JP2016023098A - Phosphor deposited glass powder and wavelength conversion member manufacturing methods, and wavelength conversion member - Google Patents

Phosphor deposited glass powder and wavelength conversion member manufacturing methods, and wavelength conversion member Download PDF

Info

Publication number
JP2016023098A
JP2016023098A JP2014146912A JP2014146912A JP2016023098A JP 2016023098 A JP2016023098 A JP 2016023098A JP 2014146912 A JP2014146912 A JP 2014146912A JP 2014146912 A JP2014146912 A JP 2014146912A JP 2016023098 A JP2016023098 A JP 2016023098A
Authority
JP
Japan
Prior art keywords
glass powder
wavelength conversion
conversion member
phosphor
nanophosphor particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014146912A
Other languages
Japanese (ja)
Other versions
JP6442894B2 (en
Inventor
角見 昌昭
Masaaki Kadomi
昌昭 角見
隆史 西宮
Takashi Nishimiya
隆史 西宮
浅野 秀樹
Hideki Asano
秀樹 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2014146912A priority Critical patent/JP6442894B2/en
Priority to KR1020167024737A priority patent/KR102313931B1/en
Priority to PCT/JP2015/068993 priority patent/WO2016009840A1/en
Priority to CN201580024990.5A priority patent/CN106458721A/en
Priority to TW104123303A priority patent/TWI683794B/en
Publication of JP2016023098A publication Critical patent/JP2016023098A/en
Application granted granted Critical
Publication of JP6442894B2 publication Critical patent/JP6442894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphor deposited glass powder manufacturing method in which inorganic nano phosphor particles can be dispersed in good state, a wavelength conversion member manufacturing method using said manufacturing method, and a wavelength conversion member.SOLUTION: Provided is a phosphor deposited glass powder 1 manufacturing method by depositing inorganic nano phosphor particles 3 on the surface of a glass powder 2, and in which, characterized, comprising a step for contacting inorganic nano phosphor particles 3 and a glass powder 2 in a liquid in which inorganic nano phosphor particles 3 are dispersed in a dispersion medium, and a step for depositing inorganic nano phosphor particles 3 on the surface of a glass powder 2 by removing the dispersion medium in the liquid.SELECTED DRAWING: Figure 1

Description

本発明は、蛍光体付着ガラス粉末の製造方法、及び波長変換部材の製造方法、並びに波長変換部材に関するものである。   The present invention relates to a method for producing a phosphor-attached glass powder, a method for producing a wavelength conversion member, and a wavelength conversion member.

近年、発光ダイオード(LED)や半導体レーザー(LD)等の励起光源を用い、これらの励起光源から発生した励起光を、蛍光体に照射することによって発生する蛍光を照明光として用いる発光装置が検討されている。また、蛍光体として、半導体ナノ微粒子または量子ドットと呼ばれる無機ナノ蛍光体粒子を用いることが検討されている。無機ナノ蛍光体粒子は、その直径を変えることにより蛍光波長の調整が可能であり、高い発光効率を有する。   In recent years, a light-emitting device using an excitation light source such as a light emitting diode (LED) or a semiconductor laser (LD) and using fluorescence generated by irradiating the phosphor with excitation light generated from these excitation light sources has been studied. Has been. In addition, the use of inorganic nanophosphor particles called semiconductor nanoparticles or quantum dots has been studied as a phosphor. Inorganic nanophosphor particles can be adjusted in fluorescence wavelength by changing their diameter, and have high luminous efficiency.

しかしながら、無機ナノ蛍光体粒子は、空気中の水分や酸素と接触すると劣化しやすいという性質を有している。このため、無機ナノ蛍光体粒子は、外部環境と接しないように封止して用いる必要がある。封止材として、樹脂を用いると、励起光が蛍光体によって波長変換される際、エネルギーの一部が熱に変換されるため、その熱により樹脂が変色するという問題がある。また、樹脂は耐水性に劣り、水分を透過しやすいため、蛍光体が劣化しやすいという問題がある。   However, inorganic nanophosphor particles have the property of being easily deteriorated when they come into contact with moisture or oxygen in the air. For this reason, it is necessary to seal the inorganic nanophosphor particles so as not to contact the external environment. When a resin is used as the sealing material, there is a problem that when the wavelength of excitation light is converted by the phosphor, a part of the energy is converted into heat, so that the resin is discolored by the heat. Further, since the resin is inferior in water resistance and easily penetrates moisture, there is a problem that the phosphor is easily deteriorated.

このような事情から、特許文献1においては、封止材として、樹脂の代わりにガラスを用いた波長変換部材が提案されている。具体的には、特許文献1には、無機ナノ蛍光体粒子とガラス粉末を含む混合物を焼結することにより、ガラスを封止材として用いた波長変換部材が提案されている。   Under such circumstances, Patent Document 1 proposes a wavelength conversion member using glass instead of resin as a sealing material. Specifically, Patent Document 1 proposes a wavelength conversion member using glass as a sealing material by sintering a mixture containing inorganic nanophosphor particles and glass powder.

特開2012−87162号公報JP 2012-87162 A

無機ナノ蛍光体粒子は、ガラス粉末に比べ非常に粒子サイズが小さいため、凝集しやすい。そのため、特許文献1に記載の波長変換部材では、無機ナノ蛍光体粒子が凝集した状態で、ガラス中に封止されてしまうという問題があった。   Inorganic nanophosphor particles are much smaller than glass powders, and therefore easily aggregate. For this reason, the wavelength conversion member described in Patent Document 1 has a problem that the inorganic nanophosphor particles are sealed in the glass in an aggregated state.

本発明の目的は、無機ナノ蛍光体粒子がガラスマトリクス中に良好な状態で分散された波長変換部材を作製することができる蛍光体付着ガラス粉末の製造方法、該製造方法を用いた波長変換部材の製造方法及び、波長変換部材を提供することにある。   An object of the present invention is to provide a method for producing a phosphor-attached glass powder capable of producing a wavelength conversion member in which inorganic nanophosphor particles are dispersed in a good state in a glass matrix, and a wavelength conversion member using the production method. It is in providing the manufacturing method of this, and a wavelength conversion member.

本発明の蛍光体付着ガラス粉末の製造方法は、ガラス粉末の表面に無機ナノ蛍光体粒子を付着させた蛍光体付着ガラス粉末を製造する方法であって、無機ナノ蛍光体粒子が分散媒に分散した液中で、無機ナノ蛍光体粒子とガラス粉末を接触させる工程と、液中の分散媒を除去することにより、ガラス粉末の表面に無機ナノ蛍光体粒子を付着させる工程とを備えることを特徴としている。   The method for producing a phosphor-attached glass powder of the present invention is a method for producing a phosphor-attached glass powder in which inorganic nanophosphor particles are attached to the surface of a glass powder, wherein the inorganic nanophosphor particles are dispersed in a dispersion medium. A step of bringing the inorganic nanophosphor particles into contact with the glass powder in the liquid, and a step of attaching the inorganic nanophosphor particles to the surface of the glass powder by removing the dispersion medium in the liquid. It is said.

本発明では、例えば、ガラス粉末を、液中に添加することにより、無機ナノ蛍光体粒子とガラス粉末を接触させることができる。   In the present invention, for example, by adding glass powder into the liquid, the inorganic nanophosphor particles and the glass powder can be brought into contact with each other.

本発明では、例えば、ガラス粉末に、液を霧状にして吹き付けることにより、無機ナノ蛍光体粒子とガラス粉末を接触させることができる。   In the present invention, for example, the inorganic nanophosphor particles and the glass powder can be brought into contact with each other by spraying the liquid on the glass powder in the form of a mist.

本発明では、例えば、液と、ガラス粉末を分散させた分散液とを混合することにより、無機ナノ蛍光体粒子とガラス粉末を接触させることができる。   In the present invention, for example, the inorganic nanophosphor particles and the glass powder can be brought into contact by mixing the liquid and a dispersion liquid in which the glass powder is dispersed.

本発明では、ガラス粉末は、ガラス粉末を凝集させた成形体の形態であってもよい。この場合、成形体は、ガラス粉末に圧力をかけることより凝集させた成形体であってもよい。また、成形体は、ガラス粉末を仮焼して凝集させた成形体であってもよい。また、成形体は、ガラス粉末を含むガラスグリーンシートを仮焼して得られる成形体であってもよい。   In the present invention, the glass powder may be in the form of a molded body obtained by aggregating the glass powder. In this case, the molded body may be a molded body aggregated by applying pressure to the glass powder. Further, the molded body may be a molded body obtained by calcination and aggregation of glass powder. Further, the molded body may be a molded body obtained by calcination of a glass green sheet containing glass powder.

本発明では、例えば、成形体を、液中に浸漬することにより、無機ナノ蛍光体粒子とガラス粉末を接触させることができる。   In the present invention, for example, the inorganic nanophosphor particles and the glass powder can be brought into contact with each other by immersing the molded body in a liquid.

本発明では、例えば、成形体に、液を浸透させるにより、無機ナノ蛍光体粒子とガラス粉末を接触させることができる。   In the present invention, for example, the inorganic nanophosphor particles and the glass powder can be brought into contact with each other by allowing the liquid to penetrate into the molded body.

本発明の波長変換部材の製造方法は、ガラス中に無機ナノ蛍光体粒子を含有した波長変換部材を製造する方法であって、本発明の製造方法で蛍光体付着ガラス粉末を製造する工程と、蛍光体付着ガラス粉末を焼結する工程とを備えることを特徴としている。   The method for producing a wavelength conversion member of the present invention is a method for producing a wavelength conversion member containing inorganic nanophosphor particles in glass, the step of producing a phosphor-attached glass powder by the production method of the present invention, And a step of sintering the phosphor-attached glass powder.

焼結を、真空雰囲気下で行うことが好ましい。   Sintering is preferably performed in a vacuum atmosphere.

焼結温度は、400℃以下であることが好ましい。   The sintering temperature is preferably 400 ° C. or lower.

本発明の第1の局面の波長変換部材は、本発明の波長変換部材の製造方法で製造されたことを特徴とする波長変換部材である。   The wavelength conversion member according to the first aspect of the present invention is a wavelength conversion member manufactured by the method for manufacturing a wavelength conversion member of the present invention.

本発明の第2の局面の波長変換部材は、ガラス粉末の表面に無機ナノ蛍光体粒子を付着させた蛍光体付着ガラス粉末を焼結して得られることを特徴とする波長変換部材である。   The wavelength conversion member according to the second aspect of the present invention is a wavelength conversion member obtained by sintering phosphor-attached glass powder having inorganic nanophosphor particles attached to the surface of glass powder.

本発明の第3の局面の波長変換部材は、本発明の蛍光体付着ガラス粉末の製造方法で製造された蛍光体付着ガラス粉末からなる波長変換部材である。   The wavelength conversion member of the 3rd aspect of the present invention is a wavelength conversion member which consists of fluorescent substance adhesion glass powder manufactured with the manufacturing method of fluorescent substance adhesion glass powder of the present invention.

本発明によれば、無機ナノ蛍光体粒子がガラスマトリクス中に良好な状態で分散された波長変換部材を作製することができる。   According to the present invention, it is possible to produce a wavelength conversion member in which inorganic nanophosphor particles are dispersed in a glass matrix in a good state.

本発明の一実施形態の蛍光体付着ガラス粉末を示す模式的断面図である。It is typical sectional drawing which shows the fluorescent substance adhesion glass powder of one Embodiment of this invention. 本発明の他の実施形態の蛍光体付着ガラス粉末を示す模式的断面図である。It is typical sectional drawing which shows the fluorescent substance adhesion glass powder of other embodiment of this invention. 本発明の一実施形態の波長変換部材を示す模式的断面図である。It is a typical sectional view showing the wavelength conversion member of one embodiment of the present invention.

以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。   Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.

図1は、本発明の一実施形態の蛍光体付着ガラス粉末を示す模式的断面図である。図1に示すように、本実施形態の蛍光体付着ガラス粉末1は、ガラス粉末2の表面に、多数の無機ナノ蛍光体粒子3が良好な分散状態で付着することにより構成されている。本実施形態の蛍光体付着ガラス粉末1は、無機ナノ蛍光体粒子3が分散媒に分散した液中で、無機ナノ蛍光体粒子3とガラス粉末2を接触させた後、液中の分散媒を除去することにより製造することができる。   FIG. 1 is a schematic cross-sectional view showing a phosphor-attached glass powder according to an embodiment of the present invention. As shown in FIG. 1, the phosphor-attached glass powder 1 of the present embodiment is configured by attaching a large number of inorganic nanophosphor particles 3 in a well dispersed state to the surface of a glass powder 2. In the phosphor-attached glass powder 1 of the present embodiment, the inorganic nanophosphor particles 3 and the glass powder 2 are brought into contact with each other in the liquid in which the inorganic nanophosphor particles 3 are dispersed in the dispersion medium, and then the dispersion medium in the liquid is used. It can manufacture by removing.

無機ナノ蛍光体粒子3とガラス粉末2を、無機ナノ蛍光体粒子3が分散媒に分散した液中で接触させる具体的な方法としては、例えば以下の方法が挙げられる。   As a specific method of bringing the inorganic nanophosphor particles 3 and the glass powder 2 into contact in a liquid in which the inorganic nanophosphor particles 3 are dispersed in a dispersion medium, for example, the following methods may be mentioned.

(1)ガラス粉末2を、無機ナノ蛍光体粒子3が分散媒に分散した液に添加する方法。   (1) A method of adding glass powder 2 to a liquid in which inorganic nanophosphor particles 3 are dispersed in a dispersion medium.

(2)ガラス粉末2に、無機ナノ蛍光体粒子3が分散媒に分散した液を霧状にして吹き付ける方法。   (2) A method in which a liquid in which inorganic nanophosphor particles 3 are dispersed in a dispersion medium is sprayed on glass powder 2 in a mist form.

(3)ガラス粉末2を分散させた分散液と、無機ナノ蛍光体粒子3が分散媒に分散した液を混合する方法。   (3) A method of mixing a dispersion liquid in which glass powder 2 is dispersed and a liquid in which inorganic nanophosphor particles 3 are dispersed in a dispersion medium.

図2は、本発明の他の実施形態の蛍光体付着ガラス粉末を示す模式的断面図である。図2に示すように、本実施形態の蛍光体付着ガラス粉末11においては、ガラス粉末が、ガラス粉末2を凝集させた成形体4の形態を有している。成形体4を構成する各ガラス粉末2の表面に、無機ナノ蛍光体粒子3が良好な分散状態で付着している。成形体4は、例えば、型に入れたガラス粉末2に圧力をかけることにより凝集させたものであってもよい。また、成形体4は、例えば、型に入れたガラス粉末2を加熱し、仮焼することにより凝集させたものであってもよい。また、成形体4は、ガラス粉末と、樹脂バインダーとを含むガラスグリーンシートを仮焼して得られるものであってもよい。   FIG. 2 is a schematic cross-sectional view showing a phosphor-attached glass powder according to another embodiment of the present invention. As shown in FIG. 2, in the phosphor-attached glass powder 11 of the present embodiment, the glass powder has a form of a molded body 4 in which the glass powder 2 is aggregated. Inorganic nanophosphor particles 3 are adhered to the surface of each glass powder 2 constituting the molded body 4 in a good dispersion state. For example, the molded body 4 may be agglomerated by applying pressure to the glass powder 2 placed in a mold. Moreover, the molded object 4 may be agglomerated by, for example, heating and pre-baking the glass powder 2 put in a mold. Moreover, the molded object 4 may be obtained by calcining a glass green sheet containing glass powder and a resin binder.

成形体4を構成するガラス粉末2と無機ナノ蛍光体粒子3を、無機ナノ蛍光体粒子3が分散媒に分散した液中で接触させる具体的な方法としては、例えば以下の方法が挙げられる。   As a specific method of bringing the glass powder 2 constituting the molded body 4 and the inorganic nanophosphor particles 3 into contact with each other in a liquid in which the inorganic nanophosphor particles 3 are dispersed in a dispersion medium, for example, the following methods may be mentioned.

(4)成形体4を、無機ナノ蛍光体粒子3が分散媒に分散した液に浸漬する方法。   (4) A method of immersing the molded body 4 in a liquid in which the inorganic nanophosphor particles 3 are dispersed in a dispersion medium.

(5)成形体4に、無機ナノ蛍光体粒子3が分散媒に分散した液を浸透させる方法。   (5) A method in which the molded body 4 is infiltrated with a liquid in which the inorganic nanophosphor particles 3 are dispersed in a dispersion medium.

図3は、本発明の一実施形態の波長変換部材を示す模式的断面図である。図3に示すように、本実施形態の波長変換部材20は、ガラス5中に無機ナノ蛍光体粒子3を良好な分散状態で含有している。本実施形態の波長変換部材20は、図1に示す蛍光体付着ガラス粉末1または図2に示す蛍光体付着ガラス粉末11を、焼結することにより製造することができる。焼結温度は、500℃以下であることが好ましく、400℃以下であることがさらに好ましく、350℃以下であることが特に好ましい。焼結温度が高くなると、蛍光体が劣化する場合がある。一方、ガラス粉末2を緻密に焼結するため、焼結温度は、150℃以上であることが好ましい。   FIG. 3 is a schematic cross-sectional view showing a wavelength conversion member according to an embodiment of the present invention. As shown in FIG. 3, the wavelength conversion member 20 of this embodiment contains the inorganic nano fluorescent substance particle 3 in the glass 5 in a favorable dispersion state. The wavelength conversion member 20 of this embodiment can be manufactured by sintering the phosphor-attached glass powder 1 shown in FIG. 1 or the phosphor-attached glass powder 11 shown in FIG. The sintering temperature is preferably 500 ° C. or lower, more preferably 400 ° C. or lower, and particularly preferably 350 ° C. or lower. When the sintering temperature is increased, the phosphor may be deteriorated. On the other hand, in order to densely sinter the glass powder 2, the sintering temperature is preferably 150 ° C. or higher.

焼結時の雰囲気は、真空雰囲気や窒素やアルゴンを用いた不活性雰囲気であることが好ましい。それにより、焼結時にガラス粉末2の劣化や着色を抑制することができる。特に、真空雰囲気であれば、波長変換部材20における気泡の発生を抑制することができる。   The atmosphere during sintering is preferably a vacuum atmosphere or an inert atmosphere using nitrogen or argon. Thereby, deterioration and coloring of the glass powder 2 can be suppressed at the time of sintering. In particular, in a vacuum atmosphere, generation of bubbles in the wavelength conversion member 20 can be suppressed.

以下、本発明における各構成について、さらに詳細に説明する。   Hereafter, each structure in this invention is demonstrated in detail.

(無機ナノ蛍光体粒子)
本発明における無機ナノ蛍光体粒子は、粒径が1μm未満である無機結晶からなる蛍光体粒子である。このような無機ナノ蛍光体粒子としては、一般に、半導体ナノ微粒子または量子ドットと呼ばれるものを用いることができる。このような無機ナノ蛍光体粒子の半導体としては、II−VI族化合物、及びIII−V族化合物が挙げられる。II−VI族化合物としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTeなどが挙げられる。III−V族化合物としては、InP、GaN、GaAs、GaP、AlN、AlP、AlSb、InN、InAs、InSbなどが挙げられる。これらの化合物から選択される少なくとも1種、またはこれら2種以上の複合体を本発明の無機ナノ蛍光体粒子として用いることができる。複合体としては、コアシェル構造のものが挙げられ、例えばCdSe粒子表面がZnSによりコーティングされたコアシェル構造のものが挙げられる。
(Inorganic nanophosphor particles)
The inorganic nanophosphor particles in the present invention are phosphor particles made of inorganic crystals having a particle size of less than 1 μm. As such inorganic nanophosphor particles, generally called semiconductor nanoparticles or quantum dots can be used. Examples of the semiconductor of such inorganic nanophosphor particles include II-VI group compounds and III-V group compounds. Examples of the II-VI group compound include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe and the like. Examples of III-V compounds include InP, GaN, GaAs, GaP, AlN, AlP, AlSb, InN, InAs, InSb, and the like. At least one selected from these compounds, or a composite of two or more of these can be used as the inorganic nanophosphor particles of the present invention. Examples of the composite include those having a core-shell structure, such as those having a core-shell structure in which the surface of CdSe particles is coated with ZnS.

本発明の無機ナノ蛍光体粒子の粒径は、例えば100nm以下、50nm以下、特に1〜30nm、1〜15nm、さらには1.5〜12nmの範囲で適宜選択される。   The particle size of the inorganic nanophosphor particles of the present invention is appropriately selected within a range of, for example, 100 nm or less, 50 nm or less, particularly 1 to 30 nm, 1 to 15 nm, or even 1.5 to 12 nm.

本発明の無機ナノ蛍光体粒子としては、分散媒中での分散性を高めるため、その表面がポリマーなどからなる分散剤でコーティングされているものを用いることが好ましい。   As the inorganic nanophosphor particles of the present invention, it is preferable to use particles whose surfaces are coated with a dispersant made of a polymer or the like in order to enhance dispersibility in a dispersion medium.

(ガラス粉末)
本発明に用いるガラス粉末は、500℃以下、より好ましくは400℃以下、より好ましくは350℃以下の軟化点を有するガラスからなるものを用いることが好ましい。ガラスの軟化点が高くなると、焼結温度が高くなるため、無機ナノ蛍光体粒子が劣化しやすくなる。好適なガラス粉末としては、SnO−P系ガラス、SnO−P−B系ガラス、SnO−P−F系ガラス、Bi系ガラスなどからなるものが挙げられる。
(Glass powder)
The glass powder used in the present invention is preferably made of glass having a softening point of 500 ° C. or lower, more preferably 400 ° C. or lower, more preferably 350 ° C. or lower. When the softening point of the glass is increased, the sintering temperature is increased, so that the inorganic nanophosphor particles are easily deteriorated. Suitable glass powders include SnO—P 2 O 5 glass, SnO—P 2 O 5 —B 2 O 3 glass, SnO—P 2 O 5 —F glass, Bi 2 O 3 glass, and the like. Things.

SnO−P系ガラスとしては、ガラス組成として、モル%表示で、SnO 40〜85%、P 15〜60%を含有するもの、特にSnO 60〜80%、P20〜40%を含有するものが好ましい。 The SnO-P 2 O 5 based glass, as a glass composition, in mol%, SnO 40 to 85%, those containing P 2 O 5 15 to 60%, particularly SnO 60~80%, P 2 O 5 What contains 20 to 40% is preferable.

SnO−P−B系ガラスとしては、ガラス組成として、モル%で、SnO 35〜80%、P 5〜40%、B 1〜30%を含有するものが好ましい。 The SnO-P 2 O 5 -B 2 O 3 based glass, as a glass composition, in mol%, containing SnO 35~80%, P 2 O 5 5~40%, the 2 O 3 1 to 30% B Those are preferred.

SnO−P系ガラス及びSnO−P−B系ガラスには、さらに任意成分として、Al0〜10%、SiO 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%およびBaO 0〜10%を含有していても構わない。また、上記成分以外にも、Ta、TiO、Nb、Gd、Laなどの耐候性を向上させる成分や、ZnOなどのガラスを安定化させる成分などをさらに含有させることもできる。 The SnO-P 2 O 5 based glass and SnO-P 2 O 5 -B 2 O 3 based glass, a further optional component, Al 2 O 3 0~10%, SiO 2 0~10%, Li 2 O 0 10%, may be contained Na 2 O 0~10%, K 2 O 0~10%, 0~10% MgO, CaO 0~10%, the SrO 0% and BaO 0% Absent. In addition to the above components, components that improve weather resistance such as Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , components that stabilize glass such as ZnO, etc. Can further be included.

SnO−P−F系ガラスとしては、カチオン%で、P5+ 10〜70%、Sn2+ 10〜90%、アニオン%で、O2−30〜100%、F 0〜70%を含有するものが好ましい。さらに、耐候性を向上させるために、B3+、Si4+、Al3+、Zn2+またはTi4+等を合量で0〜50%含有していても構わない。 The SnO-P 2 O 5 -F-based glass, cationic%, P 5+ 10~70%, Sn 2+ 10~90%, by anionic%, O 2- 30~100%, F - a 0% to 70% What is contained is preferable. Furthermore, in order to improve the weather resistance, B 3+ , Si 4+ , Al 3+ , Zn 2+ or Ti 4+ may be contained in a total amount of 0 to 50%.

