JP2016020540A - Super hard alloy and cutting tool - Google Patents
Super hard alloy and cutting tool Download PDFInfo
- Publication number
- JP2016020540A JP2016020540A JP2015091710A JP2015091710A JP2016020540A JP 2016020540 A JP2016020540 A JP 2016020540A JP 2015091710 A JP2015091710 A JP 2015091710A JP 2015091710 A JP2015091710 A JP 2015091710A JP 2016020540 A JP2016020540 A JP 2016020540A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cemented carbide
- low
- powder
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 174
- 239000000956 alloy Substances 0.000 title abstract description 6
- 229910045601 alloy Inorganic materials 0.000 title abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 99
- 239000002184 metal Substances 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 229910052796 boron Inorganic materials 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 230000000737 periodic effect Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 53
- 230000035699 permeability Effects 0.000 claims description 53
- 150000001875 compounds Chemical class 0.000 claims description 33
- 239000011230 binding agent Substances 0.000 claims description 30
- 239000011248 coating agent Substances 0.000 claims description 26
- 238000000576 coating method Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 26
- 238000005229 chemical vapour deposition Methods 0.000 claims description 13
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical group [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 claims description 5
- 230000035515 penetration Effects 0.000 abstract description 9
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 148
- 239000000843 powder Substances 0.000 description 136
- 239000000523 sample Substances 0.000 description 57
- 239000002994 raw material Substances 0.000 description 56
- 238000005245 sintering Methods 0.000 description 56
- 238000002156 mixing Methods 0.000 description 50
- 238000001816 cooling Methods 0.000 description 37
- 239000000203 mixture Substances 0.000 description 37
- 230000007547 defect Effects 0.000 description 33
- 239000012298 atmosphere Substances 0.000 description 29
- 238000011156 evaluation Methods 0.000 description 23
- 239000007789 gas Substances 0.000 description 23
- 238000005259 measurement Methods 0.000 description 21
- 239000000758 substrate Substances 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000004090 dissolution Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000010298 pulverizing process Methods 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000001226 reprecipitation Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- -1 nitrogen-containing compound Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000012856 weighed raw material Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、超硬合金及び切削工具に関する。特に、逃げ面摩耗を効果的に抑制でき、耐チッピング性に優れる超硬合金及び切削工具に関する。 The present invention relates to a cemented carbide and a cutting tool. In particular, the present invention relates to a cemented carbide and a cutting tool that can effectively suppress flank wear and have excellent chipping resistance.
従来、切削工具として、WC粒子を主たる硬質相とし、これをCo,Niなどの鉄族金属を主成分とする結合相により結合した超硬合金を基材に備える超硬合金工具が利用されている。超硬合金工具に求められる代表的な性能としては、耐摩耗性や耐欠損(耐チッピング)性が挙げられる。 2. Description of the Related Art Conventionally, as a cutting tool, a cemented carbide tool including a cemented carbide in which a WC particle is a main hard phase and bonded with a binder phase mainly composed of an iron group metal such as Co or Ni is used as a cutting tool. Yes. Typical performances required for cemented carbide tools include wear resistance and chipping resistance.
切削工具で被削材を切削すると、切削した切りくずの変形、被削材や切りくずとの摩擦によって熱が発生し、切削工具の刃先表面は切削時に高温になる。超硬合金は、高温になると、硬度が低下して強度が低下する傾向があり、摩耗や欠損が生じ易くなる他、化学的な摩耗も進行し易くなる。 When a work material is cut with a cutting tool, heat is generated due to deformation of the cut chips and friction with the work material and the chips, and the cutting edge surface of the cutting tool becomes hot during cutting. When the cemented carbide is heated, the hardness tends to decrease and the strength tends to decrease. Thus, wear and defects are likely to occur, and chemical wear also easily proceeds.
そこで、切削工具の基材となる超硬合金において、耐摩耗性や耐熱性を改善するため、硬質相としてWCの他に、TiC,TaC,NbCなどを添加したり、超硬合金の基材表面に、TiC,TiN,TiCN,Al2O3などを被覆したりすることが行われている。(特許文献1〜3を参照。) Therefore, in order to improve the wear resistance and heat resistance of the cemented carbide used as the base material for cutting tools, in addition to WC, TiC, TaC, NbC, etc. are added as the hard phase, or the cemented carbide base material. The surface is coated with TiC, TiN, TiCN, Al 2 O 3 or the like. (See Patent Documents 1 to 3.)
特許文献1〜3には、超硬合金の表面部に、脱β層(β相が存在せず、WC−Coのみからなる層)を形成する技術が記載されている。一般に、脱β層は、超硬合金の内部よりも結合相の含有量が多く、軟らかいため、靱性に優れる。それ故、超硬合金の表面部に脱β層を形成することによって、切削時の衝撃を緩和したり、亀裂の進展を抑制したりでき、超硬合金の耐衝撃性や耐欠損性を改善できる。 Patent Documents 1 to 3 describe a technique for forming a de-β layer (a layer made of only WC-Co without a β phase) on the surface of a cemented carbide. In general, the de-β layer has a higher binder phase content than the inside of the cemented carbide and is soft, so it has excellent toughness. Therefore, by forming a de-β layer on the surface of the cemented carbide, it is possible to mitigate the impact during cutting and suppress the development of cracks, improving the impact resistance and fracture resistance of the cemented carbide. it can.
近年、切削加工の高能率化が求められ、高速、高送り、高切込といった高負荷切削条件での加工が増加しており、切削時の工具刃先の温度上昇が著しい。そのため、超硬合金工具の耐摩耗性や耐欠損性の向上に対する要求が一層強まっている。 In recent years, higher efficiency of cutting has been demanded, and machining under high load cutting conditions such as high speed, high feed, and high cutting has been increasing, and the temperature rise of the tool edge during cutting is remarkable. Therefore, the request | requirement with respect to the abrasion resistance of a cemented carbide tool and the improvement of a fracture resistance is increasing further.
超硬合金の基材において、切削時に刃先表面が局所的に高温になると、表面部の硬度・強度が低下するため、切削時の衝撃によってチッピングが生じ、それを起点として欠損が生じ易い。また、刃先を構成する逃げ面は、切削時に被削材との擦過により発熱し、高温状態で被削材が押し当てられることにより変形が生じ易いため、逃げ面摩耗の進行も速い。 In a cemented carbide base material, when the cutting edge surface is locally heated at the time of cutting, the hardness and strength of the surface portion are reduced, so that chipping occurs due to impact at the time of cutting, and defects are likely to occur from that point. In addition, the flank that forms the cutting edge generates heat due to rubbing with the work material during cutting, and is easily deformed when pressed against the work material in a high temperature state, so the flank wear progresses quickly.
本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、逃げ面摩耗を効果的に抑制でき、耐チッピング性に優れる超硬合金を提供することにある。また、別の目的は、上記超硬合金からなる基材を備える切削工具を提供することにある。 The present invention has been made in view of the above circumstances, and one of its purposes is to provide a cemented carbide which can effectively suppress flank wear and has excellent chipping resistance. Another object is to provide a cutting tool including a substrate made of the above cemented carbide.
本発明の一態様に係る超硬合金は、WC粒子からなる第1硬質相と、周期表4,5,6族元素から選ばれる少なくとも1種の金属と、C,N,O及びBから選ばれる少なくとも1種の元素との化合物からなる第2硬質相と、Co,Ni及びFeから選ばれる少なくとも1種の鉄族金属を含有する結合相と、を有し、前記結合相の含有量が4質量%以上11質量%以下であり、表面部に内部よりも前記第2硬質相の含有量が少ない低β層が形成されており、前記低β層の熱浸透率をTEa、内部の熱浸透率をTEbとするとき、1.02<TEa/TEb<1.08を満たす。 The cemented carbide according to one aspect of the present invention is selected from a first hard phase composed of WC particles, at least one metal selected from Group 4, 5, and 6 elements of the periodic table, and C, N, O, and B. And a binder phase containing at least one iron group metal selected from Co, Ni, and Fe, and the content of the binder phase is A low β layer having a content of 4% by mass or more and 11% by mass or less and having a lower content of the second hard phase than the inside is formed on the surface, and the heat permeability of the low β layer is TEa, and the internal heat When the penetration rate is TEb, 1.02 <TEa / TEb <1.08 is satisfied.
本発明の一態様に係る切削工具は、上記本発明の一態様に係る超硬合金からなる基材を備える。 The cutting tool which concerns on 1 aspect of this invention is equipped with the base material which consists of a cemented carbide alloy which concerns on 1 aspect of the said invention.
上記超硬合金は、逃げ面摩耗を効果的に抑制でき、耐チッピング性に優れる。上記切削工具は、優れた耐摩耗性と耐欠損性を発揮できる。 The cemented carbide can effectively suppress flank wear and has excellent chipping resistance. The cutting tool can exhibit excellent wear resistance and fracture resistance.
本発明者らは、表面部に脱β層(TiCやTaCなどの化合物を含む固溶体(β相)が存在せず、実質的にWCと結合相(鉄族金属)とからなる層)を有し、TiC,TaC,NbCなどを添加した超硬合金における熱特性と切削性能との関係について、鋭意研究した結果、以下のような知見を得た。 The present inventors have a de-β layer (a layer that is substantially free of WC and a binder phase (iron group metal) without a solid solution (β phase) containing a compound such as TiC or TaC) on the surface. As a result of intensive studies on the relationship between thermal characteristics and cutting performance in cemented carbides to which TiC, TaC, NbC, etc. were added, the following findings were obtained.
文献にもよるが、超硬合金の主たる硬質相であるWCの熱伝導率は、140W/mK程度といわれている。これに対し、硬質相として添加したTiC,TaC,NbCなどの熱伝導率は、10〜50W/mK程度と低い。また、結合相である鉄族金属の熱伝導率は、Coが100W/mK、Niが90W/mK、Feが80W/mK程度である。そして、一般的な超硬合金の熱伝導率は、硬質相を構成する化合物粒子の種類や粒径、含有率などにもよるが、50〜80W/mK程度である。 Although it depends on the literature, the thermal conductivity of WC, which is the main hard phase of cemented carbide, is said to be about 140 W / mK. On the other hand, the thermal conductivity of TiC, TaC, NbC, etc. added as a hard phase is as low as about 10-50 W / mK. The thermal conductivity of the iron group metal as the binder phase is about 100 W / mK for Co, 90 W / mK for Ni, and about 80 W / mK for Fe. The thermal conductivity of a general cemented carbide is about 50 to 80 W / mK, although it depends on the type, particle size, content, etc. of the compound particles constituting the hard phase.
図4は、脱β層を有する従来の超硬合金の断面の顕微鏡写真(倍率1000倍)を示す図であり、組織中、濃いグレーの粒子がβ相である。図4では、紙面上側が超硬合金の表面側であり、上方の黒の部分が超硬合金を包埋した樹脂で、それ以外の部分が超硬合金である。図4に示すように、脱β層110は、超硬合金の表面部に形成されており、脱β層110には、β相101が殆ど存在していない。従来の超硬合金の熱特性について検討してみると、表面部の脱β層には、熱伝導率の高いWCと鉄族金属とが存在し、内部には、硬質相に熱伝導率の低いTiC,TaC,NbCなどが存在することから、表面部(脱β層)は、内部に比較して相対的に熱伝導率が高い。そして、従来の超硬合金では、切削時に刃先表面で発生した熱の一部が表面部の脱β層から内部に拡散しようとするが、内部の熱伝導率が低いため、脱β層と内部との界面で熱の伝導が阻害されることから、脱β層に熱が籠り易く、表面部(特に、刃先部位)が局所的に高温になり易い。したがって、従来の超硬合金は、表面部の摩耗が進行し易く、更には、表面部の強度低下に起因する欠損、表面部の局所的な熱膨張や熱衝撃に起因する熱亀裂や欠損などの問題が生じ易いと考えられる。 FIG. 4 is a view showing a micrograph (magnification 1000 times) of a cross section of a conventional cemented carbide having a de-β layer, and dark gray particles in the structure are β phase. In FIG. 4, the upper side of the paper is the surface side of the cemented carbide, the upper black part is the resin embedded with the cemented carbide, and the other part is the cemented carbide. As shown in FIG. 4, the deβ layer 110 is formed on the surface of the cemented carbide, and the β phase 101 is hardly present in the deβ layer 110. When examining the thermal characteristics of conventional cemented carbide, WC and iron group metal with high thermal conductivity exist in the de-β layer on the surface, and the hard phase has thermal conductivity in the hard phase. Since low TiC, TaC, NbC, etc. exist, the surface portion (deβ layer) has a relatively high thermal conductivity compared to the inside. In the conventional cemented carbide, part of the heat generated on the cutting edge surface during cutting tends to diffuse from the deβ layer on the surface, but the internal heat conductivity is low. Since heat conduction is hindered at the interface, heat is likely to be generated in the de-β layer, and the surface portion (particularly, the cutting edge portion) tends to be locally hot. Therefore, the conventional cemented carbide tends to easily wear on the surface portion, and further, defects due to the strength reduction of the surface portion, thermal cracks and defects due to local thermal expansion and thermal shock of the surface portion, etc. This problem is likely to occur.
本発明者らは、超硬合金における表面部と内部との熱浸透率に着目し、表面部と内部との熱浸透率比を小さくすることが、超硬合金工具の耐摩耗性や耐欠損性の向上に有効であることを見出した。具体的には、超硬合金の表面部の脱β層において、β相を完全に消失させずにβ相を一部残存させることで、表面部と内部の熱浸透率比を小さくしながら、従来の脱β層としての機能(耐衝撃性や耐欠損性)をある程度確保する。このような超硬合金は、表面部と内部の熱浸透率比が小さいことから、表面部と内部との界面で熱の反射が生じ難く、表面部から内部に熱を効果的に拡散できるため、表面部の温度上昇が小さく、表面部が高温になり難い。その結果、高温による摩耗や欠損を抑制でき、工具の耐摩耗性や耐欠損性が向上する。熱浸透率とは、互いに接する2つの物質間の熱の伝わり易さを表す指標(単位:J/(m2s1/2K))であり、2つの物質の熱浸透率が等しければ、例え熱伝導率や比熱が異なっていても、2つの物質間の界面で熱の反射が生じずに熱の拡散が行われる。 The present inventors pay attention to the thermal permeability between the surface part and the inside of the cemented carbide, and reducing the ratio of the thermal permeability between the surface part and the interior can reduce the wear resistance and fracture resistance of the cemented carbide tool. It was found to be effective for improving the sex. Specifically, in the de-β layer on the surface part of the cemented carbide, by partially leaving the β phase without completely disappearing the β phase, while reducing the heat permeability ratio between the surface part and the inside, The function (impact resistance and fracture resistance) as a conventional de-β layer is ensured to some extent. Since such a cemented carbide has a small thermal permeability ratio between the surface portion and the inside, heat reflection is unlikely to occur at the interface between the surface portion and the inside, and heat can be effectively diffused from the surface portion to the inside. The temperature rise of the surface portion is small, and the surface portion is unlikely to become high temperature. As a result, wear and chipping due to high temperatures can be suppressed, and the wear resistance and chipping resistance of the tool are improved. The thermal permeability is an index (unit: J / (m 2 s 1/2 K)) indicating the ease of heat transfer between two substances in contact with each other. If the thermal permeability of the two substances is equal, Even if the thermal conductivity and specific heat are different, heat is diffused without reflection of heat at the interface between the two substances.
[本発明の実施形態の説明]
本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
Embodiments of the present invention will be listed and described.
(1)本発明の一態様に係る超硬合金は、WC粒子からなる第1硬質相と、周期表4,5,6族元素から選ばれる少なくとも1種の金属と、C,N,O及びBから選ばれる少なくとも1種の元素との化合物からなる第2硬質相と、Co,Ni及びFeから選ばれる少なくとも1種の鉄族金属を含有する結合相と、を有する。この超硬合金は、結合相の含有量が4質量%以上11質量%以下である。そして、この超硬合金は、表面部に内部よりも第2硬質相の含有量が少ない低β層が形成されており、低β層の熱浸透率をTEa、内部の熱浸透率をTEbとするとき、1.02<TEa/TEb<1.08を満たす。 (1) A cemented carbide according to an aspect of the present invention includes a first hard phase composed of WC particles, at least one metal selected from Group 4, 5, and 6 elements of the periodic table, C, N, O, and A second hard phase composed of a compound with at least one element selected from B, and a binder phase containing at least one iron group metal selected from Co, Ni and Fe. This cemented carbide has a binder phase content of 4 mass% or more and 11 mass% or less. In this cemented carbide, a low β layer having a lower content of the second hard phase than the inside is formed on the surface portion, and the thermal permeability of the low β layer is TEa, and the internal thermal permeability is TEb. In this case, 1.02 <TEa / TEb <1.08 is satisfied.
上記超硬合金によれば、表面部に内部よりも第2硬質相の含有量が少ない低β層が形成されており、表面部の低β層の熱浸透率TEaと内部の熱浸透率TEbとの比(熱浸透率比)が1.02<TEa/TEb<1.08を満たす。したがって、上記超硬合金は、表面部の低β層と内部との熱浸透率比が小さいため、切削時に刃先表面で発生した熱が表面部の低β層から内部に拡散され易く、表面部から内部に効果的に放熱できる。よって、上記超硬合金は、表面部が局所的に高温になることを抑制でき、表面部の硬度・強度の低下を抑制できることから、耐摩耗性や耐欠損(耐チッピング)性が向上する。更には、表面部の温度上昇が小さく、表面部と内部との温度差も小さくなるため、耐熱衝撃性も向上する。具体的には、切削時の衝撃によって表面部にチッピングが生じることを抑制でき、それを起点とする欠損も抑制できる。特に、逃げ面では、被削材との擦過による温度上昇が抑制されることから、高温になり難く、被削材が押し当てられることによる変形が生じ難いため、逃げ面摩耗を効果的に抑制できる。ここでは、表面部に形成された層にβ相(第2硬質相成分)が多少なりとも存在しているため、実質的に第1硬質相のWCと結合相の金属とからなる従来の「脱β層」と異なることから、「低β層」と呼ぶ。 According to the above-mentioned cemented carbide, the low β layer having a lower content of the second hard phase than the inside is formed on the surface portion, and the heat permeability TEa of the low β layer on the surface portion and the internal heat permeability TEb (Thermal permeability ratio) satisfies 1.02 <TEa / TEb <1.08. Therefore, the cemented carbide has a small heat permeability ratio between the low β layer on the surface and the inside, so that heat generated on the surface of the cutting edge during cutting is easily diffused from the low β layer on the surface to the inside. Can effectively dissipate heat from the inside. Therefore, since the said cemented carbide can suppress that a surface part becomes high temperature locally and can suppress the fall of the hardness and intensity | strength of a surface part, abrasion resistance and a chipping resistance (chipping-proof) property improve. Furthermore, since the temperature rise at the surface portion is small and the temperature difference between the surface portion and the inside is small, the thermal shock resistance is also improved. Specifically, it is possible to suppress chipping from occurring on the surface portion due to an impact during cutting, and it is also possible to suppress defects starting from the chipping. Especially on the flank surface, the temperature rise due to scratching with the work material is suppressed, so it is difficult to become high temperature and deformation due to the pressing of the work material is difficult to occur, effectively suppressing flank wear. it can. Here, since the β phase (second hard phase component) is present in any degree in the layer formed on the surface portion, the conventional “substantially composed of WC of the first hard phase and metal of the binder phase”. Since it is different from “de-β layer”, it is called “low β layer”.
TEa/TEb≦1.02のときは、表面部の低β層における第2硬質相の含有量(含有比率)が多くなるため、表面部(低β層)の靱性が低下することから、低β層による耐衝撃性や耐欠損性の機能が十分に発揮されない。TEa/TEb≧1.08のときは、表面部の低β層と内部との熱浸透率比が大きくなるため、表面部から内部への放熱が阻害される。 When TEa / TEb ≦ 1.02, the content (content ratio) of the second hard phase in the low β layer on the surface portion is increased, so that the toughness of the surface portion (low β layer) is reduced. The functions of impact resistance and fracture resistance due to the β layer are not sufficiently exhibited. When TEa / TEb ≧ 1.08, the heat permeability ratio between the low β layer on the surface and the inside is increased, so that heat radiation from the surface to the inside is inhibited.
結合相の含有量が4質量%以上であることで、製造時の焼結性の悪化を防止し、結合相によって硬質相が強固に結合されるため、強度が高く、欠損が生じ難い。また、結合相の含有量が4質量%以上であることで、超硬合金の靱性が向上する。結合相の含有量が11質量%以下であることで、硬質相が相対的に減少することによる超硬合金の硬度の低下を抑制し、耐摩耗性や耐塑性変形性の低下を抑制できる。 When the content of the binder phase is 4% by mass or more, deterioration of sinterability during production is prevented, and the hard phase is firmly bonded by the binder phase, so that the strength is high and defects are not easily generated. Moreover, the toughness of a cemented carbide improves because content of a binder phase is 4 mass% or more. When the binder phase content is 11% by mass or less, it is possible to suppress a decrease in hardness of the cemented carbide due to a relative decrease in the hard phase, and it is possible to suppress a decrease in wear resistance and plastic deformation resistance.
(2)上記超硬合金の一例として、上記低β層における上記第2硬質相の最大粒径が4μm未満である態様が挙げられる。 (2) As an example of the cemented carbide, there is an embodiment in which the maximum particle size of the second hard phase in the low β layer is less than 4 μm.
表面部の低β層において、第2硬質相(β相)の最大粒径が4μm未満であることで、切削時の衝撃による亀裂の起点となり難く、チッピングや欠損を抑制できる。 When the maximum particle size of the second hard phase (β phase) is less than 4 μm in the low β layer on the surface, it is difficult to become a starting point of cracks due to impact during cutting, and chipping and chipping can be suppressed.
(3)上記超硬合金の一例として、上記WC粒子の平均粒径が0.4μm以上4.0μm以下である態様が挙げられる。 (3) As an example of the cemented carbide, there is an embodiment in which the average particle size of the WC particles is 0.4 μm or more and 4.0 μm or less.
WC粒子の平均粒径が0.4μm以上であることで、靱性が高く、機械的・熱的な衝撃によるチッピングや欠損を抑制できる。また、耐亀裂伝播性が向上することから、亀裂の伝播が抑制され、チッピングや欠損を抑制できる。WC粒子の平均粒径が4.0μm以下であることで、硬度が高く、切削時の変形が抑制されるため、摩耗や欠損を抑制できる。 When the average particle diameter of the WC particles is 0.4 μm or more, the toughness is high, and chipping and chipping due to mechanical and thermal impact can be suppressed. Further, since the crack propagation resistance is improved, the propagation of cracks is suppressed, and chipping and chipping can be suppressed. Since the average particle diameter of the WC particles is 4.0 μm or less, the hardness is high and deformation at the time of cutting is suppressed, so that wear and defects can be suppressed.
(4)本発明の一態様に係る切削工具は、上記(1)〜(3)のいずれか1つに記載の超硬合金からなる基材を備える。 (4) The cutting tool which concerns on 1 aspect of this invention is equipped with the base material which consists of a cemented carbide as described in any one of said (1)-(3).
上記切削工具は、耐摩耗性や耐欠損(耐チッピング)性に優れる上記超硬合金を基材に備えることから、優れた耐摩耗性と耐欠損性を発揮でき、工具寿命が長い。切削工具の具体例としては、刃先交換型切削チップ(スローアウェイチップ)、バイト、エンドミル、ドリル、メタルソー、歯切工具、リーマ、タップなどが挙げられる。 Since the cutting tool includes the cemented carbide having excellent wear resistance and fracture resistance (chipping resistance) on the base material, it can exhibit excellent wear resistance and fracture resistance, and has a long tool life. Specific examples of the cutting tool include a cutting edge replaceable cutting tip (throw away tip), a cutting tool, an end mill, a drill, a metal saw, a gear cutting tool, a reamer, and a tap.
(5)上記切削工具の一例として、上記基材の表面に被覆膜を備える態様が挙げられる。 (5) As an example of the cutting tool, an aspect in which a coating film is provided on the surface of the base material can be given.
基材表面に被覆膜を備えることで、工具の耐摩耗性などを改善でき、更なる長寿命化が図れる。被覆膜の構成材料としては、例えばTiC,TiN,TiCN,Al2O3などが挙げられる By providing a coating film on the surface of the substrate, the wear resistance of the tool can be improved, and the life can be further extended. Examples of the constituent material of the coating film include TiC, TiN, TiCN, Al 2 O 3 and the like.
(6)上記切削工具の一例として、上記被覆膜が化学蒸着法により形成されている態様が挙げられる。 (6) As an example of the cutting tool, an aspect in which the coating film is formed by a chemical vapor deposition method can be given.
被覆膜が化学蒸着法(CVD)法により形成されていることで、基材との密着性に優れる硬質膜を得ることができる。 Since the coating film is formed by the chemical vapor deposition (CVD) method, a hard film having excellent adhesion to the substrate can be obtained.
[本発明の実施形態の詳細]
本発明の実施形態に係る超硬合金及び切削工具の具体例を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of the cemented carbide and the cutting tool according to the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.
《超硬合金》
実施形態に係る超硬合金は、WC粒子からなる第1硬質相と、周期表4,5,6族元素から選ばれる少なくとも1種の金属と、C,N,O及びBから選ばれる少なくとも1種の元素との化合物からなる第2硬質相と、Co,Ni及びFeから選ばれる少なくとも1種の鉄族金属を含有する結合相と、不可避的不純物を有する組成からなる。超硬合金の組成としては、特に限定されるものではなく、公知の組成を採用することも可能である。
<Cemented carbide>
The cemented carbide according to the embodiment includes a first hard phase composed of WC particles, at least one metal selected from Group 4, 5, and 6 elements of the periodic table, and at least 1 selected from C, N, O, and B. The composition comprises a second hard phase composed of a compound with a seed element, a binder phase containing at least one iron group metal selected from Co, Ni and Fe, and an unavoidable impurity. It does not specifically limit as a composition of a cemented carbide alloy, A well-known composition is also employable.
[第1硬質相]
超硬合金は、硬質相として第1硬質相と第2硬質相とを有し、第1硬質相のWC粒子を主成分として含む。超硬合金中、WC粒子は少なくとも50質量%以上含有し、例えば70質量%以上97質量%以下の範囲で含有することが挙げられる。好ましいWC粒子の含有量は、75質量%以上、80質量%以上、85質量%以上であり、95質量%以下である。
[First hard phase]
The cemented carbide has a first hard phase and a second hard phase as a hard phase, and contains WC particles of the first hard phase as a main component. In the cemented carbide, WC particles are contained in an amount of at least 50% by mass, for example, 70% by mass to 97% by mass. The content of WC particles is preferably 75% by mass or more, 80% by mass or more, 85% by mass or more, and 95% by mass or less.
(WC粒子)
第1硬質相を構成するWC粒子の平均粒径は0.4μm以上4.0μm以下であることが好ましい。WC粒子の平均粒径が0.4μm以上であることで、靱性が高く、機械的・熱的な衝撃によるチッピングや欠損を抑制できる。また、耐亀裂伝播性が向上することから、亀裂の伝播が抑制され、チッピングや欠損を抑制できる。WC粒子の平均粒径が4.0μm以下であることで、硬度が高く、切削時の変形が抑制されるため、摩耗や欠損を抑制できる。WC粒子の平均粒径は、1.0μm以上、2.0μm以上がより好ましく、更に2.5μm以上3.5μm以下が好ましい。
(WC particles)
The average particle diameter of the WC particles constituting the first hard phase is preferably 0.4 μm or more and 4.0 μm or less. When the average particle diameter of the WC particles is 0.4 μm or more, the toughness is high, and chipping and chipping due to mechanical and thermal impact can be suppressed. Further, since the crack propagation resistance is improved, the propagation of cracks is suppressed, and chipping and chipping can be suppressed. Since the average particle diameter of the WC particles is 4.0 μm or less, the hardness is high and deformation at the time of cutting is suppressed, so that wear and defects can be suppressed. The average particle size of the WC particles is more preferably 1.0 μm or more and 2.0 μm or more, and further preferably 2.5 μm or more and 3.5 μm or less.
(第2硬質相)
第2硬質相は、WC粒子を除く、周期表4,5,6族元素から選ばれる少なくとも1種の金属と、C,N,O及びBから選ばれる少なくとも1種の元素との化合物(固溶体を含む)からなる粒子である。金属としては、Ti,Ta,Nb,Zr,V及びCrなどが挙げられる。化合物とは、主として、上記金属の炭化物、窒化物、炭窒化物、酸化物、硼化物などであり、化合物には、これらの固溶体も含まれる。具体的な化合物としては、TiC,TaC,TiCN,NbC,ZrC,ZrN,TiN,TaN,TaCN,(Ta,Nb)C,VC,Cr3C2などが挙げられる。超硬合金中、第2硬質相は、例えば1質量%以上15質量%以下の範囲で含有することが挙げられる。
(Second hard phase)
The second hard phase is a compound (solid solution) of at least one metal selected from Group 4, 5, 6 elements of the periodic table and at least one element selected from C, N, O and B, excluding WC particles. Particles). Examples of the metal include Ti, Ta, Nb, Zr, V, and Cr. The compounds are mainly carbides, nitrides, carbonitrides, oxides, borides, and the like of the above metals, and the compounds include these solid solutions. Specific compounds include TiC, TaC, TiCN, NbC, ZrC, ZrN, TiN, TaN, TaCN, (Ta, Nb) C, VC, Cr 3 C 2 and the like. In the cemented carbide, the second hard phase may be contained, for example, in the range of 1% by mass to 15% by mass.
[結合相]
結合相は、Co,Ni及びFeから選ばれる少なくとも1種の鉄族金属を主成分として含有し、実質的に上記鉄族金属からなることが好ましい。結合相には、不可避的不純物の他、硬質相を構成するWCや第2硬質相の化合物(TiC,TaC,NbCなど)の構成元素(WやTi,Ta,Nbなど)が固溶することを許容する。
[Binder Phase]
The binder phase preferably contains at least one iron group metal selected from Co, Ni and Fe as a main component, and substantially consists of the iron group metal. In addition to inevitable impurities, constituent elements (W, Ti, Ta, Nb, etc.) of WC constituting the hard phase and compounds of the second hard phase (TiC, TaC, NbC, etc.) are dissolved in the binder phase. Is acceptable.
結合相の含有量は、4質量%以上11質量%以下であることが好ましい。結合相の含有量が4質量%以上であることで、製造時の焼結性の悪化を防止し、結合相によって硬質相が強固に結合されるため、強度が高く、欠損が生じ難い。また、結合相の含有量が4質量%以上であることで、超硬合金の靱性が向上する。結合相の含有量が11質量%以下であることで、硬質相が相対的に減少することによる超硬合金の硬度の低下を抑制し、耐摩耗性や耐塑性変形性の低下を抑制できる。 The content of the binder phase is preferably 4% by mass or more and 11% by mass or less. When the content of the binder phase is 4% by mass or more, deterioration of sinterability during production is prevented, and the hard phase is firmly bonded by the binder phase, so that the strength is high and defects are not easily generated. Moreover, the toughness of a cemented carbide improves because content of a binder phase is 4 mass% or more. When the binder phase content is 11% by mass or less, it is possible to suppress a decrease in hardness of the cemented carbide due to a relative decrease in the hard phase, and it is possible to suppress a decrease in wear resistance and plastic deformation resistance.
[低β層]
超硬合金は、表面部に内部よりも第2硬質相の含有量が少ない低β層が形成されている。低β層は、従来の「脱β層」と異なり、β相(第2硬質相の化合物を含む固溶体)をある程度含んでいる。低β層より深い内部では、超硬合金の組成、即ち、WC粒子、第2硬質相及び結合相の含有量が実質的に一定である。低β層における第2硬質相の含有比率(質量比)が内部に対して低いほど、低β層と内部との熱浸透率比が大きくなり、低β層における第2硬質相の含有比率が高いほど、低β層と内部との熱浸透率比が小さくなる。つまり、低β層と内部における第2硬質相の含有比率が近いほど、低β層と内部との熱浸透率比が1に近づく。低β層は、超硬合金の少なくとも刃先部位に形成されていればよく、超硬合金の表面全体に形成されていてもよい。低β層の具体的な厚さとしては、超硬合金の組成や製造方法にもよるが、例えば7μm〜35μm程度である。低β層の厚さは、10μm以上30μm以下であることが好ましい。低β層の厚さが10μm以上であることで、耐衝撃性や耐欠損性の機能を発揮し易い。一方、低β層が厚すぎると、硬度低下を招き、耐塑性変形性が低下することから、低β層の厚さは30μm以下が好ましい。また、低β層における第2硬質相の最大粒径は、4.0μm未満であることが好ましい。第2硬質相の最大粒径が4.0μm未満であることで、切削時の衝撃による亀裂の起点となり難く、チッピングや欠損を抑制できる。第2硬質相の最大粒径は、2.0μm以下、1.0μm以下がより好ましい。第2硬質相の最大粒径の下限は特に限定されないが、例えば0.1μm以上、0.4μm以上である。
[Low β layer]
In the cemented carbide, a low β layer in which the content of the second hard phase is smaller than the inside is formed on the surface portion. Unlike the conventional “de-β layer”, the low β layer includes a β phase (a solid solution containing a compound of the second hard phase) to some extent. In the interior deeper than the low β layer, the composition of the cemented carbide, that is, the contents of the WC particles, the second hard phase, and the binder phase are substantially constant. The lower the content ratio (mass ratio) of the second hard phase in the low β layer is, the higher the heat permeability ratio between the low β layer and the inside is, and the content ratio of the second hard phase in the low β layer is The higher it is, the smaller the thermal permeability ratio between the low β layer and the inside. That is, the closer the content ratio of the second hard phase in the low β layer and the inside, the closer the heat permeability ratio between the low β layer and the inside approaches 1. The low β layer only needs to be formed on at least the cutting edge portion of the cemented carbide, and may be formed on the entire surface of the cemented carbide. The specific thickness of the low β layer is, for example, about 7 μm to 35 μm although it depends on the composition and manufacturing method of the cemented carbide. The thickness of the low β layer is preferably 10 μm or more and 30 μm or less. When the thickness of the low β layer is 10 μm or more, functions of impact resistance and fracture resistance are easily exhibited. On the other hand, if the low β layer is too thick, the hardness is lowered and the plastic deformation resistance is lowered. Therefore, the thickness of the low β layer is preferably 30 μm or less. The maximum particle size of the second hard phase in the low β layer is preferably less than 4.0 μm. When the maximum particle size of the second hard phase is less than 4.0 μm, it is difficult to become a starting point of a crack due to an impact at the time of cutting, and chipping and chipping can be suppressed. The maximum particle size of the second hard phase is more preferably 2.0 μm or less and 1.0 μm or less. Although the minimum of the maximum particle size of a 2nd hard phase is not specifically limited, For example, they are 0.1 micrometer or more and 0.4 micrometer or more.
[低β層と内部との熱浸透率比(TEa/TEb)]
超硬合金は、表面部に上記低β層が形成されていることで、表面部の低β層と内部との熱浸透率比が小さく、低β層の熱浸透率をTEa、内部の熱浸透率をTEbとするとき、1.02<TEa/TEb<1.08を満たす。表面部の低β層と内部との熱浸透率比が小さいため、切削時に刃先表面で発生した熱が表面部の低β層から内部に拡散され易く、表面部から内部に効果的に放熱できる。TEa/TEb≦1.02のときは、表面部の低β層における第2硬質相の含有量(含有比率)が多くなるため、表面部(低β層)の靱性が低下することから、低β層による耐衝撃性や耐欠損性の機能が十分に発揮されない。TEa/TEb≧1.08のときは、表面部の低β層と内部との熱浸透率比が大きくなるため、表面部から内部への放熱が阻害される。
[Heat permeability ratio between low β layer and inside (TEa / TEb)]
In the cemented carbide, the low β layer is formed on the surface, so that the heat permeability ratio between the low β layer on the surface and the inside is small, the heat permeability of the low β layer is TEa, and the internal heat When the penetration rate is TEb, 1.02 <TEa / TEb <1.08 is satisfied. Because the heat permeability ratio between the low β layer on the surface and the inside is small, the heat generated on the cutting edge surface during cutting is easily diffused from the low β layer on the surface to the inside, and heat can be effectively radiated from the surface to the inside. . When TEa / TEb ≦ 1.02, the content (content ratio) of the second hard phase in the low β layer on the surface portion is increased, so that the toughness of the surface portion (low β layer) is reduced. The functions of impact resistance and fracture resistance due to the β layer are not sufficiently exhibited. When TEa / TEb ≧ 1.08, the heat permeability ratio between the low β layer on the surface and the inside is increased, so that heat radiation from the surface to the inside is inhibited.
《超硬合金の評価》
〈WC粒子の評価〉
超硬合金中のWC粒子の評価は、超硬合金の任意の表面又は断面を鏡面加工して、該加工面を顕微鏡で観察して行う。
<Evaluation of cemented carbide>
<Evaluation of WC particles>
The evaluation of the WC particles in the cemented carbide is performed by mirror-finishing any surface or cross section of the cemented carbide and observing the processed surface with a microscope.
鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム(FIB)装置を用いる方法、クロスセクションポリッシャー(CP)装置を用いる方法、及びこれらを組み合わせた方法などを挙げることができる。 Examples of the mirror finishing method include a method of polishing with diamond paste, a method using a focused ion beam (FIB) device, a method using a cross section polisher (CP) device, and a method combining these. .
該加工面を金属顕微鏡によって観察する場合には、加工面を村上氏試薬でエッチングするのが好ましい。顕微鏡観察で得られた画像をコンピュータに取り込み、画像解析ソフトウェアを用いて解析することで、平均粒径などの各種情報を取得できる。このようなソフトウェアとしては、画像解析式粒度分布ソフトウェア(例えば、株式会社マウンテック製「Mac−View」)などが挙げられる。 When the processed surface is observed with a metal microscope, it is preferable to etch the processed surface with Murakami's reagent. Various information such as an average particle diameter can be acquired by capturing an image obtained by microscopic observation into a computer and analyzing it using image analysis software. Examples of such software include image analysis type particle size distribution software (for example, “Mac-View” manufactured by Mountec Co., Ltd.).
なお、観察面としては刃先部位とすることが好ましい。顕微鏡観察の方法としては、例えば、金属顕微鏡で750〜1500倍、走査型電子顕微鏡(SEM)で3000〜10000倍の倍率で観察することが挙げられる。 In addition, it is preferable to use a cutting edge portion as the observation surface. Examples of the microscopic observation method include observation at a magnification of 750 to 1500 times with a metal microscope and 3000 to 10,000 times with a scanning electron microscope (SEM).
顕微鏡観察で得られた画像から、個々のWC粒子の粒径(Heywood径(等面積円相当径))を算出し、その平均値をWC粒子の平均粒径とする。測定するWC粒子の数は、少なくとも100個以上とし、200個以上とすることが好ましい。 The particle diameter (Heywood diameter (equivalent area equivalent circle diameter)) of each WC particle is calculated from an image obtained by microscopic observation, and the average value is defined as the average particle diameter of the WC particles. The number of WC particles to be measured is at least 100 or more, preferably 200 or more.
〈低β層の評価〉
低β層の厚さは、超硬合金を表面に対して垂直に切断した断面を鏡面加工し、該加工面を光学顕微鏡で観察することで測定できる。図1は、実施形態に係る超硬合金の一例の断面の顕微鏡写真(倍率1000倍)を示す図であり、組織中、濃いグレーの粒子がβ相である。図1では、紙面上側が超硬合金の表面側であり、上方の黒の部分が超硬合金を包埋した樹脂で、それ以外の部分が超硬合金である。図1に示すように、低β層111は、超硬合金の表面部に形成されており、低β層111には、β相101(図中、丸で囲んで示す)が微量に残留している。低β層111と内部120との間でβ相101の含有量(含有比率)が大きく異なることから、図1に示すように、β相101の存在比率が高い内部120の領域と内部120に対して低い低β層111の領域との界面を判断できる。そして、超硬合金断面の表面付近を観察したとき、β相の存在比率が相対的に低い領域を低β層111とし、その厚さを低β層の厚さとする。具体的には、内部に対するβ相(第2硬質相)の存在比率(面積比)が50%未満の領域を低β層とすることが挙げられる。ここで、内部におけるβ相の存在比率を測定するときは、低β層より十分深く、かつ、組成的にも安定した領域を測定することが好ましく、例えば超硬合金の表面からの深さが100μm以上300μm以下の範囲の領域を測定することが挙げられる。低β層の厚さは、5視野以上で測定を行い、その平均値を低β層の厚さとする。なお、測定箇所としては刃先部位とすることが好ましい。
<Evaluation of low β layer>
The thickness of the low β layer can be measured by mirror-processing a cross section of the cemented carbide perpendicular to the surface and observing the processed surface with an optical microscope. FIG. 1 is a view showing a micrograph (magnification 1000 times) of a cross section of an example of the cemented carbide according to the embodiment, and dark gray particles in the structure are β phase. In FIG. 1, the upper side of the paper is the surface side of the cemented carbide, the upper black part is the resin embedded with the cemented carbide, and the other part is the cemented carbide. As shown in FIG. 1, the low β layer 111 is formed on the surface of the cemented carbide, and a small amount of β phase 101 (indicated by a circle in the figure) remains in the low β layer 111. ing. Since the content (content ratio) of the β phase 101 is greatly different between the low β layer 111 and the interior 120, as shown in FIG. On the other hand, the interface with the low low β layer 111 region can be determined. When the vicinity of the surface of the cemented carbide cross section is observed, the region where the β phase abundance is relatively low is defined as the low β layer 111, and the thickness thereof is defined as the thickness of the low β layer. Specifically, a region where the abundance ratio (area ratio) of the β phase (second hard phase) relative to the inside is less than 50% is defined as the low β layer. Here, when measuring the abundance ratio of the β phase inside, it is preferable to measure a region sufficiently deeper than the low β layer and stable in composition, for example, the depth from the surface of the cemented carbide is One example is measuring a region in the range of 100 μm or more and 300 μm or less. The thickness of the low β layer is measured over 5 fields of view, and the average value is taken as the thickness of the low β layer. In addition, as a measurement location, it is preferable to use a cutting edge location.
低β層中のβ相(第2硬質相)の最大粒径は、上述した低β層の厚さの測定と同じように、超硬合金を表面に対して垂直に切断した断面を鏡面加工し、該加工面を光学顕微鏡で観察することで測定できる。図1に示すような超硬合金の表面の断面観察像において、低β層の幅方向(表面に平行な方向、図中の左右方向)に1mmの領域を観察する。そして、観察箇所を変更して複数(少なくとも5以上)の領域を観察し、各領域内に存在する全ての第2硬質相の長径を測定して、その最大値を低β層における第2硬質相の最大粒径とする。複数個の第2硬質相が凝集している場合は、凝集している2次粒子の長径を測定する。観察箇所としては刃先部位とすることが好ましい。 The maximum particle size of the β phase (second hard phase) in the low β layer is mirror-finished by cutting the cemented carbide perpendicular to the surface in the same way as measuring the thickness of the low β layer described above. And it can measure by observing this processed surface with an optical microscope. In the cross-sectional observation image of the surface of the cemented carbide as shown in FIG. 1, a 1 mm region is observed in the width direction of the low β layer (direction parallel to the surface, left-right direction in the figure). Then, by changing the observation location, observing a plurality of (at least 5 or more) regions, measuring the long diameters of all the second hard phases existing in each region, and determining the maximum value as the second hard in the low β layer The maximum particle size of the phase. When a plurality of second hard phases are aggregated, the major axis of the aggregated secondary particles is measured. It is preferable to use the cutting edge as the observation location.
〈熱浸透率の評価〉
超硬合金の表面部(低β層)及び内部の熱浸透率の評価は、以下のようにして熱物性顕微鏡による位相差遅れを測定して行う。熱物性顕微鏡には、例えば株式会社ベテル製「サーマルマイクロスコープTM3」を利用できる。
<Evaluation of heat permeability>
Evaluation of the surface permeability (low β layer) and internal heat permeability of the cemented carbide is performed by measuring the retardation of the phase with a thermophysical microscope as follows. For the thermophysical microscope, for example, “Thermal Microscope TM3” manufactured by Bethel Co., Ltd. can be used.
(準備)
超硬合金を表面に対して斜め方向に切断する。このとき、切断面の長さ(斜辺の長さ)が垂直方向に切断したときの切断面の長さ(即ち、超硬合金の厚さに同じ)の3倍の長さになるように切断する。つまり、低β層の厚さがAのとき、切断面上の低β層の厚さ(切断方向に沿った長さ)が3Aとなるように切断する。その後、切断面を鏡面加工する。
(Preparation)
The cemented carbide is cut obliquely with respect to the surface. At this time, the length of the cut surface (the length of the hypotenuse) is cut to be three times the length of the cut surface when cut in the vertical direction (that is, the same as the thickness of the cemented carbide). To do. That is, when the thickness of the low β layer is A, cutting is performed so that the thickness (length along the cutting direction) of the low β layer on the cut surface is 3A. Thereafter, the cut surface is mirror-finished.
(校正)
該加工面と基準試料とを同時にMoスパッタリングし、熱物性顕微鏡により熱浸透率と位相差との校正曲線を得る。
(Proofreading)
The processed surface and the reference sample are simultaneously subjected to Mo sputtering, and a calibration curve between the thermal permeability and the phase difference is obtained by a thermophysical microscope.
(測定条件)
該加工面における低β層及び内部の40μm×40μmの領域に対して、検出光スポット径3μm、測定間隔2μmでマッピング測定を行い、21×21点、計441点の測定を行う。測定点1点につき100回測定した平均値を算出し、全測定点のデータのうち、最大値から10%の測定値及び最小値から10%の測定値を除いた残りの80%の測定値の平均値を、測定領域の熱浸透率とする。測定領域を変更して、異なる5か所の40μm四方の領域について熱浸透率を測定し、その5か所の平均値を、超硬合金における低β層及び内部の熱浸透率とする。
(Measurement condition)
Mapping measurement is performed on the low β layer and the internal 40 μm × 40 μm region on the processed surface with a detection light spot diameter of 3 μm and a measurement interval of 2 μm, and 21 × 21 points, for a total of 441 points. The average value measured 100 times per measurement point is calculated, and the remaining 80% measurement value excluding the measurement value of 10% from the maximum value and the measurement value of 10% from the minimum value among the data of all measurement points Is an average value of the heat penetration rate of the measurement region. The measurement area is changed, and the thermal permeability is measured for five different 40 μm square areas, and the average value of the five areas is defined as the low β layer and the internal thermal permeability of the cemented carbide.
《超硬合金の製造方法》
実施形態に係る超硬合金は、原料粉末の準備→原料粉末の混合→乾燥→成形→焼結→冷却という工程により製造できる。ここで、超硬合金の表面部にβ相(第2硬質相成分)を一部残存させることで低β層を形成する手法としては、原料粉末のサイズ(粒度)、焼結時の焼結温度、雰囲気及び圧力、冷却時の冷却速度及び雰囲気などを制御することで可能である。
<< Production method of cemented carbide >>
The cemented carbide according to the embodiment can be manufactured by the steps of preparation of raw material powder → mixing of raw material powder → drying → forming → sintering → cooling. Here, as a method of forming a low β layer by leaving a part of β phase (second hard phase component) on the surface portion of the cemented carbide, raw material powder size (particle size), sintering during sintering This is possible by controlling the temperature, atmosphere and pressure, the cooling rate during cooling, the atmosphere, and the like.
[準備工程]
準備工程は、原料粉末として、第1硬質相となるWC粉末、第2硬質相となる化合物粉末、結合相となる鉄族金属粉末を準備する工程である。各粉末の粒度は、特に限定されないが、例えば0.5μm以上10μm以下の範囲とすることが挙げられる。なお、各粉末の粒度は、フィッシャーサブシーブサイザー(FSSS)法による平均粒径(FSSS径)のことである。一般に、原料に用いるWC粉末の粒径が小さいほど、最終的に得られる超硬合金中のWC粒子の粒径が小さくなり、WC粉末の粒径が大きいほど、超硬合金中のWC粒子の粒径が大きくなる。WC粉末の粒度は、例えば1.5μm以上6.0μm以下とすることが挙げられる。また、第2硬質相の化合物粉末の粒度がある程度大きいと、焼結時に表面部にβ相が残留し易く、粒度が大きいほど、表面部の低β層におけるβ相(第2硬質相)のサイズ(最大粒径)が大きくなる傾向がある。化合物粉末の粒度は、例えば1.5μm以上6.0μm以下、好ましくは5.0μm以下、更に3.0μm以下とすることが挙げられる。
[Preparation process]
The preparation step is a step of preparing a WC powder serving as a first hard phase, a compound powder serving as a second hard phase, and an iron group metal powder serving as a binder phase as a raw material powder. Although the particle size of each powder is not specifically limited, For example, it is set as the range of 0.5 micrometer or more and 10 micrometers or less. In addition, the particle size of each powder is an average particle diameter (FSSS diameter) by a Fisher sub-sieve sizer (FSSS) method. In general, the smaller the particle size of the WC powder used as a raw material, the smaller the particle size of the WC particles in the cemented carbide finally obtained. The larger the particle size of the WC powder, the larger the particle size of the WC particles in the cemented carbide. The particle size increases. The particle size of the WC powder is, for example, 1.5 μm or more and 6.0 μm or less. Also, if the particle size of the second hard phase compound powder is large to some extent, the β phase tends to remain on the surface during sintering, and the larger the particle size, the more the β phase (second hard phase) in the low β layer on the surface. The size (maximum particle size) tends to increase. The particle size of the compound powder is, for example, 1.5 μm or more and 6.0 μm or less, preferably 5.0 μm or less, and further 3.0 μm or less.
[混合工程]
混合工程は、原料粉末を混合して、混合物を得る工程である。混合方法としては、例えば、アトライターやボールミルなどを用いることができる。具体的には、原料の各粉末を所定の比率で配合し、メディア(粉砕ボール)を入れたアトライターやボールミルなどの混合装置を用いて粉砕混合することが挙げられる。混合は、水、エタノール、アセトン、イソプロピルアルコールなどの溶媒中で行ってもよい。
[Mixing process]
A mixing process is a process of mixing raw material powder and obtaining a mixture. As a mixing method, for example, an attritor or a ball mill can be used. Specifically, the raw material powders are blended at a predetermined ratio, and pulverized and mixed using a mixing device such as an attritor or a ball mill containing media (ground balls). Mixing may be performed in a solvent such as water, ethanol, acetone, or isopropyl alcohol.
ここで、メディアを入れた混合装置に原料の全粉末を一緒に投入し、長時間の粉砕混合を行うと、WC粉末だけでなく、第2硬質相の化合物粉末も粉砕され微粒になることから、焼結時に表面部にβ相が残留し難くなる。これは、低β層は、脱β層と同様に、焼結時に結合相への硬質相の溶解・再析出が生じ、硬質相の溶解・再析出時の移動により形成されるが、化合物粉末が微粒であると、溶解が速く、完全に溶解して表面部にβ相が残留し難くなるからである。 Here, when all the raw material powders are put together in the mixing device containing the media and pulverized and mixed for a long time, not only the WC powder but also the compound powder of the second hard phase is pulverized into fine particles. The β phase hardly remains on the surface during sintering. This is because the low β layer is formed by the dissolution and reprecipitation of the hard phase into the binder phase during sintering and the migration of the hard phase during dissolution and reprecipitation, similar to the deβ layer. If it is fine, dissolution is fast and complete dissolution, making it difficult for the β phase to remain on the surface.
所定の低β層を形成するための形成条件Iとして、混合工程では、原料の全粉末を混合開始から一緒に粉砕混合するのではなく、原料の化合物粉末の粉砕混合時間が短くなるように、2段階以上に分けて行うことが好ましい。具体的には、WC粉末及び鉄族粉末、又はWC粉末のみを混合装置に投入し、一定時間の粉砕混合を行う第1混合段階と、その後、化合物粉末、又は化合物粉末及び鉄族粉末を投入し、更に一定時間の粉砕混合を行う第2混合段階に分ける。これにより、化合物粉末の粉砕混合時間が短くなり、化合物粉末を粗粒の状態で維持できる。そして、化合物粉末が粗粒のため、焼結時の溶解が遅く、焼結時に完全に溶解しきれずに、表面部にβ相が残留し易くなる。第1混合段階での混合時間は、例えば3時間以上24時間以下、好ましくは5時間以上12時間以下とし、第2混合段階での混合時間は、例えば0.25時間以上5時間以下、好ましくは0.5時間以上3時間以下とすることが挙げられる。第2混合段階での混合時間を調整することで、低β層におけるβ相のサイズを調整することが可能であり、混合時間を長くするほど、粗大な化合物粉末や凝集した化合物粉末を粉砕でき、β相のサイズが小さくなる。第2混合段階での混合時間は、化合物粉末の粒度(サイズ)に応じて調整することが好ましく、粗大な化合物粉末を原料に用いる場合は、比較的に長めに設定することが好ましい。 As the formation condition I for forming a predetermined low β layer, in the mixing step, not all the raw material powders are pulverized and mixed together from the start of mixing, but the pulverized and mixed time of the raw material compound powder is shortened. It is preferable to carry out in two or more stages. Specifically, a WC powder and an iron group powder, or only a WC powder is charged into a mixing device, and a first mixing stage in which pulverization and mixing is performed for a predetermined time, and then a compound powder or a compound powder and an iron group powder are charged. Then, it is divided into a second mixing stage in which pulverization and mixing are performed for a certain time. Thereby, the pulverization and mixing time of the compound powder is shortened, and the compound powder can be maintained in a coarse state. Since the compound powder is coarse, dissolution at the time of sintering is slow, and the powder is not completely dissolved at the time of sintering, and the β phase tends to remain on the surface portion. The mixing time in the first mixing stage is, for example, 3 hours to 24 hours, preferably 5 hours to 12 hours, and the mixing time in the second mixing stage is, for example, 0.25 hours to 5 hours, preferably For example, it may be 0.5 hours or more and 3 hours or less. By adjusting the mixing time in the second mixing stage, it is possible to adjust the size of the β phase in the low β layer, and the longer the mixing time, the coarser the compound powder and the agglomerated compound powder can be crushed. The size of the β phase is reduced. The mixing time in the second mixing stage is preferably adjusted according to the particle size (size) of the compound powder, and when coarse compound powder is used as a raw material, it is preferably set relatively long.
[乾燥工程]
乾燥工程は、混合工程で得られた混合物を乾燥する工程である。乾燥方法としては、公知の方法を採用することができ、例えばスプレードライなどを用いることができる。
[Drying process]
A drying process is a process of drying the mixture obtained at the mixing process. As a drying method, a known method can be employed, and for example, spray drying can be used.
[成形工程]
成形工程は、混合物を所定の形状に成形して、成形体を得る工程である。成形条件は、一般的な条件を採用すればよく、特に問わない。所定の形状としては、例えば切削工具形状とすることが挙げられる。
[Molding process]
The forming step is a step of forming a mixture into a predetermined shape to obtain a formed body. The molding conditions may be any general conditions and are not particularly limited. An example of the predetermined shape is a cutting tool shape.
[焼結工程]
焼結工程は、成形体を焼結して、焼結体を得る工程である。所定の低β層を形成するための形成条件IIとして、焼結工程では、比較的高い焼結温度で短時間保持する第1焼結段階と、その後、焼結温度を下げ、更に一定時間保持する第2焼結段階とに分けて行うことが好ましい。これにより、高い焼結温度で焼結を開始した後、低い焼結温度に変更することで、焼結時の溶解・再析出が抑制され、溶解・再析出の速度が遅くなるため、表面部にβ相が残留し易くなる。第1焼結段階での焼結温度は、例えば1350℃以上1500℃以下、好ましくは1400℃以上1480℃以下とし、保持時間は、例えば20分以上80分以下、好ましくは30分以上60分以下とすることが挙げられる。第2焼結段階での焼結温度は、第1焼結段階の焼結温度より例えば30℃以上、好ましくは40℃以上、50℃以上低く設定し、例えば1300℃以上1450℃以下、好ましくは1350℃以上1430℃以下とすることが挙げられる。第2焼結段階での保持時間は、第1焼結段階の保持時間より短くすることが好ましく、例えば10分以上60分以下、好ましくは40分以下とすることが挙げられる。第1焼結段階での焼結温度又は保持時間を調整することで、低β層におけるβ相のサイズを調整することが可能であり、焼結温度を高く又は保持時間を長くするほど、β相のサイズが小さくなる。
[Sintering process]
A sintering process is a process of sintering a molded object and obtaining a sintered compact. As the formation condition II for forming a predetermined low β layer, in the sintering process, a first sintering stage in which the sintering temperature is maintained for a short time at a relatively high sintering temperature, and then the sintering temperature is lowered and further maintained for a certain period of time. The second sintering step is preferably performed separately. As a result, after starting sintering at a high sintering temperature, changing to a low sintering temperature suppresses dissolution / reprecipitation during sintering and slows the dissolution / reprecipitation speed. In this case, the β phase tends to remain. The sintering temperature in the first sintering stage is, for example, 1350 ° C. or more and 1500 ° C. or less, preferably 1400 ° C. or more and 1480 ° C. or less, and the holding time is, for example, 20 minutes or more and 80 minutes or less, preferably 30 minutes or more and 60 minutes or less. And so on. The sintering temperature in the second sintering stage is set, for example, 30 ° C. or more, preferably 40 ° C. or more and 50 ° C. or less lower than the sintering temperature in the first sintering stage, for example, 1300 ° C. or more and 1450 ° C. or less, preferably It is mentioned that it is 1350 degreeC or more and 1430 degrees C or less. The holding time in the second sintering stage is preferably shorter than the holding time in the first sintering stage, for example, 10 minutes or more and 60 minutes or less, preferably 40 minutes or less. By adjusting the sintering temperature or holding time in the first sintering stage, it is possible to adjust the size of the β phase in the low β layer, and the higher the sintering temperature or the longer the holding time, the β The phase size is reduced.
焼結時の雰囲気は、N2ガス雰囲気やArなどの不活性ガス雰囲気とすることが挙げられる。また、焼結時の真空度(圧力)は、例えば10kPa以下、好ましくは5kPa以下、更に3kPa以下とすることが挙げられる。 The atmosphere during sintering may be an N 2 gas atmosphere or an inert gas atmosphere such as Ar. The degree of vacuum (pressure) during sintering is, for example, 10 kPa or less, preferably 5 kPa or less, and further 3 kPa or less.
[冷却工程]
冷却工程は、焼結完了後の焼結体を冷却する工程である。所定の低β層を形成するための形成条件IIIとして、冷却工程では、比較的速い冷却速度で冷却することが好ましい。これにより、溶解・再析出が抑制され、表面部にβ相が残留し易くなる。冷却速度は、例えば10℃/min以上、好ましくは30℃/min以上、更に50℃/min以上とすることが挙げられる。冷却速度を調整することで、低β層におけるβ相のサイズを調整することが可能であり、冷却速度を速くするほど、β相のサイズが小さくなる。
[Cooling process]
The cooling step is a step of cooling the sintered body after completion of sintering. As the formation condition III for forming the predetermined low β layer, in the cooling step, it is preferable to cool at a relatively high cooling rate. Thereby, dissolution / reprecipitation is suppressed, and the β phase easily remains on the surface portion. The cooling rate is, for example, 10 ° C./min or more, preferably 30 ° C./min or more, and further 50 ° C./min or more. By adjusting the cooling rate, it is possible to adjust the size of the β phase in the low β layer, and the faster the cooling rate, the smaller the size of the β phase.
冷却時の雰囲気は、N2ガス雰囲気やArなどの不活性ガス雰囲気とすることが挙げられる。また、冷却時の真空度(圧力)は、例えば100kPa以下とし、10kPa以上、更に50kPa以上とすることが挙げられる。 The atmosphere during cooling may be an N 2 gas atmosphere or an inert gas atmosphere such as Ar. The degree of vacuum (pressure) during cooling is, for example, 100 kPa or less, 10 kPa or more, and further 50 kPa or more.
上記低β層の形成条件I〜IIIのうち、少なくとも1つの条件を満たすことで、所定の低β層を形成することが可能であるが、これらのうち、2つ以上の条件を満たすことが好ましく、全ての条件を満たすことがより好ましい。特に、形成条件IとIIの両方を満たすことが好ましい。また、焼結時に表面部を脱窒することによって低β層を形成する観点から、第2硬質相として窒化物や炭窒化物などの窒素含有化合物(例、ZrN,TiN,TaNやTiCN、及びこれらの化合物を含む固溶体など)を含有することが好ましい。 It is possible to form a predetermined low β layer by satisfying at least one of the low β layer formation conditions I to III, but two or more of these conditions must be satisfied. It is preferable to satisfy all the conditions. In particular, it is preferable to satisfy both the formation conditions I and II. Further, from the viewpoint of forming a low β layer by denitrifying the surface portion during sintering, a nitrogen-containing compound such as nitride or carbonitride (eg, ZrN, TiN, TaN, TiCN, and the like) as the second hard phase It is preferable to contain a solid solution containing these compounds.
《用途》
上記実施形態に係る超硬合金は、表面部が局所的に高温になることを抑制でき、表面部の硬度・強度の低下を抑制できることから、耐摩耗性や耐欠損(耐チッピング)性が向上する。更には、表面部の温度上昇が小さく、表面部と内部との温度差も小さくなるため、耐熱衝撃性も向上する。具体的には、切削時の衝撃によって表面部にチッピングが生じることを抑制でき、それを起点とする欠損も抑制できる。特に、逃げ面では、被削材との擦過による温度上昇が抑制されることから、高温になり難く、被削材が押し当てられることによる変形が生じ難いため、逃げ面摩耗を効果的に抑制できる。よって、上記超硬合金を基材に使用した切削工具は、優れた耐摩耗性と耐欠損性を発揮し、工具寿命を延長できる。
<Application>
The cemented carbide according to the above embodiment can suppress the surface portion from becoming locally high temperature, and can suppress the decrease in the hardness and strength of the surface portion, thereby improving wear resistance and chipping resistance (chipping resistance). To do. Furthermore, since the temperature rise at the surface portion is small and the temperature difference between the surface portion and the inside is small, the thermal shock resistance is also improved. Specifically, it is possible to suppress chipping from occurring on the surface portion due to an impact during cutting, and it is also possible to suppress defects starting from the chipping. Especially on the flank surface, the temperature rise due to scratching with the work material is suppressed, so it is difficult to become high temperature and deformation due to the pressing of the work material is difficult to occur, effectively suppressing flank wear. it can. Therefore, the cutting tool using the above cemented carbide as a base material exhibits excellent wear resistance and fracture resistance, and can extend the tool life.
《切削工具》
[基材]
実施形態に係る切削工具は、上記実施形態に係る超硬合金を基材に備える所謂超硬合金工具である。切削工具の具体例としては、刃先交換型切削チップ(スローアウェイチップ)、バイト、エンドミル、ドリル、メタルソー、歯切工具、リーマ、タップなどが挙げられる。特に、上記超硬合金の基材を少なくとも刃先部に備えることが好ましい。
"Cutting tools"
[Base material]
The cutting tool which concerns on embodiment is what is called a cemented carbide tool which equips a base material with the cemented carbide based on the said embodiment. Specific examples of the cutting tool include a cutting edge replaceable cutting tip (throw away tip), a cutting tool, an end mill, a drill, a metal saw, a gear cutting tool, a reamer, and a tap. In particular, it is preferable to provide the cemented carbide base material at least at the cutting edge.
[被覆膜]
切削工具は、上記超硬合金の基材の表面に被覆膜を備えてもよい。基材表面に被覆膜を備えることで、工具の耐摩耗性などを改善でき、更なる長寿命化が図れる。被覆膜は、超硬合金基材の表面全体に形成されていてもよいし、刃先部のみ形成されていてもよい。
[Coating film]
The cutting tool may include a coating film on the surface of the cemented carbide substrate. By providing a coating film on the surface of the substrate, the wear resistance of the tool can be improved, and the life can be further extended. The coating film may be formed on the entire surface of the cemented carbide base material, or only the blade edge part.
被覆膜は、周期表4,5,6族元素、Al及びSiから選ばれる少なくとも1種の金属と、C,N,O及びBから選ばれる少なくとも1種の元素との化合物(固溶体を含む)からなる1層以上の層を有することが好ましい。被覆膜を構成する具体的な化合物としては、例えば、TiC,TiN,TiCN,TiAlN,TiAlCN,TiSiN,Al2O3などが挙げられる。被覆膜は、1層のみからなる単層構造でもよいし、異なる構成材料で形成した層を2層以上積層した多層構造でもよい。被覆膜全体の厚さは、例えば1μm以上30μm以下であることが好ましい。被覆膜の厚さが1μm以上であることで、耐摩耗性などの向上効果が十分に得られ易い。一方、被覆膜の厚さが30μmを超えても、それ以上の効果が得られず、経済的ではない。 The coating film includes a compound (including a solid solution) of at least one metal selected from Group 4, 5, 6 elements, Al and Si, and at least one element selected from C, N, O, and B. It is preferable to have one or more layers. Specific examples of the compound constituting the coating film include TiC, TiN, TiCN, TiAlN, TiAlCN, TiSiN, and Al 2 O 3 . The coating film may have a single layer structure consisting of only one layer, or may have a multilayer structure in which two or more layers formed of different constituent materials are stacked. The thickness of the entire coating film is preferably, for example, 1 μm or more and 30 μm or less. When the thickness of the coating film is 1 μm or more, an improvement effect such as wear resistance can be sufficiently obtained. On the other hand, even if the thickness of the coating film exceeds 30 μm, no further effect is obtained, which is not economical.
被覆膜は、物理蒸着(PVD)法や化学蒸着(CVD)法により形成することができる。被覆膜がCVD法により形成されていると、基材との密着性に優れる被覆膜が得られ易い。CVD法としては、例えばプラズマCVD法などが挙げられる。 The coating film can be formed by a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method. When the coating film is formed by the CVD method, it is easy to obtain a coating film having excellent adhesion to the substrate. Examples of the CVD method include a plasma CVD method.
実施形態に係る切削工具の一例として、刃先交換型切削チップを図2に示す。図2に示す刃先交換型切削チップ1は、略菱形平板状であり、略菱形をなす上面及び下面に設けられたすくい面2と、すくい面2に交差する各側面に設けられた逃げ面3と、すくい面2と逃げ面3との交差稜線部に設けられた切れ刃(刃先)4と、中心部に取付孔5と、を有する。この切削チップ1は、上下の各稜線部に刃先4が設けられており、合計8つの刃先4を有する。切削チップ1は、図3に示すように、超硬合金の基材10と、基材10の表面に被覆膜20を備える。この基材10は、上記実施形態に係る超硬合金であり、超硬合金の表面部に低β層11が形成されており、低β層11と内部12の熱浸透率比(TEa/TEb)が1.02超1.08未満を満たす。切削チップ1は、例えばホルダ(シャンク)に取り付けられ使用される。 As an example of the cutting tool according to the embodiment, a blade-tip-exchangeable cutting tip is shown in FIG. The blade-tip-exchangeable cutting tip 1 shown in FIG. 2 has a substantially rhombic flat plate shape, a rake face 2 provided on the upper and lower surfaces of the substantially rhombus, and a flank 3 provided on each side surface intersecting the rake face 2. And the cutting edge (cutting edge) 4 provided in the intersection ridgeline part of the rake face 2 and the flank 3 and the attachment hole 5 in the center part. The cutting tip 1 is provided with a cutting edge 4 at each of the upper and lower ridge lines, and has a total of eight cutting edges 4. As shown in FIG. 3, the cutting tip 1 includes a cemented carbide base material 10 and a coating film 20 on the surface of the base material 10. This base material 10 is a cemented carbide according to the above-described embodiment, and a low β layer 11 is formed on a surface portion of the cemented carbide, and a heat permeability ratio (TEa / TEb) between the low β layer 11 and the inside 12 is formed. ) Satisfies more than 1.02 and less than 1.08. The cutting tip 1 is used, for example, attached to a holder (shank).
[実施例]
超硬合金からなる基材を備える切削工具(刃先交換型切削チップ)を作製し、その評価を行った。
[Example]
A cutting tool (blade-tip-exchangeable cutting tip) provided with a base material made of cemented carbide was produced and evaluated.
<実施例1>
原料粉末として、FSSS径が3.8μmのWC粉末と、FSSS径が2.5μmのTiC粉末,TiCN粉末,TaC粉末及びNbC粉末と、FSSS径が2.5μmのCo粉末とを準備した。そして、各粉末を以下に示す組成となるように原料を秤量した。
原料1A’:1.0質量%のTiCと、2.5質量%のTiCNと、2.0質量%のTaCと、1.0質量%のNbCと、3.0質量%のCoと、残部がWCの組成。
原料1B:1.0質量%のTiCと、2.5質量%のTiCNと、2.0質量%のTaCと、1.0質量%のNbCと、5.0質量%のCoと、残部がWCの組成。
<Example 1>
As raw material powders, a WC powder having a FSSS diameter of 3.8 μm, a TiC powder having a FSSS diameter of 2.5 μm, a TiCN powder, a TaC powder and an NbC powder, and a Co powder having a FSSS diameter of 2.5 μm were prepared. And the raw material was weighed so that each powder might become the composition shown below.
Raw material 1A ′: 1.0% by mass of TiC, 2.5% by mass of TiCN, 2.0% by mass of TaC, 1.0% by mass of NbC, 3.0% by mass of Co, and the balance Is the composition of WC.
Raw material 1B: 1.0% by mass of TiC, 2.5% by mass of TiCN, 2.0% by mass of TaC, 1.0% by mass of NbC, 5.0% by mass of Co, and the balance Composition of WC.
[超硬合金の調整]
上記原料を用い、以下のように製造条件を変更して、表1に示す試料No.1−1〜No.1−5の刃先交換型切削チップの超硬合金製基材を作製した。
[Adjustment of cemented carbide]
Using the above raw materials, the production conditions were changed as follows, and sample Nos. Shown in Table 1 were used. 1-1-No. A cemented carbide base material of 1-5 blade tip exchange type cutting tips was produced.
秤量した原料を、エタノール溶媒とメディアと共にアトライターに投入し、アトライターで混合して混合物を作製した。混合条件は、以下に示す条件のいずれかとした。
混合条件M1a:原料のうち、WC粉末とCo粉末とを投入して9.5時間の粉砕混合をした後、残るTiC粉末,TiCN粉末,TaC粉末及びNbC粉末を投入し、0.5時間の粉砕混合。
混合条件M1b’:原料の全粉末を投入して10時間の粉砕混合。
The weighed raw materials were put into an attritor together with ethanol solvent and media, and mixed with the attritor to prepare a mixture. The mixing conditions were any of the following conditions.
Mixing condition M1a: Among the raw materials, WC powder and Co powder were charged, and after 9.5 hours of pulverization and mixing, the remaining TiC powder, TiCN powder, TaC powder and NbC powder were charged, and 0.5 hours Crushing and mixing.
Mixing condition M1b ′: All raw material powders are charged and pulverized and mixed for 10 hours.
混合後、混合物をスプレードライ乾燥して造粒した。次いで、混合物を147MPa(1500kgf/cm2)の圧力でプレス成形して、型番CNMG120408N−GU(住友電工ハードメタル株式会社製)形状の成形体を作製した。 After mixing, the mixture was spray dried and granulated. Subsequently, the mixture was press-molded at a pressure of 147 MPa (1500 kgf / cm 2 ) to produce a molded body having a model number CNMG120408N-GU (manufactured by Sumitomo Electric Hardmetal Co., Ltd.).
次に、真空度及び温度を制御可能な炉に成形体を入れ、成形体を焼結した。焼結条件は、以下に示す条件のいずれかとした。
焼結条件S1a:N2ガス雰囲気(炉内圧力0.8kPa)中、1460℃で40分間保持した後、温度を下げ、1410℃で20分間保持。
焼結条件S1b’:N2ガス雰囲気(炉内圧力0.2kPa)中、1460℃で1時間保持。
焼結条件S1c:N2ガス雰囲気(炉内圧力0.8kPa)中、1460℃で1時間保持した後、温度を下げ、1410℃で1時間保持。
Next, the compact was placed in a furnace where the degree of vacuum and temperature could be controlled, and the compact was sintered. The sintering conditions were any of the following conditions.
Sintering condition S1a: After holding at 1460 ° C. for 40 minutes in N 2 gas atmosphere (furnace pressure 0.8 kPa), the temperature was lowered and held at 1410 ° C. for 20 minutes.
Sintering condition S1b ′: held at 1460 ° C. for 1 hour in N 2 gas atmosphere (furnace pressure 0.2 kPa).
Sintering condition S1c: After holding at 1460 ° C. for 1 hour in N 2 gas atmosphere (furnace pressure 0.8 kPa), the temperature was lowered and held at 1410 ° C. for 1 hour.
焼結完了後、冷却した。冷却条件は、以下に示す条件のいずれかとした。
冷却条件C1a:Arガス雰囲気(炉内圧力80kPa)中、100℃/minで冷却。
冷却条件C1b’:Arガス雰囲気(炉内圧力4kPa)中、5℃/minで冷却。
After the completion of sintering, it was cooled. The cooling conditions were any of the following conditions.
Cooling condition C1a: Cooling at 100 ° C./min in an Ar gas atmosphere (furnace pressure 80 kPa).
Cooling condition C1b ′: Cooling at 5 ° C./min in an Ar gas atmosphere (in-furnace pressure 4 kPa).
[基材の調整]
以上のようにして得られた超硬合金に適宜ホーニング処理などの刃先処理加工を施して、表1に示す試料No.1−1〜No.1−5の刃先交換型切削チップの超硬合金製基材(形状:CNMG120408N−GU)を完成した。
[Base material adjustment]
The cemented carbide obtained as described above was appropriately subjected to blade edge processing such as honing treatment, and sample No. 1-1-No. A base material made of cemented carbide of 1-5 blade-tip-exchangeable cutting tips (shape: CNMG120408N-GU) was completed.
[超硬合金の特性評価]
(WC粒子の評価)
作製した超硬合金製基材(試料)の刃先部を切断して、ダイヤモンドペーストを用いて鏡面加工する、又は、CP装置を用いて、切断面の一部をアルゴンイオンビームによってイオンミリング加工し、顕微鏡用観察試料とした。
[Characteristic evaluation of cemented carbide]
(Evaluation of WC particles)
The cutting edge part of the manufactured cemented carbide substrate (sample) is cut and mirror-finished with diamond paste, or part of the cut surface is ion milled with an argon ion beam using a CP device. An observation sample for a microscope was used.
この観察試料の加工面を、電界放射型電子顕微鏡(FE−SEM)を用いて5000倍の倍率で観察し、反射電子画像を5視野撮影した。1視野につき、視野中心部のWC粒子500個について、画像解析式粒度分布ソフトウェア(株式会社マウンテック製「Mac−View」)を用いて、個々のWC粒子の粒径(Heywood径)を求め、計5視野におけるWC粒子の平均粒径を算出した。その結果を表1に示す。 The processed surface of this observation sample was observed at a magnification of 5000 times using a field emission electron microscope (FE-SEM), and five fields of reflection electron images were taken. For each field of view, about 500 WC particles at the center of the field of view, the particle size (Heywood diameter) of each WC particle is obtained using image analysis type particle size distribution software ("Mac-View" manufactured by Mountec Co., Ltd.). The average particle diameter of WC particles in 5 fields of view was calculated. The results are shown in Table 1.
(低β層の評価)
超硬合金製基材(試料)を表面に対して垂直に切断した断面を鏡面加工し、加工面を光学顕微鏡で観察することで、低β層の厚さを測定した。顕微鏡の視野の倍率は、例えば1000倍とすることが挙げられる。具体的には、試料断面を表面から内部に向かって厚さ(深さ)方向に観察し、第2硬質相(β相)の含有量が少なく、β相の存在比率が相対的に低い領域を低β層とし、その厚さを低β層の厚さとした。ここでは、観察画像上で、超硬合金製基材の内部に対してβ相の存在比率(面積比)が50%未満の領域を低β層とした。低β層の厚さは、観察箇所を変更して5視野について測定を行い、その平均値を低β層の厚さとした。その結果を表1に示す。
(Evaluation of low β layer)
The section of the cemented carbide substrate (sample) cut perpendicularly to the surface was mirror-finished, and the processed surface was observed with an optical microscope to measure the thickness of the low β layer. The magnification of the field of view of the microscope is, for example, 1000 times. Specifically, the cross section of the sample is observed in the thickness (depth) direction from the surface to the inside, and the content of the second hard phase (β phase) is small and the abundance ratio of the β phase is relatively low. Was the low β layer, and the thickness was the thickness of the low β layer. Here, the region where the β phase abundance ratio (area ratio) is less than 50% with respect to the inside of the cemented carbide substrate in the observation image is defined as the low β layer. The thickness of the low β layer was measured for five visual fields while changing the observation location, and the average value was taken as the thickness of the low β layer. The results are shown in Table 1.
(熱浸透率の評価)
作製した超硬合金製基材の刃先部を斜め方向に切断して、ダイヤモンドペーストを用いて鏡面加工し、熱浸透率評価用試料とした。切断方向は、切断面の長さが垂直方向に切断したときの切断面の長さの3倍の長さになるように、表面に対して斜めに切断した。この評価用試料の加工面と基準試料とを同時にMoスパッタリングし、熱物性顕微鏡(株式会社ベテル製「サーマルマイクロスコープTM3」)により熱浸透率と位相差との校正曲線を得た。そして、加工面における低β層及び内部の40μm×40μmの領域に対して、検出光スポット径3μm、測定間隔2μmでマッピング測定を行い、21×21点、計441点の測定を行う。測定点1点につき100回測定した平均値を算出し、全測定点のデータのうち、最大値から10%の測定値及び最小値から10%の測定値を除いた残りの80%の測定値の平均値を、測定領域の熱浸透率とする。測定領域を変更して、異なる5か所の40μm四方の領域について熱浸透率を測定し、その5か所の平均値を算出して、試料の低β層の熱浸透率(TEa)及び内部の熱浸透率(TEb)を求め、熱浸透率比(TEa/TEb)を求めた。その結果を表1に示す。
(Evaluation of heat penetration rate)
The cutting edge portion of the manufactured cemented carbide substrate was cut in an oblique direction and mirror-finished using a diamond paste to obtain a sample for evaluating the thermal permeability. The cutting direction was cut obliquely with respect to the surface so that the length of the cut surface was three times the length of the cut surface when cut in the vertical direction. The processed surface of the sample for evaluation and the reference sample were simultaneously Mo-sputtered, and a calibration curve between the thermal permeability and the phase difference was obtained with a thermophysical microscope (“Thermal Microscope TM3” manufactured by Bethel Co., Ltd.). Then, mapping measurement is performed with respect to the low β layer on the processed surface and the internal 40 μm × 40 μm region at a detection light spot diameter of 3 μm and a measurement interval of 2 μm, and measurement is performed at 21 × 21 points, for a total of 441 points. The average value measured 100 times per measurement point is calculated, and the remaining 80% measurement value excluding the measurement value of 10% from the maximum value and the measurement value of 10% from the minimum value among the data of all measurement points Is an average value of the heat penetration rate of the measurement region. Change the measurement area, measure the thermal permeability of 5 different 40μm square areas, calculate the average value of the 5 areas, calculate the thermal permeability (TEa) of the low β layer of the sample and the internal The heat permeation rate (TEb) was determined, and the heat permeation rate ratio (TEa / TEb) was determined. The results are shown in Table 1.
[被覆膜の形成]
作製した超硬合金製基材の表面に、CVD法を用いて、TiN(0.3μm)、MT−TiCN(5.0μm)、α−Al2O3(4.0μm)をこの順番で積層した被覆膜を形成した(括弧内の数値は厚さを示す)。なお、「MT−TiCN」の「MT」とは、MT(Moderate Temperature)−CVD法を用いて形成されていることを示す。
[Formation of coating film]
TiN (0.3 μm), MT-TiCN (5.0 μm), and α-Al 2 O 3 (4.0 μm) are laminated in this order on the surface of the manufactured cemented carbide substrate using the CVD method. A coated film was formed (the value in parentheses indicates the thickness). In addition, “MT” of “MT-TiCN” indicates that it is formed by using MT (Moderate Temperature) -CVD method.
以上のようにして、表1に示す試料No.1−1〜No.1−5の刃先交換型切削チップを完成した。 As described above, the sample numbers shown in Table 1 were obtained. 1-1-No. A cutting edge type cutting tip of 1-5 was completed.
[切削工具の評価]
各試料の刃先交換型切削チップについて、耐摩耗性を評価した。刃先交換型切削チップを型番DCLNR2525(住友電工ハードメタル株式会社製)のホルダに取り付け、以下に示す切削条件で鋼旋削による耐摩耗性試験を実施した。
[Evaluation of cutting tools]
The wear resistance of each of the blade-tip-exchangeable cutting tips of each sample was evaluated. The cutting edge exchangeable cutting tip was attached to a holder of model number DCLNR2525 (manufactured by Sumitomo Electric Hardmetal Co., Ltd.), and a wear resistance test by steel turning was performed under the cutting conditions shown below.
(切削条件)
被削材:SCM435
切削速度(V):220m/min
送り量(f):0.3mm/rev
切込量(ap):1.5mm
クーラント:湿式(WET)
(Cutting conditions)
Work material: SCM435
Cutting speed (V): 220 m / min
Feed amount (f): 0.3 mm / rev
Cutting depth (ap): 1.5mm
Coolant: Wet (WET)
評価は、逃げ面摩耗幅を適宜測定して逃げ面摩耗幅が0.2mm以上となるか、又は、欠損した場合に寿命と判定した。その結果を表1に示す。 In the evaluation, the flank wear width was appropriately measured, and the flank wear width was determined to be 0.2 mm or more, or the life was judged to be lost. The results are shown in Table 1.
原料1A’(Co:3質量%)を用いた試料No.1−1は、短時間で欠損した。試料No.1−1は、結合相となるCo量が少なく、焼結性が悪化したため、強度が著しく低下して、欠損により寿命となったものと推定される。 Sample No. 1 using raw material 1A ′ (Co: 3 mass%) 1-1 was lost in a short time. Sample No. In 1-1, it is presumed that the amount of Co serving as a binder phase is small and the sinterability is deteriorated, so that the strength is remarkably lowered and the life is shortened due to defects.
原料1B(Co:5質量%)を用いた試料No.1−2〜No.1−5は、結合相となるCoが一定量含まれており、十分な強度を有しているため、逃げ面摩耗幅が0.2mm以上となるまで欠損に至ることなく切削できた。中でも、1.02<TEa/TEb<1.08を満たす試料No.1−2〜No.1−4は、寿命が20分以上であることから、逃げ面摩耗が効果的に抑制されており、耐摩耗性に優れることが分かる。これは、TEa/TEb<1.08を満たすことで、低β層と内部との熱浸透率比が小さいため、切削時に刃先表面で発生した熱が表面部の低β層から内部に効果的に拡散できたことから、表面部が局所的に高温になることが抑制され、耐摩耗性が向上したものと推定される。特に、TEa/TEb<1.07を満たす試料No.1−2,No.1−3は、寿命が25分以上であり、耐摩耗性に優れる。なお、試料No.1−2の超硬合金製基材における低β層及び内部の熱浸透率(実測値)は、低β層:14786(J/(m2s1/2K)、内部:14120(J/(m2s1/2K)であった。 Sample No. 1 using raw material 1B (Co: 5 mass%) 1-2-No. No. 1-5 contains a certain amount of Co as a binder phase and has sufficient strength, so that it was able to be cut without breaking until the flank wear width was 0.2 mm or more. Among them, sample No. 1 satisfying 1.02 <TEa / TEb <1.08. 1-2-No. Since 1-4 has a lifetime of 20 minutes or more, it can be seen that flank wear is effectively suppressed and wear resistance is excellent. This is because, by satisfying TEa / TEb <1.08, the heat permeability ratio between the low β layer and the inside is small, so the heat generated on the cutting edge surface during cutting is effective from the low β layer on the surface to the inside. Therefore, it is presumed that the surface portion is prevented from locally becoming high temperature and wear resistance is improved. In particular, sample No. 1 satisfying TEa / TEb <1.07. 1-2, no. 1-3 has a lifetime of 25 minutes or more and is excellent in wear resistance. Sample No. In the 1-2 cemented carbide substrate, the low β layer and the internal heat permeability (actually measured values) were as follows: low β layer: 14786 (J / (m 2 s 1/2 K), internal: 14120 (J / (M 2 s 1/2 K).
これに対し、TEa/TEb≧1.08の試料No.1−5は、逃げ面摩耗の進行が速く、寿命が短い。これは、熱浸透率比が大きいため、表面部の低β層から内部に熱が拡散され難く、表面部が局所的に高温になり、耐摩耗性が低下したものと推定される。熱浸透率比が大きくなった原因は、表面部にβ相を残存させることができず、表面部に含有するβ相が少ない(脱β層に近い)ため、内部に対する低β層の熱浸透率が高くなったことによるものと考えられる。 In contrast, the sample No. TEa / TEb ≧ 1.08. 1-5 has a fast flank wear and a short life. This is presumably because the heat permeability ratio is large, so that heat is not easily diffused from the low β layer in the surface portion, the surface portion becomes locally hot, and the wear resistance is lowered. The reason for the increase in the thermal permeability ratio is that the β phase cannot remain on the surface part and the β phase contained in the surface part is small (close to the de-β layer), so the low β layer heat penetration to the inside This is thought to be due to the higher rate.
<実施例2>
原料粉末として、FSSS径がそれぞれ4.7μm,3.8μm,1.2μm,6.3μmの4種類のWC粉末を準備した。各粒度のWC粉末を、WC粉末1(4.7μm),WC粉末2(3.8μm),WC粉末3(1.2μm),WC粉末4(6.3μm)とした(括弧内の数値は粒度を示す)。また、FSSS径が2.5μmのTiC粉末,ZrC粉末及びZrN粉末と、FSSS径が2.5μmのCo粉末及びNi粉末とを準備した。そして、各粉末を以下に示す組成となるように原料を秤量した。
原料2A1:1.0質量%のTiCと、3.0質量%のZrCと、0.6質量%のZrNと、9.0質量%のCoと、1.0質量%のNiと、残部がWCの組成。但し、WC粉末1(4.7μm)を用いる。
原料2B’:1.0質量%のTiCと、3.0質量%のZrCと、0.6質量%のZrNと、11.8質量%のCoと、1.2質量%のNiと、残部がWCの組成。但し、WC粉末1(4.7μm)を用いる。
原料2A2:WC粉末2(3.8μm)を用いる以外は、原料2A1と同じ組成。
原料2A3:WC粉末3(1.2μm)を用いる以外は、原料2A1と同じ組成。
原料2A4:WC粉末4(6.3μm)を用いる以外は、原料2A1と同じ組成。
<Example 2>
As raw material powders, four types of WC powders having FSSS diameters of 4.7 μm, 3.8 μm, 1.2 μm, and 6.3 μm were prepared. The WC powder of each particle size was designated as WC powder 1 (4.7 μm), WC powder 2 (3.8 μm), WC powder 3 (1.2 μm), and WC powder 4 (6.3 μm) (the values in parentheses are Indicates particle size). Further, TiC powder, ZrC powder, and ZrN powder having a FSSS diameter of 2.5 μm, and Co powder and Ni powder having a FSSS diameter of 2.5 μm were prepared. And the raw material was weighed so that each powder might become the composition shown below.
Raw material 2A 1 : 1.0% by mass of TiC, 3.0% by mass of ZrC, 0.6% by mass of ZrN, 9.0% by mass of Co, 1.0% by mass of Ni, and the balance Is the composition of WC. However, WC powder 1 (4.7 μm) is used.
Raw material 2B ′: 1.0% by mass of TiC, 3.0% by mass of ZrC, 0.6% by mass of ZrN, 11.8% by mass of Co, 1.2% by mass of Ni, and the balance Is the composition of WC. However, WC powder 1 (4.7 μm) is used.
Raw material 2A 2 : Same composition as raw material 2A 1 except that WC powder 2 (3.8 μm) is used.
Raw material 2A 3 : Same composition as raw material 2A 1 except that WC powder 3 (1.2 μm) is used.
Raw material 2A 4 : Same composition as raw material 2A 1 except that WC powder 4 (6.3 μm) is used.
[超硬合金の調整]
上記原料を用い、以下のように製造条件を変更して、表2に示す試料No.2−1〜No.2−8の刃先交換型切削チップの超硬合金製基材を作製した。
[Adjustment of cemented carbide]
Using the above raw materials, the production conditions were changed as follows, and sample Nos. Shown in Table 2 were used. 2-1. A cemented carbide base material of 2-8 blade-tip-exchangeable cutting tips was produced.
秤量した原料を、エタノール溶媒とメディアと共にアトライターに投入し、アトライターで混合して混合物を作製した。混合条件は、以下に示す条件のいずれかとした。
混合条件M2a:原料のうち、WC粉末とCo粉末とNi粉末とを投入して9時間の粉砕混合をした後、残るTiC粉末,ZrC粉末及びZrN粉末を投入し、0.5時間の粉砕混合。
混合条件M2b:原料のうち、WC粉末とCo粉末とNi粉末とを投入して7時間の粉砕混合をした後、残るTiC粉末,ZrC粉末及びZrN粉末を投入し、2.5時間の粉砕混合。
混合条件M2c’:原料の全粉末を投入して9.5時間の粉砕混合。
The weighed raw materials were put into an attritor together with ethanol solvent and media, and mixed with the attritor to prepare a mixture. The mixing conditions were any of the following conditions.
Mixing condition M2a: WC powder, Co powder and Ni powder among the raw materials were added and mixed for 9 hours, then the remaining TiC powder, ZrC powder and ZrN powder were added and mixed for 0.5 hour. .
Mixing condition M2b: WC powder, Co powder and Ni powder among the raw materials were added and pulverized and mixed for 7 hours, then the remaining TiC powder, ZrC powder and ZrN powder were added and pulverized and mixed for 2.5 hours. .
Mixing condition M2c ′: pulverization and mixing for 9.5 hours with all raw material powders added.
混合後、混合物をスプレードライ乾燥して造粒した。次いで、混合物を147MPa(1500kgf/cm2)の圧力でプレス成形して、型番CNMG120412N−GU(住友電工ハードメタル株式会社製)形状の成形体を作製した。 After mixing, the mixture was spray dried and granulated. Next, the mixture was press-molded at a pressure of 147 MPa (1500 kgf / cm 2 ) to produce a compact having a model number CNMG120212N-GU (manufactured by Sumitomo Electric Hardmetal Co., Ltd.).
次に、真空度及び温度を制御可能な炉に成形体を入れ、成形体を焼結した。焼結条件は、以下に示す条件のいずれかとした。
焼結条件S2a:Arガス雰囲気(炉内圧力1kPa)中、1400℃で30分間保持した後、温度を下げ、1360℃で20分間保持。
焼結条件S2b:Arガス雰囲気(炉内圧力1kPa)中、1400℃で40分間保持した後、温度を下げ、1350℃で10分間保持。
焼結条件S2c’:Arガス雰囲気(炉内圧力1kPa)中、1400℃で50分間保持。
Next, the compact was placed in a furnace where the degree of vacuum and temperature could be controlled, and the compact was sintered. The sintering conditions were any of the following conditions.
Sintering condition S2a: After holding at 1400 ° C. for 30 minutes in an Ar gas atmosphere (furnace pressure 1 kPa), the temperature was lowered and held at 1360 ° C. for 20 minutes.
Sintering condition S2b: After holding at 1400 ° C. for 40 minutes in an Ar gas atmosphere (furnace pressure 1 kPa), the temperature was lowered and held at 1350 ° C. for 10 minutes.
Sintering condition S2c ′: held at 1400 ° C. for 50 minutes in an Ar gas atmosphere (furnace pressure 1 kPa).
焼結完了後、冷却した。冷却条件は、以下に示す条件のいずれかとした。
冷却条件C2a:Arガス雰囲気(炉内圧力100kPa)中、110℃/minで冷却。
冷却条件C2b:Arガス雰囲気(炉内圧力70kPa)中、90℃/minで冷却。
冷却条件C2c’:Arガス雰囲気(炉内圧力10kPa)中、3℃/minで冷却。
After the completion of sintering, it was cooled. The cooling conditions were any of the following conditions.
Cooling condition C2a: Cooling at 110 ° C./min in an Ar gas atmosphere (furnace pressure 100 kPa).
Cooling condition C2b: Cooling at 90 ° C./min in an Ar gas atmosphere (furnace pressure 70 kPa).
Cooling condition C2c ′: Cooling at 3 ° C./min in an Ar gas atmosphere (furnace pressure 10 kPa).
[基材の調整]
以上のようにして得られた超硬合金に適宜ホーニング処理などの刃先処理加工を施して、表2に示す試料No.2−1〜No.2−8の刃先交換型切削チップの超硬合金製基材(形状:CNMG120412N−GU)を完成した。
[Base material adjustment]
The cemented carbide obtained as described above was appropriately subjected to blade edge processing such as honing treatment, and sample Nos. Shown in Table 2 were obtained. 2-1. A cemented carbide base material (shape: CNMG120212N-GU) of 2-8 blade-tip-exchangeable cutting tips was completed.
[超硬合金の評価]
作製した超硬合金製基材(試料)について、実施例1と同じようにして、超硬合金の特性を評価した。WC粒子の平均粒径、低β層の厚さ、並びに、低β層の熱浸透率(TEa)と内部の熱浸透率(TEb)との熱浸透率比(TEa/TEb)を表2に示す。
[Evaluation of cemented carbide]
About the produced cemented carbide base material (sample), the characteristics of the cemented carbide were evaluated in the same manner as in Example 1. Table 2 shows the average particle diameter of the WC particles, the thickness of the low β layer, and the thermal permeability ratio (TEa / TEb) between the thermal permeability (TEa) of the low β layer and the internal thermal permeability (TEb). Show.
[被覆膜の形成]
作製した超硬合金製基材の表面に、CVD法を用いて、TiN(0.3μm)、MT−TiCN(3.0μm)、α−Al2O3(3.0μm)をこの順番で積層した被覆膜を形成した(括弧内の数値は厚さを示す)。
[Formation of coating film]
TiN (0.3 μm), MT-TiCN (3.0 μm), and α-Al 2 O 3 (3.0 μm) are laminated in this order on the surface of the manufactured cemented carbide substrate using the CVD method. A coated film was formed (the value in parentheses indicates the thickness).
以上のようにして、表2に示す試料No.2−1〜No.2−8の刃先交換型切削チップを完成した。 As described above, the sample numbers shown in Table 2 were obtained. 2-1. A 2-8 cutting edge replacement type cutting tip was completed.
[切削工具の評価]
各試料の刃先交換型切削チップについて、耐欠損性を評価した。刃先交換型切削チップを型番DCLNR2525(住友電工ハードメタル株式会社製)のホルダに取り付け、以下に示す切削条件で鋼旋削による耐欠損性試験を実施した。
[Evaluation of cutting tools]
The chipping resistance of the cutting edge exchangeable cutting tip of each sample was evaluated. The cutting edge exchangeable cutting tip was attached to a holder of model number DCLNR2525 (manufactured by Sumitomo Electric Hardmetal Co., Ltd.), and a fracture resistance test by steel turning was performed under the following cutting conditions.
(切削条件)
被削材:SCM435(φ150〜180mmの丸棒、4溝材)
切削速度(V):110m/min
送り量(f):0.25mm/rev
切込量(ap):1.6mm
クーラント:湿式(WET)
(Cutting conditions)
Work Material: SCM435 (φ150 ~ 180mm round bar, 4 groove material)
Cutting speed (V): 110 m / min
Feed amount (f): 0.25 mm / rev
Cutting depth (ap): 1.6 mm
Coolant: Wet (WET)
評価は、上記条件で5分間の切削を行い、全10個の刃先交換型切削チップのうち、刃先が欠損した割合(欠損率:欠損数/10)を調べた。その結果を表2に示す。 In the evaluation, cutting was performed for 5 minutes under the above conditions, and the ratio of the cutting edge to the defective cutting edge among all 10 cutting edge-exchangeable cutting tips (defect rate: number of defects / 10) was examined. The results are shown in Table 2.
原料2B’(Co:11.8質量%,Ni:1.2質量%)を用いた試料No.2−5は、欠損率が高い。試料No.2−5は、結合相となるCoとNiの合計量が多く、硬度が低下したため、切削時に塑性変形を起こして欠損が多発したものと推定される。 Sample No. 2 using raw material 2B ′ (Co: 11.8 mass%, Ni: 1.2 mass%) was used. 2-5 has a high defect rate. Sample No. In No. 2-5, since the total amount of Co and Ni serving as the binder phase is large and the hardness is lowered, it is presumed that plastic deformation occurred during cutting and defects frequently occurred.
1.02<TEa/TEb<1.08を満たす試料No.2−1〜No.2−3及び試料No.2−6〜No.2−8は、欠損率が50%以下であり、耐欠損性に優れることが分かる。これは、TEa/TEb<1.08を満たすことで、低β層と内部との熱浸透率比が小さいため、切削時に刃先表面で発生した熱が表面部の低β層から内部に効果的に拡散することから、表面部が局所的に高温になることによる強度低下が生じ難く、耐欠損性が向上したものと推定される。加えて、これら試料の比較から、WC粒子の平均粒径が0.4μm〜4μmの範囲内である試料No.2−1〜No.2−3及びNo.2−6は欠損率が30%以下であり、範囲外である試料No.2−7,No.2−8に比較して耐欠損性に優れる。これは、試料No.2−7では、超硬合金中のWC粒子の粒径が小さいことから、耐亀裂伝播性に劣り、切削時の機械的・熱的な衝撃による欠損が生じ易く、一方、試料No.2−8では、超硬合金中のWC粒子の粒径が大きいことから、硬度が低下し、切削時の変形によって欠損が生じ易くなったものと推定される。また、同じ原料2A1を用いた試料No.2−1〜No.2−3の比較から、TEa/TEb<1.07を満たすことで、耐欠損性がより向上することが分かる。 Sample No. 1 satisfying 1.02 <TEa / TEb <1.08. 2-1. 2-3 and Sample No. 2-6-No. No. 2-8 has a defect rate of 50% or less and is excellent in defect resistance. This is because, by satisfying TEa / TEb <1.08, the heat permeability ratio between the low β layer and the inside is small, so the heat generated on the cutting edge surface during cutting is effective from the low β layer on the surface to the inside. Therefore, it is presumed that the strength of the surface portion is hardly lowered and the fracture resistance is improved. In addition, from the comparison of these samples, the sample No. 1 in which the average particle diameter of the WC particles is in the range of 0.4 μm to 4 μm. 2-1. 2-3 and no. Sample No. 2-6 has a defect rate of 30% or less and is out of range. 2-7, No. 2 Excellent fracture resistance compared to 2-8. This is the sample No. In No. 2-7, since the particle size of the WC particles in the cemented carbide is small, the crack propagation resistance is inferior, and defects due to mechanical and thermal shock during cutting are likely to occur. In No. 2-8, since the particle diameter of the WC particles in the cemented carbide is large, it is presumed that the hardness is lowered and defects are likely to occur due to deformation during cutting. Sample No. 2 using the same raw material 2A 1 was used. 2-1. From the comparison of 2-3, it can be seen that the fracture resistance is further improved by satisfying TEa / TEb <1.07.
これに対し、TEa/TEb≧1.08の試料No.2−4は、欠損率が高く、耐欠損性に劣る。これは、熱浸透率比が大きいため、表面部が局所的に高温になることで強度が低下し、切削時の衝撃によってチッピングを起点とする欠損が多発したものと推定される。熱浸透率比が大きくなった原因は、表面部にβ相を残存させることができず、表面部に含有するβ相が少ない(脱β層に近い)ため、内部に対する低β層の熱浸透率が高くなったことによるものと考えられる。 In contrast, the sample No. TEa / TEb ≧ 1.08. 2-4 has a high defect rate and inferior defect resistance. This is presumed that since the heat permeability ratio is large, the strength of the surface portion is lowered locally due to high temperature, and defects starting from chipping frequently occur due to impact during cutting. The reason for the increase in the thermal permeability ratio is that the β phase cannot remain on the surface part and the β phase contained in the surface part is small (close to the de-β layer), so the low β layer heat penetration to the inside This is thought to be due to the higher rate.
<実施例3>
原料粉末として、FSSS径が4.7μmのWC粉末と、FSSS径が2.5μmのTiC粉末,TiCN粉末,TaC粉末及びNbC粉末と、FSSS径が2.5μmのCo粉末とを準備した。そして、各粉末を以下に示す組成となるように原料を秤量した。TiCとTiCNの合計量は、1.5質量%とした。
原料3A:1.5質量%のTiCと、3.0質量%のTaCと、1.5質量%のNbCと、7.5質量%のCoと、残部がWCの組成。
原料3B:1.2質量%のTiCと、0.3質量%のTiCNと、3.0質量%のTaCと、1.5質量%のNbCと、7.5質量%のCoと、残部がWCの組成。
原料3C:0.5質量%のTiCと、1.0質量%のTiCNと、3.0質量%のTaCと、1.5質量%のNbCと、7.5質量%のCoと、残部がWCの組成。
<Example 3>
As raw material powders, a WC powder having a FSSS diameter of 4.7 μm, a TiC powder having a FSSS diameter of 2.5 μm, a TiCN powder, a TaC powder and an NbC powder, and a Co powder having a FSSS diameter of 2.5 μm were prepared. And the raw material was weighed so that each powder might become the composition shown below. The total amount of TiC and TiCN was 1.5% by mass.
Raw material 3A: composition of 1.5% by mass of TiC, 3.0% by mass of TaC, 1.5% by mass of NbC, 7.5% by mass of Co and the balance of WC.
Raw material 3B: 1.2% by mass of TiC, 0.3% by mass of TiCN, 3.0% by mass of TaC, 1.5% by mass of NbC, 7.5% by mass of Co, and the balance Composition of WC.
Raw material 3C: 0.5% by mass of TiC, 1.0% by mass of TiCN, 3.0% by mass of TaC, 1.5% by mass of NbC, 7.5% by mass of Co, and the balance Composition of WC.
[超硬合金の調整]
上記原料を用い、以下のように製造条件を変更して、表3に示す試料No.3−1〜No.3−4の刃先交換型切削チップの超硬合金製基材を作製した。
[Adjustment of cemented carbide]
Using the above raw materials, the production conditions were changed as follows, and sample Nos. Shown in Table 3 were used. 3-1. A cemented carbide base material of 3-4 blade-tip-exchangeable cutting tips was produced.
秤量した原料を、エタノール溶媒とメディアと共にボールミルに投入し、ボールミルで混合して混合物を作製した。混合条件は、以下に示す条件とした。
混合条件M3a:原料のうち、WC粉末とCo粉末とを投入して11時間の粉砕混合をした後、残るTiC粉末,TiCN粉末,TaC粉末及びNbC粉末を投入し、1時間の粉砕混合。
The weighed raw materials were put into a ball mill together with ethanol solvent and media, and mixed by a ball mill to prepare a mixture. The mixing conditions were as shown below.
Mixing condition M3a: WC powder and Co powder among the raw materials were added and pulverized and mixed for 11 hours, then the remaining TiC powder, TiCN powder, TaC powder and NbC powder were added and pulverized and mixed for 1 hour.
混合後、混合物をスプレードライ乾燥して造粒した。次いで、混合物を147MPa(1500kgf/cm2)の圧力でプレス成形して、型番CNMG120408N−GU(住友電工ハードメタル株式会社製)形状の成形体を作製した。 After mixing, the mixture was spray dried and granulated. Subsequently, the mixture was press-molded at a pressure of 147 MPa (1500 kgf / cm 2 ) to produce a molded body having a model number CNMG120408N-GU (manufactured by Sumitomo Electric Hardmetal Co., Ltd.).
次に、真空度及び温度を制御可能な炉に成形体を入れ、成形体を焼結した。焼結条件は、以下に示す条件のいずれかとした。
焼結条件S3a’:N2ガス雰囲気(炉内圧力30kPa)中、1420℃で1.5時間保持。
焼結条件S3b:Arガス雰囲気(炉内圧力2kPa)中、1420℃で1時間保持した後、温度を下げ、1380℃で0.5時間保持。
Next, the compact was placed in a furnace where the degree of vacuum and temperature could be controlled, and the compact was sintered. The sintering conditions were any of the following conditions.
Sintering condition S3a ′: held at 1420 ° C. for 1.5 hours in N 2 gas atmosphere (furnace pressure 30 kPa).
Sintering condition S3b: After holding at 1420 ° C. for 1 hour in an Ar gas atmosphere (furnace pressure 2 kPa), the temperature was lowered and held at 1380 ° C. for 0.5 hour.
焼結完了後、冷却した。冷却条件は、以下に示す条件のいずれかとした。
冷却条件C3a:Arガス雰囲気(炉内圧力10kPa)中、10℃/minで冷却。
冷却条件C3b:Arガス雰囲気(炉内圧力80kPa)中、100℃/minで冷却。
After the completion of sintering, it was cooled. The cooling conditions were any of the following conditions.
Cooling condition C3a: Cooling at 10 ° C./min in Ar gas atmosphere (furnace pressure 10 kPa).
Cooling condition C3b: Cooling at 100 ° C./min in an Ar gas atmosphere (furnace pressure 80 kPa).
[基材の調整]
以上のようにして得られた超硬合金に適宜ホーニング処理などの刃先処理加工を施して、表3に示す試料No.3−1〜No.3−4の刃先交換型切削チップの超硬合金製基材(形状:CNMG120408N−GU)を完成した。
[Base material adjustment]
The cemented carbide obtained as described above was appropriately subjected to cutting edge processing such as honing processing, and sample Nos. Shown in Table 3 were obtained. 3-1. A cemented carbide base material (shape: CNMG120408N-GU) of a 3-4 cutting edge exchange type cutting tip was completed.
[超硬合金の評価]
作製した超硬合金製基材(試料)について、実施例1と同じようにして、超硬合金の特性を評価した。WC粒子の平均粒径、低β層の厚さ、並びに、低β層の熱浸透率(TEa)と内部の熱浸透率(TEb)との熱浸透率比(TEa/TEb)を表3に示す。
[Evaluation of cemented carbide]
About the produced cemented carbide base material (sample), the characteristics of the cemented carbide were evaluated in the same manner as in Example 1. Table 3 shows the average particle diameter of the WC particles, the thickness of the low β layer, and the thermal permeability ratio (TEa / TEb) between the thermal permeability (TEa) of the low β layer and the internal thermal permeability (TEb). Show.
[被覆膜の形成]
作製した超硬合金製基材の表面に、CVD法を用いて、TiN(0.2μm)、MT−TiCN(5.0μm)、α−Al2O3(5.0μm)をこの順番で積層した被覆膜を形成した(括弧内の数値は厚さを示す)。
[Formation of coating film]
TiN (0.2 μm), MT-TiCN (5.0 μm), and α-Al 2 O 3 (5.0 μm) are laminated in this order on the surface of the manufactured cemented carbide substrate using the CVD method. A coated film was formed (the value in parentheses indicates the thickness).
以上のようにして、表3に示す試料No.3−1〜No.3−4の刃先交換型切削チップを完成した。 As described above, the sample Nos. Shown in Table 3 were used. 3-1. A 3-4 cutting edge replacement type cutting tip was completed.
[切削工具の評価]
各試料の刃先交換型切削チップについて、耐欠損性を評価した。刃先交換型切削チップを型番DCLNR2525(住友電工ハードメタル株式会社製)のホルダに取り付け、以下に示す切削条件で鋼旋削による耐欠損性試験を実施した。
[Evaluation of cutting tools]
The chipping resistance of the cutting edge exchangeable cutting tip of each sample was evaluated. The cutting edge exchangeable cutting tip was attached to a holder of model number DCLNR2525 (manufactured by Sumitomo Electric Hardmetal Co., Ltd.), and a fracture resistance test by steel turning was performed under the following cutting conditions.
(切削条件)
被削材:SCr420(φ150〜180mmの丸棒、1溝材)
切削速度(V):190m/min
送り量(f):0.23mm/rev
切込量(ap):3.0mm
クーラント:湿式(WET)
(Cutting conditions)
Work material: SCr420 (φ150-180mm round bar, 1 groove material)
Cutting speed (V): 190 m / min
Feed amount (f): 0.23 mm / rev
Cutting depth (ap): 3.0 mm
Coolant: Wet (WET)
評価は、欠損するまでの時間を測定した。その結果を表3に示す。 In the evaluation, the time until loss was measured. The results are shown in Table 3.
第2硬質相として窒化物や炭窒化物などの窒素含有化合物(例、TiCN)を含有しない原料3Aを用いた試料No.3−1は、短時間で欠損した。試料No.3−1は、TEa/TEb≦1.02であり、低β層と内部との熱浸透率が略同じであることから、表面部に多量のβ相が残存していると考えられる。これは、試料No.3−1では、原料に窒素含有化合物が含まれていないため、焼結をN2雰囲気で行って表面部を脱窒することにより低β層を形成したが、β相がほとんど消失せず、表面部に多くのβ相が残存したことが原因と考えられる。そのため、試料No.3−1では、表面部(低β層)にβ相を多く含むため、表面部の靱性が低下して欠損が生じ易く、耐衝撃性や耐欠損性が低下したものと推定される。 Sample No. 3 using a raw material 3A not containing a nitrogen-containing compound (eg, TiCN) such as nitride or carbonitride as the second hard phase. 3-1 was lost in a short time. Sample No. Since 3-1 is TEa / TEb ≦ 1.02 and the thermal permeability of the low β layer and the inside is substantially the same, it is considered that a large amount of β phase remains on the surface portion. This is the sample No. In 3-1, since the raw material does not contain a nitrogen-containing compound, a low β layer was formed by denitrifying the surface portion by performing sintering in an N 2 atmosphere, but the β phase hardly disappeared, This is probably because many β phases remained on the surface. Therefore, sample no. In 3-1, since the surface portion (low β layer) contains a large amount of β phase, it is presumed that the toughness of the surface portion is reduced and defects are easily generated, and impact resistance and defect resistance are reduced.
これに対し、1.02<TEa/TEb<1.08を満たす試料No.3−2〜No.3−4は、欠損までの時間が15分以上であり、耐欠損性に優れることが分かる。これは、TEa/TEb<1.08を満たすことで、低β層と内部との熱浸透率比が小さいため、切削時に刃先表面で発生した熱が表面部の低β層から内部に効果的に拡散することから、表面部が局所的に高温になることによる強度低下が生じ難く、耐欠損性が向上したものと推定される。また、試料No.3−2〜No.3−4は、1.02<TEa/TEbであり、試料No.3−1との比較から、表面部に多量のβ相が残存していないと考えられる。そのため、試料No.3−2〜No.3−4では、表面部の靱性が高く、低β層によって切削時の衝撃を効果的に吸収できたため、低β層による耐衝撃性や耐欠損性の機能が十分に発揮されているものと推定される。 In contrast, Sample No. 1 satisfying 1.02 <TEa / TEb <1.08. 3-2-No. 3-4 shows that the time to defect is 15 minutes or more and is excellent in defect resistance. This is because, by satisfying TEa / TEb <1.08, the heat permeability ratio between the low β layer and the inside is small, so the heat generated on the cutting edge surface during cutting is effective from the low β layer on the surface to the inside. Therefore, it is presumed that the strength of the surface portion is hardly lowered and the fracture resistance is improved. Sample No. 3-2-No. 3-4 is 1.02 <TEa / TEb. From the comparison with 3-1, it is considered that a large amount of β phase does not remain on the surface portion. Therefore, sample no. 3-2-No. In 3-4, the toughness of the surface portion is high, and the impact during cutting was effectively absorbed by the low β layer, so that the functions of impact resistance and fracture resistance by the low β layer are sufficiently exhibited. Presumed.
<実施例4>
原料粉末として、FSSS径が3.8μmのWC粉末と、FSSS径が2.5μm又は6.0μmのNbC粉末、ZrC粉末及びZrN粉末と、FSSS径が2.5μmのCo粉末とを準備した。そして、各粉末を以下に示す組成となるように原料を秤量した。
原料4A:3.5質量%のNbCと、3.0質量%のZrCと、0.5質量%のZrNと、10.0質量%のCoと、残部がWCの組成。但し、FSSS径が2.5μmのNbC粉末、ZrC粉末及びZrN粉末を用いる。
原料4B:FSSS径が6.0μmのNbC粉末、ZrC粉末及びZrN粉末を用いる以外は、原料4Aと同じ組成。
<Example 4>
As raw material powders, a WC powder having a FSSS diameter of 3.8 μm, a NbC powder having a FSSS diameter of 2.5 μm or 6.0 μm, a ZrC powder and a ZrN powder, and a Co powder having a FSSS diameter of 2.5 μm were prepared. And the raw material was weighed so that each powder might become the composition shown below.
Raw material 4A: 3.5% by mass of NbC, 3.0% by mass of ZrC, 0.5% by mass of ZrN, 10.0% by mass of Co, and the balance of WC. However, NbC powder, ZrC powder, and ZrN powder having a FSSS diameter of 2.5 μm are used.
Raw material 4B: Same composition as raw material 4A, except that NbC powder, ZrC powder and ZrN powder with a FSSS diameter of 6.0 μm are used.
[超硬合金の調整]
上記原料を用い、以下のように製造条件を変更して、表4に示す試料No.4−1〜No.4−6の刃先交換型切削チップの超硬合金製基材を作製した。
[Adjustment of cemented carbide]
Using the above raw materials, the production conditions were changed as follows, and sample Nos. Shown in Table 4 were used. 4-1. A base material made of cemented carbide of 4-6 cutting edge exchange type cutting tip was produced.
秤量した原料を、エタノール溶媒とメディアと共にアトライターに投入し、アトライターで混合して混合物を作製した。混合条件は、以下に示す条件のいずれかとした。
混合条件M4a:原料のうち、WC粉末とCo粉末とを投入して8時間の粉砕混合をした後、残るNbC粉末、ZrC粉末及びZrN粉末を投入し、1時間の粉砕混合。
混合条件M4b:原料のうち、WC粉末とCo粉末とを投入して5時間の粉砕混合をした後、残るNbC粉末、ZrC粉末及びZrN粉末を投入し、4時間の粉砕混合。
混合条件M4c:原料のうち、WC粉末とCo粉末とを投入して8.7時間の粉砕混合をした後、残るNbC粉末、ZrC粉末及びZrN粉末を投入し、0.3時間の粉砕混合。
混合条件M4d:原料のうち、WC粉末とCo粉末とを投入して8.85時間の粉砕混合をした後、残るNbC粉末、ZrC粉末及びZrN粉末を投入し、0.15時間の粉砕混合。
The weighed raw materials were put into an attritor together with ethanol solvent and media, and mixed with the attritor to prepare a mixture. The mixing conditions were any of the following conditions.
Mixing condition M4a: WC powder and Co powder among raw materials were added and pulverized and mixed for 8 hours, and then the remaining NbC powder, ZrC powder and ZrN powder were added and pulverized and mixed for 1 hour.
Mixing condition M4b: WC powder and Co powder among the raw materials were added and pulverized and mixed for 5 hours, and then the remaining NbC powder, ZrC powder and ZrN powder were added and pulverized and mixed for 4 hours.
Mixing condition M4c: Among the raw materials, WC powder and Co powder were charged and pulverized and mixed for 8.7 hours, then the remaining NbC powder, ZrC powder and ZrN powder were charged, and pulverized and mixed for 0.3 hour.
Mixing condition M4d: WC powder and Co powder among the raw materials were charged and pulverized and mixed for 8.85 hours, and then the remaining NbC powder, ZrC powder and ZrN powder were charged and pulverized and mixed for 0.15 hours.
混合後、混合物をスプレードライ乾燥して造粒した。次いで、混合物を147MPa(1500kgf/cm2)の圧力でプレス成形して、型番CNMG120412N−GU(住友電工ハードメタル株式会社製)形状の成形体を作製した。 After mixing, the mixture was spray dried and granulated. Next, the mixture was press-molded at a pressure of 147 MPa (1500 kgf / cm 2 ) to produce a compact having a model number CNMG120212N-GU (manufactured by Sumitomo Electric Hardmetal Co., Ltd.).
次に、真空度及び温度を制御可能な炉に成形体を入れ、成形体を焼結した。焼結条件は、以下に示す条件のいずれかとした。
焼結条件S4a:Arガス雰囲気(炉内圧力1kPa)中、1400℃で30分間保持した後、温度を下げ、1360℃で20分間保持。
焼結条件S4b:Arガス雰囲気(炉内圧力1kPa)中、1400℃で40分間保持した後、温度を下げ、1350℃で10分間保持。
焼結条件S4c’:Arガス雰囲気(炉内圧力1kPa)中、1400℃で50分間保持。
Next, the compact was placed in a furnace where the degree of vacuum and temperature could be controlled, and the compact was sintered. The sintering conditions were any of the following conditions.
Sintering condition S4a: After holding at 1400 ° C. for 30 minutes in an Ar gas atmosphere (furnace pressure 1 kPa), the temperature was lowered and held at 1360 ° C. for 20 minutes.
Sintering condition S4b: After holding at 1400 ° C. for 40 minutes in an Ar gas atmosphere (furnace pressure 1 kPa), the temperature was lowered and held at 1350 ° C. for 10 minutes.
Sintering condition S4c ′: held at 1400 ° C. for 50 minutes in an Ar gas atmosphere (furnace pressure 1 kPa).
焼結完了後、冷却した。冷却条件は、以下に示す条件のいずれかとした。
冷却条件C4a:Arガス雰囲気(炉内圧力100kPa)中、110℃/minで冷却。
冷却条件C4b:Arガス雰囲気(炉内圧力70kPa)中、90℃/minで冷却。
冷却条件C4c’:Arガス雰囲気(炉内圧力10kPa)中、3℃/minで冷却。
After the completion of sintering, it was cooled. The cooling conditions were any of the following conditions.
Cooling condition C4a: Cooling at 110 ° C./min in an Ar gas atmosphere (internal pressure of 100 kPa).
Cooling condition C4b: Cooling at 90 ° C./min in Ar gas atmosphere (furnace pressure 70 kPa).
Cooling condition C4c ′: Cooling at 3 ° C./min in an Ar gas atmosphere (furnace pressure 10 kPa).
[基材の調整]
以上のようにして得られた超硬合金に適宜ホーニング処理などの刃先処理加工を施して、表4に示す試料No.4−1〜No.4−6の刃先交換型切削チップの超硬合金製基材(形状:CNMG120412N−GU)を完成した。
[Base material adjustment]
The cemented carbide obtained as described above was appropriately subjected to blade edge processing such as honing treatment, and sample Nos. Shown in Table 4 were obtained. 4-1. A cemented carbide base material (shape: CNMG120412N-GU) of a 4-6 cutting edge exchange type cutting tip was completed.
[超硬合金の評価]
作製した超硬合金製基材(試料)について、実施例1と同じようにして、超硬合金の特性を評価した。WC粒子の平均粒径、低β層の厚さ、並びに、低β層の熱浸透率(TEa)と内部の熱浸透率(TEb)との熱浸透率比(TEa/TEb)を表4に示す。
[Evaluation of cemented carbide]
About the produced cemented carbide base material (sample), the characteristics of the cemented carbide were evaluated in the same manner as in Example 1. Table 4 shows the average particle diameter of the WC particles, the thickness of the low β layer, and the thermal permeability ratio (TEa / TEb) between the thermal permeability (TEa) of the low β layer and the internal thermal permeability (TEb). Show.
(低β層中のβ相の最大粒径の評価)
更に、この例では、低β層におけるβ相(第2硬質相)の最大粒径を測定した。具体的には、低β層の厚さの測定に用いた断面観察像において、低β層の幅方向に1mmの領域を観察し、その領域内に存在する全てのβ相の長径を測定する。そして、観察箇所を変更した5つの領域について測定を行い、各領域内に存在する全てのβ相のうち、最も大きいβ相の長径を低β層中のβ相の最大粒径とした。その結果を表4に示す。
(Evaluation of maximum particle size of β phase in low β layer)
Furthermore, in this example, the maximum particle size of the β phase (second hard phase) in the low β layer was measured. Specifically, in the cross-sectional observation image used for measuring the thickness of the low β layer, an area of 1 mm is observed in the width direction of the low β layer, and the major axis of all β phases existing in the area is measured. . And it measured about five area | regions which changed the observation location, and made the longest diameter of the largest beta phase among all the beta phases which existed in each area | region into the largest particle diameter of the beta phase in a low beta layer. The results are shown in Table 4.
[被覆膜の形成]
作製した超硬合金製基材の表面に、CVD法を用いて、TiN(0.3μm)、MT−TiCN(3.0μm)、α−Al2O3(3.0μm)をこの順番で積層した被覆膜を形成した(括弧内の数値は厚さを示す)。
[Formation of coating film]
TiN (0.3 μm), MT-TiCN (3.0 μm), and α-Al 2 O 3 (3.0 μm) are laminated in this order on the surface of the manufactured cemented carbide substrate using the CVD method. A coated film was formed (the value in parentheses indicates the thickness).
以上のようにして、表4に示す試料No.4−1〜No.4−6の刃先交換型切削チップを完成した。 As described above, the sample numbers shown in Table 4 were obtained. 4-1. 4-6 cutting edge exchange type cutting tips were completed.
[切削工具の評価]
各試料の刃先交換型切削チップについて、耐欠損性を評価した。刃先交換型切削チップを型番DCLNR2525(住友電工ハードメタル株式会社製)のホルダに取り付け、以下に示す切削条件で鋼旋削による耐欠損性試験を実施した。
[Evaluation of cutting tools]
The chipping resistance of the cutting edge exchangeable cutting tip of each sample was evaluated. The cutting edge exchangeable cutting tip was attached to a holder of model number DCLNR2525 (manufactured by Sumitomo Electric Hardmetal Co., Ltd.), and a fracture resistance test by steel turning was performed under the following cutting conditions.
(切削条件)
被削材:SCM435(φ150〜180mmの丸棒、4溝材)
切削速度(V):55m/min
送り量(f):0.25mm/rev
切込量(ap):1.0mm
クーラント:なし
(Cutting conditions)
Work Material: SCM435 (φ150 ~ 180mm round bar, 4 groove material)
Cutting speed (V): 55 m / min
Feed amount (f): 0.25 mm / rev
Cutting depth (ap): 1.0 mm
Coolant: None
評価は、上記条件で2分間の切削を行い、全10個の刃先交換型切削チップのうち、刃先が欠損した割合(欠損率:欠損数/10)を調べた。その結果を表4に示す。 In the evaluation, cutting was performed for 2 minutes under the above-mentioned conditions, and the ratio of chipping of the cutting edge among all ten cutting edge-exchangeable cutting tips (defect rate: number of defects / 10) was examined. The results are shown in Table 4.
試料No.4−1〜No.4−6はいずれも、同じ組成(Co:10質量%)であり、TEa/TEbが同程度(1.050〜1.055)であると共に、WC粒子の平均粒径も同程度(3.3μm〜3.4μm)である。これら試料のうち、低β層中のβ相(第2硬質相)の最大粒径が4μm未満である試料No.4−1〜No.4−4は、β相の最大粒径が大きい試料No.4−5,No.4−6に比較して、欠損率が大幅に低減されており、耐欠損性により優れることが分かる。これは、低β層中のβ相の最大粒径が4μm未満を満たすことで、表面部(低β層)のβ相のサイズが小さいため、β相が断続切削時の衝撃による亀裂の起点となり難く、耐欠損性が向上したものと推定される。中でも、低β層中のβ相の最大粒径が2μm以下であり、β相のサイズが十分に小さい試料No.4−1,No.4−2は、欠損率が10%以下であり、試料No.4−3,No.4−4に比較して、耐欠損性がより向上している。一方、試料No.4−5,No.4−6では、低β層中のβ相のサイズが大きいことから、断続切削時の衝撃による亀裂の起点となり易く、欠損が生じ易くなったものと推定される。 Sample No. 4-1. 4-6 all have the same composition (Co: 10% by mass), TEa / TEb is about the same (1.050 to 1.055), and the average particle diameter of the WC particles is about the same (3. 3 μm to 3.4 μm). Among these samples, the sample No. 1 in which the maximum particle size of the β phase (second hard phase) in the low β layer is less than 4 μm. 4-1. Sample No. 4-4 has a large maximum particle size of the β phase. 4-5, No. 4 Compared to 4-6, the defect rate is greatly reduced, indicating that the defect resistance is superior. This is because the β-phase size in the surface portion (low β layer) is small because the maximum particle size of the β phase in the low β layer is less than 4 μm, and the β phase is the origin of cracks due to impact during intermittent cutting. This is presumed to have improved fracture resistance. In particular, the maximum particle size of the β phase in the low β layer is 2 μm or less, and the size of the β phase is sufficiently small. 4-1, No. 1 4-2 has a defect rate of 10% or less. 4-3, no. Compared to 4-4, the fracture resistance is further improved. On the other hand, sample No. 4-5, No. 4 In No. 4-6, since the size of the β phase in the low β layer is large, it is presumed that cracks are easily generated due to impact during intermittent cutting, and defects are likely to occur.
試料No.4−5,No.4−6において、低β層中のβ相のサイズ(最大粒径)が大きくなった理由は、原料に用いた化合物粉末(NbC粉末、ZrC粉末及びZrN粉末)のサイズに対する粉砕混合時間が短過ぎたため、粗大な化合物粉末や凝集した化合物粉末が十分に粉砕されず、低β層に粗大なβ相や凝集したβ相が多く残存したことが原因と考えられる。これに対し、試料No.4−1,No.4−2では、粉砕混合時間を長くしたことにより、粗大な化合物粉末や凝集した化合物粉末が十分に粉砕され、低β層中のβ相のサイズが十分に小さくなったものと考えられる。また、試料No.4−3,No.4−4では、粉砕混合時間がやや短いため、若干大きめのβ相や凝集したβ相が残存したものと考えられる。 Sample No. 4-5, No. 4 In 4-6, the reason why the size (maximum particle size) of the β phase in the low β layer has increased is that the pulverization and mixing time relative to the size of the compound powder (NbC powder, ZrC powder and ZrN powder) used as the raw material is short. This is considered to be because the coarse compound powder and the agglomerated compound powder were not sufficiently pulverized and a large amount of coarse β phase and agglomerated β phase remained in the low β layer. In contrast, sample no. 4-1, No. 1 In 4-2, it is considered that the coarse compound powder and the agglomerated compound powder were sufficiently pulverized by increasing the pulverization and mixing time, and the size of the β phase in the low β layer was sufficiently reduced. Sample No. 4-3, no. In No. 4-4, since the pulverization and mixing time is slightly short, it is considered that a slightly larger β phase and an agglomerated β phase remained.
本発明の実施態様に係る超硬合金は、例えば、切削工具の基材に好適に利用可能である。本発明の実施態様に係る切削工具は、例えば、鋼材の切削加工に好適に利用可能である。 The cemented carbide according to the embodiment of the present invention can be suitably used for a base material of a cutting tool, for example. The cutting tool which concerns on the embodiment of this invention can be utilized suitably for the cutting process of steel materials, for example.
1 刃先交換型切削チップ(切削工具)
2 すくい面 3 逃げ面 4 刃先(切れ刃)
5 取付孔
10 基材(超硬合金)
11 低β層(表面部) 12 内部
20 被覆膜
110 脱β層 111 低β層 120 内部
101 β相
1 Cutting edge exchangeable cutting tip (cutting tool)
2 Rake face 3 Flank face 4 Cutting edge (cutting edge)
5 Mounting hole 10 Base material (Cemented carbide)
11 Low β layer (surface portion) 12 Inner 20 Coating film 110 De-β layer 111 Low β layer 120 Inside 101 β phase
Claims (6)
周期表4,5,6族元素から選ばれる少なくとも1種の金属と、C,N,O及びBから選ばれる少なくとも1種の元素との化合物からなる第2硬質相と、
Co,Ni及びFeから選ばれる少なくとも1種の鉄族金属を含有する結合相と、を有し、
前記結合相の含有量が4質量%以上11質量%以下であり、
表面部に内部よりも前記第2硬質相の含有量が少ない低β層が形成されており、
前記低β層の熱浸透率をTEa、内部の熱浸透率をTEbとするとき、1.02<TEa/TEb<1.08を満たす超硬合金。 A first hard phase composed of WC particles;
A second hard phase comprising a compound of at least one metal selected from Group 4, 5, 6 elements of the periodic table and at least one element selected from C, N, O and B;
A binder phase containing at least one iron group metal selected from Co, Ni and Fe,
The content of the binder phase is 4% by mass or more and 11% by mass or less,
A low β layer with less content of the second hard phase than the inside is formed on the surface portion,
A cemented carbide that satisfies 1.02 <TEa / TEb <1.08, where TEa is the thermal permeability of the low β layer and TEb is the internal thermal permeability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015091710A JP6443207B2 (en) | 2014-06-17 | 2015-04-28 | Cemented carbide and cutting tools |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014124754 | 2014-06-17 | ||
JP2014124754 | 2014-06-17 | ||
JP2015091710A JP6443207B2 (en) | 2014-06-17 | 2015-04-28 | Cemented carbide and cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016020540A true JP2016020540A (en) | 2016-02-04 |
JP6443207B2 JP6443207B2 (en) | 2018-12-26 |
Family
ID=55265545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015091710A Active JP6443207B2 (en) | 2014-06-17 | 2015-04-28 | Cemented carbide and cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6443207B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113430442A (en) * | 2021-05-31 | 2021-09-24 | 杭州中粮包装有限公司 | Hard alloy material and preparation method and application thereof |
CN114829641A (en) * | 2020-05-26 | 2022-07-29 | 住友电气工业株式会社 | Base material and cutting tool |
US12109630B1 (en) | 2023-07-28 | 2024-10-08 | Sumitomo Electric Industries, Ltd. | Cemented carbide and cutting tool |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5487719A (en) * | 1977-12-23 | 1979-07-12 | Sumitomo Electric Industries | Super hard alloy and method of making same |
US5310605A (en) * | 1992-08-25 | 1994-05-10 | Valenite Inc. | Surface-toughened cemented carbide bodies and method of manufacture |
JP2005248309A (en) * | 2004-03-08 | 2005-09-15 | Tungaloy Corp | Cemented carbide and coated cemented carbide |
JP2008179859A (en) * | 2007-01-25 | 2008-08-07 | Tungaloy Corp | Cemented carbide and coated cemented carbide |
JP2014005485A (en) * | 2012-06-21 | 2014-01-16 | Sumitomo Electric Ind Ltd | Rigid material and cutting tool |
-
2015
- 2015-04-28 JP JP2015091710A patent/JP6443207B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5487719A (en) * | 1977-12-23 | 1979-07-12 | Sumitomo Electric Industries | Super hard alloy and method of making same |
US5310605A (en) * | 1992-08-25 | 1994-05-10 | Valenite Inc. | Surface-toughened cemented carbide bodies and method of manufacture |
JP2005248309A (en) * | 2004-03-08 | 2005-09-15 | Tungaloy Corp | Cemented carbide and coated cemented carbide |
JP2008179859A (en) * | 2007-01-25 | 2008-08-07 | Tungaloy Corp | Cemented carbide and coated cemented carbide |
JP2014005485A (en) * | 2012-06-21 | 2014-01-16 | Sumitomo Electric Ind Ltd | Rigid material and cutting tool |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114829641A (en) * | 2020-05-26 | 2022-07-29 | 住友电气工业株式会社 | Base material and cutting tool |
CN113430442A (en) * | 2021-05-31 | 2021-09-24 | 杭州中粮包装有限公司 | Hard alloy material and preparation method and application thereof |
US12109630B1 (en) | 2023-07-28 | 2024-10-08 | Sumitomo Electric Industries, Ltd. | Cemented carbide and cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP6443207B2 (en) | 2018-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105308200B (en) | Cermet, ceramic-metallic preparation method and cutting element | |
CN111566241B (en) | Cemented carbide and cutting tool | |
WO2017191744A1 (en) | Cemented carbide and cutting tool | |
JP5807851B1 (en) | Cermets and cutting tools | |
CN105154744A (en) | Super hard alloy and cutting tool using same | |
JP6256415B2 (en) | Cemented carbide and cutting tools | |
WO2019116614A1 (en) | Cemented carbide and cutting tool | |
JP2017088917A (en) | Hard metal alloy and cutting tool | |
JP7388431B2 (en) | Cemented carbide and cutting tools containing it as a base material | |
JP2010234519A (en) | Cermet and coated cermet | |
JP6443207B2 (en) | Cemented carbide and cutting tools | |
JP6213935B1 (en) | Manufacturing method of fine free carbon dispersion type cemented carbide and coated cemented carbide | |
US11530467B2 (en) | Cemented carbide and cutting tool containing the same as substrate | |
JP6066365B2 (en) | Cemented carbide and cutting tools | |
JP7517483B2 (en) | Cemented carbide and cutting tools containing it as a substrate | |
WO2018105706A1 (en) | Method for manufacturing fine free carbon dispersion type cemented carbide, cutting tip with exchangeable cutting edge, machined product formed from alloy, and method for manufacturing same | |
JP2001179507A (en) | Cutting tool | |
JP5534567B2 (en) | Hard materials and cutting tools | |
JP6344807B2 (en) | Cutting edge-exchangeable cutting tips and processed products of cemented carbide using high-precision cemented carbide with fine free carbon dispersion | |
JP5213644B2 (en) | Cermet sintered body and cutting tool | |
JP6459106B1 (en) | Cemented carbide and cutting tools | |
JP4845490B2 (en) | Surface coated cutting tool | |
JP2023134937A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy | |
JP2023134936A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy | |
JP2023134939A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6443207 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |