temperature of the air-conditioning target room,
The blower is controlled based on the humidity of the air-conditioned room.

請求項4に記載の発明は、
請求項1から3のいずれか一項に記載の精密温湿度調整方法であって、
前記湿度に基づいて前記送風機の回転数を制御することを特徴とする。
The invention according to claim 4
It is the precise temperature / humidity adjusting method according to any one of claims 1 to 3,
The number of rotations of the blower is controlled based on the humidity.

請求項5に記載の発明は、
請求項1から4のいずれか一項に記載の精密温湿度調整方法であって、
前記湿度に基づいて前記圧縮機を制御することを特徴とする。
The invention described in claim 5
The precise temperature and humidity adjustment method according to any one of claims 1 to 4,
The compressor is controlled based on the humidity.

請求項6に記載の発明は、
請求項5に記載の精密温湿度調整方法であって、
前記湿度に基づいて前記圧縮機の回転数を制御することを特徴とする。
The invention described in claim 6
It is the precise temperature / humidity adjustment method according to claim 5,
The number of rotations of the compressor is controlled based on the humidity.

請求項7に記載の発明は、
請求項1から6のいずれか一項に記載の精密温湿度調整方法であって、
前記内気循環ダクトからの分岐ダクトに第2送風機を設けることを特徴とする。
The invention described in claim 7
It is the precise temperature / humidity adjusting method according to any one of claims 1 to 6,
A second blower is provided in a branch duct from the inside air circulation duct.

請求項8に記載の発明は、
請求項1から7のいずれか一項に記載の精密温湿度調整方法であって、
前記外気取入れダクトに定風量装置を設けることを特徴とする。
The invention according to claim 8 provides:
A precision temperature and humidity adjustment method according to any one of claims 1 to 7,
A constant air volume device is provided in the outside air intake duct.

本発明によれば、省エネルギー性に優れた精密温湿度調整方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the precise temperature / humidity adjustment method excellent in energy saving property can be provided.

本発明を適用した精密温湿度調整装置の一実施形態の構成を示す概要図である。It is a schematic diagram showing the composition of one embodiment of the precise temperature and humidity adjusting device to which the present invention is applied. 本発明の精密温湿度調整方法の制御例を示すフローチャートである。It is a flowchart which shows the example of control of the precise temperature / humidity adjustment method of this invention. 従来方式と本発明方式による装置内温湿度(圧縮機出力を固定した場合)の評価を示すグラフである。It is a graph which shows evaluation of the temperature-humidity (when a compressor output is fixed) in the apparatus by the conventional system and this invention system. 図3の条件における空調顕熱負荷と各装置の顕熱処理量の内訳の比較を示すグラフである。It is a graph which shows the comparison of the breakdown of the amount of sensible heat processing of the air-conditioning sensible heat load and each apparatus in the conditions of FIG. 図3の条件における空調潜熱負荷と各装置の潜熱処理量の内訳の比較を示すグラフである。It is a graph which shows the comparison of the breakdown of the air-conditioning latent-heat load in the conditions of FIG. 3, and the latent heat processing amount of each apparatus. 各方式における装置内温湿度(処理風量を固定した場合)の評価を示すグラフである。It is a graph which shows evaluation of the temperature and humidity in a device (when processing air volume is fixed) in each system. 図6の条件における空調顕熱負荷と各装置の顕熱処理量の内訳の比較を示すグラフである。It is a graph which shows the comparison of the breakdown of the amount of sensible heat processing of the air-conditioning sensible heat load and each apparatus in the conditions of FIG. 図6の条件における空調潜熱負荷と各装置の潜熱処理量の内訳の比較を示すグラフである。It is a graph which shows the comparison of the breakdown of the air-conditioning latent-heat load in the conditions of FIG. 6, and the latent heat processing amount of each apparatus. 実施形態2を示すもので、従来方式に本発明の一部を適用した精密温湿度調整装置の一例の構成を示す概要図である。FIG. 9 is a schematic diagram showing a configuration of an example of a precision temperature and humidity adjusting device in which a part of the present invention is applied to a conventional method, showing Embodiment 2.

以下、図を参照して本発明を実施するための形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

(概要)
従来方式もしくは冷媒レヒート構造を有する方式の圧縮機、二対の蒸発器、凝縮器と、一対の膨張弁、比例弁と、送風機、温度センサーで構成される精密温度調節装置を用い、省エネルギー性に優れた恒温恒湿室向けに好適な精密温湿度調整方法を提供する。
(Overview)
Save energy by using a precision temperature control device consisting of a conventional compressor or a compressor with a refrigerant reheat structure, two pairs of evaporators, a condenser, a pair of expansion valves, a proportional valve, a blower, and a temperature sensor. A precise temperature and humidity adjustment method suitable for an excellent temperature and humidity chamber is provided.

(実施形態1)
図1は本発明を適用した精密温湿度調整装置の一実施形態の構成を示すもので、10は精密温度調節装置、20は加熱冷却装置(冷温水機)、30は加湿器、40は第2送風機、50は定風量装置、60は調節部、OAは外気取入れダクト、RAは内気循環ダクト、SAは空気供給ダクトである。
(Embodiment 1)
FIG. 1 shows the configuration of an embodiment of a precision temperature / humidity adjusting device to which the present invention is applied. 10 is a precision temperature adjusting device, 20 is a heating / cooling device (cooling / heating machine), 30 is a humidifier, and 40 is a first. 2 blowers, 50 is a constant air volume device, 60 is a control unit, OA is an outside air intake duct, RA is an inside air circulation duct, and SA is an air supply duct.

図1は冷媒レヒート式の精密温湿度調整装置を示すもので、この精密温湿度調整装置は、図示のように、精密温度調節装置10と、加熱冷却装置(冷温水機)20と、加湿器30と、第2送風機40と、定風量装置50と、調節部60を含む自動制御部で構成される。   FIG. 1 shows a refrigerant reheat type precision temperature / humidity adjusting device, which includes a precision temperature adjusting device 10, a heating / cooling device (cooling / heating water machine) 20, and a humidifier as shown in the figure. 30, a second blower 40, a constant air volume device 50, and an automatic control unit including an adjustment unit 60.

精密温度調節装置10は、冷媒をレヒートする水冷式で、冷媒管11に設置される第1蒸発器12、第2蒸発器13、第1凝縮器14、第2凝縮器15、圧縮機16、一対の比例弁17、及び一対の膨張弁18と、空調対象室(恒温恒湿室)への空気供給ダクトSAに空気を供給する第1送風機19とから構成される。   The precision temperature control apparatus 10 is a water-cooled type that reheats the refrigerant, and includes a first evaporator 12, a second evaporator 13, a first condenser 14, a second condenser 15, a compressor 16, and a refrigerant pipe 11. A pair of proportional valves 17 and a pair of expansion valves 18, and a first blower 19 that supplies air to an air supply duct SA to an air-conditioning target chamber (a constant temperature and humidity chamber).

詳細には、冷媒管11で、第1蒸発器12と第1凝縮器14が直列に配置されて、第2蒸発器13と第2凝縮器15が直列に配置されている。
その第1蒸発器12及び第1凝縮器14と第2蒸発器13及び第2凝縮器15の冷媒回路上に圧縮機16が配置されている。
その圧縮機16と第1凝縮器14との間に比例弁17が配置されて、圧縮機16と第2凝縮器15との間にも比例弁17が配置されている。
また、第1凝縮器14と第1蒸発器12との間に膨張弁18が配置されて、第2凝縮器15と第2蒸発器13との間にも膨張弁18が配置されている。
Specifically, in the refrigerant pipe 11, the first evaporator 12 and the first condenser 14 are arranged in series, and the second evaporator 13 and the second condenser 15 are arranged in series.
A compressor 16 is disposed on the refrigerant circuit of the first evaporator 12 and the first condenser 14, the second evaporator 13 and the second condenser 15.
A proportional valve 17 is disposed between the compressor 16 and the first condenser 14, and a proportional valve 17 is also disposed between the compressor 16 and the second condenser 15.
An expansion valve 18 is disposed between the first condenser 14 and the first evaporator 12, and an expansion valve 18 is disposed between the second condenser 15 and the second evaporator 13.

そして、第1蒸発器12と第2凝縮器15が、外気取入れダクトOAと内気循環ダクトRA1とを接続して内気に外気を合流させる外気内気合流ダクトOA+RA1に設置されている。
さらに、その外気内気合流ダクトOA+RA1で第2凝縮器15の下流側に、第1送風機19が設置されて、空気供給ダクトSAに接続されている。
And the 1st evaporator 12 and the 2nd condenser 15 are installed in outside air inside air confluence | merging duct OA + RA1 which connects outside air intake duct OA and inside air circulation duct RA1, and joins outside air to inside air.
Furthermore, the 1st air blower 19 is installed in the downstream of the 2nd condenser 15 by the external air inside air confluence | merging duct OA + RA1, and is connected to air supply duct SA.

排熱用の加熱冷却装置としての冷温水機20は、空気熱源ヒートポンプ方式であって、その水配管21が精密温度調節装置10に接続されている。
すなわち、水配管21には、第2蒸発器13及び第1凝縮器14が設置されている。
The chiller / heater 20 as a heating / cooling device for exhaust heat is an air heat source heat pump system, and the water pipe 21 is connected to the precision temperature control device 10.
That is, the second evaporator 13 and the first condenser 14 are installed in the water pipe 21.

加湿器30は、電極式蒸気加湿器で、第1送風機19の下流側において、空気供給ダクトSAに設置される。   The humidifier 30 is an electrode-type steam humidifier and is installed in the air supply duct SA on the downstream side of the first blower 19.

第2送風機40は、一定風量タイプで、内気循環ダクトRA2に設置される。   The second blower 40 is a constant air volume type and is installed in the inside air circulation duct RA2.

定風量装置50は、外気取入れダクトOAに設置される。   The constant air volume device 50 is installed in the outside air intake duct OA.

調節部60は、恒温恒湿室内の温湿度センサーT・Hからの検出信号に基づいて、電極式蒸気加湿器30の調節、水冷式精密温度調節装置10の第1送風機19の回転数調節、及び圧縮機16の最低回転数調節を行う。
具体的には、恒温恒湿室の温度に基づいて、圧縮機16の回転数と比例弁17の制御が行われるとともに、恒温恒湿室の湿度に基づいて、電極式蒸気加湿器30の調節、第1送風機19の回転数調節、及び圧縮機16の最低回転数調節が行われる。
The adjusting unit 60 adjusts the electrode-type steam humidifier 30 and the rotation speed of the first blower 19 of the water-cooled precision temperature controller 10 based on the detection signal from the temperature / humidity sensor T / H in the constant temperature and humidity chamber. And the minimum rotation speed adjustment of the compressor 16 is performed.
Specifically, the rotation speed of the compressor 16 and the proportional valve 17 are controlled based on the temperature of the constant temperature and humidity chamber, and the adjustment of the electrode-type steam humidifier 30 is controlled based on the humidity of the constant temperature and humidity chamber. The rotation speed adjustment of the first blower 19 and the minimum rotation speed adjustment of the compressor 16 are performed.

次に、水冷式精密温度調節装置10の作用について説明する。   Next, the operation of the water-cooled precision temperature control device 10 will be described.

圧縮機16によって圧縮・加熱された高温の冷媒は、各々の比例弁17を経て第1凝縮器14と第2凝縮器15に分配される。   The high-temperature refrigerant compressed and heated by the compressor 16 is distributed to the first condenser 14 and the second condenser 15 through the proportional valves 17.

分配された高温の冷媒は、第1凝縮器14により冷却されてから、膨張弁18により断熱的に膨張して更に冷却される。その冷却された冷媒は、第1蒸発器12により蒸発熱を奪って加熱されてから、圧縮機16に戻される。   The distributed high-temperature refrigerant is cooled by the first condenser 14 and then expanded adiabatically by the expansion valve 18 to be further cooled. The cooled refrigerant is deprived of heat of evaporation by the first evaporator 12 and heated, and then returned to the compressor 16.

また、分配された高温の冷媒は、第2凝縮器15により冷却されてから、膨張弁18により断熱的に膨張して更に冷却される。その冷却された冷媒は、第2蒸発器13により蒸発熱を奪って加熱されてから、圧縮機16に戻される。   The distributed high-temperature refrigerant is cooled by the second condenser 15 and then expanded adiabatically by the expansion valve 18 and further cooled. The cooled refrigerant is deprived of heat of evaporation by the second evaporator 13 and heated, and then returned to the compressor 16.

そして、第2蒸発器13及び第1凝縮器14は、空気熱源ヒートポンプによる冷温水機20の水配管21に組み込まれて、その冷温水により効果的にそれぞれ熱交換される。   And the 2nd evaporator 13 and the 1st condenser 14 are incorporated in the water piping 21 of the cold / hot water machine 20 by an air heat source heat pump, and are each heat-exchanged effectively by the cold / hot water.

次に、図2の制御フローに基づいて、水冷式精密温度調節装置10の第1送風機19の回転数の変更と、圧縮機16の下限回転数の変更とについて説明する。
すなわち、第1送風機19の風量制御と、圧縮機16の最低出力制御を行う。
Next, based on the control flow of FIG. 2, the change in the rotation speed of the first blower 19 and the change in the lower limit rotation speed of the compressor 16 of the water-cooled precise temperature control apparatus 10 will be described.
That is, the air volume control of the first blower 19 and the minimum output control of the compressor 16 are performed.

図2に示すように、先ずステップS1において、空調機が運転中か否かを監視する。
そして、空調機運転中であれば次のステップS2に進み、空調機運転中でなければ別のステップS10で、第1送風機19の風量制御を停止して、回転数を標準に設定するとともに、圧縮機16の最低出力制御を停止して、回転数加減設定値を標準に設定した後、ステップS1の処理に戻る。
As shown in FIG. 2, first, in step S1, it is monitored whether or not the air conditioner is in operation.
Then, if the air conditioner is in operation, the process proceeds to the next step S2, and if not in the air conditioner, the air volume control of the first blower 19 is stopped in another step S10, and the rotation speed is set to the standard. After the minimum output control of the compressor 16 is stopped and the rotational speed adjustment set value is set to standard, the process returns to step S1.

次のステップS2では、除湿要求フラグがONか否かを判断し、除湿要求フラグONであれば次のステップS3に進み、除湿要求フラグONでなければステップS10の処理を行ってステップS1の処理に戻る。   In the next step S2, it is determined whether or not the dehumidification request flag is ON. If the dehumidification request flag is ON, the process proceeds to the next step S3. If the dehumidification request flag is not ON, the process of step S10 is performed and the process of step S1 is performed. Return to.

次のステップS3では、圧縮機16の回転数下限設定値が最小値であるか否かを判断し、最小値であればステップS4に進み、最小値でなければ別のステップS12に進む。   In the next step S3, it is determined whether or not the rotation speed lower limit set value of the compressor 16 is the minimum value. If it is the minimum value, the process proceeds to step S4, and if not, the process proceeds to another step S12.

次のステップS4では、第1送風機19の風量制御を開始して、次のステップS5で、相対湿度偏差が0か否かを判断し、相対湿度偏差0であれば次のステップS6に進み、相対湿度偏差0でなければ別のステップS7に進む。   In the next step S4, the air volume control of the first blower 19 is started, and in the next step S5, it is determined whether or not the relative humidity deviation is 0. If the relative humidity deviation is 0, the process proceeds to the next step S6. If the relative humidity deviation is not zero, the process proceeds to another step S7.

次のステップS6では、第1送風機19の回転数を維持して、次のステップS11に進む。   In the next step S6, the rotation speed of the first blower 19 is maintained, and the process proceeds to the next step S11.

別のステップS7では、相対湿度偏差が0未満か否かを判断し、相対湿度偏差0未満であればステップS8で第1送風機19の回転数を上げて、相対湿度偏差0未満でなければステップS9で第1送風機19の回転数を下げて、ステップS11に進む。   In another step S7, it is determined whether or not the relative humidity deviation is less than 0. If the relative humidity deviation is less than 0, the rotational speed of the first blower 19 is increased in step S8. In S9, the rotational speed of the first blower 19 is decreased, and the process proceeds to Step S11.

以上が第1送風機19の風量制御である。   The above is the air volume control of the first blower 19.

なお、図2の制御フローにおいて、ステップS2の除湿要求フラグは、除湿が必要となる期間(例えば5〜10月)に対応して設定する。その他に、外気温湿度を測定して、判断してもよい。
また、ステップS5・S6の相対湿度偏差は、現在室相対湿度から室設定相対湿度を引いたもので、すなわち、相対湿度偏差=(現在室相対湿度−室設定相対湿度)である。
In the control flow of FIG. 2, the dehumidification request flag in step S2 is set corresponding to a period (for example, 5 to 10 months) in which dehumidification is necessary. In addition, the ambient temperature and humidity may be measured and judged.
The relative humidity deviation in steps S5 and S6 is obtained by subtracting the room set relative humidity from the current room relative humidity, that is, relative humidity deviation = (current room relative humidity−room set relative humidity).

図3に、中間期等で顕熱比が0.6と低い条件(顕熱0.6kW、潜熱0.4kW)での従来方式の装置内温湿度の一例を示し、また、同条件での精密温度調節装置10の第1送風機19の風量制御(本方式)の有無の装置内温湿度の一例を示す。
なお、冷凍機出力は夏期ピーク(外気:33.5℃、20.3g/kg(DA)、壁面貫流負荷:2.8kW)を処理できる出力として、従来方式では4.3kW固定(冷却)、本方式では4.5kW(冷却+加熱)の能力のものを図3の条件下で最適制御した際の出力(1.4kW)とし、第1送風機19の風量制御の有無では同一出力とした。この時、装置の出口要求温度は処理風量の違いで15〜19℃、湿度は8.7g/kg(DA)となる。
FIG. 3 shows an example of the temperature and humidity in the apparatus of the conventional method under the condition where the sensible heat ratio is as low as 0.6 (sensible heat 0.6 kW, latent heat 0.4 kW) in the intermediate period, etc. An example of the temperature and humidity in the apparatus with and without air volume control (this system) of the first blower 19 of the precision temperature control apparatus 10 is shown.
The output of the refrigerator is 4.3 kW fixed (cooling) in the conventional method as an output capable of processing the summer peak (outside air: 33.5 ° C., 20.3 g / kg (DA), through-wall load: 2.8 kW), In this method, an output with a capacity of 4.5 kW (cooling + heating) was optimally controlled under the conditions of FIG. 3 (1.4 kW), and the same output was obtained with or without air volume control of the first blower 19. At this time, the required outlet temperature of the apparatus is 15 to 19 ° C. and the humidity is 8.7 g / kg (DA) due to the difference in the processing air volume.

従来方式では、常に圧縮器回転数が定格出力のため、要求温湿度を下回って過冷却除湿され、機器効率が低い電気ヒータと電極式蒸気加湿器等により再熱加湿される(図中○)。
また、精密温湿度調整装置でも、第1送風機19の風量制御無し(600m/h一定)の場合には、出口要求温度は達成できるが、出口要求湿度を達成できない(図中◇)。
In the conventional method, the compressor rotation speed is always the rated output, so it is subcooled and dehumidified below the required temperature and humidity, and reheated and humidified with an electric heater and electrode-type steam humidifier with low equipment efficiency (○ in the figure) .
Further, even in the precision temperature and humidity control device, when the air volume control of the first blower 19 is not performed (600 m 3 / h constant), the required outlet temperature can be achieved, but the required outlet humidity cannot be achieved ((in the figure).

これに対して、第1送風機19の風量制御により処理風量を300m/hに低減させることで、同出力でも出口要求湿度を達成できる(図中▲)。 On the other hand, by reducing the processing air volume to 300 m 3 / h by controlling the air volume of the first blower 19, the required outlet humidity can be achieved even with the same output (▲ in the figure).

図4及び図5に上記条件時の各装置の処理熱量の内訳を示す。   4 and 5 show a breakdown of the amount of heat processed by each device under the above conditions.

従来方式では、空調負荷に対し顕熱は9.5倍(5.7kW)、潜熱は3.7倍(1.7kW)もの熱を処理しているが、第1送風機19の風量制御による精密温度調節装置10では、必要最小限の熱量で空調負荷を処理できる。   In the conventional method, heat of 9.5 times (5.7 kW) sensible heat and 3.7 times (1.7 kW) of latent heat is processed with respect to the air conditioning load. In the temperature control apparatus 10, the air conditioning load can be processed with a minimum amount of heat.

以上の第1送風機19の風量制御後に、図2の制御フローに示すように、ステップS11で第1送風機19の回転数が下限値であるか否かを判断し、下限値であれば次のステップS12に進んで、圧縮機16の最低出力制御に移行し、下限値でなければステップS1の処理に戻る。   After the air volume control of the first blower 19 as described above, as shown in the control flow of FIG. 2, it is determined in step S11 whether or not the rotation speed of the first blower 19 is a lower limit value. Proceeding to step S12, the process proceeds to the minimum output control of the compressor 16, and if not the lower limit value, the process returns to step S1.

すなわち、次のステップ12では、圧縮機16の最低出力制御を開始して、次のステップS13で、相対湿度偏差が0か否かを判断し、相対湿度偏差0であれば次のステップS14に進み、相対湿度偏差0でなければ別のステップS15に進む。   That is, in the next step 12, the minimum output control of the compressor 16 is started, and in the next step S13, it is determined whether or not the relative humidity deviation is 0. If the relative humidity deviation is 0, the process proceeds to the next step S14. If the relative humidity deviation is not zero, the process proceeds to another step S15.

次のステップS14では、圧縮機16の回転数の下限設定値を維持して、ステップS1の処理に戻る。   In the next step S14, the lower limit set value of the rotation speed of the compressor 16 is maintained, and the process returns to step S1.

別のステップS15では、相対湿度偏差が0未満か否かを判断し、相対湿度偏差0未満でなければステップS16で圧縮機16の回転数の下限設定値を上げて、相対湿度偏差0未満であればステップS17で圧縮機16の回転数の下限設定値を下げて、ステップS1の処理に戻る。   In another step S15, it is determined whether or not the relative humidity deviation is less than 0. If the relative humidity deviation is not less than 0, the lower limit set value of the rotation speed of the compressor 16 is increased in step S16, and the relative humidity deviation is less than 0. If there is, the lower limit set value of the rotational speed of the compressor 16 is lowered in step S17, and the process returns to step S1.

以上が圧縮機16の最低出力制御である。   The above is the minimum output control of the compressor 16.

図6に、図3よりさらに除湿負荷のみが増加して顕熱比が0.4に低下した条件(顕熱0.6kW、潜熱0.9kW)の装置内温湿度の一例を圧縮機16の最低出力制御(本方式)の有無で示す。   FIG. 6 shows an example of the internal temperature and humidity of the compressor 16 under the condition (sensible heat 0.6 kW, latent heat 0.9 kW) where only the dehumidifying load is increased and the sensible heat ratio is lowered to 0.4. Indicated by the presence or absence of minimum output control (this method)

第1送風機19の風量制御による処理風量の低減だけでは、出口要求湿度(6.9g/kg(DA))を達成できないが(図中▲)、圧縮機16の出力を1.4kWから2.5kWに上昇させることで、出口要求湿度を達成できる(図中◇)。   Although it is not possible to achieve the required outlet humidity (6.9 g / kg (DA)) only by reducing the processing air volume by controlling the air volume of the first blower 19, the output of the compressor 16 is increased from 1.4 kW to 2. By increasing the pressure to 5 kW, the required outlet humidity can be achieved ((in the figure).

図7及び図8に上記の各装置の処理熱量の内訳を示す。   FIG. 7 and FIG. 8 show the breakdown of the amount of heat processed by each of the above devices.

図示のように、圧縮機16の最低出力制御により装置潜熱処理量が空調潜熱負荷(0.9kW)に達し、少量の電力で室の精密温湿度調整が可能となる。   As shown in the figure, the apparatus latent heat treatment amount reaches the air conditioning latent heat load (0.9 kW) by the minimum output control of the compressor 16, and the precise temperature and humidity of the room can be adjusted with a small amount of power.

さらに、図示のように、第2送風機40と定風量装置50を備えるため、次の作用が得られる。
すなわち、第2送風機40は、室内温湿度分布や室内清浄度確保に作用する。
そして、定風量装置50は、第1送風機19の回転数が変更されても、一定の必要換気量を保持する作用を持つ。
Furthermore, since the 2nd air blower 40 and the constant air volume apparatus 50 are provided like illustration, the following effect | action is acquired.
That is, the second blower 40 acts to ensure indoor temperature and humidity distribution and indoor cleanliness.
And the constant air volume apparatus 50 has the effect | action which hold | maintains a fixed required ventilation volume, even if the rotation speed of the 1st air blower 19 is changed.

さらに、冷媒レヒート方式の精密温湿度調整装置では、冬期の加温電力を削減でき、気化方式や水噴霧方式の加湿方式とした場合には加湿電力も削減できる。   Furthermore, the refrigerant reheat type precision temperature and humidity control device can reduce the heating power in winter, and the humidification power can be reduced when the vaporization method or the water spray method is used.

以上、実施形態の恒温恒湿室の精密温湿度調整方法によれば、外気内気合流ダクトOA+RA1に、第1蒸発器12と第2凝縮器15と第1送風機19を設置するとともに、その第1送風機19の下流側に接続される空気供給ダクトSAに電極式蒸気加湿器30を設置し、第2蒸発器13及び第1凝縮器14に圧縮機16と冷温水機20を接続して、恒温恒湿室の温度に基づいて圧縮機16と比例弁17を制御する方法において、恒温恒湿室の湿度に基づいて第1送風機19と圧縮機16を制御する。
従って、省エネルギー性に優れるといった利点が得られる。
As described above, according to the precise temperature and humidity adjustment method of the constant temperature and humidity chamber of the embodiment, the first evaporator 12, the second condenser 15, and the first blower 19 are installed in the outside air / inside air confluence duct OA + RA 1, An electrode-type steam humidifier 30 is installed in the air supply duct SA connected to the downstream side of the first blower 19, and the compressor 16 and the cold / hot water machine 20 are connected to the second evaporator 13 and the first condenser 14. In the method of controlling the compressor 16 and the proportional valve 17 based on the temperature of the constant temperature and humidity chamber, the first blower 19 and the compressor 16 are controlled based on the humidity of the constant temperature and humidity chamber.
Therefore, the advantage of excellent energy saving can be obtained.

(変形例)
なお、実施形態では、空気熱源ヒートポンプ式冷温水機を用いたが、このような水冷式による排熱構造の他に、外気を吸引する第3送風機の送風路に第1凝縮器と第2蒸発器を接続する空気式による排熱構造を用いてもよい。
すなわち、屋外への排熱の方法は水冷式や空気式に関わらず、要は排熱用の加熱冷却装置を用いればよい。
また、実施形態では、一対の比例弁を用いたが、一個の三方比例弁を用いてもよい。
(Modification)
In the embodiment, the air heat source heat pump type chiller / heater is used. However, in addition to such a water-cooled exhaust heat structure, the first condenser and the second evaporation are provided in the air passage of the third blower that sucks outside air. You may use the exhaust-type heat exhaust structure which connects a vessel.
That is, regardless of the method of exhaust heat to the outdoors, whether it is a water cooling type or an air type, a heating / cooling device for exhaust heat may be used.
In the embodiment, a pair of proportional valves is used, but a single three-way proportional valve may be used.

ここで、従来方式の精密温湿度調整装置でも、冷凍機圧縮機出力及び最低出力を可変可能とし、送風機の風量制御を適用することで、実施形態1の方法より性能は劣るが、外気除湿負荷がある中間期や夏期の省電力化が可能である。   Here, even in the conventional precision temperature and humidity control device, the output of the refrigerator compressor and the minimum output can be varied, and by applying the air volume control of the blower, the performance is inferior to the method of Embodiment 1, but the outside air dehumidification load It is possible to save power in the middle and summer seasons.

(実施形態2)
図9は変形例としての実施形態2を示すもので、前述した実施形態1と同様、19は第1送風機、30は加湿器、40は第2送風機、50は定風量装置、60は調節部であって、70は冷凍機、71は圧縮機、80は空調ユニット、81は蒸発器、82は電気ヒータである。
(Embodiment 2)
FIG. 9 shows a second embodiment as a modified example. As in the first embodiment described above, 19 is a first blower, 30 is a humidifier, 40 is a second blower, 50 is a constant air volume device, and 60 is an adjustment unit. 70 is a refrigerator, 71 is a compressor, 80 is an air conditioning unit, 81 is an evaporator, and 82 is an electric heater.

すなわち、図9は従来方式に本発明の一部を適用した精密温湿度調整装置の一例の構成を示しており、実施形態1の精密温度調節装置10及び冷温水機20に代えて、図示したように、冷凍機70と、空調ユニット80が設けられている。   That is, FIG. 9 shows a configuration of an example of a precision temperature / humidity adjustment device in which a part of the present invention is applied to the conventional method, and is shown in place of the precision temperature adjustment device 10 and the chiller / heater 20 of the first embodiment. Thus, the refrigerator 70 and the air conditioning unit 80 are provided.

冷凍機70は、空気熱源ヒートポンプ方式で、圧縮機71を備えている。
空調ユニット80には、蒸発器81と、電気ヒータ82が処理空気に対して直列に設けられて、第1送風機19が設けられている。
また、冷凍機70の圧縮機71が、空調ユニット80内の蒸発器81に接続される。
The refrigerator 70 is an air heat source heat pump system and includes a compressor 71.
In the air conditioning unit 80, an evaporator 81 and an electric heater 82 are provided in series with the processing air, and the first blower 19 is provided.
Further, the compressor 71 of the refrigerator 70 is connected to the evaporator 81 in the air conditioning unit 80.

この空調ユニット80内において、蒸発器81と電気ヒータ82による熱交換が効果的に行われる。   In the air conditioning unit 80, heat exchange by the evaporator 81 and the electric heater 82 is effectively performed.

そして、調節部60は、恒温恒湿室の温度に基づいて、電気ヒータ82の制御を行うとともに、恒温恒湿室の湿度に基づいて、第1送風機19の回転数制御、圧縮機71の回転数と最低回転数制御を行う。   The adjusting unit 60 controls the electric heater 82 based on the temperature of the constant temperature and humidity chamber, and controls the rotation speed of the first blower 19 and the rotation of the compressor 71 based on the humidity of the constant temperature and humidity chamber. Number and minimum speed control.

このような従来方式に本発明の一部を適用した構成の精密温湿度調整装置によっても、調節部60によって、恒温恒湿室の温度に基づいて、電気ヒータ82の制御を行うとともに、恒温恒湿室の湿度に基づいて、第1送風機19の回転数制御、圧縮機71の回転数と最低回転数制御を行うことで、実施形態1と同様、省エネルギー性に優れるといった利点が得られる。   Even with a precision temperature and humidity adjusting device having a configuration in which a part of the present invention is applied to such a conventional method, the adjusting unit 60 controls the electric heater 82 based on the temperature of the temperature and humidity chamber, and also controls the temperature and humidity. By performing the rotational speed control of the first blower 19 and the rotational speed and the minimum rotational speed control of the compressor 71 based on the humidity of the wet chamber, as in the first embodiment, the advantage of excellent energy saving can be obtained.

そして、図示のように、第2送風機40と定風量装置50を追加すると、前述した実施形態1と同様の作用が得られるので、さらに良い。   And as shown in the figure, if the second blower 40 and the constant air volume device 50 are added, the same action as in the first embodiment described above can be obtained, which is even better.

(他の変形例)
以上の実施形態においては、恒温恒湿室向けの精密温湿度調整装置としたが、本発明はこれに限定されるものではなく、他に一般室向けであってもよい。
また、実施形態では、電極式蒸気加湿器を用いたが、これに限らず、他の加湿器であってもよい。
さらに、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。
(Other variations)
In the above embodiment, although it was set as the precise temperature / humidity adjustment apparatus for constant temperature and humidity chambers, this invention is not limited to this, You may be for general rooms.
Moreover, in embodiment, although the electrode type steam humidifier was used, not only this but another humidifier may be used.
Furthermore, it is needless to say that other specific detailed structures can be appropriately changed.

10 精密温度調節装置
11 冷媒管
12 第1蒸発器
13 第2蒸発器
14 第1凝縮器
15 第2凝縮器
16 圧縮機
17 比例弁
18 膨張弁
19 第1送風機
20 加熱冷却装置
21 水配管
30 加湿器
40 第2送風機
50 定風量装置
60 調節部
70 冷凍機
71 圧縮機
80 空調ユニット
81 蒸発器
82 電気ヒータ
DESCRIPTION OF SYMBOLS 10 Precise temperature control apparatus 11 Refrigerant pipe | tube 12 1st evaporator 13 2nd evaporator 14 1st condenser 15 2nd condenser 16 Compressor 17 Proportional valve 18 Expansion valve 19 1st blower 20 Heating and cooling apparatus 21 Water piping 30 Humidification Unit 40 Second blower 50 Constant air volume device 60 Control unit 70 Refrigerator 71 Compressor 80 Air conditioning unit 81 Evaporator 82 Electric heater

Claims (8)

空調対象室に接続した内気循環ダクトと外気取入れダクトとを接続して内気に外気を合流させる外気内気合流ダクトに、蒸発器と凝縮器と送風機を設置するとともに、その送風機の下流側に接続されて前記空調対象室に空気を供給する空気供給ダクトに加湿器を設置し、
前記蒸発器及び凝縮器に圧縮機と加熱冷却装置を接続して、前記空調対象室の温度に基づいて前記圧縮機を制御する方法において、
前記空調対象室の湿度に基づいて前記送風機を制御することを特徴とする精密温湿度調整方法。
An evaporator, a condenser, and a blower are installed in the outside air / inside air merging duct that connects the inside air circulation duct and the outside air intake duct connected to the air-conditioning target room and joins the outside air to the inside air, and is connected to the downstream side of the blower. Installing a humidifier in the air supply duct that supplies air to the air-conditioned room,
In a method of connecting a compressor and a heating / cooling device to the evaporator and the condenser, and controlling the compressor based on the temperature of the air-conditioning target room,
The precise temperature / humidity adjustment method characterized by controlling the said air blower based on the humidity of the said air-conditioning object room.
冷媒管に第1蒸発器、第2蒸発器、第1凝縮器、第2凝縮器、前記圧縮機、比例弁、及び一対の膨張弁を設け、
前記第1蒸発器と第2蒸発器を直列に設けて、前記第1凝縮器と第2凝縮器を直列に設け、
前記第1蒸発器及び第2蒸発器間と前記第1凝縮器及び第2凝縮器間との間に前記圧縮機を設け、
前記圧縮機と前記第1凝縮器との間に前記比例弁を設けて、前記圧縮機と前記第2凝縮器との間に前記比例弁を設け、
前記第1凝縮器と前記第1蒸発器との間に前記膨張弁を設けて、前記第2凝縮器と前記第2蒸発器との間に前記膨張弁を設け、
前記第1蒸発器と前記第2凝縮器を前記外気内気合流ダクトに設けて、前記第2凝縮器の下流側に前記送風機を設けることを特徴とする請求項1に記載の精密温湿度調整方法。
The refrigerant pipe is provided with a first evaporator, a second evaporator, a first condenser, a second condenser, the compressor, a proportional valve, and a pair of expansion valves;
The first evaporator and the second evaporator are provided in series, the first condenser and the second condenser are provided in series,
Providing the compressor between the first evaporator and the second evaporator and between the first condenser and the second condenser;
Providing the proportional valve between the compressor and the first condenser; providing the proportional valve between the compressor and the second condenser;
Providing the expansion valve between the first condenser and the first evaporator, and providing the expansion valve between the second condenser and the second evaporator;
2. The precise temperature and humidity adjustment method according to claim 1, wherein the first evaporator and the second condenser are provided in the outside-air-air merging duct, and the blower is provided on the downstream side of the second condenser. .
空調対象室に接続した内気循環ダクトと外気取入れダクトとを接続して内気に外気を合流させる外気内気合流ダクトに、蒸発器と電気ヒータと送風機を設置するとともに、その送風機の下流側に接続されて前記空調対象室に空気を供給する空気供給ダクトに加湿器を設置し、
前記蒸発器にヒートポンプ式冷凍機を接続して、前記空調対象室の温度に基づいて前記電気ヒータを制御する方法において、
前記空調対象室の湿度に基づいて前記送風機を制御することを特徴とする精密温湿度調整方法。
An evaporator, an electric heater, and a blower are installed in the outside air / inside air merging duct that connects the inside air circulation duct and the outside air intake duct connected to the air-conditioning target room and joins the outside air to the inside air, and is connected to the downstream side of the blower. Installing a humidifier in the air supply duct that supplies air to the air-conditioned room,
In a method of connecting a heat pump refrigerator to the evaporator and controlling the electric heater based on the temperature of the air-conditioning target room,
The precise temperature / humidity adjustment method characterized by controlling the said air blower based on the humidity of the said air-conditioning object room.
前記湿度に基づいて前記送風機の回転数を制御することを特徴とする請求項1から3のいずれか一項に記載の精密温湿度調整方法。   The precise temperature / humidity adjustment method according to any one of claims 1 to 3, wherein the rotational speed of the blower is controlled based on the humidity. 前記湿度に基づいて前記圧縮機を制御することを特徴とする請求項1から4のいずれか一項に記載の精密温湿度調整方法。   The precise temperature / humidity adjustment method according to any one of claims 1 to 4, wherein the compressor is controlled based on the humidity. 前記湿度に基づいて前記圧縮機の回転数を制御することを特徴とする請求項5に記載の精密温湿度調整方法。   The precise temperature / humidity adjustment method according to claim 5, wherein the rotational speed of the compressor is controlled based on the humidity. 前記内気循環ダクトからの分岐ダクトに第2送風機を設けることを特徴とする請求項1から6のいずれか一項に記載の精密温湿度調整方法。   The precise temperature / humidity adjustment method according to claim 1, wherein a second blower is provided in a branch duct from the inside air circulation duct. 前記外気取入れダクトに定風量装置を設けることを特徴とする請求項1から7のいずれか一項に記載の精密温湿度調整方法。   The precise temperature / humidity adjusting method according to claim 1, wherein a constant air volume device is provided in the outside air intake duct.
JP2014147607A 2014-07-18 2014-07-18 Precise temperature and humidity adjustment method Pending JP2016023851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147607A JP2016023851A (en) 2014-07-18 2014-07-18 Precise temperature and humidity adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147607A JP2016023851A (en) 2014-07-18 2014-07-18 Precise temperature and humidity adjustment method

Publications (2)

Publication Number Publication Date
JP2016023851A true JP2016023851A (en) 2016-02-08
JP2016023851A5 JP2016023851A5 (en) 2017-06-22

Family

ID=55270772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147607A Pending JP2016023851A (en) 2014-07-18 2014-07-18 Precise temperature and humidity adjustment method

Country Status (1)

Country Link
JP (1) JP2016023851A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021752A (en) * 2017-10-31 2018-02-08 株式会社トクヤマ Air conditioning method and air conditioning system
CN114427715A (en) * 2022-01-21 2022-05-03 宁波奥克斯电气股份有限公司 Humidification control method and device of air conditioner and air conditioner
WO2022195791A1 (en) * 2021-03-18 2022-09-22 三菱電機株式会社 Air conditioner
JP7445855B1 (en) 2022-08-22 2024-03-08 三菱重工冷熱株式会社 Air conditioning unit, control device for air conditioning unit, and control method for air conditioning equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599632B2 (en) * 1989-11-27 1997-04-09 高砂熱学工業株式会社 Constant temperature and constant humidity air conditioning control method and apparatus using package air conditioner
JP2003050029A (en) * 2001-08-07 2003-02-21 Sanken Setsubi Kogyo Co Ltd Constant air-volume device and air-conditioning system
JP2003065587A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2005140467A (en) * 2003-11-10 2005-06-02 Nippon Engineering Kk Constant temperature/constant humidity air conditioning method
JP2006153326A (en) * 2004-11-26 2006-06-15 Taikisha Ltd Air conditioning equipment
JP2007155305A (en) * 2005-12-09 2007-06-21 Hitachi Appliances Inc Control method of air conditioner
JP2010230184A (en) * 2009-03-26 2010-10-14 Orion Mach Co Ltd Temperature and humidity control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599632B2 (en) * 1989-11-27 1997-04-09 高砂熱学工業株式会社 Constant temperature and constant humidity air conditioning control method and apparatus using package air conditioner
JP2003050029A (en) * 2001-08-07 2003-02-21 Sanken Setsubi Kogyo Co Ltd Constant air-volume device and air-conditioning system
JP2003065587A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2005140467A (en) * 2003-11-10 2005-06-02 Nippon Engineering Kk Constant temperature/constant humidity air conditioning method
JP2006153326A (en) * 2004-11-26 2006-06-15 Taikisha Ltd Air conditioning equipment
JP2007155305A (en) * 2005-12-09 2007-06-21 Hitachi Appliances Inc Control method of air conditioner
JP2010230184A (en) * 2009-03-26 2010-10-14 Orion Mach Co Ltd Temperature and humidity control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021752A (en) * 2017-10-31 2018-02-08 株式会社トクヤマ Air conditioning method and air conditioning system
WO2022195791A1 (en) * 2021-03-18 2022-09-22 三菱電機株式会社 Air conditioner
JP7462830B2 (en) 2021-03-18 2024-04-05 三菱電機株式会社 Air Conditioning Equipment
CN114427715A (en) * 2022-01-21 2022-05-03 宁波奥克斯电气股份有限公司 Humidification control method and device of air conditioner and air conditioner
CN114427715B (en) * 2022-01-21 2023-08-18 宁波奥克斯电气股份有限公司 Humidification control method and device for air conditioner and air conditioner
JP7445855B1 (en) 2022-08-22 2024-03-08 三菱重工冷熱株式会社 Air conditioning unit, control device for air conditioning unit, and control method for air conditioning equipment

Similar Documents

Publication Publication Date Title
JP6567183B2 (en) Air conditioning system
WO2017029741A1 (en) Air-conditioning system
CA2995017C (en) Air conditioner and air conditioning system including the same
CA2999550C (en) Air-source heat pump air conditioner
JP2013204899A (en) Air conditioning system
US20220341624A1 (en) Method for anti-condensation at air conditioner radiation terminal and radiation terminals in multi-room space
JP2016023851A (en) Precise temperature and humidity adjustment method
JP6425750B2 (en) Air conditioning system
JP2012141118A (en) Air conditioning device, and air conditioning system
AU2019201541A1 (en) An air conditioning system and a method of operating an air conditioning system
CN114026368B (en) External air treatment device and air conditioning system
JP7374633B2 (en) Air conditioners and air conditioning systems
CN209819742U (en) Variable-frequency multi-connected radiation heating and refrigerating air conditioning system
JP6188939B2 (en) Air conditioning system
JP5543002B2 (en) Air conditioning apparatus and air conditioning system
JP2020041796A (en) Air conditioner with dehumidifying function and control method thereof
JP2006017369A (en) Indoor machine of air conditioner
CN112178779A (en) Air conditioning system with radiation tail end capable of preventing condensation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030