Bi系ガラスとしては、ガラス組成として、質量%で、Bi10〜90%、B 10〜30%を含有するものが好ましい。さらに、ガラス形成成分として、SiO、Al、B、P等をそれぞれ0〜30%含有していても構わない。 The Bi 2 O 3 based glass, as a glass composition, in mass%, Bi 2 O 3 10~90% , those containing 2 O 3 10~30% B is preferred. Furthermore, 0 to 30% of SiO 2 , Al 2 O 3 , B 2 O 3 , P 2 O 5, etc. may be contained as glass forming components.

SnO−P系ガラス及びSnO−P−B系ガラスの軟化点を低下させ、かつガラスを安定化させる観点から、SnOとPのモル比(SnO/P)は、0.9〜16の範囲内であることが好ましく、1.5〜10の範囲内であることがより好ましく、2〜5の範囲内であることがさらに好ましい。モル比(SnO/P)が小さすぎると、低温での焼成が困難になり、無機ナノ蛍光体粒子が焼結時に劣化しやすくなる場合がある。また、耐候性が低くなりすぎる場合がある。一方、モル比(SnO/P)が大きすぎると、ガラスが失透しやすくなり、ガラスの透過率が低くなりすぎる場合がある。 From the viewpoints of lowering the softening point of SnO—P 2 O 5 glass and SnO—P 2 O 5 —B 2 O 3 glass and stabilizing the glass, the molar ratio of SnO to P 2 O 5 (SnO / P 2 O 5 ) is preferably within the range of 0.9 to 16, more preferably within the range of 1.5 to 10, and even more preferably within the range of 2 to 5. When the molar ratio (SnO / P 2 O 5 ) is too small, firing at a low temperature becomes difficult, and the inorganic nanophosphor particles may be easily deteriorated during sintering. Also, the weather resistance may be too low. On the other hand, if the molar ratio (SnO / P 2 O 5 ) is too large, the glass tends to be devitrified, and the transmittance of the glass may be too low.

ガラス粉末の平均粒子径D50は0.1〜100μm、特に1〜50μmであることが好ましい。ガラス粉末の平均粒子径D50が小さすぎると、焼結時に気泡が発生しやすくなる。このため、得られる波長変換部材の機械的強度が低下する場合がある。また、波長変換部材中に発生した気泡が原因で光散乱ロスが大きくなり、発光効率が低下する場合がある。一方、ガラス粉末の平均粒子径D50が大きすぎると、無機ナノ蛍光体粒子がガラスマトリクス中に均一に分散されにくくなり、その結果、得られる波長変換部材の発光効率が低くなる場合がある。ガラス粉末の平均粒子径D50は、レーザー回折式粒度分布測定装置により測定することができる。   The average particle diameter D50 of the glass powder is preferably from 0.1 to 100 μm, particularly preferably from 1 to 50 μm. If the average particle diameter D50 of the glass powder is too small, bubbles are likely to be generated during sintering. For this reason, the mechanical strength of the wavelength conversion member obtained may fall. In addition, light scattering loss may increase due to bubbles generated in the wavelength conversion member, and the light emission efficiency may decrease. On the other hand, if the average particle diameter D50 of the glass powder is too large, the inorganic nanophosphor particles are difficult to be uniformly dispersed in the glass matrix, and as a result, the luminous efficiency of the obtained wavelength conversion member may be lowered. The average particle diameter D50 of the glass powder can be measured with a laser diffraction particle size distribution measuring apparatus.

(分散媒)
本発明において用いる分散媒は、無機ナノ蛍光体粒子を分散させることができるものであれば特に限定されない。一般には、ヘキサン、オクタン等の適当な揮発性を有する無極性溶媒が好ましく用いられる。しかしながら、これに限定されるものではなく、適当な揮発性を有する極性溶媒であってもよい。
(Dispersion medium)
The dispersion medium used in the present invention is not particularly limited as long as the inorganic nanophosphor particles can be dispersed. In general, a non-polar solvent having appropriate volatility such as hexane and octane is preferably used. However, the present invention is not limited to this, and a polar solvent having appropriate volatility may be used.

無機ナノ蛍光体粒子の分散媒中での濃度は、0.5質量%〜20質量%、特に1質量%〜10質量%であることが好ましい。無機ナノ蛍光体粒子の分散媒中での濃度が低すぎると、十分な発光強度を有する波長変換部材が得られにくくなる。一方、無機ナノ蛍光体粒子の分散媒中での濃度が高すぎると、ガラス粉末表面に均一に付着させることが困難となる。   The concentration of the inorganic nanophosphor particles in the dispersion medium is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass. If the concentration of the inorganic nanophosphor particles in the dispersion medium is too low, it becomes difficult to obtain a wavelength conversion member having sufficient emission intensity. On the other hand, if the concentration of the inorganic nanophosphor particles in the dispersion medium is too high, it becomes difficult to uniformly adhere to the surface of the glass powder.

(蛍光体付着ガラス粉末)
本発明の蛍光体付着ガラス粉末における無機ナノ蛍光体粒子とガラス粉末の含有割合は、質量比で、1:1000〜1:10であることが好ましく、1:200〜1:50であることが好ましい。蛍光体付着ガラス粉末における無機ナノ蛍光体粒子の割合が低すぎると、十分な発光強度を有する波長変換部材が得られにくくなる。一方、蛍光体付着ガラス粉末における無機ナノ蛍光体粒子の割合が高すぎると、ガラス粉末の表面に均一に付着させることが困難となる。また、励起光が無機ナノ蛍光体粒子全体に照射されにくくなり、蛍光を発しない無機ナノ蛍光体粒子が多くなる傾向がある。
(Phosphor-attached glass powder)
The content ratio of the inorganic nanophosphor particles and the glass powder in the phosphor-attached glass powder of the present invention is preferably 1: 1000 to 1:10, and 1: 200 to 1:50 in terms of mass ratio. preferable. When the ratio of the inorganic nanophosphor particles in the phosphor-attached glass powder is too low, it becomes difficult to obtain a wavelength conversion member having sufficient emission intensity. On the other hand, when the ratio of the inorganic nanophosphor particles in the phosphor-attached glass powder is too high, it is difficult to uniformly adhere to the surface of the glass powder. Moreover, it becomes difficult to irradiate excitation light to the whole inorganic nano fluorescent substance particle, and there exists a tendency for the inorganic nano fluorescent substance particle which does not emit fluorescence to increase.

(成形体)
上述のように、本発明におけるガラス粉末は、ガラス粉末を凝集させた成形体の形態であってもよい。このような成形体は、上述のように、ガラス粉末に圧力をかけることにより凝集させたものであってもよいし、ガラス粉末を仮焼することにより凝集させたものであってもよいし、ガラスグリーンシートを仮焼して得られるものであってもよい。
(Molded body)
As described above, the glass powder in the present invention may be in the form of a molded body obtained by aggregating glass powder. Such a molded body may be agglomerated by applying pressure to the glass powder as described above, or may be agglomerated by calcining the glass powder, It may be obtained by calcining a glass green sheet.

なお、成形体を、グリーンシートを仮焼して成形する方法としては、以下の方法が挙げられる。ガラス粉末に、所定量の樹脂、可塑剤、溶剤等を含む樹脂バインダーを添加してスラリーとし、スラリーを、ドクターブレード法等によって、ポリエチレンテレフタレート(PET)等のフィルムの上に、シート状に成形する。シート状に成形したスラリーを仮焼することにより成形体が得られる。   In addition, the following method is mentioned as a method of shape | molding a molded object by calcining a green sheet. Add a resin binder containing a predetermined amount of resin, plasticizer, solvent, etc. to glass powder to make a slurry, and form the slurry on a sheet of polyethylene terephthalate (PET) etc. by doctor blade method etc. To do. A molded body is obtained by calcining the slurry formed into a sheet.

(波長変換部材)
本発明の波長変換部材は、上述のように、本発明の蛍光体付着ガラス粉末を焼結することにより製造することができる。焼結温度は、上述のように、500℃以下であることが好ましく、400℃以下であることがさらに好ましく、350℃以下であることが特に好ましい。
(Wavelength conversion member)
As described above, the wavelength conversion member of the present invention can be produced by sintering the phosphor-attached glass powder of the present invention. As described above, the sintering temperature is preferably 500 ° C. or lower, more preferably 400 ° C. or lower, and particularly preferably 350 ° C. or lower.

本発明の蛍光体付着ガラス粉末においては、ガラス粉末の表面に無機ナノ蛍光体粒子が良好な分散状態で付着しているので、本発明の蛍光体付着ガラス粉末を焼結することにより得られる波長変換部材は、ガラスマトリクス中に良好な分散状態で無機ナノ蛍光体粒子を含有している。したがって、発光効率、耐久性及び信頼性に優れた波長変換部材とすることができる。   In the phosphor-attached glass powder of the present invention, since the inorganic nanophosphor particles are attached in a good dispersion state on the surface of the glass powder, the wavelength obtained by sintering the phosphor-attached glass powder of the present invention The conversion member contains the inorganic nanophosphor particles in a good dispersion state in the glass matrix. Therefore, it can be set as the wavelength conversion member excellent in luminous efficiency, durability, and reliability.

また、蛍光体付着ガラス粉末として、ガラス粉末を凝集した成形体の表面に無機ナノ蛍光体粒子を付着させたものを用いる場合、以下の効果が得られる。   Moreover, the following effects are acquired when using what attached inorganic nano fluorescent substance particle to the surface of the molded object which aggregated glass powder as fluorescent substance adhesion glass powder.

(1)波長変換部材内における無機ナノ蛍光体粒子の含有量を制御しやすい。   (1) It is easy to control the content of inorganic nanophosphor particles in the wavelength conversion member.

(2)無機ナノ蛍光体粒子が均一に付着した蛍光体付着ガラス粉末が得られやすい。   (2) A phosphor-attached glass powder in which inorganic nanophosphor particles are uniformly attached is easily obtained.

(3)蛍光体付着ガラス粉末を作製するために、無機ナノ蛍光体粒子が分散媒に分散した液の必要量が比較的少なく、歩留りを向上できる(特に、成形体に液を浸漬させる場合は、無駄となる無機ナノ蛍光体粒子が発生しにくい)。   (3) In order to produce the phosphor-attached glass powder, the required amount of the liquid in which the inorganic nanophosphor particles are dispersed in the dispersion medium is relatively small, and the yield can be improved (especially when the liquid is immersed in the molded body) , Wasteful inorganic nanophosphor particles are less likely to occur).

(4)分散媒の除去〜焼結の工程を連続的に行うことができ、製造効率に優れる。   (4) The steps of removing the dispersion medium to sintering can be performed continuously, and the production efficiency is excellent.

上記の波長変換部材は、蛍光体付着ガラス粉末を焼結することにより製造しているが、蛍光体付着ガラス粉末を焼結せずに、そのまま波長変換部材として用いることもできる。この場合、表面にコーティング膜を設けたり、あるいは封止用の容器中に収納するなどして、封止した状態で用いることが好ましい。   The wavelength conversion member is manufactured by sintering the phosphor-attached glass powder, but it can also be used as it is as the wavelength conversion member without sintering the phosphor-attached glass powder. In this case, it is preferable to use it in a sealed state by providing a coating film on the surface or by storing it in a sealing container.

本発明の蛍光体付着ガラス粉末及び波長変換部材は、テレビ、パソコン、スマートフォン等の携帯電話のディスプレイのバックライト用光源に使用される部材として好適である。   The phosphor-attached glass powder and the wavelength conversion member of the present invention are suitable as a member used for a backlight light source of a mobile phone display such as a television, a personal computer, or a smartphone.

1…蛍光体付着ガラス粉末
2…ガラス粉末
3…無機ナノ蛍光体粒子
4…成形体
5…ガラス
11…蛍光体付着ガラス粉末
20…波長変換部材
DESCRIPTION OF SYMBOLS 1 ... Phosphor adherence glass powder 2 ... Glass powder 3 ... Inorganic nanophosphor particle 4 ... Molded object 5 ... Glass 11 ... Phosphor adherence glass powder 20 ... Wavelength conversion member

Claims (16)

ガラス粉末の表面に無機ナノ蛍光体粒子を付着させた蛍光体付着ガラス粉末を製造する方法であって、
前記無機ナノ蛍光体粒子が分散媒に分散した液中で、前記無機ナノ蛍光体粒子と前記ガラス粉末を接触させる工程と、
前記液中の前記分散媒を除去することにより、前記ガラス粉末の表面に前記無機ナノ蛍光体粒子を付着させる工程とを備える、蛍光体付着ガラス粉末の製造方法。
A method for producing a phosphor-attached glass powder in which inorganic nanophosphor particles are attached to the surface of a glass powder,
Contacting the inorganic nanophosphor particles with the glass powder in a liquid in which the inorganic nanophosphor particles are dispersed in a dispersion medium;
A step of attaching the inorganic nanophosphor particles to the surface of the glass powder by removing the dispersion medium in the liquid.
前記ガラス粉末を、前記液中に添加することにより、前記無機ナノ蛍光体粒子と前記ガラス粉末を接触させる、請求項1に記載の蛍光体付着ガラス粉末の製造方法。   The manufacturing method of the fluorescent substance adhesion glass powder of Claim 1 which makes the said inorganic nano fluorescent substance particle and the said glass powder contact by adding the said glass powder in the said liquid. 前記ガラス粉末に、前記液を霧状にして吹き付けることにより、前記無機ナノ蛍光体粒子と前記ガラス粉末を接触させる、請求項1に記載の蛍光体付着ガラス粉末の製造方法。   The method for producing a phosphor-attached glass powder according to claim 1, wherein the inorganic nanophosphor particles and the glass powder are brought into contact with each other by spraying the liquid on the glass powder in the form of a mist. 前記液と、前記ガラス粉末を分散させた分散液とを混合することにより、前記無機ナノ蛍光体粒子と前記ガラス粉末を接触させる、請求項1に記載の蛍光体付着ガラス粉末の製造方法。   The method for producing phosphor-attached glass powder according to claim 1, wherein the inorganic nanophosphor particles and the glass powder are brought into contact by mixing the liquid and a dispersion liquid in which the glass powder is dispersed. 前記ガラス粉末が、ガラス粉末を凝集させた成形体の形態である、請求項1〜4のいずれか一項に記載の蛍光体付着ガラス粉末の製造方法。   The manufacturing method of the fluorescent substance adhesion glass powder as described in any one of Claims 1-4 whose said glass powder is a form of the molded object which aggregated the glass powder. 前記成形体が、ガラス粉末に圧力をかけることより凝集させた成形体である、請求項5に記載の蛍光体付着ガラス粉末の製造方法。   The manufacturing method of the fluorescent substance adhesion glass powder of Claim 5 which is the molded object which the said molded object aggregated by applying a pressure to glass powder. 前記成形体が、ガラス粉末を仮焼して凝集させた成形体である、請求項5に記載の蛍光体付着ガラス粉末の製造方法。   The manufacturing method of the fluorescent substance adhesion glass powder of Claim 5 whose said molded object is a molded object which calcined and aggregated glass powder. 前記成形体が、ガラス粉末を含むガラスグリーンシートを仮焼して得られる成形体である、請求項5に記載の蛍光体付着ガラス粉末の製造方法。   The manufacturing method of the fluorescent substance adhesion glass powder of Claim 5 whose said molded object is a molded object obtained by calcining the glass green sheet containing glass powder. 前記成形体を、前記液中に浸漬することにより、前記無機ナノ蛍光体粒子と前記ガラス粉末を接触させる、請求項5〜8のいずれか一項に記載の蛍光体付着ガラス粉末の製造方法。   The manufacturing method of the fluorescent substance adhesion glass powder as described in any one of Claims 5-8 which makes the said inorganic nano fluorescent substance particle and the said glass powder contact by immersing the said molded object in the said liquid. 前記成形体に、前記液を浸透させるにより、前記無機ナノ蛍光体粒子と前記ガラス粉末を接触させる、請求項5〜8のいずれか一項に記載の蛍光体付着ガラス粉末の製造方法。   The method for producing a phosphor-attached glass powder according to any one of claims 5 to 8, wherein the inorganic nanophosphor particles and the glass powder are brought into contact with each other by allowing the liquid to penetrate into the molded body. ガラス中に無機ナノ蛍光体粒子を含有した波長変換部材を製造する方法であって、
請求項1〜10のいずれか一項に記載の方法で前記蛍光体付着ガラス粉末を製造する工程と、
前記蛍光体付着ガラス粉末を焼結する工程とを備える、波長変換部材の製造方法。
A method for producing a wavelength conversion member containing inorganic nanophosphor particles in glass,
Producing the phosphor-attached glass powder by the method according to any one of claims 1 to 10,
And a step of sintering the phosphor-attached glass powder.
前記焼結を、真空雰囲気下で行う、請求項11に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to claim 11, wherein the sintering is performed in a vacuum atmosphere. 焼結温度が、400℃以下である、請求項11または12に記載の波長変換部材の製造方法。   The manufacturing method of the wavelength conversion member of Claim 11 or 12 whose sintering temperature is 400 degrees C or less. 請求項11〜13のいずれか一項に記載の方法で製造されたことを特徴とする波長変換部材。   A wavelength conversion member manufactured by the method according to any one of claims 11 to 13. ガラス粉末の表面に無機ナノ蛍光体粒子を付着させた蛍光体付着ガラス粉末を焼結して得られることを特徴とする波長変換部材。   A wavelength conversion member obtained by sintering phosphor-attached glass powder having inorganic nanophosphor particles attached to the surface of glass powder. 請求項1〜10のいずれか一項に記載の方法で製造された前記蛍光体付着ガラス粉末からなる波長変換部材。   The wavelength conversion member which consists of the said fluorescent substance adhesion glass powder manufactured by the method as described in any one of Claims 1-10.
JP2014146912A 2014-07-17 2014-07-17 Phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member Expired - Fee Related JP6442894B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014146912A JP6442894B2 (en) 2014-07-17 2014-07-17 Phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
KR1020167024737A KR102313931B1 (en) 2014-07-17 2015-07-01 Method for producing phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
PCT/JP2015/068993 WO2016009840A1 (en) 2014-07-17 2015-07-01 Method for producing phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
CN201580024990.5A CN106458721A (en) 2014-07-17 2015-07-01 Method for producing phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
TW104123303A TWI683794B (en) 2014-07-17 2015-07-17 Method for manufacturing glass powder with phosphor attached and wavelength conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146912A JP6442894B2 (en) 2014-07-17 2014-07-17 Phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member

Publications (2)

Publication Number Publication Date
JP2016023098A true JP2016023098A (en) 2016-02-08
JP6442894B2 JP6442894B2 (en) 2018-12-26

Family

ID=55078338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146912A Expired - Fee Related JP6442894B2 (en) 2014-07-17 2014-07-17 Phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member

Country Status (5)

Country Link
JP (1) JP6442894B2 (en)
KR (1) KR102313931B1 (en)
CN (1) CN106458721A (en)
TW (1) TWI683794B (en)
WO (1) WO2016009840A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183453A1 (en) * 2016-04-18 2017-10-26 日本電気硝子株式会社 Wavelength conversion member
WO2018235580A1 (en) * 2017-06-19 2018-12-27 日本電気硝子株式会社 Nanophosphor-attached inorganic particles and wavelength conversion member
JP2019144529A (en) * 2017-12-12 2019-08-29 奇美實業股▲ふん▼有限公司 Luminescent material and electronic device having display function using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249210A (en) * 1997-03-14 1998-09-22 Titan Kogyo Kk Photocatalyst, its manufacture and applications
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member
JP2012226877A (en) * 2011-04-15 2012-11-15 Toyota Motor Corp Battery particle manufacturing method and manufacturing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278491A (en) * 1996-04-15 1997-10-28 Takagi Kogyo Kk Glass aggregate coated with chromatic resin and its production
JP4978886B2 (en) * 2006-06-14 2012-07-18 日本電気硝子株式会社 Phosphor composite material and phosphor composite member
CN102131742A (en) * 2008-08-27 2011-07-20 日本板硝子株式会社 Scale-like glass and coated scale-like glass
JP5581635B2 (en) * 2009-09-24 2014-09-03 ウシオ電機株式会社 Fluorescent lamp
JP2012087162A (en) 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd Wavelength conversion member and light source comprising using the same
CN102945914B (en) * 2012-08-17 2016-03-02 江苏脉锐光电科技有限公司 A kind of fluorescent glass coating for optical wavelength conversion and white light emitting device
TWI448519B (en) * 2012-07-30 2014-08-11 Hk Applied Science & Tech Res A fluorescent ink composition and a method for producing the same, and a method for producing the nanometer phosphor powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249210A (en) * 1997-03-14 1998-09-22 Titan Kogyo Kk Photocatalyst, its manufacture and applications
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member
JP2012226877A (en) * 2011-04-15 2012-11-15 Toyota Motor Corp Battery particle manufacturing method and manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183453A1 (en) * 2016-04-18 2017-10-26 日本電気硝子株式会社 Wavelength conversion member
WO2018235580A1 (en) * 2017-06-19 2018-12-27 日本電気硝子株式会社 Nanophosphor-attached inorganic particles and wavelength conversion member
US11655415B2 (en) 2017-06-19 2023-05-23 Nippon Electric Glass Co., Ltd. Nanophosphor-attached inorganic particles and wavelength conversion member
JP2019144529A (en) * 2017-12-12 2019-08-29 奇美實業股▲ふん▼有限公司 Luminescent material and electronic device having display function using the same
US11512246B2 (en) 2017-12-12 2022-11-29 Chimei Corporation Luminescent material and electronic device having a display function using the same

Also Published As

Publication number Publication date
TWI683794B (en) 2020-02-01
WO2016009840A1 (en) 2016-01-21
CN106458721A (en) 2017-02-22
TW201605758A (en) 2016-02-16
KR102313931B1 (en) 2021-10-15
JP6442894B2 (en) 2018-12-26
KR20170032214A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6575314B2 (en) Method for manufacturing wavelength conversion member and wavelength conversion member
TWI691101B (en) Manufacturing method of wavelength conversion member and wavelength conversion member
US9142732B2 (en) LED lamp with quantum dots layer
JP2018530777A (en) Light conversion material
JP7290108B2 (en) Nano-phosphor-attached inorganic particles and wavelength conversion member
JP2012087162A (en) Wavelength conversion member and light source comprising using the same
JP6442894B2 (en) Phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
KR20130041699A (en) Transparent luminescent sheet and method for manufacturing the same
JP2007197612A (en) Fluorescent substance, wavelength converter, and light emitting device
TW201728736A (en) Production method for wavelength conversion members
TW201923034A (en) Wavelength conversion member
JP2019508549A (en) Nanocrystalline epoxythiol (meth) acrylate composite and nanocrystalline epoxythiol (methacrylate) composite film
KR101413660B1 (en) Quantum dot-polymer composite plate for light emitting diode and method for producing the same
JP6491268B2 (en) Phosphor-containing particles, light-emitting device using the same, and phosphor-containing sheet
JP2018203966A (en) Fluorescent body-containing particle, light-emitting device using the same, and florescent body-containing sheet
JP2018111764A (en) Wavelength conversion member and light-emitting device
JP6477556B2 (en) Composite powder, surface treatment composite powder, resin composition, cured body, optical semiconductor light emitting device
JP2017168536A (en) Composite powder, surface treated composite powder, resin composition, cured product, and optical semiconductor light emitting device
JP2017165822A (en) Composite powder, surface-treated composite powder, resin composition, cured body, and optical semiconductor light-emitting device
JP2018106131A (en) Inorganic nano phosphor particle-containing resin powder
Otto et al. NANOCRYSTALS IN INORGANIC MATRICES: MATERIALS WITH ROBUST PERFORMANCE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6442894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees