JP2016023333A - Manufacturing method of lithium nickel oxide sputtering target - Google Patents

Manufacturing method of lithium nickel oxide sputtering target Download PDF

Info

Publication number
JP2016023333A
JP2016023333A JP2014148022A JP2014148022A JP2016023333A JP 2016023333 A JP2016023333 A JP 2016023333A JP 2014148022 A JP2014148022 A JP 2014148022A JP 2014148022 A JP2014148022 A JP 2014148022A JP 2016023333 A JP2016023333 A JP 2016023333A
Authority
JP
Japan
Prior art keywords
linio
sputtering target
sintering
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014148022A
Other languages
Japanese (ja)
Other versions
JP6376380B2 (en
Inventor
昌芳 長尾
Masayoshi Nagao
昌芳 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014148022A priority Critical patent/JP6376380B2/en
Publication of JP2016023333A publication Critical patent/JP2016023333A/en
Application granted granted Critical
Publication of JP6376380B2 publication Critical patent/JP6376380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lithium nickel oxide sputtering target by using target materials of lithium carbonate (LiCO) and nickel oxide (NiO), which has a stoichiometric composition and no composition deviation.SOLUTION: A manufacturing method of a sputtering target includes steps of: firing to obtain a LiNiOfired body by firing mixed powders of a LiCOpowder and a NiO powder and firing them at 700-900°C in air; crushing the LiNiOsintered body to obtain a LiNiOpowder; pressure sintering to obtain an intermediate sintered body by pressure-sintering the LiNiOpowder at 400-600°C in a reducing atmosphere; and sintering to obtain a LiNiOsintered body by heating and holding the intermediate sintered body at 700-850°C in air to sinter the intermediate sintered body.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池の正極材として有用なニッケル酸リチウム(LiNiO)膜をスパッタリング成膜するためのニッケル酸リチウムスパッタリングターゲットの製造方法に関する。 The present invention relates to a method for manufacturing a lithium nickelate sputtering target for sputtering a lithium nickelate (LiNiO 2 ) film useful as a positive electrode material for a lithium ion secondary battery.

近年、電子機器などの電源に用いられる高エネルギー密度電池として、リチウム二次電池の需要が高まっている。このリチウムイオン二次電池の正極材には、従来から用いられていたコバルト酸リチウム(LiCoO)に代わるニッケル酸リチウム(LiNiO)が提案されている。 In recent years, a demand for a lithium secondary battery is increasing as a high energy density battery used for a power source of an electronic device or the like. As a positive electrode material of this lithium ion secondary battery, lithium nickelate (LiNiO 2 ) that replaces the conventionally used lithium cobaltate (LiCoO 2 ) has been proposed.

このニッケル酸リチウムの製造方法として、出発原料である炭酸リチウム(LiCO)と酸化ニッケル(NiO)とを混合した原料を618℃以下の温度で、かつ非酸化雰囲気で焼成し、その後、酸化雰囲気で、かつ618℃以上の温度で焼成することにより、ニッケル含有リチウム化合物を得ることが提案されている(例えば、特許文献1を参照)。ここでは、LiCOの融点618℃以下で、非酸化雰囲気でNiOを不安定化してLiとの反応を促進し、その後、酸化雰囲気で昇温することで結晶構造を整えることができる。得られたニッケル含有Li化合物をスパッタリングターゲットとして用いて、LiNiO膜を成膜している。 As a method for producing this lithium nickelate, a raw material obtained by mixing lithium carbonate (Li 2 CO 3 ) and nickel oxide (NiO) as starting materials is baked in a non-oxidizing atmosphere at a temperature of 618 ° C. or lower, It has been proposed to obtain a nickel-containing lithium compound by baking at a temperature of 618 ° C. or higher in an oxidizing atmosphere (see, for example, Patent Document 1). Here, at a melting point of 618 ° C. or lower of Li 2 CO 3 , NiO is destabilized in a non-oxidizing atmosphere to promote a reaction with Li, and then the temperature is raised in an oxidizing atmosphere, whereby the crystal structure can be adjusted. A LiNiO 2 film is formed using the obtained nickel-containing Li compound as a sputtering target.

一方、ニッケル酸リチウムの他の製造方法としては、ニッケル酸リチウム(LiNiO)を成形・焼結してスパッタリングターゲットとすることが提案されている(例えば、特許文献2を参照)。ここでは、予め膜組成を構成する全元素を含む前駆体を作製し、これを酸化することで、ターゲット材の原料を作製した後、この原料を成形、焼結することによりスパッタリングターゲットを作製している。その作製手順としては、先ず、炭酸リチウム(LiCO)を溶解・懸濁させた水中に、所定量のNi塩溶液を滴下し、炭酸塩を作製し、ニッケル酸リチウム(LiNiO)の原料となる炭酸塩前駆体を得ている。この炭酸塩前駆体を、大気中で、930℃、3時間酸化処理して、LiNiOのターゲット原料粉を作製している。このターゲット原料粉を成形し、大気中で、前記酸化処理温度よりも高い温度で焼結して、LiNiOのスパッタリングターゲットを作製している。 On the other hand, as another manufacturing method of lithium nickelate, it has been proposed to form and sinter lithium nickelate (LiNiO 2 ) to obtain a sputtering target (see, for example, Patent Document 2). Here, a precursor including all elements constituting the film composition is prepared in advance, and this is oxidized to prepare a target material, and then a sputtering target is formed by molding and sintering the raw material. ing. As the preparation procedure, first, a predetermined amount of Ni salt solution is dropped into water in which lithium carbonate (Li 2 CO 3 ) is dissolved and suspended to prepare carbonate, and lithium nickelate (LiNiO 2 ) A carbonate precursor is obtained as a raw material. This carbonate precursor is oxidized in the atmosphere at 930 ° C. for 3 hours to produce LiNiO 2 target raw material powder. The target raw material powder is molded and sintered in the air at a temperature higher than the oxidation treatment temperature to produce a LiNiO 2 sputtering target.

特開2007−119266号公報JP 2007-119266 A 特開2012−164671号公報JP 2012-164671 A

しかしながら、前記特許文献1で提案された製造方法では、コバルト酸リチウム(LiCoO)と比較して安価な材料から、ニッケル含有リチウム化合物を形成することができるが、この形成されたニッケル含有Li化合物には、化学量論組成をから見て、組成ずれが発生しやすく、単相のニッケル酸リチウム(LiNiO)を得ることができなかった。 However, in the manufacturing method proposed in Patent Document 1, a nickel-containing lithium compound can be formed from an inexpensive material as compared with lithium cobaltate (LiCoO 2 ). In view of the stoichiometric composition, compositional deviation was likely to occur, and single-phase lithium nickelate (LiNiO 2 ) could not be obtained.

また、前記特許文献2で提案された製造方法によっても、化学量論組成から組成ずれのあるニッケル含有リチウム化合物を焼結してスパッタリングターゲットを作製しているので、ターゲット中においても組成ずれが残っており、このスパッタリングターゲットを用いて形成された膜にも、組成ずれが残ってしまい、目標の成分組成、即ち、LiNiOを有する膜が得られない。 Moreover, since the sputtering target is produced by sintering the nickel-containing lithium compound having a composition deviation from the stoichiometric composition also by the manufacturing method proposed in Patent Document 2, the composition deviation remains in the target. Therefore, the composition deviation also remains in the film formed using this sputtering target, and a film having a target component composition, that is, LiNiO 2 cannot be obtained.

そこで、本発明は、炭酸リチウム(LiCO)と酸化ニッケル(NiO)とをターゲット原料として、化学量論組成を有し、組成ずれのないニッケル酸リチウムスパッタリングターゲットを提供することを目的とする。 Therefore, the present invention has an object to provide a lithium nickelate sputtering target having a stoichiometric composition and having no composition deviation, using lithium carbonate (Li 2 CO 3 ) and nickel oxide (NiO) as target raw materials. To do.

本発明者らは、LiCOとNiOとの混合粉末を、酸化雰囲気で、LiCOの融点以上の温度で焼成すると、LiCOがNiOと反応して、塊状のLiNiOを得ることができ、これを粉砕して得たLiNiO粉末は、LiNiO相で形成され、LiCOが含まれていないという知見を得た。そこで、この得られたLiNiO粉末を、還元雰囲気で、前記温度より低い温度で焼結することによって、化学量論組成から組成ずれのないニッケル酸リチウム(LiNiO)の焼結体を得られることが判明した。さらに、この焼結後に、酸化雰囲気、高い温度で本焼結すると、この焼結体の密度及び相対密度を向上できることも判明した。 The present inventors, the mixed powder of Li 2 CO 3 and NiO, in an oxidizing atmosphere, and baked at a temperature above the melting point of Li 2 CO 3, Li 2 CO 3 reacts with NiO, massive LiNiO 2 The LiNiO 2 powder obtained by pulverizing this was formed of a LiNiO 2 phase, and it was found that Li 2 CO 3 was not contained. Therefore, by sintering the obtained LiNiO 2 powder in a reducing atmosphere at a temperature lower than the above temperature, a sintered body of lithium nickelate (LiNiO 2 ) having no composition deviation from the stoichiometric composition can be obtained. It has been found. Furthermore, it has also been found that the density and relative density of the sintered body can be improved by performing main sintering in an oxidizing atmosphere and at a high temperature after the sintering.

したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
(1)本発明のニッケル酸リチウムスパッタリングターゲットの製造方法は、LiCO粉末とNiO粉末との混合粉末を、大気中、700〜900℃で焼成し、LiNiO焼成体を得る焼成工程と、前記LiNiO焼成体を粉砕してLiNiO粉末を得る粉砕工程と、前記LiNiO粉末を焼結してLiNiO焼結体を得る焼結工程と、を備えることを特徴とする。
(2)前記(1)の製造方法における前記焼結工程は、前記LiNiO粉末を、還元雰囲気で、400〜600℃で加圧焼結して、中間焼結体を得る加圧焼結工程と、前記中間焼結体を、大気中で、700〜850℃で加熱保持して、LiNiO焼結体を得る本焼結工程とを含むことを特徴とする。
Therefore, the present invention has been obtained from the above findings, and the following configuration has been adopted in order to solve the above problems.
(1) The method for producing a lithium nickelate sputtering target of the present invention includes a firing step of firing a mixed powder of Li 2 CO 3 powder and NiO powder at 700 to 900 ° C. in the air to obtain a LiNiO 2 fired body. A pulverizing step of pulverizing the LiNiO 2 fired body to obtain a LiNiO 2 powder, and a sintering step of sintering the LiNiO 2 powder to obtain a LiNiO 2 sintered body.
(2) The sintering step in the production method of (1) is a pressure sintering step in which the LiNiO 2 powder is pressure sintered at 400 to 600 ° C. in a reducing atmosphere to obtain an intermediate sintered body. And a main sintering step in which the intermediate sintered body is heated and held at 700 to 850 ° C. in the atmosphere to obtain a LiNiO 2 sintered body.

本発明に係るニッケル酸リチウムスパッタリングターゲットの製造方法では、LiCOとNiOとの混合粉末を、大気中、700〜900℃で焼成し、LiNiOを得る焼成工程と、前記焼成工程で得られたLiNiOを粉砕してLiNiO粉末を得る粉砕工程と、前記粉砕工程で得られたLiNiO粉末を焼結して焼結体を得る焼結工程とを備えることとし、焼結工程の前に、所定の温度範囲で焼成工程を実施することで、化学量論組成から組成ずれのないニッケル酸リチウム(LiNiO)を得ることができ、これを焼結することで、組成ずれのないニッケル酸リチウムスパッタリングターゲットを得ることができる。 In the method for producing a lithium nickelate sputtering target according to the present invention, a mixed powder of Li 2 CO 3 and NiO is fired at 700 to 900 ° C. in the atmosphere to obtain LiNiO 2, and obtained in the firing step. pulverized to obtain a LiNiO 2 powder LiNiO 2 was ground that is, by sintering the LiNiO 2 powder obtained in the pulverizing step and further comprising a sintering step to obtain a sintered body, the sintering process Previously, by performing the firing step in a predetermined temperature range, lithium nickelate (LiNiO 2 ) having no compositional deviation can be obtained from the stoichiometric composition, and by sintering this, there is no compositional deviation. A lithium nickelate sputtering target can be obtained.

ここで、前記焼成工程における焼成温度が、700℃未満であると、未反応のLiCOが残り、組成ずれの原因となるので好ましくない。一方、その焼成温度が、900℃を超えると、Liが蒸発して組成ずれの原因となるので好ましくない。 Here, if the firing temperature in the firing step is less than 700 ° C., unreacted Li 2 CO 3 remains, which causes a composition shift, which is not preferable. On the other hand, when the firing temperature exceeds 900 ° C., Li evaporates and causes a composition shift.

また、本発明に係るニッケル酸リチウムスパッタリングターゲットの製造方法において、前記焼結工程は、前記LiNiO粉末を、還元雰囲気中、400〜600℃で加圧焼結して中間焼結体を得る加圧焼結(ホットプレス)工程と、前記中間焼結体を、大気中、700〜850℃で加熱保持する本焼結工程とを有することが好ましい。このような工程手順にすることにより、より確実にスパッタリングターゲットの組成ずれを防止することができる。また、より密度の高いスパッタリングターゲットを得ることができる。 In the method for producing a lithium nickelate sputtering target according to the present invention, the sintering step may be performed by pressure-sintering the LiNiO 2 powder at 400 to 600 ° C. in a reducing atmosphere to obtain an intermediate sintered body. It is preferable to include a pressure sintering (hot pressing) step and a main sintering step of heating and holding the intermediate sintered body at 700 to 850 ° C. in the atmosphere. By setting it as such a process procedure, the composition shift | offset | difference of a sputtering target can be prevented more reliably. Moreover, a sputtering target with higher density can be obtained.

ここで、加圧焼結(ホットプレス)工程における加熱温度が、400℃未満であると、密度を向上する効果が低くなるので好ましくない。一方、その加熱温度が、600℃を超えると、LiNiOが還元されて組成ずれの原因となるので好ましくない。なお、還元雰囲気のホットプレス工程においては、一部のLiNiOが還元され、組成ずれが発生しても、次の、大気中での本焼成工程により、LiNiOに戻るので、組成ずれの問題は生じない。ただし、この場合であっても、加圧焼結工程における加熱温度が、600℃を超えて過度に還元されると、スパッタリングターゲットに組成ずれとして残る場合がある。 Here, if the heating temperature in the pressure sintering (hot pressing) step is less than 400 ° C., the effect of improving the density is lowered, which is not preferable. On the other hand, when the heating temperature exceeds 600 ° C., LiNiO 2 is reduced, which causes a composition shift. In the hot press process in a reducing atmosphere, even if a part of the LiNiO 2 is reduced and a composition shift occurs, it returns to LiNiO 2 by the next main firing step in the air, so there is a problem of the composition shift. Does not occur. However, even in this case, if the heating temperature in the pressure sintering process exceeds 600 ° C. and is excessively reduced, it may remain as a composition shift in the sputtering target.

また、前記本焼結工程における加熱温度が、700℃未満であると、ターゲット密度を向上する効果が低くなるので好ましくない。一方、その加熱温度が、850℃を超えると、Liが蒸発して組成ずれの原因となるので好ましくない。   Further, if the heating temperature in the main sintering step is less than 700 ° C., the effect of improving the target density is lowered, which is not preferable. On the other hand, when the heating temperature exceeds 850 ° C., Li evaporates and causes a composition shift, which is not preferable.

以上の様に、本発明に係るニッケル酸リチウムスパッタリングターゲットの製造方法によれば、LiCO粉末とNiO粉末との混合粉末を、大気中、700〜900℃で焼成し、LiNiO焼成体を得る焼成工程と、前記LiNiO焼成体を粉砕して得たLiNiO粉末を焼結してLiNiO焼結体を得る焼結工程と、を備えているので、化学量論組成からずれた組成を有するニッケル含有リチウム化合物の生成を低減した単相のニッケル酸リチウム(LiNiO)を得ることができる。 As described above, according to the manufacturing method of the lithium nickel oxide sputtering target according to the present invention, a mixed powder of Li 2 CO 3 powder, NiO powder, in the air and then calcined at 700 to 900 ° C., LiNiO 2 sintered body and the obtained sintering step, a sintering step of obtaining a LiNiO 2 sintered body by sintering the LiNiO 2 powder obtained by pulverizing the LiNiO 2 fired body is provided with the, deviated from the stoichiometric composition A single-phase lithium nickelate (LiNiO 2 ) with reduced generation of a nickel-containing lithium compound having a composition can be obtained.

さらに、前記焼結工程が、前記LiNiO粉末を、還元雰囲気中、400〜600℃で加圧焼結して中間焼結体を得る加圧焼結(ホットプレス)工程と、前記中間焼結体を、大気中、700〜850℃で加熱保持する本焼結工程とを有することにより、より確実にスパッタリングターゲットの組成ずれを防止することができ、より密度の高いスパッタリングターゲットを得ることができる。 Further, the sintering step includes a pressure sintering (hot pressing) step in which the LiNiO 2 powder is subjected to pressure sintering at 400 to 600 ° C. in a reducing atmosphere to obtain an intermediate sintered body, and the intermediate sintering. By having a main sintering step in which the body is heated and held at 700 to 850 ° C. in the atmosphere, the composition deviation of the sputtering target can be prevented more reliably, and a sputtering target with higher density can be obtained. .

以上の様に、本発明に係る方法により製造されたニッケル酸リチウムスパッタリングターゲットにおいては、組成ずれを防止した単相のニッケル酸リチウム(LiNiO)で構成されているので、このスパッタリングターゲットを用いて、スパッタリング成膜すれば、組成ずれのないニッケル酸リチウム(LiNiO)膜が得られる。 As described above, since the lithium nickelate sputtering target manufactured by the method according to the present invention is composed of single-phase lithium nickelate (LiNiO 2 ) that prevents composition deviation, this sputtering target is used. When sputtering film formation is performed, a lithium nickelate (LiNiO 2 ) film having no composition deviation can be obtained.

本発明に係る方法で製造されたニッケル酸リチウムスパッタリングターゲットの一具体例についてのX線回折による計測結果のXRDパターンを示す。The XRD pattern of the measurement result by X-ray diffraction about one specific example of the lithium nickelate sputtering target manufactured with the method concerning the present invention is shown. 本発明に係る方法で製造されたニッケル酸リチウムスパッタリングターゲットの他の具体例についてのX線回折による計測結果のXRDパターンを示す。The XRD pattern of the measurement result by the X-ray diffraction about the other specific example of the lithium nickelate sputtering target manufactured with the method based on this invention is shown. 本発明に係る方法で製造されたニッケル酸リチウムスパッタリングターゲットの別の具体例についてのX線回折による計測結果のXRDパターンを示す。The XRD pattern of the measurement result by X-ray diffraction about another specific example of the lithium nickelate sputtering target manufactured with the method concerning the present invention is shown.

次に、本発明に係るニッケル酸リチウムスパッタリングターゲットの製造方法について、以下に、実施例により具体的に説明する。   Next, the manufacturing method of the lithium nickelate sputtering target according to the present invention will be specifically described below with reference to examples.

〔実施例〕
先ず、本発明に係るニッケル酸リチウムスパッタリングターゲットを製造するために、原料粉末として、平均粒径D50が150μm、純度4NのLiCO粉末(株式会社高純度科学研究所製)と、平均粒径D50が1.8μm、純度3NのNiO粉末(フルウチ化学株式会社製)とを用意した。そして、以下に示す混合工程、焼成工程、粉砕工程、焼結工程:ホットプレス工程、焼結工程:本焼結工程、機械加工工程の手順に従い、製造を実施した。
〔Example〕
First, in order to manufacture the lithium nickelate sputtering target according to the present invention, Li 2 CO 3 powder (manufactured by High Purity Science Laboratory Co., Ltd.) having an average particle diameter D50 of 150 μm and a purity of 4N as a raw material powder and an average particle A NiO powder (manufactured by Furuuchi Chemical Co., Ltd.) having a diameter D50 of 1.8 μm and a purity of 3N was prepared. And it manufactured according to the procedure of the mixing process shown below, a baking process, a grinding | pulverization process, a sintering process: a hot press process, a sintering process: this sintering process, and a machining process.

(混合工程)
LiCO粉末とNiO粉末とを、モル比が1:2となるように秤量した。秤量した各原料粉末を、ボールミルにより混合し、実施例1〜11の混合粉末を得た。この混合では、ZrOボールを用い、溶媒にはヘキサンを用いた。得られた各混合粉末を乾燥し、目開き0.5mmの篩にかけた。
(Mixing process)
Li 2 CO 3 powder and NiO powder were weighed so that the molar ratio was 1: 2. The weighed raw material powders were mixed by a ball mill to obtain mixed powders of Examples 1-11. In this mixing, ZrO 2 balls were used and hexane was used as a solvent. Each obtained mixed powder was dried and passed through a sieve having an opening of 0.5 mm.

(焼成工程)
実施例1〜11の混合粉末をそれぞれ容器に入れ、大気中で、表1に示された加熱温度で、48時間、加熱保持し、塊状のLiNiO焼成体を得た。
(Baking process)
Each of the mixed powders of Examples 1 to 11 was placed in a container and heated and held in the air at the heating temperature shown in Table 1 for 48 hours to obtain a massive LiNiO 2 fired body.

(粉砕工程)
得られた塊状のLiNiO焼成体をそれぞれベッセルによって解砕し、目開き90μmの篩にかけて、実施例1〜11のLiNiO粉末を得た。
(Crushing process)
The obtained bulk LiNiO 2 fired bodies were each crushed with a vessel and passed through a sieve having an opening of 90 μm to obtain LiNiO 2 powders of Examples 1 to 11.

(焼結工程:ホットプレス工程)
得られた実施例1〜11のLiNiO粉末を、それぞれモールドに充填し、真空槽内を10−2Torr(1.3Pa)の到達真空圧力まで排気した後、表1に示す加熱温度で2時間、圧力14.7MPaでホットプレスすることにより、実施例1〜11の中間焼結体を得た。
(Sintering process: Hot pressing process)
The obtained LiNiO 2 powders of Examples 1 to 11 were each filled in a mold, the inside of the vacuum chamber was evacuated to an ultimate vacuum pressure of 10 −2 Torr (1.3 Pa), and then heated at 2 at the heating temperature shown in Table 1. The intermediate sintered bodies of Examples 1 to 11 were obtained by hot pressing at a pressure of 14.7 MPa for a time.

(焼結工程:本焼結工程)
上記実施例1〜11の中間焼結体を、大気中、表1に示した加熱温度で、48時間、加熱保持し、実施例1〜11の焼結体を得た。
(Sintering process: Main sintering process)
The intermediate sintered bodies of Examples 1 to 11 were heated and held for 48 hours at the heating temperatures shown in Table 1 in the air, and the sintered bodies of Examples 1 to 11 were obtained.

(機械加工工程)
得られた実施例1〜11の焼結体を機械加工して、直径200mm、厚さ5mmの実施例1〜11のスパッタリングターゲットを作製した。ここで、実施例ごとに、同じスパッタリングターゲットを5個ずつ作製した。
(Machining process)
The obtained sintered bodies of Examples 1 to 11 were machined to produce sputtering targets of Examples 1 to 11 having a diameter of 200 mm and a thickness of 5 mm. Here, five same sputtering targets were produced for every Example.

〔比較例〕
実施例との比較のため、比較例1、2のニッケル酸リチウムスパッタリングターゲットを作製した。各比較例のスパッタリングターゲットは、上記実施例の場合と同様の手順で作製されたが、比較例1、2では、上記の焼成工程における温度が、本発明の温度範囲外となっており、比較例1は、低い場合であり、また、比較例2は、高い場合である。
[Comparative Example]
For comparison with the examples, lithium nickelate sputtering targets of Comparative Examples 1 and 2 were produced. The sputtering target of each comparative example was produced in the same procedure as in the above example, but in comparative examples 1 and 2, the temperature in the above baking step is outside the temperature range of the present invention. Example 1 is a low case, and Comparative Example 2 is a high case.


次いで、作製された実施例1〜11及び比較例1、2のスパッタリングターゲットについて、以下に示すように、組成ずれの評価を行い、さらに、ターゲット密度及び相対密度を測定した。   Subsequently, about the produced sputtering target of Examples 1-11 and Comparative Examples 1 and 2, as shown below, composition deviation was evaluated and the target density and relative density were further measured.

<組成ずれの評価>
下記の条件で、実施例1〜11及び比較例1、2のスパッタリングターゲットのそれぞれの5サンプルについて、XRD測定を実施した。
・試料の準備:得られた焼結体をメノウ乳鉢にて粉砕したものを測定試料とした。
・装置:理学電機社製(RINT−Ultima/PC)
・管球:Cu
・管電圧:40kV
・管電流:40mA
・走査範囲(2θ):10°〜90°
・スリットサイズ:発散(DS)2/3度、散乱(SS)2/3度、受光(RS)0.3mm
・測定ステップ幅:2θで0.04度
・スキャンスピード:毎分4度
・試料台回転スピード:30rpm
上記測定により得られたXRDパターンにおいて、LiNiO相のみが検出された場合を組成ずれ無しとし、LiNiO相以外の相、即ち、組成ずれが発生したニッケル含有リチウム化合物相も検出された場合、組成ずれ有とした。5サンプル中、組成ずれのあったサンプルの数を、表2の「組成ずれ発生数」欄に示した。なお、5サンプルいずれにおいても組成ずれ無しの場合は、「0」である。
<Evaluation of composition deviation>
Under the following conditions, XRD measurement was performed on each of the five samples of the sputtering targets of Examples 1 to 11 and Comparative Examples 1 and 2.
-Preparation of sample: The obtained sintered body was pulverized in an agate mortar and used as a measurement sample.
・ Device: Rigaku Electric Co., Ltd. (RINT-Ultima / PC)
・ Tube: Cu
・ Tube voltage: 40kV
・ Tube current: 40 mA
Scanning range (2θ): 10 ° to 90 °
・ Slit size: divergence (DS) 2/3 degrees, scattering (SS) 2/3 degrees, light reception (RS) 0.3 mm
・ Measurement step width: 0.04 degrees at 2θ ・ Scanning speed: 4 degrees per minute ・ Sample stage rotation speed: 30 rpm
In the XRD pattern obtained by the above measurement, when only the LiNiO 2 phase is detected, there is no composition deviation, and when a phase other than the LiNiO 2 phase, that is, a nickel-containing lithium compound phase in which a composition deviation occurs is also detected, It was assumed that there was a composition deviation. The number of samples having a composition deviation among the five samples is shown in the “Number of occurrence of composition deviation” column of Table 2. In addition, when there is no composition deviation in any of the five samples, it is “0”.

なお、本発明に係る方法で製造されたニッケル酸リチウムスパッタリングターゲットの一具体例として、上記実施例1の場合についてのX線回折による計測結果のXRDパターンを図1に示した。また、本発明に係る方法で製造されたニッケル酸リチウムスパッタリングターゲットの他の具体例として、上記実施例6の場合についてのX線回折による計測結果のXRDパターンを図2に示した。図1及び図2のXRDパターンによれば、単相のLiNiO相が確認された。さらに、本発明に係る方法で製造されたニッケル酸リチウムスパッタリングターゲットの別の具体例として、実施例11の場合についてのX線回折による計測結果のXRDパターンを図3に示した。図3のXRDパターンによれば、LiNiO相と、化学量論組成からずれたニッケル含有リチウム化合物相とが確認された。 In addition, as a specific example of the lithium nickelate sputtering target manufactured by the method according to the present invention, an XRD pattern of a measurement result by X-ray diffraction in the case of Example 1 is shown in FIG. Further, as another specific example of the lithium nickelate sputtering target manufactured by the method according to the present invention, an XRD pattern of a measurement result by X-ray diffraction in the case of Example 6 is shown in FIG. According to the XRD patterns of FIGS. 1 and 2, a single-phase LiNiO 2 phase was confirmed. Furthermore, as another specific example of the lithium nickelate sputtering target manufactured by the method according to the present invention, the XRD pattern of the measurement result by X-ray diffraction in the case of Example 11 is shown in FIG. According to the XRD pattern of FIG. 3, a LiNiO 2 phase and a nickel-containing lithium compound phase deviated from the stoichiometric composition were confirmed.

<密度の評価>
得られた実施例1〜11及び比較例1、2の焼結体を、所定寸法に機械加工した後、重量を測定し嵩密度を求めた。これらの嵩密度を理論密度(4.81g/cm)で割ることで、各々の相対密度を算出した。密度及び相対密度について、それらの結果を、表2の「密度(g/cm)」欄及び「相対密度(%)」欄に示した。なお、比較例1、2の場合には、全サンプルにおいて、組成ずれが発生したため、密度及び相対密度を測定しなかった。表2においては、「−」と表記した。
<Evaluation of density>
The obtained sintered bodies of Examples 1 to 11 and Comparative Examples 1 and 2 were machined to predetermined dimensions, and then the weight was measured to determine the bulk density. Each bulk density was calculated by dividing these bulk densities by the theoretical density (4.81 g / cm 3 ). The results of density and relative density are shown in the “Density (g / cm 3 )” column and “Relative density (%)” column of Table 2. In Comparative Examples 1 and 2, since composition shift occurred in all samples, the density and relative density were not measured. In Table 2, it was described as “−”.


上記の表2によれば、実施例1〜6、8〜10の場合には、いずれも、スパッタリングターゲットの5サンプル中で組成ずれ発生を確認できなかった。さらに、実施例7の場合は、ホットプレス工程の加熱温度が高いため、実施例11の場合は、本焼成工程の加熱温度が高いため、一部のサンプルで組成ずれが発生したが、いずれの場合も、ターゲット密度及び相対密度を向上することができた。   According to said Table 2, in the case of Examples 1-6 and 8-10, composition deviation generation | occurrence | production was not able to be confirmed in all 5 samples of a sputtering target. Furthermore, in the case of Example 7, since the heating temperature of the hot pressing process is high, in the case of Example 11, the heating temperature of the main baking process is high. Even in this case, the target density and the relative density could be improved.

一方、比較例1の場合には、焼成工程における加熱温度が低く、比較例2の場合には、その加熱温度が高いため、いずれの場合も、全てのサンプルで組成ずれが発生した。   On the other hand, in the case of Comparative Example 1, the heating temperature in the firing step was low, and in the case of Comparative Example 2, the heating temperature was high. Therefore, in all cases, composition deviation occurred in all samples.

以上のことから、本実施例に係るニッケル酸リチウムスパッタリングターゲットの製造方法によれば、LiCOとNiOとの混合粉末を、酸化雰囲気で、LiCOの融点以上の温度で焼成すると、塊状のLiNiOを得ることができ、これを粉砕して得たLiNiO粉末を、還元雰囲気で、前記温度より低い温度で焼結することによって、化学量論組成から組成ずれのないニッケル酸リチウム(LiNiO)の焼結体が得られることを確認できた。さらに、この焼結後に、酸化雰囲気、高い温度で本焼結すると、この焼結体の密度及び相対密度を向上できることも確認できた。
From the above, according to the method for producing a lithium nickelate sputtering target according to the present embodiment, when the mixed powder of Li 2 CO 3 and NiO is baked at a temperature equal to or higher than the melting point of Li 2 CO 3 in an oxidizing atmosphere. , can be obtained LiNiO 2 massive, LiNiO 2 powder obtained by pulverizing this, in a reducing atmosphere, by sintering at lower than the temperature temperature, without nickelate compositions deviation from the stoichiometric composition It was confirmed that a sintered body of lithium (LiNiO 2 ) was obtained. Furthermore, it was also confirmed that the density and relative density of the sintered body can be improved by performing main sintering in an oxidizing atmosphere and at a high temperature after the sintering.

Claims (2)

LiCO粉末とNiO粉末との混合粉末を、大気中、700〜900℃で焼成し、LiNiO焼成体を得る焼成工程と、
前記LiNiO焼成体を粉砕してLiNiO粉末を得る粉砕工程と、
前記LiNiO粉末を焼結してLiNiO焼結体を得る焼結工程と、
を備えることを特徴とするリチウム含有ニッケル酸化物スパッタリングターゲットの製造方法。
A firing step of firing a mixed powder of Li 2 CO 3 powder and NiO powder in air at 700 to 900 ° C. to obtain a LiNiO 2 fired body;
Pulverizing the LiNiO 2 fired body to obtain LiNiO 2 powder;
Sintering the LiNiO 2 powder to obtain a LiNiO 2 sintered body;
A method for producing a lithium-containing nickel oxide sputtering target, comprising:
前記焼結工程は、
前記LiNiO粉末を、還元雰囲気で、400〜600℃で加圧焼結して、中間焼結体を得る加圧焼結工程と、
前記中間焼結体を、大気中で、700〜850℃で加熱保持して、LiNiO焼結体を得る本焼結工程と
を含むことを特徴とする請求項1に記載のリチウム含有ニッケル酸化物スパッタリングターゲットの製造方法。



The sintering step includes
A pressure sintering step in which the LiNiO 2 powder is subjected to pressure sintering at 400 to 600 ° C. in a reducing atmosphere to obtain an intermediate sintered body;
The intermediate-sintered body is heated and held at 700 to 850 ° C. in the atmosphere to obtain a LiNiO 2 sintered body, and the lithium-containing nickel oxidation according to claim 1, A method for manufacturing a sputtering target.



JP2014148022A 2014-07-18 2014-07-18 Method for producing lithium nickelate sputtering target Expired - Fee Related JP6376380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148022A JP6376380B2 (en) 2014-07-18 2014-07-18 Method for producing lithium nickelate sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148022A JP6376380B2 (en) 2014-07-18 2014-07-18 Method for producing lithium nickelate sputtering target

Publications (2)

Publication Number Publication Date
JP2016023333A true JP2016023333A (en) 2016-02-08
JP6376380B2 JP6376380B2 (en) 2018-08-22

Family

ID=55270383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148022A Expired - Fee Related JP6376380B2 (en) 2014-07-18 2014-07-18 Method for producing lithium nickelate sputtering target

Country Status (1)

Country Link
JP (1) JP6376380B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321280A (en) * 2020-11-13 2021-02-05 北京航大微纳科技有限公司 Gel injection molding preparation method of nickel oxide-based ceramic target material
JP2021113349A (en) * 2020-01-20 2021-08-05 株式会社デンソー Manufacturing method of target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340756A (en) * 1986-08-07 1988-02-22 旭硝子株式会社 Indium oxide sintered body for tin-containing physical vapor deposition
JPH06510090A (en) * 1991-09-03 1994-11-10 ソシエテ・ナシオナル・エルフ・アキテーヌ Target element for cathode sputtering
JP2009046340A (en) * 2007-08-17 2009-03-05 Ulvac Material Kk Method for producing lithium phosphate sintered compact, and sputtering target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340756A (en) * 1986-08-07 1988-02-22 旭硝子株式会社 Indium oxide sintered body for tin-containing physical vapor deposition
JPH06510090A (en) * 1991-09-03 1994-11-10 ソシエテ・ナシオナル・エルフ・アキテーヌ Target element for cathode sputtering
JP2009046340A (en) * 2007-08-17 2009-03-05 Ulvac Material Kk Method for producing lithium phosphate sintered compact, and sputtering target

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113349A (en) * 2020-01-20 2021-08-05 株式会社デンソー Manufacturing method of target
JP7298490B2 (en) 2020-01-20 2023-06-27 株式会社デンソー Target manufacturing method
CN112321280A (en) * 2020-11-13 2021-02-05 北京航大微纳科技有限公司 Gel injection molding preparation method of nickel oxide-based ceramic target material

Also Published As

Publication number Publication date
JP6376380B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP7017079B2 (en) Electrode manufacturing method, electrodes, and electrode-electrolyte layer junction
JP5919673B2 (en) Solid electrolyte and method for producing the same
JP5376252B2 (en) Ceramic materials and their use
JP5617417B2 (en) Garnet-type lithium ion conductive oxide and process for producing the same
JP6079307B2 (en) Method for producing garnet-type lithium ion conductive oxide
JP6485232B2 (en) Method for producing positive electrode active material
JP5273732B2 (en) Manufacturing method of ceramic material
CN109195918B (en) Low-symmetry garnet-associated-structure solid electrolyte and lithium ion secondary battery
JP2019006634A (en) Manufacturing method of solid electrolyte, and solid electrolyte
JP2018528151A (en) High tap density lithium positive electrode active material, intermediate and production method
JP6399657B2 (en) Oxide sintered body, manufacturing method thereof, solid electrolyte using the same, and lithium ion battery using the same
JPWO2019044901A1 (en) Solid electrolyte and all-solid battery
JP6832073B2 (en) Manufacturing method of positive electrode active material for all-solid-state batteries
JP2014172812A (en) Method of producing lithium ion conductive oxide
JP2018073503A (en) Lithium ion solid electrolyte and lithium ion battery using the same
JP2011108407A (en) Manufacturing method of cathode for nonaqueous electrolyte battery, cathode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2015041597A (en) Complex oxide powder for solid oxide type fuel batteries, and manufacturing method thereof
Kozawa et al. Rapid synthesis of LiNi0. 5Mn1. 5O4 by mechanical process and post-annealing
JP2018116817A (en) Positive electrode active material for lithium ion secondary battery and production method thereof and lithium ion secondary battery
JP6376380B2 (en) Method for producing lithium nickelate sputtering target
Chen et al. 20 mS cm− 1 Li-argyrodite solid electrolyte produced via facile high-speed-mixing
JP2012166966A (en) B type titanium oxide and method of manufacturing the same, and lithium ion battery using the same
JP5086910B2 (en) Lithium secondary battery provided with Li-Sn-Mn compound positive electrode thin film, method for producing Li-Sn-Mn compound target, and method for forming positive electrode thin film using the same
JP2014229490A (en) Method for producing solid electrolyte for battery
JP2012048893A (en) Powder of air electrode material for solid oxide fuel cell and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180711

R150 Certificate of patent or registration of utility model

Ref document number: 6376380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees