JP2016022422A - Solid-liquid separation device and solid-liquid separation method - Google Patents

Solid-liquid separation device and solid-liquid separation method Download PDF

Info

Publication number
JP2016022422A
JP2016022422A JP2014147960A JP2014147960A JP2016022422A JP 2016022422 A JP2016022422 A JP 2016022422A JP 2014147960 A JP2014147960 A JP 2014147960A JP 2014147960 A JP2014147960 A JP 2014147960A JP 2016022422 A JP2016022422 A JP 2016022422A
Authority
JP
Japan
Prior art keywords
tank
treatment liquid
liquid
filter
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014147960A
Other languages
Japanese (ja)
Other versions
JP5629034B1 (en
Inventor
壽一 吉元
Hisakazu Yoshimoto
壽一 吉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKYO GIKEN KOGYO KK
Original Assignee
SANKYO GIKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKYO GIKEN KOGYO KK filed Critical SANKYO GIKEN KOGYO KK
Priority to JP2014147960A priority Critical patent/JP5629034B1/en
Application granted granted Critical
Publication of JP5629034B1 publication Critical patent/JP5629034B1/en
Publication of JP2016022422A publication Critical patent/JP2016022422A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a treatment amount with a simple structure in treatment for separating particle solid material from treatment liquid produced by zirconium type chemical treatment.SOLUTION: A solid-liquid separation device includes: a separation part 13 in which treatment liquid 23 produced by zirconium type chemical treatment is supplied to a separation tank 14, nonwoven fabric 25 is moved in the front and back direction in the treatment liquid 23 in the separation tank 14, thereby, particle solid material is attached, the released particle solid material is sedimented onto a bottom part 47 as concentrated slurry 57 and, at the same time, the treatment liquid from which the particle solid material is reduced is caused to overflow; a reflux part 17 in which the treatment liquid 23 made effluent from the separation part 13 is returned to a waste liquid tank 15; a slurry storage tank 19 which is connected by piping to the separation tank 14 and stores the concentrated slurry 57; and a filtration separator 21 in which a filter 71 is provided on a lower part 105 of the tank, an agitation plate 59 is vertically moved to agitate the concentrated slurry 57, filtration water passing through the filter 71 is discharged to an outer part 91 of the tank from the interior of a filtration chamber 61 and residue is gradually accumulated on the filter 71 to obtain dewatered cake 99.SELECTED DRAWING: Figure 1

Description

本発明は、固液分離装置及び固液分離方法に関する。   The present invention relates to a solid-liquid separation device and a solid-liquid separation method.

自動車車体等の塗装前処理として、金属表面にリン酸亜鉛皮膜を形成する化成処理(リン酸亜鉛処理)が行われる(例えば特許文献1参照)。リン酸亜鉛処理は亜鉛系めっき材やアルミニウム合金材のみならず、鉄鋼材料にも有効であり、各種塗装、特にカチオン電着塗装を施す場合の下地処理として好適である。リン酸亜鉛処理では、化成処理槽の底部にはリン酸亜鉛化合物を主体とする多量の化成スラッジが堆積する。リン酸亜鉛化合物は富栄養化元素のリンを成分として含むことから、環境上の観点より敬遠されつつある。   As pre-painting treatment for automobile bodies and the like, chemical conversion treatment (zinc phosphate treatment) for forming a zinc phosphate film on a metal surface is performed (see, for example, Patent Document 1). Zinc phosphate treatment is effective not only for zinc-based plating materials and aluminum alloy materials, but also for steel materials, and is suitable as a base treatment for various coatings, particularly cationic electrodeposition coating. In the zinc phosphate treatment, a large amount of chemical sludge mainly composed of zinc phosphate compound is deposited at the bottom of the chemical conversion treatment tank. Zinc phosphate compounds are being shunned from an environmental point of view because they contain phosphorus, a eutrophic element.

これに対してジルコニウム系化成処理は、各種材料に必要量の皮膜を形成することができ、耐食性及び塗膜密着性等を向上させることができ、さらに環境に対する負荷も少なくすることができる。   On the other hand, the zirconium-based chemical conversion treatment can form a necessary amount of coating on various materials, can improve corrosion resistance, coating adhesion, and the like, and can also reduce the burden on the environment.

特開2002−52399号公報JP 2002-52399 A

従来、リン酸亜鉛処理で堆積する粒子径20μm程度の化成スラッジの除去には、加圧ろ過処理装置が好適に用いられていた。
しかしながら、ジルコニウム系化成処理で発生する化成スラッジには、0.1〜5μmの粒子が61.26%、5〜10μmの粒子が30.98%と非常に微細な水酸化鉄等の粒子固形物が含まれている。この化成スラッジを含んだ処理液は沈降が遅く、ろ過性が悪く、従来の加圧ろ過処理装置では多量に処理ができない問題がある。すなわち、それらの粒子固形物を含む処理液を、従来の加圧ろ過機においてろ過分離すると、加圧ろ過中に直ちにろ過面が目詰まり状態となり、ろ過量が急激に減少する。その状態で加圧エアーによる脱水工程に移ると、ろ過量が減少していることから、ろ過室内の液を処理するために、非常に長時間を必要とする。
Conventionally, a pressure filtration treatment apparatus has been suitably used for removing chemical sludge having a particle diameter of about 20 μm deposited by zinc phosphate treatment.
However, in the chemical sludge generated by the zirconium-based chemical conversion treatment, particles of 0.1 to 5 μm are 61.26%, and particles of 5 to 10 μm are 30.98%. It is included. The treatment liquid containing the chemical sludge has a slow sedimentation and poor filterability, and there is a problem that a large amount cannot be treated with a conventional pressure filtration treatment apparatus. That is, when the treatment liquid containing these particulate solids is separated by filtration with a conventional pressure filter, the filtration surface immediately becomes clogged during pressure filtration, and the amount of filtration is rapidly reduced. If it moves to the dehydration process by pressurized air in that state, since the amount of filtration is reducing, in order to process the liquid in a filtration chamber, a very long time is required.

本発明は上記状況に鑑みてなされたもので、その目的は、ジルコニウム系化成処理にて発生する微細な水酸化鉄等の粒子固形物が含まれる処理液から粒子固形物を分離する処理において、簡素な構造で処理量を増やすことのできる固液分離装置及び固液分離方法を提供することにある。   The present invention has been made in view of the above situation, and the object thereof is a process of separating particulate solids from a treatment liquid containing particulate solids such as fine iron hydroxide generated in a zirconium-based chemical conversion treatment. An object of the present invention is to provide a solid-liquid separation device and a solid-liquid separation method capable of increasing the throughput with a simple structure.

次に、上記の課題を解決するための手段を、実施の形態に対応する図面を参照して説明する。
本発明の請求項1記載の固液分離装置11は、ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液23が溜められる廃液槽15と、
前記廃液槽15から前記処理液23が供給される分離槽14を備え、上辺部41のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布25を、鉛直方向に沿う方向で前記分離槽14内の処理液23に浸漬し、表裏面に前記処理液23をぶつける方向に前記不織布25を表裏方向に移動させることで前記処理液23に含まれる前記粒子固形物を前記不織布25を構成する繊維に付着させた後、前記分離槽14の処理液23内で発生させた気泡53を前記不織布25に衝突させ、且つ前記不織布25を前記処理液23に対して昇降動作させて前記処理液23から離脱させた前記粒子固形物を前記分離槽14の底部47に濃縮スラリー57として沈殿させるとともに、前記粒子固形物が減らされた前記処理液23を前記分離槽14からオーバーフローさせる分離部13と、
前記分離部13の前記オーバーフローによって流出した前記処理液23を一時的に溜めながら前記廃液槽15へ戻す還流部17と、
前記分離槽14底部47に配管接続され、前記還流部17にて前記廃液槽15に前記処理液23を戻すことを所定時間繰り返した後に、前記底部47から前記処理液23の一部とともに排出される前記濃縮スラリー57を溜めるスラリー貯留槽19と、
槽下部105にシート状のフィルター71を水平に備えて前記スラリー貯留槽19からの前記濃縮スラリー57が供給されるろ過室61を有し、前記フィルター71の上方においてろ過室内周壁107に対して近接する縁部84を備えて配置した開口率10〜15%とする複数の貫通孔87を備える水平な撹拌板59を、前記ろ過室内における前記フィルター71より上方の空間64の高さ方向の略中間位置で、該空間64における高さの約半分の距離をストローク長Sとして1.8〜2.1m/分の速度で上下運動させて前記濃縮スラリー57を撹拌し、前記フィルター71上に堆積している前記粒子固形物を舞い上がらせずに、前記粒子固形物がろ過面に即座に沈降して堆積しないように前記粒子固形物を濃縮スラリー中に分散させながら、且つろ過室61内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行って前記フィルター71を通過するろ過水を槽外部91へ排出し、徐々に残渣をフィルター71上に溜めて脱水ケーキ99を得るろ過分離機21と、
を含むことを特徴とする。
Next, means for solving the above problems will be described with reference to the drawings corresponding to the embodiments.
The solid-liquid separation device 11 according to claim 1 of the present invention stores a treatment liquid 23 containing solid particles having a particle diameter of 0.1 to 10 μm, which is composed of iron hydroxide generated in a zirconium-based chemical conversion treatment, as a liquid. Waste liquid tank 15,
A separation tank 14 to which the treatment liquid 23 is supplied from the waste liquid tank 15 is provided, and as a permeation performance that supports only the upper side portion 41 and is suspended, a planar shape having a bubble point average pore diameter of 30 to 33 μm at a water head pressure of 50 mm. The nonwoven fabric 25 made of short fiber nonwoven fabric is immersed in the treatment liquid 23 in the separation tank 14 in a direction along the vertical direction, and the nonwoven fabric 25 is moved in the front-back direction in a direction of hitting the treatment liquid 23 on the front and back surfaces. The solid particles contained in the treatment liquid 23 are adhered to the fibers constituting the nonwoven fabric 25, and then the bubbles 53 generated in the treatment liquid 23 of the separation tank 14 are caused to collide with the nonwoven fabric 25, and The non-woven fabric 25 is moved up and down with respect to the treatment liquid 23 and the solid particles separated from the treatment liquid 23 are precipitated as a concentrated slurry 57 on the bottom 47 of the separation tank 14. Rutotomoni, a separating portion 13 by overflowing the treatment fluid 23 which particles solids was reduced from the separation vessel 14,
A reflux unit 17 for returning to the waste liquid tank 15 while temporarily storing the treatment liquid 23 that has flowed out due to the overflow of the separation unit 13;
After being piped to the separation tank 14 bottom 47 and returning the treatment liquid 23 to the waste liquid tank 15 in the reflux section 17 for a predetermined time, it is discharged from the bottom 47 together with a part of the treatment liquid 23. A slurry storage tank 19 for storing the concentrated slurry 57;
The lower tank 105 is provided with a sheet-like filter 71 horizontally, and has a filtration chamber 61 to which the concentrated slurry 57 from the slurry storage tank 19 is supplied, and is close to the filtration chamber peripheral wall 107 above the filter 71. A horizontal stirring plate 59 provided with a plurality of through holes 87 having an opening ratio of 10 to 15% arranged with an edge portion 84 is provided in the middle of the height direction of the space 64 above the filter 71 in the filtration chamber. The concentrated slurry 57 is stirred and deposited on the filter 71 by moving it up and down at a speed of 1.8 to 2.1 m / min with a stroke length S at a distance of about half of the height in the space 64. The particle solids are not dispersed in the concentrated slurry so that the particle solids do not immediately settle and deposit on the filtration surface without causing the particle solids to rise. In addition, the inside of the filtration chamber 61 is not pressurized, the diaphragm pump 109 is used to perform suction filtration at a pressure of −500 to −600 mmHg, and the filtered water passing through the filter 71 is discharged to the outside of the tank 91, and gradually. A filter separator 21 for collecting the residue on the filter 71 to obtain a dehydrated cake 99;
It is characterized by including.

この固液分離装置11では、ジルコニウム系化成処理にて発生した処理液23が廃液槽15に溜められる。廃液槽15に溜められた処理液23は、分離部13の分離槽14に送られる。分離部13は、供給された処理液23が所定量になると、処理液23をオーバーフローさせる。オーバーフローした処理液23は、還流槽17に一旦、溜められる。還流槽17に溜まった処理液23は、廃液槽15へと再び戻される。
この処理液23の循環系において、分離部13では、処理液23中に鉛直に吊り下げられ浸漬した不織布25が表裏方向に移動される。不織布25が移動されると、処理液23が不織布25に当たり、処理液23の一部分が不織布25を透過するとともに処理液23に含まれる粒子固形物が不織布25の繊維に付着する(捕捉される)。この透過と付着が繰り返され、不織布25に粒子固形物が堆積して、処理液23から粒子固形物が分離される。
不織布25に付着する粒子固形物が所定量、或いは不織布25の動作時間が所定時間経過となると、処理液23中に下部から気泡53が発生され、この気泡53が不織布25に当たることで、不織布25に付着した粒子固形物が分離槽14の底部47に落下する。また、この際、不織布25は、処理液23に対して昇降動作されることで、より効率的に粒子固形物の離脱が促進される。落下した粒子固形物は、分離槽14の底部47に沈殿する。この気泡53の衝突と、昇降動作が所定の間隔で繰り返されることにより、分離槽14の底部47に離脱した粒子固形物が堆積して行く。また、この粒子固形物が減らされた処理液23が分離槽14からオーバーフローすることとなる。オーバーフローした処理液23は、還流部17にて廃液槽15に戻され、これが繰り返される。
底部47に堆積する粒子固形物が所定量となったなら、例えば、上記昇降動作の繰り返し回数や、その動作時間、或いは、粒子固形物の堆積量(高さ)、分離槽14内の処理液の濁度などが所定の数値に達したなら、分離槽14の底部47から処理液23がスラリー貯留槽19へ排出される。処理液23が分離槽14の底部47から排出されることに伴って、分離槽14の底部47に堆積した粒子固形物が処理液23とともに濃縮スラリー57となって優先的に排出され、スラリー貯留槽19へ送られる。
濃縮スラリー57は、スラリー貯留槽19に溜められた後、ろ過分離機21のろ過室61に送られる。濃縮スラリー57が供給されたろ過室61では、フィルター71の上方で、撹拌板59が上下運動される。これと同時に、ろ過室61に供給された濃縮スラリー57は、底部47のフィルター71を通過して、槽外部91へろ過水が排出される。このろ過水は、フィルター上流側(撹拌板59を配置した側)のろ過室内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行うことでフィルター71を通過して排出される。
ろ過室61では、撹拌板59が、フィルター71上に堆積している粒子固形物を舞い上がらせずにろ過室61内の中間位置を上下運動されることにより、濃縮スラリー中の粒子固形物がろ過面に即座に沈降して堆積しにくくなる。撹拌板59は、ろ過室61内での撹拌速度で、粒子固形物を壊さずに、ゆっくりとフィルター71上に沈降させる。つまり、フィルター71は、目詰まりが抑制される。これにより、フィルター71を通過する処理液23は、濃縮スラリー57の状態であっても、濃縮スラリー57の粒子固形物同士の僅かな隙間も通過することで、ろ過量の急激な減少が改善される。
また、濃縮スラリー57は、フィルター71を挟み、ろ過水流出側から吸引される。そのため、フィルター71を挟み、撹拌板側の濃縮スラリー57を加圧してフィルター71を通過させる加圧ろ過に比べ、フィルター71のろ過面の目詰まりが遅くなる。つまり、濃縮スラリー57を上から(フィルター71とは逆の位置から)圧縮させて柔らかく不定形状の粒子固形物を圧潰させ粒子固形物同士を密着させるようなことがなく、ろ過面のろ過可能時間が長くなる。
フィルター上に捕捉された粒子固形物の厚みが所定厚となったなら、乾燥圧縮空気119がろ過室61内に送られることで、ろ過室61内の残液が処理される通気脱水が行われる。通気脱水は、ろ過室61が設定圧力以下及び/または設定時間に達すると終了する。ろ過室61は、残圧が逃がしバルブを開けることで大気開放される。脱水ケーキ99は、ろ過室61が開放され、フィルター71とともにろ過室外部へ排出され、固液分離の処理が終わる。
この固液分離装置11では、ろ過分離機21で処理する前の処理液23が、予め分離部13によって濃縮され、濃縮スラリー57となる。この濃縮スラリー57が、ろ過分離機21へ送られる。濃縮スラリー57がろ過分離機21へ送られることで、ろ過分離機21は、廃液槽15に貯留された通常の濃度の処理液23から脱水ケーキ99を得る場合に比べ、粒子固形物の分離効率が高くなる。単位時間当たりの処理液23の処理量が増加する。従って、固液分離装置11では、分離部13やろ過分離機21が単独で用いられる場合に比べ、処理量に対する処理時間の短縮が可能となる。また、複数台のろ過分離機21を並設する場合に比べ、装置構成が簡素となる。
また、特に、この固液分離装置11の構成のように、濃縮スラリー57をフィルター71に通過させる場合には、撹拌板59が併用されることで、フィルター71の急速な目詰まりが抑制される。これによって、処理量が増加される。固液分離装置11では、高濃度の濃縮スラリー57に撹拌板59が用いられることで、低濃度の処理液23に撹拌板59が用いられる場合に比べ、撹拌板59による撹拌動作がろ過面の目詰まりの抑制に、より効果的に作用するためである。
In the solid-liquid separator 11, the treatment liquid 23 generated in the zirconium-based chemical conversion treatment is stored in the waste liquid tank 15. The treatment liquid 23 stored in the waste liquid tank 15 is sent to the separation tank 14 of the separation unit 13. The separation unit 13 causes the processing liquid 23 to overflow when the supplied processing liquid 23 reaches a predetermined amount. The overflowed processing solution 23 is temporarily stored in the reflux tank 17. The processing liquid 23 accumulated in the reflux tank 17 is returned again to the waste liquid tank 15.
In the circulation system of the treatment liquid 23, in the separation unit 13, the nonwoven fabric 25 suspended vertically and immersed in the treatment liquid 23 is moved in the front and back direction. When the nonwoven fabric 25 is moved, the treatment liquid 23 hits the nonwoven fabric 25, a part of the treatment liquid 23 permeates the nonwoven fabric 25, and particle solids contained in the treatment liquid 23 adhere to (capture) the fibers of the nonwoven fabric 25. . This permeation and adhesion are repeated, so that the solid particles are deposited on the nonwoven fabric 25, and the solid particles are separated from the treatment liquid 23.
When a predetermined amount of particle solid matter adhering to the nonwoven fabric 25 or the operation time of the nonwoven fabric 25 reaches a predetermined time, bubbles 53 are generated from the lower part in the treatment liquid 23, and the bubbles 53 hit the nonwoven fabric 25, thereby causing the nonwoven fabric 25. The particulate solid adhering to the liquid falls to the bottom 47 of the separation tank 14. At this time, the nonwoven fabric 25 is moved up and down with respect to the treatment liquid 23, thereby more efficiently detaching the solid particles. The fallen solid particles settle on the bottom 47 of the separation tank 14. By repeating the collision of the bubbles 53 and the raising and lowering operation at predetermined intervals, the solid particles separated from the bottom 47 of the separation tank 14 are accumulated. Further, the treatment liquid 23 in which the particulate solids are reduced overflows from the separation tank 14. The overflowed processing liquid 23 is returned to the waste liquid tank 15 in the reflux unit 17, and this is repeated.
When the amount of solid particles deposited on the bottom 47 reaches a predetermined amount, for example, the number of repetitions of the ascending / descending operation, the operation time, or the accumulated amount (height) of the solid particles, the treatment liquid in the separation tank 14 When the turbidity of the liquid reaches a predetermined value, the treatment liquid 23 is discharged from the bottom 47 of the separation tank 14 to the slurry storage tank 19. As the processing liquid 23 is discharged from the bottom 47 of the separation tank 14, the particulate solid deposited on the bottom 47 of the separation tank 14 is preferentially discharged together with the processing liquid 23 as a concentrated slurry 57, thereby storing the slurry. It is sent to the tank 19.
The concentrated slurry 57 is stored in the slurry storage tank 19 and then sent to the filtration chamber 61 of the filtration separator 21. In the filtration chamber 61 to which the concentrated slurry 57 is supplied, the stirring plate 59 is moved up and down above the filter 71. At the same time, the concentrated slurry 57 supplied to the filtration chamber 61 passes through the filter 71 at the bottom 47 and the filtered water is discharged to the outside of the tank 91. This filtered water does not pressurize the filtration chamber on the upstream side of the filter (the side where the stirring plate 59 is disposed), and the filter 71 is filtered by suction filtration at a pressure of −500 to −600 mmHg using the diaphragm pump 109. It passes through and is discharged.
In the filtration chamber 61, the stirring plate 59 is moved up and down in the middle position in the filtration chamber 61 without causing the particle solid matter accumulated on the filter 71 to rise, so that the particle solid matter in the concentrated slurry is filtered. Immediately settles on the surface, making it difficult to deposit. The stirring plate 59 slowly settles on the filter 71 at a stirring speed in the filtration chamber 61 without breaking the solid particles. That is, the filter 71 is prevented from being clogged. Thereby, even if the treatment liquid 23 that passes through the filter 71 is in the state of the concentrated slurry 57, the sharp decrease in the filtration amount is improved by passing through a slight gap between the solid particles of the concentrated slurry 57. The
Further, the concentrated slurry 57 is sucked from the filtered water outflow side with the filter 71 interposed therebetween. Therefore, clogging of the filtration surface of the filter 71 is delayed as compared with pressure filtration in which the filter 71 is sandwiched and the concentrated slurry 57 on the stirring plate side is pressurized and passed through the filter 71. In other words, the concentrated slurry 57 is compressed from above (from a position opposite to the filter 71) to crush the soft and indefinite shape of the particle solids so that the particle solids are not in close contact with each other, and the filterable time of the filtration surface Becomes longer.
When the thickness of the particle solid matter captured on the filter reaches a predetermined thickness, the dry compressed air 119 is sent into the filtration chamber 61, whereby aeration dehydration is performed in which the residual liquid in the filtration chamber 61 is processed. . The aeration dehydration ends when the filtration chamber 61 reaches a set pressure or less and / or reaches a set time. The filtration chamber 61 is opened to the atmosphere by releasing the residual pressure and opening the valve. The dewatering cake 99 is opened in the filtration chamber 61 and discharged to the outside of the filtration chamber together with the filter 71, and the solid-liquid separation process ends.
In the solid-liquid separation device 11, the treatment liquid 23 before being processed by the filtration separator 21 is concentrated in advance by the separation unit 13 to become a concentrated slurry 57. This concentrated slurry 57 is sent to the filtration separator 21. By sending the concentrated slurry 57 to the filtration separator 21, the filtration separator 21 is more efficient in separating particulate solids than the case where the dehydrated cake 99 is obtained from the processing liquid 23 having a normal concentration stored in the waste liquid tank 15. Becomes higher. The processing amount of the processing liquid 23 per unit time increases. Therefore, in the solid-liquid separator 11, the processing time with respect to the processing amount can be shortened as compared with the case where the separation unit 13 and the filtration separator 21 are used alone. Further, the apparatus configuration is simplified as compared with the case where a plurality of filtration separators 21 are arranged in parallel.
Further, in particular, when the concentrated slurry 57 is passed through the filter 71 as in the configuration of the solid-liquid separation device 11, rapid clogging of the filter 71 is suppressed by using the stirring plate 59 in combination. . This increases the amount of processing. In the solid-liquid separator 11, the stirring plate 59 is used for the concentrated slurry 57 having a high concentration, so that the stirring operation by the stirring plate 59 is performed on the filtration surface compared to the case where the stirring plate 59 is used for the low-concentration treatment liquid 23. This is because it works more effectively in suppressing clogging.

本発明の請求項2記載の固液分離方法は、ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液23を廃液槽15に溜める処理液貯留工程と、
前記廃液槽15から前記処理液23が分離槽14に供給され、上辺部41のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布25を、鉛直方向に沿う方向で前記分離槽14内の処理液23に浸漬し、表裏面に前記処理液23をぶつける方向に前記不織布25を表裏方向に移動させることで前記処理液23に含まれる前記粒子固形物を前記不織布25を構成する繊維に付着させた後、前記分離槽14の処理液内で発生させた気泡53を前記不織布25に衝突させ、且つ前記不織布25を前記処理液23に対して昇降動作させて前記処理液23から離脱させた前記粒子固形物を前記分離槽14の底部47に濃縮スラリー57として沈殿させるとともに、前記粒子固形物を減らされた前記処理液23を前記分離槽14からオーバーフローさせる前段分離工程と、
前記分離槽14の前記オーバーフローによって流出した前記処理液23を一時的に還流槽18に溜めながら前記廃液槽15へ戻す処理液還流工程と、
前記分離槽14の底部47に配管接続され、前記処理液還流工程にて前記廃液槽15に前記処理液23を戻すことを所定時間繰り返した後に、前記底部47から前記処理液23とともに排出される前記濃縮スラリー57をスラリー貯留槽19に溜めるスラリー貯留工程と、
槽下部105にシート状のフィルター71を水平に備えて前記スラリー貯留槽19からの前記濃縮スラリー57が供給されるろ過室61を用いて、前記フィルター71の上方においてろ過室内周壁107に対して近接する縁部84を備えて配置した開口率10〜15%とする複数の貫通孔87を備える水平な撹拌板59を、前記ろ過室61内における前記フィルター71より上方の空間64の高さ方向の略中間位置で、該空間64における高さの約半分の距離をストローク長Sとして1.8〜2.1m/分の速度で上下運動させて前記濃縮スラリー57を撹拌し、前記フィルター71上に堆積している前記粒子固形物を舞い上がらせず、前記粒子固形物がろ過面に即座に沈降して堆積しないように前記粒子固形物を濃縮スラリー中に分散させながら、且つろ過室61内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行って前記フィルター71を通過するろ過水を槽外部91へ排出し、徐々に残渣を前記フィルター71上に溜めて脱水ケーキ99を得るろ過分離工程と、
を具備することを特徴とする。
The solid-liquid separation method according to claim 2 of the present invention is a waste liquid tank in which a treatment liquid 23 containing solid particles having a particle size of 0.1 to 10 [mu] m, whose component is iron hydroxide generated in a zirconium-based chemical conversion treatment, is contained in a liquid. A treatment liquid storage step to be stored in 15,
The treatment liquid 23 is supplied from the waste liquid tank 15 to the separation tank 14, and as a permeation performance for supporting only the upper side portion 41 and being suspended, a short surface with a bubble point average pore diameter of 30 to 33 μm at a head pressure of 50 mm is provided. The nonwoven fabric 25 made of a fiber nonwoven fabric is immersed in the treatment liquid 23 in the separation tank 14 in a direction along the vertical direction, and the nonwoven fabric 25 is moved in the front and back direction in a direction in which the treatment liquid 23 strikes the front and back surfaces. After the solid particles contained in the treatment liquid 23 are attached to the fibers constituting the nonwoven fabric 25, the bubbles 53 generated in the treatment liquid of the separation tank 14 are caused to collide with the nonwoven fabric 25, and the nonwoven fabric 25. The solid particles separated from the processing liquid 23 by being moved up and down with respect to the processing liquid 23 are precipitated as a concentrated slurry 57 on the bottom 47 of the separation tank 14. , A pre-stage separation step of overflowing the processing solution 23 which reduced the particle solids from the separation vessel 14,
A treatment liquid refluxing step for returning the treatment liquid 23 that has flowed out due to the overflow of the separation tank 14 to the waste liquid tank 15 while temporarily storing the treatment liquid 23 in the reflux tank 18;
A pipe is connected to the bottom 47 of the separation tank 14, and after returning the treatment liquid 23 to the waste liquid tank 15 in the treatment liquid refluxing process for a predetermined time, it is discharged from the bottom 47 together with the treatment liquid 23. A slurry storage step for storing the concentrated slurry 57 in the slurry storage tank 19, and
Using a filtration chamber 61 in which a sheet-like filter 71 is horizontally provided in the tank lower portion 105 and the concentrated slurry 57 from the slurry storage tank 19 is supplied, the filter 71 is close to the filtration chamber peripheral wall 107 above the filter 71. A horizontal stirring plate 59 provided with a plurality of through holes 87 having an opening ratio of 10 to 15% arranged with an edge portion 84 is provided in the height direction of the space 64 above the filter 71 in the filtration chamber 61. The concentrated slurry 57 is stirred by moving up and down at a speed of 1.8 to 2.1 m / min with a stroke length S at a distance of about half of the height in the space 64 at a substantially intermediate position. Disperse the particulate solids in the concentrated slurry so that the particulate solids that are deposited do not rise, and the particulate solids do not immediately settle and deposit on the filtration surface. However, the inside of the filtration chamber 61 is not pressurized, the diaphragm pump 109 is used to perform suction filtration at a pressure of −500 to −600 mmHg, and the filtered water passing through the filter 71 is discharged to the outside 91 of the tank. A filtration separation step of collecting the residue on the filter 71 to obtain a dehydrated cake 99;
It is characterized by comprising.

この固液分離方法では、ジルコニウム系化成処理にて発生した処理液23が廃液槽15に溜められ、分離部13の分離槽14に送られる。分離槽14の処理液23は、オーバーフローされ、還流槽18に一旦、溜められた後、廃液槽15へと再び戻される。
分離槽14では、処理液23中に鉛直に吊り下げられ浸漬した不織布25が表裏方向に移動され、処理液23の一部分が不織布25を透過するとともに処理液23に含まれる粒子固形物が不織布25の繊維に付着する(捕捉される)。この透過と付着が繰り返され、処理液23から粒子固形物が分離される。また、この粒子固形物が減らされた処理液23が分離槽14からオーバーフローすることとなる。オーバーフローした処理液23は、還流部17にて廃液槽15に戻され、これが繰り返される。
不織布25に付着した粒子固形物は、処理液中に気泡53が下部から発生され、且つ不織布25が処理液23に対して昇降動作されることで、効率的に離脱が促進され、分離槽14の底部47に沈殿する。
底部47に堆積した粒子固形物は、処理液23が分離槽14の底部47から排出されることに伴って、処理液23とともに濃縮スラリー57となって優先的に排出され、スラリー貯留槽19へ送られる。
スラリー貯留槽19に溜められた濃縮スラリー57は、ろ過分離機21のろ過室61に送られる。ろ過室61では、フィルター71の上方で、撹拌板59が上下運動される。これと同時に、底部47のフィルター71を通過して、槽外部91へろ過水が排出される。ろ過水は、フィルター71上流側のろ過室61内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行うことでフィルター71を通過して排出される。ろ過室61内では、撹拌板59の上下運動で濃縮スラリーを撹拌し、フィルター71上に堆積している粒子固形物を舞い上がらせることなく、且つ即座に沈降して堆積しないように、粒子固形物を損壊させることなく分散させながらゆっくりと沈降させる。
これにより、フィルター71を通過する処理液23は、濃縮スラリー57の状態であっても、ろ過量の急激な減少が改善される。
濃縮スラリー57は、フィルター71を挟み、ろ過水流出側から吸引され、ろ過面のろ過可能時間が長くなる。
この固液分離方法では、ろ過分離機21で処理する前の処理液23が、予め分離槽14によって濃縮され、濃縮スラリー57となる。この濃縮スラリー57が、ろ過分離機21へ送られる。濃縮スラリー57がろ過分離機21へ送られることで、ろ過分離機21は、粒子固形物の分離効率が高くなる。単位時間当たりの処理液23の処理量が増加する。
また、特に、濃縮スラリー57をフィルター71に通過させる場合には、撹拌板59が併用されることで、フィルター71の急速な目詰まりが抑制される。これによって、処理量が増加される。固液分離方法では、高濃度の濃縮スラリー57に撹拌板59が用いられることで、低濃度の処理液23に撹拌板59が用いられる場合に比べ、撹拌板59による撹拌動作がろ過面の目詰まりの抑制に、より効果的に作用するためである。
In this solid-liquid separation method, the treatment liquid 23 generated in the zirconium-based chemical conversion treatment is stored in the waste liquid tank 15 and sent to the separation tank 14 of the separation unit 13. The treatment liquid 23 in the separation tank 14 overflows and is once stored in the reflux tank 18 and then returned to the waste liquid tank 15 again.
In the separation tank 14, the non-woven fabric 25 suspended vertically and immersed in the treatment liquid 23 is moved in the front and back direction, a part of the treatment liquid 23 permeates the non-woven fabric 25, and the solid particles contained in the treatment liquid 23 are non-woven fabric 25. Adheres to (captures) the fibers. This permeation and adhesion are repeated, and the solid particles are separated from the treatment liquid 23. Further, the treatment liquid 23 in which the particulate solids are reduced overflows from the separation tank 14. The overflowed processing liquid 23 is returned to the waste liquid tank 15 in the reflux unit 17, and this is repeated.
The solid particles adhering to the nonwoven fabric 25 are generated by bubbles 53 from below in the treatment liquid, and the nonwoven fabric 25 is moved up and down with respect to the treatment liquid 23, whereby the separation is efficiently promoted. Precipitates at the bottom 47 of the.
The particulate solid deposited on the bottom 47 is preferentially discharged as a concentrated slurry 57 together with the processing liquid 23 as the processing liquid 23 is discharged from the bottom 47 of the separation tank 14, and is discharged to the slurry storage tank 19. Sent.
The concentrated slurry 57 stored in the slurry storage tank 19 is sent to the filtration chamber 61 of the filtration separator 21. In the filtration chamber 61, the stirring plate 59 is moved up and down above the filter 71. At the same time, the filtered water passes through the filter 71 at the bottom 47 and is discharged to the outside of the tank 91. The filtered water is discharged through the filter 71 by performing suction filtration at a pressure of −500 to −600 mmHg using the diaphragm pump 109 without pressurizing the inside of the filtration chamber 61 on the upstream side of the filter 71. In the filtration chamber 61, the concentrated slurry is stirred by the vertical movement of the stirring plate 59, so that the particulate solid deposited on the filter 71 does not rise and does not immediately settle and deposit. Slowly settle while dispersing without breaking.
Thereby, even if the treatment liquid 23 passing through the filter 71 is in the state of the concentrated slurry 57, the rapid decrease in the filtration amount is improved.
The concentrated slurry 57 sandwiches the filter 71 and is sucked from the filtered water outflow side, and the filtration possible time of the filtration surface becomes longer.
In this solid-liquid separation method, the treatment liquid 23 before being treated by the filtration separator 21 is concentrated in advance by the separation tank 14 to become a concentrated slurry 57. This concentrated slurry 57 is sent to the filtration separator 21. By sending the concentrated slurry 57 to the filtration separator 21, the filtration separator 21 increases the separation efficiency of the particle solid matter. The processing amount of the processing liquid 23 per unit time increases.
In particular, when the concentrated slurry 57 is passed through the filter 71, the clogging of the filter 71 is suppressed by using the stirring plate 59 in combination. This increases the amount of processing. In the solid-liquid separation method, the stirring plate 59 is used for the high-concentration concentrated slurry 57, so that the stirring operation by the stirring plate 59 is more effective than the case where the stirring plate 59 is used for the low-concentration treatment liquid 23. This is because it works more effectively in suppressing clogging.

本発明に係る請求項1記載の固液分離装置によれば、ジルコニウム系化成処理にて発生する微細な水酸化鉄等の粒子固形物が含まれる処理液から粒子固形物を分離する処理において、簡素な構造で処理量を増やすことができる。   According to the solid-liquid separation device according to claim 1 of the present invention, in the process of separating the particulate solid from the treatment liquid containing the particulate solid such as fine iron hydroxide generated in the zirconium-based chemical conversion treatment, The amount of processing can be increased with a simple structure.

本発明に係る請求項2記載の固液分離方法によれば、ろ過面の急激な目詰まりを抑え、処理量を増やすことができる。   According to the solid-liquid separation method of the second aspect of the present invention, it is possible to suppress a sudden clogging of the filtration surface and increase the processing amount.

本発明の実施形態に係る固液分離装置の全体を概略的に表した構成図である。It is a lineblock diagram showing the whole solid-liquid separation device concerning an embodiment of the present invention roughly. 図1に示した分離部の斜視図である。It is a perspective view of the isolation | separation part shown in FIG. (a)は揺動フィルターの表裏移動時の動作説明図、(b)は分離槽のオーバーフロー状況の動作説明図、(c)は気泡発生時の動作説明図、(d)は揺動フィルター上昇時の動作説明図である。(A) is an operation explanatory diagram when the rocking filter is moved front and back, (b) is an operation explanatory diagram of the overflow state of the separation tank, (c) is an operation explanatory diagram when bubbles are generated, and (d) is an oscillation filter rising It is operation | movement explanatory drawing at the time. 図1に示したろ過分離機の正面断面図である。It is front sectional drawing of the filtration separator shown in FIG. 図4に示したろ過室の平断面図及び撹拌板の平面図である。FIG. 5 is a plan sectional view of the filtration chamber shown in FIG. 4 and a plan view of a stirring plate. (a)は撹拌板下降時の動作説明図、(b)は撹拌板上昇時の動作説明図である。(A) is operation | movement explanatory drawing at the time of stirring plate lowering, (b) is operation | movement explanatory drawing at the time of stirring plate raising. (a)は乾燥空気供給時の動作説明図、(b)はろ過室開放時の動作説明図である。(A) is operation | movement explanatory drawing at the time of dry air supply, (b) is operation | movement explanatory drawing at the time of filtration chamber opening. 粒子固形物の粒度分布を表すグラフである。It is a graph showing the particle size distribution of a particle | grain solid substance. 比較例と実施例における処理量とろ過時間との相関を表すグラフである。It is a graph showing the correlation with the throughput and the filtration time in a comparative example and an Example.

以下、本発明に係る実施形態を図面を参照して説明する。
図1は本発明の実施形態に係る固液分離装置11の全体を概略的に表した構成図、図2は図1に示した分離部13の斜視図である。
本実施形態に係る固液分離装置11は、廃液槽15と、分離槽14と、還流槽18と、スラリー貯留槽19と、ろ過分離機21とを有する。
Embodiments according to the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram schematically showing the entire solid-liquid separation device 11 according to an embodiment of the present invention, and FIG. 2 is a perspective view of the separation unit 13 shown in FIG.
The solid-liquid separation device 11 according to the present embodiment includes a waste liquid tank 15, a separation tank 14, a reflux tank 18, a slurry storage tank 19, and a filtration separator 21.

廃液槽15は、処理液23が溜められる。この処理液23は、自動車車体等の塗装前処理として行われるジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物(溶質)を液体(溶媒)に含んでいる。   The waste liquid tank 15 stores a treatment liquid 23. This treatment liquid 23 is a liquid (solvent) obtained from a solid particle (solute) having a particle size of 0.1 to 10 μm having iron hydroxide as a component generated in a zirconium-based chemical conversion treatment performed as a pre-painting treatment for automobile bodies and the like. Is included.

分離部13は、処理液23が供給される分離槽14と、分離槽14内の処理液23に浸漬され処理液23に含まれる粒子固形物を付着させる不織布25を有した面状の揺動フィルター27と、不織布25の表裏面に処理液23をぶつける方向に揺動フィルター27を移動させる不織布揺動機構29と、を主要な構成として有している。分離槽14には、不織布25への付着により粒子固形物が減量された処理液23(ろ液)を分離槽14から排出するオーバーフロー排出口31が設けられる。   The separation unit 13 has a planar tank having a separation tank 14 to which a treatment liquid 23 is supplied and a non-woven fabric 25 that is immersed in the treatment liquid 23 in the separation tank 14 and adheres solid particles contained in the treatment liquid 23. The filter 27 and the nonwoven fabric rocking mechanism 29 that moves the rocking filter 27 in the direction in which the treatment liquid 23 strikes the front and back surfaces of the nonwoven fabric 25 are included as main components. The separation tank 14 is provided with an overflow outlet 31 through which the treatment liquid 23 (filtrate) in which the amount of solid particles is reduced due to adhesion to the nonwoven fabric 25 is discharged from the separation tank 14.

分離槽14には、廃液槽15から処理液23が供給される。分離槽14のオーバーフロー排出口31から排出された処理液23は、還流部17の還流槽18に一旦貯留される。廃液槽15の処理液23は、廃液槽15と分離槽14とを接続する供給管33に設けられた移送ポンプ35によって分離槽14に供給される。固液分離装置11では、粒子固形物を分離した後の処理液23は、還流槽18から再び廃液槽15へ戻されて(図1中矢線20)再利用される。従って、珪藻土などを使わず、ろ材(揺動フィルター27)のみでの粒子固形物の除去を可能とする。   The treatment liquid 23 is supplied from the waste liquid tank 15 to the separation tank 14. The processing liquid 23 discharged from the overflow outlet 31 of the separation tank 14 is temporarily stored in the reflux tank 18 of the reflux unit 17. The treatment liquid 23 in the waste liquid tank 15 is supplied to the separation tank 14 by a transfer pump 35 provided in a supply pipe 33 that connects the waste liquid tank 15 and the separation tank 14. In the solid-liquid separator 11, the treatment liquid 23 after separating the solid particles is returned from the reflux tank 18 to the waste liquid tank 15 (arrow 20 in FIG. 1) and reused. Therefore, it is possible to remove particulate solids using only the filter medium (the rocking filter 27) without using diatomaceous earth.

図3(a)は揺動フィルター27の表裏移動時の動作説明図、(b)は分離槽14のオーバーフロー状況の動作説明図、(c)は気泡発生時の動作説明図、(d)は揺動フィルター上昇時の動作説明図である。
不織布25はろ材ユニットとして分離槽14の上方で吊り持ちされている。本実施の形態では、処理液23の流出方向に所定間隔を開けて、複数、例えば図示のような7つの揺動フィルター27が設けられている。揺動フィルター27は支持桟37を有し、この支持桟37がカム機構部39を介して不織布揺動機構29に接続される。カム機構部39は、支持桟37を、支持桟37の延在方向に直交する水平方向(図3の矢印a方向)に往復移動させる。
3A is an operation explanatory diagram when the swing filter 27 is moved front and back, FIG. 3B is an operation explanatory diagram of the overflow state of the separation tank 14, FIG. 3C is an operation explanatory diagram when bubbles are generated, and FIG. It is operation | movement explanatory drawing at the time of a rocking | fluctuation filter raising.
The nonwoven fabric 25 is suspended above the separation tank 14 as a filter medium unit. In the present embodiment, a plurality of, for example, seven swing filters 27 as shown in the figure are provided at predetermined intervals in the outflow direction of the processing liquid 23. The swing filter 27 has a support bar 37, and this support bar 37 is connected to the nonwoven fabric swing mechanism 29 via a cam mechanism unit 39. The cam mechanism unit 39 reciprocates the support bar 37 in a horizontal direction (in the direction of arrow a in FIG. 3) perpendicular to the extending direction of the support bar 37.

なお、ろ材ユニットを同方向に移動させる機構はこれに限定されるものではなく、同方向への移動を可能とするものであれば、この他、シリンダー機構、リンク機構、ピニオンラック機構等であってもよい。また、ろ材ユニットの移動は、揺動軸を中心としたスイング(揺動)、スライド(表裏面に垂直方向への平行移動)などであってもよい。   The mechanism for moving the filter medium unit in the same direction is not limited to this, and other mechanisms such as a cylinder mechanism, a link mechanism, and a pinion rack mechanism may be used as long as they can move in the same direction. May be. Further, the movement of the filter medium unit may be a swing (oscillation) around the oscillation axis, a slide (a parallel movement in a direction perpendicular to the front and back surfaces), and the like.

不織布25は、上辺部41のみが支持桟37に固定される。不織布25の上辺部41のみが支持桟37によって支持され、浸漬された不織布25は処理液中に吊り下げ状態となる。この状態で支持桟37が不織布25の表裏方向に移動されると、不織布25の上辺部41に伝わった移動が、不織布25を可撓させながら波状に下辺部43へ伝播し、不織布25の上辺部41から下辺部43までの表裏全面を処理液23に均一に当てることが可能となる。不織布25を、波状に揺らす(揺らぐ)ことにより、少ない駆動力で不織布25の全面に処理液23を当て、不織布25に粒子固形物を均一に付着させることができる。   Only the upper side 41 of the nonwoven fabric 25 is fixed to the support bar 37. Only the upper side portion 41 of the nonwoven fabric 25 is supported by the support bar 37, and the immersed nonwoven fabric 25 is suspended in the treatment liquid. When the support bar 37 is moved in the front and back direction of the nonwoven fabric 25 in this state, the movement transmitted to the upper side portion 41 of the nonwoven fabric 25 is propagated to the lower side portion 43 in a wavy shape while allowing the nonwoven fabric 25 to be flexed. The entire front and back surfaces from the portion 41 to the lower side portion 43 can be uniformly applied to the processing liquid 23. By shaking (shaking) the nonwoven fabric 25 in a wave shape, the treatment liquid 23 can be applied to the entire surface of the nonwoven fabric 25 with a small driving force, and the solid particles can be uniformly attached to the nonwoven fabric 25.

本実施形態のろ材ユニットでは、不織布25を挟み表裏側には略同形状で且つ不織布25よりも高剛性のネット材45が平行に一体固定される。本実施の形態では、三枚のネット材45と、二枚の不織布25とが交互に配置されている。処理液中に吊り下げられた不織布25が表裏に配置されたネット材同士の間でガイドされ、浮力や水流によって不織布25が捲れなくなる。また、上辺部41に伝達された移動力が下辺部43まで効率良く伝播されるようになっている。これにより、不織布25の移動時、剛性の高いネット材45に不織布25が挟まれることで、ろ過面積に寄与しなくなる捲れの発生を防止することができる。   In the filter medium unit of the present embodiment, a net material 45 having substantially the same shape and higher rigidity than the nonwoven fabric 25 is integrally fixed in parallel on the front and back sides with the nonwoven fabric 25 interposed therebetween. In the present embodiment, three net members 45 and two non-woven fabrics 25 are alternately arranged. The nonwoven fabric 25 suspended in the treatment liquid is guided between the net members arranged on the front and back sides, and the nonwoven fabric 25 cannot be drowned by buoyancy or water flow. Further, the moving force transmitted to the upper side portion 41 is efficiently propagated to the lower side portion 43. Thereby, at the time of the movement of the nonwoven fabric 25, the nonwoven fabric 25 is pinched | interposed into the net material 45 with high rigidity, and generation | occurrence | production of the wrinkle which does not contribute to a filtration area can be prevented.

なお、ろ材ユニットは、カム機構部39に対して着脱自在となっている。つまり、交換可能となっている。また、不織布25及びネット材45のそれぞれも支持桟37に対して着脱自在としてもよく、個々に交換可能となっている。   The filter medium unit is detachable from the cam mechanism 39. That is, it can be exchanged. Each of the nonwoven fabric 25 and the net material 45 may be detachable from the support bar 37 and can be individually replaced.

より具体的には、後述するように、不織布25は、素材としてレーヨンを単独で用いる他、レーヨンとポリエステルの多重重ねとすることが好ましい。また、レーヨン製不織布の厚さは0.7mm、目付は150g/m2 程度が好適となる。処理液23の通過率の目安となるバブルポイントは、30〜33μm程度が好適となる。 More specifically, as will be described later, the nonwoven fabric 25 is preferably made of multiple layers of rayon and polyester in addition to using rayon alone as a material. Further, the thickness of the rayon nonwoven fabric is preferably 0.7 mm, and the basis weight is preferably about 150 g / m 2 . The bubble point that is a measure of the passage rate of the treatment liquid 23 is preferably about 30 to 33 μm.

なお、不織布25などのろ材は、処理液23が適宜な量、通過する材質であることが必要となる。また、ネット材45と不織布25は、密着した状態ではなく、図3に示すように、不織布25に対して処理液23が通過可能な空間があるほうがよい。   Note that the filter medium such as the nonwoven fabric 25 needs to be a material through which the treatment liquid 23 passes an appropriate amount. Further, the net material 45 and the nonwoven fabric 25 are not in close contact with each other, and as shown in FIG.

分離槽14の底部47は、中央部が低いV字形状のドレンパン49となる。なお、図例ではV字形状は省略して描いている。この底部47には、処理液供給口(図示略)と、残渣ドレン口51とが設けられている。不織布25から離脱させた粒子固形物を排除する際、所定時間をかけて粒子固形物を沈降させ、残渣ドレン口51を開くことで、底部47に堆積した粒子固形物を不織布25に再付着させずに効率良く排出できるように構成されている。底部47に排出残りが生じた場合には、処理液供給口からの処理液23の供給によって洗浄が可能となる。これにより、分離槽14の底部47に溜まった化成スラッジを、処理液供給口から供給した処理液23によって容易且つ迅速に残渣ドレン口51から排出除去することができる。   The bottom 47 of the separation tank 14 becomes a V-shaped drain pan 49 having a low central portion. In the illustrated example, the V shape is omitted. The bottom 47 is provided with a treatment liquid supply port (not shown) and a residue drain port 51. When the solid particles separated from the nonwoven fabric 25 are excluded, the solid particles are allowed to settle over a predetermined time and the residual drain port 51 is opened to reattach the solid particles deposited on the bottom 47 to the nonwoven fabric 25. It is configured so that it can be discharged efficiently. In the case where discharge remains in the bottom 47, cleaning can be performed by supplying the processing liquid 23 from the processing liquid supply port. Thereby, the chemical conversion sludge collected in the bottom part 47 of the separation tank 14 can be easily and quickly discharged and removed from the residue drain port 51 by the processing liquid 23 supplied from the processing liquid supply port.

また、分離槽14の底部47には、気泡供給管(図示略)が設けられている。気泡供給管には複数の気泡生成孔が設けられている。気泡供給管にはエアージェネレーター(図示略)が接続され、エアージェネレーターは送気した圧縮を気泡生成孔から放出することで処理液23中に図3(c)に示す気泡53を処理液23の下部から発生させる。この気泡53を不織布25に当てることで、不織布25に付着した粒子固形物を底部47に落下させる。   A bubble supply pipe (not shown) is provided at the bottom 47 of the separation tank 14. The bubble supply tube is provided with a plurality of bubble generation holes. An air generator (not shown) is connected to the bubble supply pipe, and the air generator discharges the compressed air supplied from the bubble generation hole, so that the bubbles 53 shown in FIG. Generate from the bottom. By applying the bubbles 53 to the nonwoven fabric 25, the solid particles attached to the nonwoven fabric 25 are dropped onto the bottom 47.

なお、固液分離装置11は、ろ材ユニットを処理液23から図3(d)に示すように、引き上げ、下降を繰り返すユニット昇降機構55を備えることが好ましい。これにより、上記したエアーバブリングとともに、素早い昇降動作で、より効率的にろ材ユニットからの粒子固形物の離脱が行えるようになる。また、このユニット昇降機構55は、ろ材ユニットの交換時に、揺動フィルター27を処理液23から持ち上げるための手段としても利用することができる。   In addition, it is preferable that the solid-liquid separation apparatus 11 is provided with the unit raising / lowering mechanism 55 which repeats raising / lowering a filter medium unit from the process liquid 23 as shown in FIG.3 (d). Thereby, with the air bubbling described above, it is possible to detach the solid particles from the filter medium unit more efficiently by a quick lifting operation. The unit lifting mechanism 55 can also be used as a means for lifting the rocking filter 27 from the processing liquid 23 when the filter medium unit is replaced.

固液分離装置11には図示しない制御手段が設けられる。制御手段には入出力インターフェースを備えたコンピュータや、プログラマブルシーケンサー等を用いることができる。制御手段は移送ポンプ35の駆動、駆動モータの駆動、エアージェネレーターの駆動を制御する。また、制御手段は、内蔵タイマーにより、移送ポンプ35、駆動モータ、エアージェネレーターの駆動を制御する。これにより、付着と落下を繰り返して連続運転を可能としている。また、タイマーにより不織布25の交換時期を知らせるようにしてもよい。このような繰り返し処理を行うことで、除去効率を上げることができる。   The solid-liquid separator 11 is provided with a control means (not shown). As the control means, a computer having an input / output interface, a programmable sequencer, or the like can be used. The control means controls the drive of the transfer pump 35, the drive motor, and the air generator. The control means controls the driving of the transfer pump 35, the drive motor, and the air generator by a built-in timer. Thereby, continuous operation is possible by repeating adhesion and dropping. Moreover, you may make it notify the replacement | exchange time of the nonwoven fabric 25 with a timer. By performing such repeated processing, the removal efficiency can be increased.

さらに、制御手段には濁度計が接続されてもよい。粒子固形物を落とすタイミングを濁度計で検出するようにする。濁度計で、分離槽14の状態を監視し、不織布25の付着状況を把握して、エアーバブリングのタイミングや、ろ材ユニットの昇降のタイミング、交換のタイミングを得るようにしてもよい。   Furthermore, a turbidimeter may be connected to the control means. The turbidimeter detects the timing of dropping the particulate solid. The state of the separation tank 14 may be monitored with a turbidimeter, and the adhesion state of the nonwoven fabric 25 may be grasped to obtain the air bubbling timing, the lifting / lowering timing of the filter medium unit, and the replacement timing.

このように、分離部13では、廃液槽15から処理液23が供給されてオーバーフローされ、上辺部41のみ支持し吊り下げ状態とされる面状の不織布25を鉛直方向に沿う方向で処理液23に浸漬する。この不織布25は、短繊維不織布よりなり、透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmとされ、レーヨンとポリエステルの多重重ねのものである。分離槽14は、表裏面に処理液23をぶつける方向に不織布25を表裏方向に移動させることで、処理液23に含まれる粒子固形物を不織布25を構成する繊維に付着させる。そして、分離槽14は、処理液内で発生させた気泡53を不織布25に衝突させるとともに、不織布25を処理液23に対して昇降動作させて処理液23から離脱させた粒子固形物を、底部47に図3(d)に示す濃縮スラリー57として沈殿させ、さらに粒子固形物が減らされた処理液を分離槽14からオーバーフローさせる。   As described above, in the separation unit 13, the processing liquid 23 is supplied from the waste liquid tank 15 and overflows, and the planar nonwoven fabric 25 that supports only the upper side 41 and is suspended is treated in the direction along the vertical direction. Immerse in. This non-woven fabric 25 is made of a short fiber non-woven fabric, and has a bubble point average pore diameter of 30 to 33 μm at a water head pressure of 50 mm as permeation performance, and is a multi-layered one of rayon and polyester. The separation tank 14 causes the solid particles contained in the treatment liquid 23 to adhere to the fibers constituting the nonwoven fabric 25 by moving the nonwoven fabric 25 in the direction of hitting the treatment liquid 23 against the front and back surfaces. Then, the separation tank 14 collides the bubbles 53 generated in the treatment liquid with the nonwoven fabric 25 and moves the nonwoven fabric 25 up and down relative to the treatment liquid 23 to remove the solid particles separated from the treatment liquid 23 at the bottom. 47, the concentrated slurry 57 shown in FIG. 3 (d) is precipitated, and the processing liquid with reduced particulate solids is allowed to overflow from the separation tank.

還流部17は、分離槽14のオーバーフローによって流出した処理液23を一時的に還流槽18に溜めながら廃液槽15へ戻す。この還流により、分離槽14内での分離処理をより確実に行え、処理液23中の粒子固形物の濃縮スラリー57の濃度を大きくする。   The reflux unit 17 returns the treatment liquid 23 that has flowed out due to the overflow of the separation tank 14 to the waste liquid tank 15 while temporarily accumulating in the reflux tank 18. By this reflux, the separation process in the separation tank 14 can be performed more reliably, and the concentration of the solid slurry 57 of the solid particle in the treatment liquid 23 is increased.

スラリー貯留槽19は、分離槽14の底部47に配管接続され底部47から処理液23とともに優先的に排出される濃縮スラリー57を溜める。   The slurry storage tank 19 is connected to the bottom 47 of the separation tank 14 and stores the concentrated slurry 57 that is preferentially discharged from the bottom 47 together with the processing liquid 23.

図4は図1に示したろ過分離機21の正面断面図、図5は図4に示したろ過室61の平断面図及び撹拌板59の平面図である。
ろ過分離機21は、ろ過室61がトレイ状の上蓋63と下蓋65とからなり、下蓋65が油圧シリンダー67の駆動シャフト69に固定される。ろ過室61は、油圧シリンダー67によって下蓋65が昇降することで、上下方向に閉鎖及び開放自在に構成され、ろ材である例えばペーパー状のフィルター71が、閉鎖されたろ過室61の上蓋63と下蓋65とによって表裏方向から挟まれる。ろ過室61に送られた粒子固形物を含む濃縮スラリー57は、内方のフィルター上に送られてろ過される。
4 is a front sectional view of the filtration separator 21 shown in FIG. 1, and FIG. 5 is a plan sectional view of the filtration chamber 61 and a plan view of the stirring plate 59 shown in FIG.
In the filtration separator 21, the filtration chamber 61 includes a tray-like upper lid 63 and a lower lid 65, and the lower lid 65 is fixed to a drive shaft 69 of a hydraulic cylinder 67. The filtration chamber 61 is configured so that it can be closed and opened in the up-down direction when the lower lid 65 is moved up and down by a hydraulic cylinder 67, and for example, a paper-like filter 71 as a filter medium is connected to the upper lid 63 of the filtration chamber 61 closed. It is sandwiched from the front and back directions by the lower lid 65. The concentrated slurry 57 containing particulate solids sent to the filtration chamber 61 is sent to the inner filter and filtered.

ろ過室61の上蓋63には、濃縮スラリー57の供給される濃縮スラリー供給管73が接続される。濃縮スラリー供給管73には、流路開閉用の第1バルブ75が介装される。また、上蓋63には圧力計77が接続される。   A concentrated slurry supply pipe 73 to which the concentrated slurry 57 is supplied is connected to the upper lid 63 of the filtration chamber 61. A first valve 75 for opening and closing the flow path is interposed in the concentrated slurry supply pipe 73. A pressure gauge 77 is connected to the upper lid 63.

撹拌板59は、駆動部により上下運動して粒子固形物がフィルター71のろ過面にすぐに積層しないように濃縮スラリー57を撹拌する。撹拌板59の駆動部としては、シリンダー機構79を採用することができる。撹拌板59には軸81が固定され、この軸81がシリンダー機構79によって上下駆動される。   The stirring plate 59 moves up and down by the drive unit, and stirs the concentrated slurry 57 so that the particulate solid does not immediately accumulate on the filtration surface of the filter 71. A cylinder mechanism 79 can be employed as the drive unit of the stirring plate 59. A shaft 81 is fixed to the stirring plate 59, and this shaft 81 is driven up and down by a cylinder mechanism 79.

撹拌板59は、ろ過室61における上蓋63側であるフィルター71よりも上方の空間64内を上下に駆動する。この空間64内においては、撹拌板59は、高さ方向の略中間位置に配置され、その高さの約半分の距離をストローク長Sとして上下動し、すなわち上蓋63内の天井面やフィルター71には接触しない範囲で撹拌が行われる。   The stirring plate 59 drives up and down in the space 64 above the filter 71 on the upper lid 63 side in the filtration chamber 61. In this space 64, the stirring plate 59 is disposed at a substantially intermediate position in the height direction, and moves up and down with a distance of about half the height as the stroke length S, that is, the ceiling surface in the upper lid 63 and the filter 71. Stirring is performed within a range where no contact occurs.

撹拌板59は、ろ過室61の内部水平断面形状と略同形状とされ、ろ過室内面と撹拌板59の縁部84との間に僅かな隙間83(図5参照)を有した形状、例えばろ過室61の内部水平断面形状に対して隙間83を5mm程度とした外形状に形成される。従って、撹拌板59は、フィルター71のろ過面と略同一面積の相似形状に撹拌面85が形成される。   The stirring plate 59 has substantially the same shape as the internal horizontal sectional shape of the filtration chamber 61, and has a slight gap 83 (see FIG. 5) between the inner surface of the filtration chamber and the edge 84 of the stirring plate 59, for example, It forms in the outer shape which made the clearance gap 83 about 5 mm with respect to the internal horizontal cross-sectional shape of the filtration chamber 61. FIG. Therefore, the stirring surface 85 is formed in the similar shape of the stirring plate 59 having substantially the same area as the filtration surface of the filter 71.

撹拌板59には、図5に示す複数の貫通孔87が撹拌面85を貫通して穿設されている。撹拌板59は、複数の貫通孔87が形成されることで、ろ過室61の内部水平断面積に対して開口率が10〜15%とされる。なお、隙間83は、撹拌板59の縁部84に沿って略均一とされ、すなわち撹拌板59は、ろ過室61内の中心に沿って位置し、また、複数の貫通孔87は、それぞれ同形状で等間隔に配置されることが好ましい。   In the stirring plate 59, a plurality of through holes 87 shown in FIG. The stirring plate 59 is formed with a plurality of through holes 87 so that the opening ratio is 10 to 15% with respect to the internal horizontal cross-sectional area of the filtration chamber 61. The gap 83 is substantially uniform along the edge 84 of the stirring plate 59, that is, the stirring plate 59 is positioned along the center in the filtration chamber 61, and the plurality of through holes 87 are the same. It is preferable to arrange them at regular intervals in the shape.

撹拌板59は、貫通孔87に濃縮スラリー57を通過させて、撹拌板59に対する濃縮スラリー57の過大な抵抗を減らす。同時に、撹拌板59は、粒子固形物を貫通孔87に通過させて、粒子固形物を濃縮スラリー57の全体へ効率よく分散させる。これにより、撹拌効率を高める。なお、貫通孔87の内径は、濃縮スラリー57がスムースに通過され粒子固形物を崩さず通過が可能なことが好ましい。   The stirring plate 59 allows the concentrated slurry 57 to pass through the through hole 87 and reduces excessive resistance of the concentrated slurry 57 to the stirring plate 59. At the same time, the stirring plate 59 allows the particle solids to pass through the through-holes 87 and efficiently disperse the particle solids throughout the concentrated slurry 57. Thereby, stirring efficiency is improved. In addition, the inner diameter of the through-hole 87 is preferably such that the concentrated slurry 57 can pass smoothly without passing through the solid particles.

ろ過室61の下蓋65には廃液管89が接続され、廃液管89はろ過室61のろ過水を槽外部91へ排出する。   A waste liquid pipe 89 is connected to the lower lid 65 of the filtration chamber 61, and the waste liquid pipe 89 discharges the filtered water in the filtration chamber 61 to the outside of the tank 91.

ろ過室61は、下蓋65が油圧シリンダー67によって昇降自在となる。上蓋63及び下蓋65は、開口形状が例えば略四角形で形成される。上蓋63の平行な二辺部には、上側保持部材93が設けられている。また、下蓋65の平行な二辺部にも上側保持部材93に対向する下側保持部材95が設けられている。これら上側保持部材93及び下側保持部材95は、上蓋63と下蓋65が閉鎖されることで、フィルター71を挟む。   In the filtration chamber 61, the lower lid 65 can be moved up and down by a hydraulic cylinder 67. The upper lid 63 and the lower lid 65 have an opening shape of, for example, a substantially square shape. Upper holding members 93 are provided on two parallel sides of the upper lid 63. Further, a lower holding member 95 facing the upper holding member 93 is also provided on two parallel sides of the lower lid 65. The upper holding member 93 and the lower holding member 95 sandwich the filter 71 when the upper lid 63 and the lower lid 65 are closed.

なお、フィルター71は、下蓋内の金属製メッシュと、パンチングメタルからなるろ材支え(図示略)によって支えられている。   The filter 71 is supported by a metal mesh in the lower lid and a filter medium support (not shown) made of punching metal.

ろ過室61の近傍にはフィルター移動手段97が設けられている。フィルター移動手段97は、開放した際のろ過室61からフィルター71を移動して、フィルター71ごと、濃縮スラリー57からろ過水が除かれた脱水ケーキ99(図7参照)を槽外部91へ排出する。フィルター移動手段97は、長尺な帯状に形成されるフィルター71を巻装するフィルター繰出しロール101と、ろ過室61を挟んでフィルター繰出しロール101と反対側に設けられフィルター71を巻き取るフィルター巻取りロール103と、を備える。フィルター移動手段97は、手動、モータ駆動のいずれで駆動されてもよい。フィルター移動手段97は、フィルター巻取りロール103とフィルター繰出しロール101とが同期して回転されることにより、フィルター71の新たな部分をろ過室61に供給可能としている。   A filter moving means 97 is provided in the vicinity of the filtration chamber 61. The filter moving means 97 moves the filter 71 from the filtration chamber 61 when it is opened, and discharges the dehydrated cake 99 (see FIG. 7) from which the filtrate is removed from the concentrated slurry 57 together with the filter 71 to the outside of the tank 91. . The filter moving means 97 includes a filter feeding roll 101 that winds the filter 71 formed in a long band shape, and a filter winding that is provided on the opposite side of the filter feeding roll 101 with the filtration chamber 61 interposed therebetween and winds up the filter 71. A roll 103. The filter moving means 97 may be driven either manually or by motor drive. The filter moving means 97 can supply a new portion of the filter 71 to the filtration chamber 61 by rotating the filter winding roll 103 and the filter feeding roll 101 in synchronization.

このように、ろ過分離機21では、槽下部105にシート状のフィルター71を水平に備えてスラリー貯留槽19からの濃縮スラリー57が供給されるろ過室61を有する。ろ過分離機21は、フィルター71の上方において、ろ過室内周壁107(図5参照)に対して近接する縁部84を備えて配置した開口率10〜15%とする複数の貫通孔87を備える水平な撹拌板59を、ろ過室61内におけるフィルター71より上方の空間64を1.8〜2.1m/分の速度で上下運動させて濃縮スラリー57をゆっくり撹拌する。これにより、粒子固形物がろ過面に即座に沈降して堆積しないように粒子固形物を濃縮スラリー57中に分散させる。これと同時に、ろ過分離機21は、ろ過室内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行ってフィルター71を通過するろ過水を槽外部91へ排出する。ろ過分離機21は、徐々に残渣(粒子固形物)をフィルター71上に溜めることによって、脱水ケーキ99を得る。   Thus, the filtration separator 21 has the filtration chamber 61 in which the sheet-like filter 71 is horizontally provided in the tank lower part 105 and the concentrated slurry 57 from the slurry storage tank 19 is supplied. The filtration separator 21 is provided with a plurality of through-holes 87 having an opening ratio of 10 to 15% arranged above the filter 71 and provided with an edge 84 adjacent to the peripheral wall 107 (see FIG. 5) of the filtration chamber. The agitating plate 59 is moved up and down in the space 64 above the filter 71 in the filtration chamber 61 at a speed of 1.8 to 2.1 m / min to slowly agitate the concentrated slurry 57. As a result, the particulate solid is dispersed in the concentrated slurry 57 so that the particulate solid does not immediately settle and deposit on the filtration surface. At the same time, the filtration separator 21 does not pressurize the filtration chamber, and uses the diaphragm pump 109 to perform suction filtration at a pressure of −500 to −600 mmHg to pass the filtered water passing through the filter 71 to the outside 91 of the tank. Discharge. The filter separator 21 gradually accumulates the residue (particle solids) on the filter 71 to obtain a dehydrated cake 99.

なお、濃縮スラリー供給管73には、流路開閉用の第1バルブ75の他、第1電磁バルブ111が介装される。また、上蓋63には加圧管113が接続され、加圧管113は乾燥圧縮空気供給手段115と接続される。加圧管113には、流路開閉用の第2バルブ117が介装される。乾燥圧縮空気供給手段115は、濃縮スラリー57の供給が停止された状態、すなわち第1バルブ75,第1電磁バルブ111が閉じた状態で、乾燥圧縮空気119をろ過室61へ送ってフィルター71上の残渣を、乾燥した空気での加圧により、フィルター71に残渣を押圧し絞るように脱水して脱水ケーキ99とする。   The concentrated slurry supply pipe 73 is provided with a first electromagnetic valve 111 in addition to the first valve 75 for opening and closing the flow path. In addition, a pressure tube 113 is connected to the upper lid 63, and the pressure tube 113 is connected to the dry compressed air supply means 115. A second valve 117 for opening and closing the flow path is interposed in the pressurizing pipe 113. The dry compressed air supply means 115 sends the dry compressed air 119 to the filtration chamber 61 in the state where the supply of the concentrated slurry 57 is stopped, that is, the first valve 75 and the first electromagnetic valve 111 are closed. The residue is dehydrated by pressurizing with dry air so that the residue is pressed against the filter 71 and squeezed to obtain a dehydrated cake 99.

このように、ろ過分離機21では、ろ過室61の内方にシート状のフィルター71を備え、粒子固形物を含む濃縮スラリー57が送られるとともに、出口側に設けたダイヤフラムポンプ109にて低圧吸引ろ過が行われる。   Thus, in the filtration separator 21, the sheet-like filter 71 is provided inside the filtration chamber 61, and the concentrated slurry 57 containing particulate solids is sent, and the diaphragm pump 109 provided on the outlet side performs low-pressure suction. Filtration is performed.

フィルター71は、下側保持部材95及び上側保持部材93によって挟まれて張架される。フィルター71のフィルター巻取りロール103側の走行路の近傍にはスクレーパー121が設けられ、スクレーパー121はフィルター上の脱水ケーキ99を掻き取る。掻き取られた脱水ケーキ99は、下方に設置される廃棄トレイ123に投下される。   The filter 71 is sandwiched and stretched between the lower holding member 95 and the upper holding member 93. A scraper 121 is provided in the vicinity of the traveling path on the filter winding roll 103 side of the filter 71, and the scraper 121 scrapes off the dewatered cake 99 on the filter. The dewatered cake 99 that has been scraped off is dropped onto a waste tray 123 that is installed below.

次に、上記固液分離装置11を用いた固液分離方法を説明する。
本実施形態に係る固液分離方法は、処理液貯留工程と、前段分離工程と、処理液還流工程と、スラリー貯留工程と、ろ過分離工程とを含む。
Next, a solid-liquid separation method using the solid-liquid separator 11 will be described.
The solid-liquid separation method according to the present embodiment includes a treatment liquid storage process, a pre-stage separation process, a treatment liquid reflux process, a slurry storage process, and a filtration separation process.

処理液貯留工程は、ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液23を廃液槽15に溜める。   In the treatment liquid storage step, the treatment liquid 23 containing a solid particle having a particle diameter of 0.1 to 10 μm, which is composed of iron hydroxide generated in the zirconium-based chemical conversion treatment, is stored in the waste liquid tank 15.

前段分離工程の概略は、廃液槽15から処理液23が分離槽14に供給されてオーバーフローされ、上辺部41のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布25を、鉛直方向に沿う方向で処理液23に浸漬する。表裏面に処理液23をぶつける方向に不織布25を表裏方向に移動させることで、処理液23に含まれる粒子固形物を不織布25を構成する繊維に付着させる。処理液内下部で発生させた気泡53を不織布25に衝突させるとともに、不織布25を処理液23に対して昇降動作させる。これにより、繊維に付着状態の粒子固形物は容易に落下し、処理液23から離脱される粒子固形物を、底部47に濃縮スラリー57として沈殿させる。また、粒子固形物の減らされた処理液23が分離槽14からオーバーフローされる。このオーバーフローされる処理液は、所謂上澄みである。   The outline of the preceding stage separation process is that the treatment liquid 23 is supplied from the waste liquid tank 15 to the separation tank 14 and overflows, and the bubble point average pore diameter at a head pressure of 50 mm is the permeation performance that supports only the upper side 41 and is suspended. A non-woven fabric 25 made of a sheet-like short fiber non-woven fabric of 30 to 33 μm is immersed in the treatment liquid 23 in a direction along the vertical direction. By moving the nonwoven fabric 25 in the front and back direction in the direction in which the treatment liquid 23 strikes the front and back surfaces, the solid particles contained in the treatment liquid 23 are attached to the fibers constituting the nonwoven fabric 25. While causing the bubbles 53 generated in the lower part of the processing liquid to collide with the nonwoven fabric 25, the nonwoven fabric 25 is moved up and down with respect to the processing liquid 23. As a result, the particulate solid adhered to the fibers easily falls, and the particulate solid separated from the treatment liquid 23 is precipitated as a concentrated slurry 57 on the bottom 47. Further, the treatment liquid 23 in which the particulate solids are reduced overflows from the separation tank 14. This overflowed processing solution is so-called supernatant.

なお、処理液23中に浸漬した不織布25が移動されると、処理液23が不織布25に当たり、処理液23の一部分が不織布25を透過するとともに処理液23に含まれる粒子固形物が不織布25の繊維に付着する。この透過と付着が繰り返され、不織布25に粒子固形物が堆積するように次々に付着して分離される。粒子固形物が減らされた処理液23は、不織布25の動きにより、分離槽14で液面がさざ波のように動き、オーバーフロー排出口31から排出されることとなる。   In addition, when the nonwoven fabric 25 immersed in the treatment liquid 23 is moved, the treatment liquid 23 hits the nonwoven fabric 25, a part of the treatment liquid 23 permeates the nonwoven fabric 25, and the solid particles contained in the treatment liquid 23 are the nonwoven fabric 25. Adhere to fibers. This permeation and adhesion are repeated, and the solid particles are adhered and separated one after another so that the solid particles are deposited on the nonwoven fabric 25. The treatment liquid 23 in which the particle solids are reduced is discharged from the overflow discharge port 31 by the movement of the non-woven fabric 25, and the liquid surface moves like ripples in the separation tank 14.

粒子固形物が離脱された不織布25は、再び粒子固形物が付着可能となる。このように、分離槽14では、不織布25に付着した粒子固形物を気泡53により簡単な構造で離脱させることができ、不織布25の交換サイクルを長くすることができる。   The non-woven fabric 25 from which the solid particles have been separated can adhere to the solid particles again. As described above, in the separation tank 14, the solid particles adhering to the nonwoven fabric 25 can be separated by the bubbles 53 with a simple structure, and the replacement cycle of the nonwoven fabric 25 can be lengthened.

また、気泡53を供給する際、不織布25は、処理液23から引き上げ降下される。気泡53の衝突に加え、不織布25が液面に対して昇降されることによる衝撃で、不織布25からの粒子固形物の離脱性がより高められる。これにより、粒子固形物の離脱性をさらに向上させている。   Further, when supplying the bubbles 53, the nonwoven fabric 25 is pulled up and lowered from the treatment liquid 23. In addition to the collision of the bubbles 53, the impact of moving the nonwoven fabric 25 up and down with respect to the liquid level further enhances the detachability of the solid particles from the nonwoven fabric 25. Thereby, the releasability of the particle solid is further improved.

従って、分離部13では、単純な孔が貫通成形されるようなフィルターではなく繊維が複雑に絡み合って構成される不織布25によって、従来粒径よりも細かい5μm以下の粒径の化成スラッジを含む処理液23から簡素な構造で粒子固形物を分離することができ、またバブルポイント平均孔径が30〜33μmの不織布25としたことで、処理液23が容易に繊維間を通りながら粒径0.1〜10μmの粒子固形物を繊維に引っ掛かるように付着させることで処理液23から分離できる。   Therefore, in the separation part 13, a treatment including a chemical sludge having a particle size of 5 μm or less smaller than the conventional particle size is performed by the non-woven fabric 25 configured by intricately intertwining fibers rather than a filter in which simple holes are formed through. The solid particles can be separated from the liquid 23 with a simple structure, and the non-woven fabric 25 having a bubble point average pore diameter of 30 to 33 μm allows the treatment liquid 23 to easily pass between fibers with a particle size of 0.1. It can be separated from the treatment liquid 23 by adhering a particle solid of 10 μm so as to be caught on the fiber.

分離部13は、濁度計の結果、或いは所定時間の経過によって、後述の還流部17を止めるとともに、処理液23の供給を止め、分離槽14内に残っている濃縮スラリー57を残渣ドレン口51より全て排出する。その後、槽内の洗浄を行う。洗浄の後、新たに処理液23の供給を始めて、繰り返し処理を行う。また、残渣ドレン口51から排出された洗浄時の処理液23は、再び廃液槽15に戻され繰り返し処理を行う。   The separation unit 13 stops the reflux unit 17 (described later) and stops the supply of the processing liquid 23 according to the result of the turbidimeter or the elapse of a predetermined time, and stops the supply of the treatment liquid 23 to remove the concentrated slurry 57 remaining in the separation tank 14. Eject all from 51. Thereafter, the inside of the tank is cleaned. After the cleaning, the supply of the treatment liquid 23 is newly started and the treatment is repeated. Also, the cleaning processing liquid 23 discharged from the residue drain port 51 is returned again to the waste liquid tank 15 and repeatedly processed.

固液分離装置11において、分離部13は、ろ過分離機21の前処理装置として用いられる。これにより、分離部13が有する固有の粒子固形物の除去能力を有効にして、後段のろ過分離機21の負荷を大幅に軽減できる。   In the solid-liquid separation device 11, the separation unit 13 is used as a pretreatment device for the filtration separator 21. Thereby, the removal capability of the specific particle | grain solid substance which the separation part 13 has can be made effective, and the load of the filtration separator 21 of a back | latter stage can be reduced significantly.

処理液還流工程は、還流部17にて、分離部13のオーバーフローによって流出した処理液23を一時的に還流槽18に溜めながら廃液槽15へ戻す。これにより、処理液23の連続処理による濃縮スラリー57の連続生成を可能にしており、この還流を繰り返すことで分離槽14内での分離処理をより確実に行え、処理液23中の粒子固形物の濃縮スラリー57の濃度を大きくし、処理液23からの粒子固形物の分離をより高めることとなる。   In the treatment liquid refluxing step, the treatment liquid 23 that has flowed out due to the overflow of the separation part 13 is returned to the waste liquid tank 15 while being temporarily accumulated in the reflux tank 18 at the reflux part 17. Thereby, the continuous production | generation of the concentration slurry 57 by the continuous process of the process liquid 23 is attained, and the separation process in the separation tank 14 can be performed more reliably by repeating this recirculation | reflux, and the particulate solid in the process liquid 23 The concentration of the concentrated slurry 57 is increased, and the separation of the solid particles from the treatment liquid 23 is further enhanced.

スラリー貯留工程は、分離槽14の底部47に配管接続されたスラリー貯留槽19に対し、分離槽14の底部47から処理液23とともに優先的に排出される濃縮スラリー57を溜める。   In the slurry storage step, the concentrated slurry 57 that is preferentially discharged together with the treatment liquid 23 from the bottom 47 of the separation tank 14 is stored in the slurry storage tank 19 connected to the bottom 47 of the separation tank 14.

図6(a)は撹拌板下降時の動作説明図、(b)は撹拌板上昇時の動作説明図、図7(a)は乾燥空気供給時の動作説明図、(b)はろ過室開放時の動作説明図である。
ろ過分離工程の概略は、槽下部105にシート状のフィルター71を水平に備えてスラリー貯留槽19からの濃縮スラリー57が供給されるろ過室61を用いる。ろ過分離機21のろ過室61では、フィルター71の上方においてろ過室内周壁107に対して近接する縁部を備えて配置した開口率10〜15%とする複数の貫通孔87を備える水平な撹拌板59を、上下運動させて濃縮スラリー57をゆっくり撹拌する。この撹拌板59による撹拌は、ろ過室61内におけるフィルター71より上方の空間64の高さ方向の略中間位置で、この空間64における高さの略半分の距離をストローク長Sとして1.8〜2.1m/分の速度での上下動とされる。そして、フィルター71上に堆積している粒子固形物を舞い上がらせずに、且つ撹拌板59にて粒子固形物を損壊させずに、粒子固形物がろ過面に即座に沈降して堆積しないように、粒子固形物を濃縮スラリー中に分散させる。同時に、ろ過分離機21では、ろ過室61内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行ってフィルター71を通過するろ過水を槽外部91へ排出する。これにより、ろ過分離機21は、徐々に残渣をフィルター71上に溜めて脱水ケーキ99を得る。
6A is an operation explanatory diagram when the stirring plate is lowered, FIG. 6B is an operation explanatory diagram when the stirring plate is raised, FIG. 7A is an operation explanatory diagram when supplying dry air, and FIG. It is operation | movement explanatory drawing at the time.
The outline of a filtration separation process uses the filtration chamber 61 which equips the tank lower part 105 with the sheet-like filter 71 horizontally, and the concentrated slurry 57 from the slurry storage tank 19 is supplied. In the filtration chamber 61 of the filtration separator 21, a horizontal stirring plate provided with a plurality of through-holes 87 having an opening ratio of 10 to 15% arranged with an edge portion close to the filtration chamber peripheral wall 107 above the filter 71. 59 is moved up and down to slowly stir the concentrated slurry 57. Stirring by the stirring plate 59 is performed at a substantially intermediate position in the height direction of the space 64 above the filter 71 in the filtration chamber 61, and a distance of approximately half of the height in the space 64 is 1.8 to It is considered to move up and down at a speed of 2.1 m / min. The particle solids do not immediately settle on the filtration surface and do not accumulate without causing the particle solids deposited on the filter 71 to rise and without damaging the particle solids with the stirring plate 59. Disperse the particulate solid in the concentrated slurry. At the same time, the filtration separator 21 does not pressurize the inside of the filtration chamber 61, and uses the diaphragm pump 109 to perform suction filtration at a pressure of −500 to −600 mmHg to pass the filtered water passing through the filter 71 to the outside 91 of the tank. Discharge. As a result, the filtration separator 21 gradually accumulates the residue on the filter 71 to obtain a dehydrated cake 99.

ろ過分離機21を用いたろ過方法では、まず、粒子固形物を含む濃縮スラリー57を供給ポンプにてろ過室61のシート状のフィルター71へ送る。同時に、ろ過室61の出口側に設けたダイヤフラムポンプ109にて低圧吸引ろ過を行う。ろ過室61を減圧、すなわちダイヤフラムポンプ109で吸引してろ過する際は、ろ過室61に圧縮空気を送りこまなくてよい。ろ過室61に、連続して濃縮スラリー57を送り込み、同時にダイヤフラムポンプ109でフィルター71を介して減圧ろ過する。送り込み時には低いが濃縮スラリー57の送液の圧力は存在する。ろ過室空間内に連続して濃縮スラリー57を送り込むことから、徐々にフィルター71に残渣が溜まる。この際、ろ過室61の入口側に設けた撹拌板59を図6に示すように、ストロークSにて上下運動させ、粒子固形物がろ過面に堆積しないようにゆっくり撹拌しながらろ過を行う。なお、撹拌板59の上下ストロークでは、ストローク下端で撹拌板59が、フィルター71上に溜まる残渣に触れない高さとされ、すなわちろ過室61内で濃縮スラリー57の撹拌のみ行われる。   In the filtration method using the filtration separator 21, first, the concentrated slurry 57 containing particulate solids is sent to the sheet-like filter 71 in the filtration chamber 61 by a supply pump. At the same time, low-pressure suction filtration is performed by a diaphragm pump 109 provided on the outlet side of the filtration chamber 61. When the filtration chamber 61 is decompressed, that is, sucked and filtered by the diaphragm pump 109, it is not necessary to send compressed air to the filtration chamber 61. The concentrated slurry 57 is continuously fed into the filtration chamber 61 and simultaneously filtered under reduced pressure through the filter 71 by the diaphragm pump 109. At the time of feeding, the pressure of feeding the concentrated slurry 57 is low. Since the concentrated slurry 57 is continuously fed into the filtration chamber space, the residue gradually accumulates in the filter 71. At this time, as shown in FIG. 6, the stirring plate 59 provided on the inlet side of the filtration chamber 61 is moved up and down by a stroke S, and filtration is performed while slowly stirring so that the particulate solid does not accumulate on the filtration surface. In the up / down stroke of the stirring plate 59, the stirring plate 59 is set to a height that does not touch the residue accumulated on the filter 71 at the lower end of the stroke, that is, only the concentrated slurry 57 is stirred in the filtration chamber 61.

所定時間、或いは所定流量に達した時点、またはダイヤフラムポンプ109の吸引圧の変化を見て、送液を止め、吸引(減圧)を止める。この停止タイミングは、時間の場合はタイマー、流量の場合は例えば廃液管89に設けられる流量計、圧力の場合は廃液管89に設けられる圧力計90の数値によって決める他、各種センサによって決められてもよい。このろ過分離工程では、粒子固形物が圧縮により潰れて次々に変形し、フィルターとは逆側である表面側(上流側)の粒子固形物同士が密着状態となって目詰まりして液が流れにくくなる加圧ろ過に比べ、粒子固形物があまり潰されないので、粒子間の隙間83から液が槽下部105へ抵抗なく流れる。   When a predetermined time or when a predetermined flow rate is reached, or when a change in the suction pressure of the diaphragm pump 109 is observed, liquid feeding is stopped and suction (decompression) is stopped. The stop timing is determined by various sensors in addition to a timer in the case of time, a flow meter provided in the waste liquid pipe 89 in the case of flow rate, and a pressure gauge 90 provided in the waste liquid pipe 89 in the case of pressure. Also good. In this filtration and separation step, the solid particles are crushed by compression and deformed one after another, and the solid particles on the surface side (upstream side) opposite to the filter are in close contact with each other, clogging and flowing the liquid. Compared with the pressure filtration which becomes difficult, the solid particles are not crushed so much, the liquid flows from the gap 83 between the particles to the tank lower portion 105 without resistance.

脱水工程では、図7(a)に示すように、濃縮スラリー供給管73側の供給ポンプを停止してから、ろ過室61内に乾燥圧縮空気119が送られ、フィルター上側表面に圧縮空気圧力が加えられ、さらに水分が絞り出される。この脱水工程では、脱水ケーキ99の含水率が小さくなり、それによって粘着性が小さくなることで、脱水ケーキ99がフィルター71から剥がれ易くなる。水分の絞り出しが完了したなら、図7(b)に示すように、油圧シリンダー67により下蓋65を下降させてろ過室61を開放する。ろ過室61が開放された後、フィルター移動手段97によってフィルター71を移動して、フィルター71ごと、脱水ケーキ99を槽外部91へ排出する。   In the dehydration step, as shown in FIG. 7A, after the supply pump on the concentrated slurry supply pipe 73 side is stopped, dry compressed air 119 is sent into the filtration chamber 61, and the compressed air pressure is applied to the upper surface of the filter. In addition, moisture is squeezed out. In this dehydration step, the moisture content of the dehydrated cake 99 is reduced, and thereby the adhesiveness is reduced, whereby the dehydrated cake 99 is easily peeled off from the filter 71. When the squeezing out of the water is completed, the lower lid 65 is lowered by the hydraulic cylinder 67 to open the filtration chamber 61 as shown in FIG. After the filtration chamber 61 is opened, the filter 71 is moved by the filter moving means 97, and the dehydrated cake 99 is discharged to the outside of the tank 91 together with the filter 71.

ろ過室61の槽外部91へ排出された脱水ケーキ99は、スクレーパー121によって掻き取られ、フィルター71と分離されて廃棄トレイ123へ投下される。脱水ケーキ99の除去されたフィルター71は、フィルター巻取りロール103によって巻き取られ、再利用可能な状態となる。   The dehydrated cake 99 discharged to the outside 91 of the filtration chamber 61 is scraped off by the scraper 121, separated from the filter 71, and dropped onto the waste tray 123. The filter 71 from which the dewatered cake 99 has been removed is taken up by the filter take-up roll 103 and becomes reusable.

次に、上記の構成を有する固液分離装置11の作用を説明する。
本実施形態に係る固液分離装置11では、ジルコニウム系化成処理にて発生した処理液23が廃液槽15に溜められる。廃液槽15に溜められた処理液23は、分離部13の分離槽14に送られる。分離部13は、供給された処理液23が所定量になると、処理液23をオーバーフローさせる。オーバーフローした処理液23は、還流槽18に一旦、溜められる。還流槽18に溜まった処理液23は、廃液槽15へと再び戻される。
Next, the operation of the solid-liquid separation device 11 having the above configuration will be described.
In the solid-liquid separator 11 according to this embodiment, the treatment liquid 23 generated in the zirconium-based chemical conversion treatment is stored in the waste liquid tank 15. The treatment liquid 23 stored in the waste liquid tank 15 is sent to the separation tank 14 of the separation unit 13. The separation unit 13 causes the processing liquid 23 to overflow when the supplied processing liquid 23 reaches a predetermined amount. The overflowed processing solution 23 is temporarily stored in the reflux tank 18. The treatment liquid 23 accumulated in the reflux tank 18 is returned again to the waste liquid tank 15.

この処理液23の循環系において、分離槽14では、処理液23中に鉛直方向に沿って浸漬した不織布25が表裏方向に移動される。不織布25が移動されると、処理液23が不織布25に当たり、処理液23の一部分が不織布25を透過するとともに処理液23に含まれる粒子固形物が不織布25の繊維に付着することとなる。これは粒子固形物が不定形状であり不織布25を構成する繊維が絡み合った状態であることから、この繊維間を処理液23が通過すると同時に浮遊する粒子固形物が捕捉されるように付着するものである。すなわち、不織布25の構成として、バブルポイント平均孔径を上記したように30〜33μmとしているが、この孔とされるものは不織布を真っ直ぐに貫通した管状の孔ではなく、不織布25を構成する不定形の繊維が絡み合った状態でのバブルポイントの孔径数値であり、この繊維により形成される不定形状の間隙部分に粒子固形物が引っ掛かるように捕捉されて付着することとなるものである。この透過と付着が繰り返され、不織布25に粒子固形物が堆積して、処理液23から粒子固形物が分離されて行く。また、粒子固形物が減らされた処理液23を分離槽14からオーバーフローさせる。   In the circulation system of the treatment liquid 23, in the separation tank 14, the nonwoven fabric 25 immersed in the treatment liquid 23 along the vertical direction is moved in the front and back direction. When the nonwoven fabric 25 is moved, the treatment liquid 23 hits the nonwoven fabric 25, and a part of the treatment liquid 23 permeates the nonwoven fabric 25, and particle solids contained in the treatment liquid 23 adhere to the fibers of the nonwoven fabric 25. This is because the solid particles are indefinite shape and the fibers constituting the non-woven fabric 25 are intertwined, so that the solid particles that float are trapped while the treatment liquid 23 passes between the fibers. It is. That is, as the configuration of the nonwoven fabric 25, the bubble point average pore diameter is set to 30 to 33 μm as described above, but this hole is not a tubular hole that passes straight through the nonwoven fabric, but an indefinite shape that configures the nonwoven fabric 25. The pore diameter value of the bubble point in a state where the fibers are intertwined, and the solid particles are trapped and attached so as to be caught in the gap portion of the irregular shape formed by the fibers. This permeation and adhesion are repeated, and particle solids are deposited on the nonwoven fabric 25, and the particle solids are separated from the treatment liquid 23. Further, the processing liquid 23 in which the particulate solids are reduced is caused to overflow from the separation tank 14.

不織布25に付着し堆積する粒子固形物が所定量になると、或いは所定時間、不織布25が移動されると、処理液内下部から気泡53が発生され、この気泡53が不織布25に当たることで、不織布25に付着した粒子固形物が分離槽14の底部47に落下する。この際、不織布25は、処理液23に対して昇降動作されることで、より効率的に粒子固形物の離脱が促進される。落下した粒子固形物は、分離槽14の底部47に沈殿する。不織布25に捕捉された粒子固形物は、ある程度凝集されていることから、比重が増し、底部47へ沈降しやすくなっている。粒子固形物は、不織布25に対して付着しているのみであって、気泡や昇降動作の衝撃で容易に落下する。また、この際、分離槽14への処理液23の供給は、継続されていても、停止されていてもよい。この気泡53の衝突と、昇降動作が所定の間隔で繰り返されることにより、分離槽14の底部47に離脱した粒子固形物が堆積して行く。   When the solid particle adhering to and depositing on the non-woven fabric 25 reaches a predetermined amount or when the non-woven fabric 25 is moved for a predetermined time, bubbles 53 are generated from the lower part in the treatment liquid, and the air bubbles 53 strike the non-woven fabric 25. The particulate solid adhering to 25 falls to the bottom 47 of the separation tank 14. At this time, the non-woven fabric 25 is moved up and down with respect to the treatment liquid 23, whereby the separation of the solid particles is promoted more efficiently. The fallen solid particles settle on the bottom 47 of the separation tank 14. Since the solid particles trapped in the nonwoven fabric 25 are agglomerated to some extent, the specific gravity is increased and the particles are easily settled to the bottom 47. The particle solid matter is only attached to the nonwoven fabric 25, and falls easily due to the impact of air bubbles or lifting operation. At this time, the supply of the treatment liquid 23 to the separation tank 14 may be continued or stopped. By repeating the collision of the bubbles 53 and the raising and lowering operation at predetermined intervals, the solid particles separated from the bottom 47 of the separation tank 14 are accumulated.

還流部17によるオーバーフローした処理液の廃液槽15への還流を所定時間繰り返した後、底部47に堆積する粒子固形物が所定量となったなら、分離槽14の底部47から処理液23がスラリー貯留槽19へ排出される。処理液23が分離槽14の底部47から排出されることに伴って、分離槽14の底部47に堆積した粒子固形物が処理液23とともに濃縮スラリー57となって優先的に排出(排出流の抵抗を受けて下流側へ移動)され、スラリー貯留槽19へ送られる。   After the refluxing unit 17 repeats the refluxing of the overflowed processing liquid to the waste liquid tank 15 for a predetermined time, when the amount of solid particles deposited on the bottom 47 reaches a predetermined amount, the processing liquid 23 is slurried from the bottom 47 of the separation tank 14. It is discharged to the storage tank 19. As the processing liquid 23 is discharged from the bottom 47 of the separation tank 14, the particulate solid deposited on the bottom 47 of the separation tank 14 becomes the concentrated slurry 57 together with the processing liquid 23 and is discharged preferentially (the discharge flow). It receives resistance and moves downstream) and is sent to the slurry reservoir 19.

濃縮スラリー57は、スラリー貯留槽19に溜められた後、ろ過分離機21のろ過室61に送られる。濃縮スラリー57が供給されたろ過室61では、フィルター71の上方で、撹拌板59が上下運動される。これと同時に、ろ過室61に供給された濃縮スラリー57は、底部47のフィルター71を通過して、槽外部91へろ過水が排出される。このろ過水は、フィルター上流側(撹拌板59を配置した側)のろ過室内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの負圧力で吸引ろ過を行うことにより、フィルター71を通過して排出される。   The concentrated slurry 57 is stored in the slurry storage tank 19 and then sent to the filtration chamber 61 of the filtration separator 21. In the filtration chamber 61 to which the concentrated slurry 57 is supplied, the stirring plate 59 is moved up and down above the filter 71. At the same time, the concentrated slurry 57 supplied to the filtration chamber 61 passes through the filter 71 at the bottom 47 and the filtered water is discharged to the outside of the tank 91. This filtered water is filtered by suction filtration at a negative pressure of −500 to −600 mmHg using the diaphragm pump 109 without pressurizing the filtration chamber on the upstream side of the filter (the side where the stirring plate 59 is disposed). It passes through 71 and is discharged.

ろ過室61では、撹拌板59が上下運動されることで、濃縮スラリー中の粒子固形物がろ過面に沈降して堆積しにくくなる。つまり、フィルター71は、目詰まりが抑制される。別言すると、撹拌板59のゆっくりした上下動により、ろ過室61内では、フィルター71に粒子固形物が即座に沈殿せず、貫通孔87を有する撹拌板59によって粒子固形物が浮遊した状態を保ち、フィルター71による吸引ろ過を継続できることとなり、粒子固形物の沈殿を遅延させフィルター71上に次々に堆積してしまうことがなくなる。これにより、フィルター71を通過する処理液23は、濃縮スラリー57の状態であっても、ろ過量の急激な減少が改善される。この作用は、特に濃縮スラリー57をろ過する本構成において、顕著な効果を発揮する。   In the filtration chamber 61, the stirring plate 59 is moved up and down, so that the solid particles in the concentrated slurry are less likely to settle and accumulate on the filtration surface. That is, the filter 71 is prevented from being clogged. In other words, due to the slow up and down movement of the stirring plate 59, the solid particles are not immediately settled on the filter 71 in the filtration chamber 61, and the solid particles are suspended by the stirring plate 59 having the through holes 87. Therefore, the suction filtration by the filter 71 can be continued, so that the precipitation of the solid particles is delayed and does not accumulate on the filter 71 one after another. Thereby, even if the treatment liquid 23 passing through the filter 71 is in the state of the concentrated slurry 57, the rapid decrease in the filtration amount is improved. This action exerts a remarkable effect particularly in the present configuration in which the concentrated slurry 57 is filtered.

また、濃縮スラリー57は、フィルター71を挟み、ろ過水流出側から吸引される。そのため、フィルター71を挟み、撹拌板側の濃縮スラリー57を加圧してフィルター71を通過させる加圧ろ過に比べ、フィルター71のろ過面の目詰まりが遅くなる。つまり、加圧ろ過では、フィルター71上の濃縮スラリー57を、フィルター71とは反対側である表面側を圧縮させることとなり、粒子固形物同士を密着させてしまうこととなって、フィルター71のろ過面の目詰まりと、堆積する濃縮スラリー57自体の密着度でろ過水の通路がなくなってしまうが、フィルター71越しの吸引ろ過では、そのようなことが起こらず、ろ過面のろ過可能時間が長くなる(フィルター71が長持ちする)。   Further, the concentrated slurry 57 is sucked from the filtered water outflow side with the filter 71 interposed therebetween. Therefore, clogging of the filtration surface of the filter 71 is delayed as compared with pressure filtration in which the filter 71 is sandwiched and the concentrated slurry 57 on the stirring plate side is pressurized and passed through the filter 71. That is, in the pressure filtration, the concentrated slurry 57 on the filter 71 is compressed on the surface side opposite to the filter 71, and the solid particles are brought into close contact with each other. The clogging of the surface and the degree of adhesion of the accumulated concentrated slurry 57 itself will eliminate the passage of filtered water, but this does not occur in the suction filtration through the filter 71, and the filtration time on the filtration surface is long. (The filter 71 lasts longer).

フィルター上に捕捉された粒子固形物の厚みが所定厚となったなら、或いはフィルター71を濃縮スラリー57が殆ど通過しなくなり吸引の圧力に変化が見られたら、乾燥圧縮空気119が送られることで、ろ過室61内の残液が処理される通気脱水が行われる。通気脱水は、ろ過室61が設定圧力以下及び/または設定時間に達すると終了する。ろ過室61は、残圧が逃がしバルブ(図示略)を開けることで大気開放される。脱水ケーキ99は、ろ過室61が開放され、フィルター71と共に槽外部91へ排出され、固液分離の処理が終わる。   When the thickness of the solid particles trapped on the filter reaches a predetermined thickness, or when the concentrated slurry 57 hardly passes through the filter 71 and the suction pressure changes, the dry compressed air 119 is sent. The ventilation dehydration is performed in which the residual liquid in the filtration chamber 61 is processed. The aeration dehydration ends when the filtration chamber 61 reaches a set pressure or less and / or reaches a set time. The filtration chamber 61 is opened to the atmosphere by releasing the residual pressure and opening a valve (not shown). The dewatering cake 99 is opened to the filtration chamber 61 and discharged to the outside of the tank 91 together with the filter 71, and the solid-liquid separation process ends.

このように固液分離装置11では、ろ過分離機21で処理する前の処理液23が、予め分離部13によって濃縮され、濃縮スラリー57となる。この濃縮スラリー57が、ろ過分離機21へ送られることで、ろ過分離機21は、廃液槽15に貯留された通常の低濃度の処理液23から脱水ケーキ99を得る場合に比べ、粒子固形物の分離効率が格段に高まる。従って、固液分離装置11は、分離部13やろ過分離機21が単独で用いられる場合に比べ、処理時間の短縮が可能となる。また、複数台のろ過分離機21を並設する場合に比べ、装置構成が簡素となる。   As described above, in the solid-liquid separation device 11, the treatment liquid 23 before being processed by the filtration separator 21 is concentrated in advance by the separation unit 13 to be a concentrated slurry 57. The concentrated slurry 57 is sent to the filtration separator 21, so that the filtration separator 21 is more solid than the case where the dehydrated cake 99 is obtained from the normal low-concentration treatment liquid 23 stored in the waste liquid tank 15. The separation efficiency of the is greatly increased. Therefore, the solid-liquid separator 11 can shorten the processing time compared to the case where the separation unit 13 and the filtration separator 21 are used alone. Further, the apparatus configuration is simplified as compared with the case where a plurality of filtration separators 21 are arranged in parallel.

特に、この固液分離装置11の構成のように、濃縮スラリー57をフィルター71に通過させる場合には、ろ過室61内で撹拌板59が併用されることで、フィルター71の急速な目詰まりが抑制される。高濃度の濃縮スラリー57に撹拌板59が用いられることで、低濃度の処理液23に撹拌板59が用いられる場合に比べ、撹拌板59による撹拌動作がろ過面の目詰まりの抑制に、より効果的に作用するためである。   In particular, when the concentrated slurry 57 is passed through the filter 71 as in the configuration of the solid-liquid separator 11, the filter 71 can be rapidly clogged by using the stirring plate 59 in combination in the filtration chamber 61. It is suppressed. By using the stirring plate 59 for the high concentration concentrated slurry 57, the stirring operation by the stirring plate 59 is more effective in suppressing clogging of the filtration surface than when the stirring plate 59 is used for the low concentration treatment liquid 23. This is because it works effectively.

本実施形態に係る固液分離方法では、ジルコニウム系化成処理にて発生した処理液23が廃液槽15に溜められ、分離部13に送られる。他の処理液に対しては、上記した作用、効果は低い。つまり、固液分離装置11は、ジルコニウム系化成処理に用いられることで、大きな効果が得られる。これは、水酸化鉄が不織布25に付着して捕捉されやすい点、これによって得られた濃縮スラリー57が撹拌板59で撹拌されることによりフィルター71の通過が改善できる点、に起因すると考えられる。   In the solid-liquid separation method according to the present embodiment, the treatment liquid 23 generated in the zirconium-based chemical conversion treatment is stored in the waste liquid tank 15 and sent to the separation unit 13. The action and effect described above are low for other processing solutions. That is, the solid-liquid separation device 11 can obtain a great effect by being used for the zirconium-based chemical conversion treatment. This is considered to be due to the fact that iron hydroxide is easily attached to the nonwoven fabric 25 and captured, and the passage of the filter 71 can be improved by stirring the concentrated slurry 57 obtained by the stirring plate 59. .

従って、本実施形態に係る固液分離装置11によれば、ジルコニウム系化成処理にて発生する微細な水酸化鉄等の粒子固形物が含まれる処理液23から粒子固形物を分離する処理において、簡素な構造で処理量を増やすことができる。   Therefore, according to the solid-liquid separation device 11 according to the present embodiment, in the process of separating the particulate solid from the treatment liquid 23 containing the particulate solid such as fine iron hydroxide generated in the zirconium-based chemical conversion treatment, The amount of processing can be increased with a simple structure.

また、本実施形態に係る固液分離方法によれば、ろ過面の急激な目詰まりを抑え、処理量を増やすことができる。   Moreover, according to the solid-liquid separation method which concerns on this embodiment, the clogging of the filtration surface can be suppressed and a processing amount can be increased.

上記の実施形態に開示した同一の構成を有する固液分離装置11の実機によって、洗浄スラリー液の処理テストを行った。
[テスト目的]
ジルコニウム系化成処理ラインの化成液を、上記同様の構成を有する分離部13で粒子固形物の捕捉処理した後の処理液23を想定して、サンプル液を調整して得た。実機(EFC−10S:三協技研工業株式会社製)を構成するろ過分離機21を使用して、撹拌しながら吸引ろ過する方法(実施例)と、撹拌を行わないで吸引ろ過する従来の方法(比較例1)と、撹拌しながら加圧ろ過する方法(比較例2)と、の処理時間の違いを検証した。
The treatment test of the cleaning slurry liquid was performed by the actual machine of the solid-liquid separator 11 having the same configuration disclosed in the above embodiment.
[Test purpose]
A sample liquid was prepared by assuming a treatment liquid 23 after the particulate solid was captured by the separation unit 13 having the same configuration as above for the chemical conversion liquid in the zirconium-based chemical conversion treatment line. Using a filtration separator 21 constituting an actual machine (EFC-10S: manufactured by Sankyo Giken Kogyo Co., Ltd.), a method of performing suction filtration with stirring (Example) and a conventional method of performing suction filtration without stirring The difference in the processing time between (Comparative Example 1) and the method of performing pressure filtration while stirring (Comparative Example 2) was verified.

[テストサンプル]
テストサンプル名:ジルコニウム系化成処理液
テストサンプル採取日:2012年11月19日
テストサンプル採取場所:化成スラッジ濃縮槽の下部より採取。
固形分粒子径:1〜5μm(61.25%)、5〜10μm(30.98%)
図8は粒子固形物の粒度分布を表すグラフである。
なお、図8のグラフにおいて白抜き棒は粒子径の大きなものからの累計で全体を100%とした。ハッチング棒はその粒子間の度数を表す。例えば、粒子構成比は0〜5μmの粒子が約61.25%、5〜10μmの粒子が約30.98%であることになる。
[Test sample]
Test sample name: Zirconium-based chemical conversion treatment liquid Test sample collection date: November 19, 2012 Test sample collection place: Collected from the bottom of the chemical conversion sludge concentration tank.
Solid particle size: 1-5 μm (61.25%), 5-10 μm (30.98%)
FIG. 8 is a graph showing the particle size distribution of the solid particles.
In addition, in the graph of FIG. 8, the total number of white bars from those having a large particle diameter was 100%. The hatched bar represents the frequency between the particles. For example, the particle composition ratio is about 61.25% for particles of 0 to 5 μm and about 30.98% for particles of 5 to 10 μm.

[タンク容量]
500リットルとした。
[洗浄液濃度]
441.35g÷500リットル=0.882g/リットル、ただし≒1g/リットルとして計算した。
[採取液濃度]
17.4g/リットルであった。
[テストサンプル]
採取液を清水で17.4倍に希釈した液をテストサンプルとした。
[テスト実施日]
2012年12月26〜27日
[ろ過分離機のテスト方法]
吸引ろ過法(ダイヤフラムポンプ使用)
なお、ろ過室61の形状は上述した図5に示す通りであり、上蓋63の内寸法を、縦260mm、横幅320mmとし、四隅を半径60mmでR形成し、また撹拌板59の寸法を、縦250mm、横幅310mmとし、四隅を半径55mmでR形成して、円形の貫通孔87を等間隔に配置してそれぞれ直径20mmとし18か所穿設しており、上蓋63の面積を0.0801m2 、撹拌板59の面積を0.0692453mm2 、開口部の面積を0.0108547m2 として開口率を13.55%としている。
また、ろ過室61の空間64の大きさは、フィルター71上面から上蓋63の天井面までの距離を70mm、空間64内における撹拌板59のストローク長Sを30mm、撹拌板59のストローク下限位置からフィルター71までの距離を15mmとし、容積としては0.00637m3 としている。
・フィルターペーパー(フィルター71):05TH−100H(平均粒子径13.9μm)
・ろ過面積:0.091m2
・上下シリンダースピード:2.1m/分(70回/分)
[tank capacity]
It was 500 liters.
[Concentration of cleaning solution]
441.35 g ÷ 500 liters = 0.882 g / liter, where ≈1 g / liter.
[Collecting liquid concentration]
It was 17.4 g / liter.
[Test sample]
A liquid obtained by diluting the collected liquid 17.4 times with clean water was used as a test sample.
[Test date]
December 26-27, 2012 [Test method for filtration separator]
Suction filtration method (using diaphragm pump)
The shape of the filtration chamber 61 is as shown in FIG. 5 described above. The inner dimensions of the upper lid 63 are 260 mm in length and 320 mm in width, four corners are formed with a radius of 60 mm, and the dimensions of the stirring plate 59 are R is formed with a radius of 55 mm and a radius of 55 mm, circular through-holes 87 are arranged at equal intervals, each has a diameter of 20 mm, and 18 holes are drilled. The area of the upper lid 63 is 0.0801 m 2. The area of the stirring plate 59 is 0.0692453 mm 2 , the area of the opening is 0.0108547 m 2 , and the opening ratio is 13.55%.
The size of the space 64 in the filtration chamber 61 is such that the distance from the upper surface of the filter 71 to the ceiling surface of the upper lid 63 is 70 mm, the stroke length S of the stirring plate 59 in the space 64 is 30 mm, and the stroke lower limit position of the stirring plate 59. The distance to the filter 71 is 15 mm, and the volume is 0.00637 m 3 .
Filter paper (filter 71): 05TH-100H (average particle size 13.9 μm)
-Filtration area: 0.091 m 2
・ Upper and lower cylinder speed: 2.1m / min (70 times / min)

比較例1:ダイヤフラムポンプにて吸引ろ過(−500〜−600mmHg)を行い、撹拌なしとした。
比較例2:ダイヤフラムポンプにて吸引ろ過(−500〜−600mmHg)を行うに加え、加圧ろ過(0.04Mpa)を行い、ろ過室内撹拌を行った。
実施例:ダイヤフラムポンプにて吸引ろ過(−500〜−600mmHg)を行い、ろ過室内は加圧せずに、ろ過室内撹拌を行った。
以上の条件によってテストを行って得られた結果を表1に示す。
Comparative Example 1: Suction filtration (−500 to −600 mmHg) was performed with a diaphragm pump, and no stirring was performed.
Comparative Example 2: In addition to performing suction filtration (−500 to −600 mmHg) with a diaphragm pump, pressure filtration (0.04 Mpa) was performed, and stirring in the filtration chamber was performed.
Example: Suction filtration (-500 to -600 mmHg) was performed with a diaphragm pump, and the filtration chamber was stirred without being pressurized.
Table 1 shows the results obtained by performing the test under the above conditions.

Figure 2016022422
Figure 2016022422

表1に示すように、実施例は、単位時間当たりの処理量が679.9リットル/m2 ・Hrで最大となった。また、実施例は、脱水ケーキ厚が、比較例と同じ4.0mmに達するまでのろ過・脱水時間が、160minと長くなった。すなわち、吸引ろ過によって目詰まりの抑制されていることが知見できた。 As shown in Table 1, in the example, the throughput per unit time was a maximum at 679.9 liters / m 2 · Hr. In the example, the filtration / dehydration time until the dewatered cake thickness reached 4.0 mm, which was the same as that in the comparative example, was as long as 160 min. That is, it was found that clogging was suppressed by suction filtration.

[考察]
図9は比較例と実施例における処理量とろ過時間との相関を表すグラフである。
比較例1の従来のろ過方法に比べ、実施例のろ過室内を撹拌しながら吸引ろ過した方が、処理時間が1.49倍短縮することが判明した。
この結果では、比較例2の結果から、ろ過室内は極力加圧しないようにした方が処理量はアップすることが知見できた。
[Discussion]
FIG. 9 is a graph showing the correlation between the throughput and the filtration time in the comparative example and the example.
Compared with the conventional filtration method of Comparative Example 1, it was found that the treatment time was reduced by 1.49 times when suction filtration was performed while stirring the filtration chamber of the Example.
From this result, it was found from the results of Comparative Example 2 that the amount of treatment was increased when pressure was not increased in the filtration chamber as much as possible.

11…固液分離装置
13…分離部
14…分離槽
15…廃液槽
17…還流部
19…スラリー貯留槽
21…ろ過分離機
23…処理液
25…不織布
41…上辺部
47…底部
53…気泡
57…濃縮スラリー
59…撹拌板
61…ろ過室
64…空間
71…フィルター
84…縁部
87…貫通孔
91…槽外部
99…脱水ケーキ
105…槽下部
107…ろ過室内周壁
109…ダイヤフラムポンプ
S…ストローク
DESCRIPTION OF SYMBOLS 11 ... Solid-liquid separator 13 ... Separation part 14 ... Separation tank 15 ... Waste liquid tank 17 ... Recirculation | reflux part 19 ... Slurry storage tank 21 ... Filtration separator 23 ... Treatment liquid 25 ... Nonwoven fabric 41 ... Upper side part 47 ... Bottom part 53 ... Bubble 57 ... Concentrated slurry 59 ... Stirrer plate 61 ... Filtration chamber 64 ... Space 71 ... Filter 84 ... Edge 87 ... Through hole 91 ... Outside the tank 99 ... Dehydrated cake 105 ... Lower tank 107 ... Filtration chamber peripheral wall 109 ... Diaphragm pump S ... Stroke

Claims (2)

ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液が溜められる廃液槽と、
前記廃液槽から前記処理液が供給される分離槽を備え、上辺部のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布を、鉛直方向に沿う方向で前記分離槽内の処理液に浸漬し、表裏面に前記処理液をぶつける方向に前記不織布を表裏方向に移動させることで前記処理液に含まれる前記粒子固形物を前記不織布を構成する繊維に付着させた後、前記分離槽の処理液内で発生させた気泡を前記不織布に衝突させ、且つ前記不織布を前記処理液に対して昇降動作させて前記処理液から離脱させた前記粒子固形物を前記分離槽の底部に濃縮スラリーとして沈殿させるとともに、前記粒子固形物が減らされた前記処理液を前記分離槽からオーバーフローさせる分離部と、
前記分離部の前記オーバーフローによって流出した前記処理液を一時的に溜めながら前記廃液槽へ戻す還流部と、
前記分離槽の底部に配管接続され、前記還流部にて前記廃液槽に前記処理液を戻すことを所定時間繰り返した後に、前記底部から前記処理液の一部とともに排出される前記濃縮スラリーを溜めるスラリー貯留槽と、
槽下部にシート状のフィルターを水平に備えて前記スラリー貯留槽からの前記濃縮スラリーが供給されるろ過室を有し、前記フィルターの上方においてろ過室内周壁に対して近接する縁部を備えて配置した開口率10〜15%とする複数の貫通孔を備える水平な撹拌板を、前記ろ過室内における前記フィルターより上方の空間の高さ方向の略中間位置で、該空間における高さの約半分の距離をストローク長として1.8〜2.1m/分の速度で上下運動させて前記濃縮スラリーを撹拌し、前記フィルター上に堆積している前記粒子固形物を舞い上がらせず、前記粒子固形物がろ過面に即座に沈降して堆積しないように前記粒子固形物を濃縮スラリー中に分散させながら、且つろ過室内を加圧せず、ダイヤフラムポンプを使用して−500〜−600mmHgの圧力で吸引ろ過を行って前記フィルターを通過するろ過水を槽外部へ排出し、徐々に残渣をフィルター上に溜めて脱水ケーキを得るろ過分離機と、
を含むことを特徴とする固液分離装置。
A waste liquid tank in which a treatment liquid containing solid particles having a particle size of 0.1 to 10 μm containing iron hydroxide generated in the zirconium-based chemical conversion treatment as a liquid is stored;
A sheet-like short fiber nonwoven fabric comprising a separation tank to which the treatment liquid is supplied from the waste liquid tank, and having a bubble point average pore diameter of 30 to 33 μm at a head pressure of 50 mm as a permeation performance that supports only the upper side and is suspended. The particles contained in the treatment liquid by immersing the non-woven fabric in the treatment liquid in the separation tank in a direction along the vertical direction and moving the nonwoven fabric in the front and back direction in a direction of hitting the treatment liquid on the front and back surfaces. After the solid matter is adhered to the fibers constituting the nonwoven fabric, the bubbles generated in the treatment liquid of the separation tank collide with the nonwoven fabric, and the nonwoven fabric is moved up and down with respect to the treatment liquid to perform the treatment. The solid particles separated from the liquid are precipitated as a concentrated slurry at the bottom of the separation tank, and the treatment liquid with the reduced particle solids overflowed from the separation tank. And a separation unit,
A reflux part for returning to the waste liquid tank while temporarily storing the treatment liquid that has flowed out due to the overflow of the separation part;
Piping is connected to the bottom of the separation tank, and after the treatment liquid is returned to the waste liquid tank at the reflux section for a predetermined time, the concentrated slurry discharged together with a part of the processing liquid from the bottom is stored. A slurry reservoir;
A sheet-like filter is horizontally provided at the lower part of the tank, and has a filtration chamber to which the concentrated slurry from the slurry storage tank is supplied, and is provided with an edge close to the peripheral wall of the filtration chamber above the filter. The horizontal stirring plate provided with a plurality of through holes having an opening ratio of 10 to 15% is approximately half the height in the space at a substantially intermediate position in the height direction of the space above the filter in the filtration chamber. The concentrated slurry is stirred by moving the distance up and down at a speed of 1.8 to 2.1 m / min with a stroke length, and the particle solids deposited on the filter do not rise, Using a diaphragm pump, the solid particles are dispersed in the concentrated slurry so as not to immediately settle and accumulate on the filtration surface, and the filtration chamber is not pressurized. Performing suction filtration at a pressure of 00mmHg to discharge filtered water passing through the filter to Sogaibu, a filtration separator to obtain a dehydrated cake gradually accumulated residue on the filter,
A solid-liquid separation device comprising:
ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液を廃液槽に溜める処理液貯留工程と、
前記廃液槽から前記処理液が分離槽に供給され、上辺部のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布を、鉛直方向に沿う方向で前記分離槽内の処理液に浸漬し、表裏面に前記処理液をぶつける方向に前記不織布を表裏方向に移動させることで前記処理液に含まれる前記粒子固形物を前記不織布を構成する繊維に付着させた後、前記分離槽の処理液内で発生させた気泡を前記不織布に衝突させ、且つ前記不織布を前記処理液に対して昇降動作させて前記処理液から離脱させた前記粒子固形物を前記分離槽の底部に濃縮スラリーとして沈殿させるとともに、前記粒子固形物を減らされた前記処理液を前記分離槽からオーバーフローさせる前段分離工程と、
前記分離槽の前記オーバーフローによって流出した前記処理液を一時的に還流槽に溜めながら前記廃液槽へ戻す処理液還流工程と、
前記分離槽の底部に配管接続され、前記処理液還流工程にて前記廃液槽に前記処理液を戻すことを所定時間繰り返した後に、前記底部から前記処理液の一部とともに排出される前記濃縮スラリーをスラリー貯留槽に溜めるスラリー貯留工程と、
槽下部にシート状のフィルターを水平に備えて前記スラリー貯留槽からの前記濃縮スラリーが供給されるろ過室を用いて、前記フィルターの上方においてろ過室内周壁に対して近接する縁部を備えて配置した開口率10〜15%とする複数の貫通孔を備える水平な撹拌板を、前記ろ過室内における前記フィルターより上方の空間の高さ方向の略中間位置で、該空間における高さの約半分の距離をストローク長として1.8〜2.1m/分の速度で上下運動させて前記濃縮スラリーを撹拌し、前記フィルター上に堆積している前記粒子固形物を舞い上がらせず、前記粒子固形物がろ過面に即座に沈降して堆積しないように前記粒子固形物を濃縮スラリー中に分散させながら、且つろ過室内を加圧せず、ダイヤフラムポンプを使用して−500〜−600mmHgの圧力で吸引ろ過を行って前記フィルターを通過するろ過水を槽外部へ排出し、徐々に残渣をフィルター上に溜めて脱水ケーキを得るろ過分離工程と、
を具備することを特徴とする固液分離方法。
A treatment liquid storage step of storing in a waste liquid tank a treatment liquid containing a solid particle having a particle size of 0.1 to 10 μm containing iron hydroxide generated in the zirconium-based chemical conversion treatment as a component;
The treatment liquid is supplied from the waste liquid tank to the separation tank, and is composed of a planar short fiber nonwoven fabric having a bubble point average pore diameter of 30 to 33 μm at a water head pressure of 50 mm as a permeation performance that supports only the upper side and is suspended. The particulate solid contained in the treatment liquid by immersing the nonwoven fabric in the treatment liquid in the separation tank in a direction along the vertical direction and moving the nonwoven fabric in the direction of hitting the treatment liquid on the front and back surfaces. From the treatment liquid by causing bubbles generated in the treatment liquid of the separation tank to collide with the non-woven fabric and moving the nonwoven fabric up and down relative to the treatment liquid. The first stage where the separated solid particles are precipitated as a concentrated slurry at the bottom of the separation tank and the treatment liquid reduced in the solid particles is overflowed from the separation tank And the release process,
A treatment liquid refluxing step for returning to the waste liquid tank while temporarily storing the treatment liquid that has flowed out due to the overflow of the separation tank;
The concentrated slurry that is connected to the bottom of the separation tank and is discharged together with a part of the processing liquid from the bottom after repeating a predetermined time to return the processing liquid to the waste liquid tank in the processing liquid refluxing step. Slurry storing step for storing the slurry in a slurry storage tank;
A filtration chamber in which a sheet-like filter is horizontally provided at the lower part of the tank and the concentrated slurry is supplied from the slurry storage tank is provided with an edge close to the peripheral wall of the filtration chamber above the filter. The horizontal stirring plate provided with a plurality of through holes having an opening ratio of 10 to 15% is approximately half the height in the space at a substantially intermediate position in the height direction of the space above the filter in the filtration chamber. The concentrated slurry is stirred by moving the distance up and down at a speed of 1.8 to 2.1 m / min with a stroke length, and the particle solids deposited on the filter do not rise, Using a diaphragm pump, the solid particles are dispersed in the concentrated slurry so that they do not immediately settle and accumulate on the filtration surface, and the filtration chamber is not pressurized. Performing suction filtration at a pressure of 600mmHg was discharged to Sogaibu filtered water passing through the filter, and filtered off to obtain a dehydrated cake gradually accumulated residue on the filter,
A solid-liquid separation method comprising:
JP2014147960A 2014-07-18 2014-07-18 Solid-liquid separation device and solid-liquid separation method Active JP5629034B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147960A JP5629034B1 (en) 2014-07-18 2014-07-18 Solid-liquid separation device and solid-liquid separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147960A JP5629034B1 (en) 2014-07-18 2014-07-18 Solid-liquid separation device and solid-liquid separation method

Publications (2)

Publication Number Publication Date
JP5629034B1 JP5629034B1 (en) 2014-11-19
JP2016022422A true JP2016022422A (en) 2016-02-08

Family

ID=52136384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147960A Active JP5629034B1 (en) 2014-07-18 2014-07-18 Solid-liquid separation device and solid-liquid separation method

Country Status (1)

Country Link
JP (1) JP5629034B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265402B1 (en) * 2017-06-07 2018-01-24 三協技研工業株式会社 Solid-liquid separation device and solid-liquid separation method
CN112007408A (en) * 2020-08-17 2020-12-01 王世康 Sewage treatment plant for municipal works

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856320B (en) * 2017-11-30 2022-11-18 中国辐射防护研究院 Experiment box for oscillation and pressure filtration of water body-radioactive suspended matter and operation method thereof
CN108164117A (en) * 2017-12-28 2018-06-15 禹涵(上海)环保科技有限公司 A kind of high-efficient sewage oil-sludge treatment device
CN109498657B (en) * 2018-11-20 2022-03-22 安徽东盛友邦制药有限公司 Ankahuangmin capsule with antipyretic and analgesic effects and preparation method thereof
CN109432869A (en) * 2018-12-14 2019-03-08 广东百维生物科技有限公司 For filtering the diatomite filter group and its control method of collagen
CN111744255A (en) * 2020-07-21 2020-10-09 西安西热锅炉环保工程有限公司 Immersion disc slurry purifying device
CN113332776B (en) * 2021-05-21 2022-12-20 山西锦信腾环保科技有限公司 Sewage filtering treatment device
CN114307309A (en) * 2021-12-21 2022-04-12 西安航天华威化工生物工程有限公司 Airtight purification filter pressing device
CN115253405B (en) * 2022-06-27 2024-04-09 广东邦普循环科技有限公司 Self-cleaning filter press capable of avoiding material caking for recycling waste batteries
CN115337692A (en) * 2022-08-23 2022-11-15 山东信科环化有限责任公司 Barium hydroxide prepares and uses filter equipment
CN116920485A (en) * 2023-07-05 2023-10-24 德州学院 Environmental engineering laboratory waste liquid multistage treatment system
CN116770104B (en) * 2023-08-21 2023-10-27 赣州综保华瑞新材料有限公司 Neodymium iron boron waste material draws edulcoration device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052399A (en) * 2000-08-10 2002-02-19 Parker Engineering Kk Chemical forming sludge dehydrating and drying apparatus
JP2006219691A (en) * 2005-02-08 2006-08-24 Nippon Parkerizing Co Ltd Metal surface treatment method
JP4937389B2 (en) * 2010-08-11 2012-05-23 三協技研工業株式会社 Solid-liquid separation method and solid-liquid separation device
JP5108163B1 (en) * 2012-07-10 2012-12-26 三協技研工業株式会社 Filtration method and filtration device
JP2014018767A (en) * 2012-07-20 2014-02-03 Sankyo Giken Kogyo Kk Filtration method and filtration device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265402B1 (en) * 2017-06-07 2018-01-24 三協技研工業株式会社 Solid-liquid separation device and solid-liquid separation method
CN108993001A (en) * 2017-06-07 2018-12-14 三协技研工业株式会社 Equipment for separating liquid from solid and solid-liquid separating method
JP2018202348A (en) * 2017-06-07 2018-12-27 三協技研工業株式会社 Solid-liquid separation apparatus and solid-liquid separation method
CN108993001B (en) * 2017-06-07 2021-03-23 三协技研工业株式会社 Solid-liquid separation device and solid-liquid separation method
CN112007408A (en) * 2020-08-17 2020-12-01 王世康 Sewage treatment plant for municipal works
CN112007408B (en) * 2020-08-17 2021-11-16 杭州博裕环境建设有限公司 Sewage treatment plant for municipal works

Also Published As

Publication number Publication date
JP5629034B1 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5629034B1 (en) Solid-liquid separation device and solid-liquid separation method
CN1301776C (en) Filtration and washing technology in preparing metal or non metal fine granular powder
JP2014018767A (en) Filtration method and filtration device
CN106178636B (en) Method and system for filtering and cake layer is formed
JP2000189958A (en) Immersion type membrane filter device
AT511926A2 (en) Process for the mechanical separation of solids from wastewater
JP4620147B2 (en) Solid-liquid separator
JP4181440B2 (en) Filtration apparatus and filtration method using the same
JP5108163B1 (en) Filtration method and filtration device
JPH07303882A (en) Scum removing and treating equipment
JP4937389B2 (en) Solid-liquid separation method and solid-liquid separation device
JP5334155B2 (en) Treatment liquid circulation system
CN208426718U (en) A kind of filtering tank with automatic discharging function
CN208440374U (en) Garbage wastewater treatment equipment
JP2014233684A (en) Filter
JP3792108B2 (en) Sludge concentration dewatering equipment
JP6265402B1 (en) Solid-liquid separation device and solid-liquid separation method
JP4171248B2 (en) Filtration device using floating filter media
JP2004162156A (en) Cleaning system for metal sheet
CN220696113U (en) Belt type solid-liquid separation sewage recycling device
DE202004009347U1 (en) Fine filtration assembly, for water, has an alternating compression/expansion action on the coarse and fine filters to clear them of separated particles and prevent clogging
CN108275797A (en) Garbage wastewater treatment equipment
JP2019098315A (en) Filtration device
JPH09234309A (en) Filter bed compression method, filtering method and filtering apparatus
CN210356251U (en) Plate-type closed automatic slag discharge filter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5629034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250