JP2016020288A - Forming method for single crystal silicon semiconductor thin film - Google Patents

Forming method for single crystal silicon semiconductor thin film Download PDF

Info

Publication number
JP2016020288A
JP2016020288A JP2014144040A JP2014144040A JP2016020288A JP 2016020288 A JP2016020288 A JP 2016020288A JP 2014144040 A JP2014144040 A JP 2014144040A JP 2014144040 A JP2014144040 A JP 2014144040A JP 2016020288 A JP2016020288 A JP 2016020288A
Authority
JP
Japan
Prior art keywords
mse
concentration
single crystal
atoms
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014144040A
Other languages
Japanese (ja)
Inventor
久 吉岡
Hisashi Yoshioka
久 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2014144040A priority Critical patent/JP2016020288A/en
Publication of JP2016020288A publication Critical patent/JP2016020288A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To grow an MSE epitaxial film made to have an N concentration lower than 1E+16 (atoms/cc) by using a polycrystalline SiC substrate as a raw material.SOLUTION: In the invention, there is used as a material a polycrystalline SiC substrate at or higher than 7E+15 (atoms/cc) and at or lower than 1E + 16 (atoms/cc), which is manufactured to have a stable N concentration. Said polycrystalline SiC is used as a material to set the Si molten liquid layer thickness at 25 to 200 μm, and a growth temperature between 1600 to 1850°C. Under said condition, an MSE epitaxial film is grown to have an N concentration lower than 1E + 16 (atoms/cc).SELECTED DRAWING: Figure 2

Description

本発明は、単結晶炭化ケイ素(SiC)をエピタキシャル成長させる方法に関するものである。   The present invention relates to a method for epitaxially growing single crystal silicon carbide (SiC).

Si半導体の性能が限界を迎える中、SiC半導体が注目されている。しかし、基板内のデバイスキラーとなる転位欠陥の低減が不十分なため、歩留まりが低下しSiC半導体が普及する上での大きな課題になっている。   As the performance of Si semiconductors reaches its limit, SiC semiconductors are attracting attention. However, since the reduction of dislocation defects that become device killer in the substrate is insufficient, the yield is lowered, and this is a big problem in spreading SiC semiconductors.

デバイスキラーの転位欠陥を低減する方法として、特許文献1に示されているMSE法(Metastable Solvent Epitaxy:準安定溶媒エピタキシャル法)が注目されている。   As a method for reducing dislocation defects in device killer, the MSE method (Metastable Solvent Epitaxy) shown in Patent Document 1 has been attracting attention.

MSE法を用いることで、デバイスキラーとなると言われている転位を、別種類の害の少ない転位欠陥に変換することができる。   By using the MSE method, dislocations that are said to be device killer can be converted into other types of dislocation defects with less harm.

窒素やホウ素という不純物はSiC半導体にドーピングされると、電子キャリアや正孔キャリアとなるため、電気特性に大きな影響を与える。SiC半導体を電子デバイスとして利用するためには、前述のような電気特性に影響を与える不純物のドーピング量を制御できることが重要となる。   When impurities such as nitrogen and boron are doped into a SiC semiconductor, they become electron carriers and hole carriers, which greatly affects the electrical characteristics. In order to use a SiC semiconductor as an electronic device, it is important to be able to control the doping amount of impurities that affect the electrical characteristics as described above.

MSE法では特許文献1に示されているとおり、プロセス環境を真空下に置き、坩堝内部をSi蒸気で飽和蒸気圧まで満たし、プロセス環境との圧力差を設けることで、プロセス環境から坩堝内に外気が混入することを抑制することが可能である。外気との接触が少なくなることで、外気中の窒素をはじめとした不純物の混入を抑制することができる。   In the MSE method, as shown in Patent Document 1, the process environment is placed in a vacuum, the inside of the crucible is filled with Si vapor up to the saturated vapor pressure, and a pressure difference from the process environment is provided, so that the process environment enters the crucible. It is possible to suppress the outside air from being mixed. By reducing the contact with the outside air, it is possible to suppress contamination of impurities such as nitrogen in the outside air.

更に、特許文献2の図3に示されているとおり、MSE法で成長させた単結晶SiCエピタキシャル膜(以下、MSEエピ膜)の窒素原子濃度(以下、N濃度)は、原料のN濃度に対して比例関係を示すことから、原料のN濃度を制御することでMSEエピ膜のN濃度を制御することが可能である。MSEエピ膜において、窒素以外のキャリアとなり得る不純物は現状では5%以下となっており、窒素濃度を制御できれば、任意のキャリア密度を再現性良く制御することが可能になると考えられる。   Furthermore, as shown in FIG. 3 of Patent Document 2, the nitrogen atom concentration (hereinafter referred to as N concentration) of the single crystal SiC epitaxial film (hereinafter referred to as MSE epifilm) grown by the MSE method is set to the N concentration of the raw material. Since the proportional relationship is shown, the N concentration of the MSE epi film can be controlled by controlling the N concentration of the raw material. In the MSE epi film, impurities that can be carriers other than nitrogen are currently 5% or less, and if the nitrogen concentration can be controlled, any carrier density can be controlled with good reproducibility.

特開2008−230946号公報JP 2008-230946 A PCT/JP2012/050389PCT / JP2012 / 050389

特許文献2に示されているとおり、MSEエピ膜の不純物窒素のドーピング量制御について、従来のMSE法では、原料のN濃度を制御することで、MSEエピ膜に入り込むN濃度を制御してきた。しかし、N濃度が1E+17(atoms/cc)以下のMSEエピ膜を成長させようとすると以下のような問題があった。   As shown in Patent Document 2, with respect to the doping amount control of impurity nitrogen in the MSE epi film, the conventional MSE method has controlled the N concentration entering the MSE epi film by controlling the N concentration of the raw material. However, when an MSE epitaxial film having an N concentration of 1E + 17 (atoms / cc) or less is grown, there are the following problems.

N濃度が1E+17(atoms/cc)以下の多結晶SiC基板を原料にしてMSE成長を行った場合、原料のN濃度よりも成長させたMSEエピ膜のN濃度の方が高くなることがほとんどであった。   When MSE growth is performed using a polycrystalline SiC substrate having an N concentration of 1E + 17 (atoms / cc) or less as a raw material, the N concentration of the grown MSE epitaxial film is almost higher than the N concentration of the raw material. there were.

特許文献2に示されているとおり、N濃度が7E+15(atoms/cc)以下となる原料を再現性良く安定して製作することは困難である。   As shown in Patent Document 2, it is difficult to stably manufacture a material having an N concentration of 7E + 15 (atoms / cc) or less with good reproducibility.

成長温度を、MSEエピ膜の膜厚が比較的安定して厚く得られる1800℃に設定し、N濃度が7E+15(atoms/cc)の原料を用いてMSE成長をさせた場合、MSEエピ膜のN濃度は1E+16(atoms/cc)以上になった。結果として、1E+16(atoms/cc)よりも低いN濃度となるMSEエピ膜を成長させることは困難である。   When the growth temperature is set to 1800 ° C. at which the film thickness of the MSE epi film is relatively stable and thick, and MSE growth is performed using a material having an N concentration of 7E + 15 (atoms / cc), the MSE epi film The N concentration became 1E + 16 (atoms / cc) or more. As a result, it is difficult to grow an MSE epi film having an N concentration lower than 1E + 16 (atoms / cc).

上記MSEエピ膜を600V耐圧のデバイスに使用したい場合は、キャリア密度にして1E+16(cm−3)を制御し、また、1200V耐圧のデバイスに使用したい場合は、キャリア密度にして5E+15(cm−3)を制御し、再現性良く、且つ均一にドーピングする必要がある。そのためには、意図的に原料に窒素を導入しない状態で、N濃度が1E+16(atoms/cc)以下のMSEエピ膜が安定して成長させられない現状では、MSEエピ膜を600V耐圧以上のデバイスに使用することは出来ない。 When it is desired to use the MSE epi film for a device having a withstand voltage of 600 V, the carrier density is controlled to 1E + 16 (cm −3 ), and when it is desired to be used for a device with a withstand voltage of 1200 V, the carrier density is set to 5E + 15 (cm −3). ) Must be controlled, and reproducible and uniformly doped. For this purpose, an MSE epi film having an N concentration of 1E + 16 (atoms / cc) or less cannot be stably grown without intentionally introducing nitrogen into the raw material. Cannot be used for.

本発明は、N濃度が600V耐圧以上のデバイスに使用できる、1E+16(atoms/cc)以下のMSEエピ膜を成長させることを課題とする。   An object of the present invention is to grow an MSE epi film of 1E + 16 (atoms / cc) or less that can be used for a device having an N concentration of 600 V or higher.

発明者はMSE法で製作されたMSEエピ膜の純度には成長温度と相関性があり、原料基板とMSEエピ膜のN濃度の差が小さくなる条件を見出した。   The inventor found that the purity of the MSE epifilm produced by the MSE method has a correlation with the growth temperature, and that the difference in the N concentration between the source substrate and the MSE epifilm is reduced.

図3はMSE法でのエピ膜成長の様子を示しており、1は多結晶SiC原料基板、2はSi基板が高温で溶融された状態のSi溶液、3はMSE成長させたMSEエピ膜、4はSiC単結晶基板、5は前記原料基板1に含まれる窒素不純物である。特許文献2に示されているとおり、MSEエピ膜3に取り込まれる窒素不純物5は、前記原材基板1のN濃度のみで制御できるとしていた。前記原料基板1の窒素不純物5が、MSE成長により溶解され、Si融液2を通じてMSEエピ膜3に取り込まれるためである。そのため、前記原料基板1のN濃度を減少させない限り、MSEエピ膜3のN濃度は減少できないことが予想されていた。   FIG. 3 shows a state of epitaxial film growth by the MSE method, wherein 1 is a polycrystalline SiC raw material substrate, 2 is a Si solution in a state where the Si substrate is melted at a high temperature, 3 is an MSE epitaxial film grown by MSE, 4 is a SiC single crystal substrate, and 5 is a nitrogen impurity contained in the raw material substrate 1. As shown in Patent Document 2, the nitrogen impurity 5 taken into the MSE epi film 3 can be controlled only by the N concentration of the raw material substrate 1. This is because the nitrogen impurity 5 of the raw material substrate 1 is dissolved by MSE growth and taken into the MSE epifilm 3 through the Si melt 2. For this reason, it has been expected that the N concentration of the MSE epifilm 3 cannot be reduced unless the N concentration of the raw material substrate 1 is reduced.

しかし実験の結果、成長温度を変化させることでMSEエピ膜3の窒素不純物5の取り込み量が変わってくることが判明した。   However, as a result of experiments, it has been found that the amount of nitrogen impurities 5 incorporated into the MSE epifilm 3 changes as the growth temperature is changed.

原料から拡散してくる窒素不純物5は、温度上昇による前記原料基板1の溶解量の増加に伴い上昇する。しかし、窒素不純物5のMSEエピ膜3への取り込みは、温度上昇に伴うC/Si比の増加のため、減少する。増加と減少のバランスの結果、MSEエピ膜3のN濃度が最小値となる成長温度が存在すると推測される。   The nitrogen impurity 5 diffusing from the raw material rises with an increase in the amount of dissolution of the raw material substrate 1 due to the temperature rise. However, the incorporation of nitrogen impurities 5 into the MSE epifilm 3 decreases due to the increase in the C / Si ratio with increasing temperature. As a result of the balance between increase and decrease, it is presumed that there is a growth temperature at which the N concentration of the MSE epifilm 3 becomes a minimum value.

以上を踏まえて、MSEエピ膜を高純度にするためには、成長温度の最適化が必要であると考えられる。   Based on the above, it is considered that the growth temperature needs to be optimized in order to make the MSE epitaxial film highly pure.

本発明により、MSEエピ膜の成長温度を最適化することで、N濃度が7E+15(atoms/cc)以上、1E+16(atoms/cc)以下である原料を用いても、1E+16(atoms/cc)以下のMSEエピ膜を安定して成長させることができ、600V耐圧以上のデバイスに使用することは可能である。   By optimizing the growth temperature of the MSE epi film according to the present invention, even if a raw material having an N concentration of 7E + 15 (atoms / cc) or more and 1E + 16 (atoms / cc) or less is used, 1E + 16 (atoms / cc) or less. The MSE epitaxial film can be stably grown and can be used for a device having a breakdown voltage of 600 V or higher.

図1は本発明の実施形態に係る、MSE成長の部材構成を示す断面図である。FIG. 1 is a sectional view showing a member configuration for MSE growth according to an embodiment of the present invention. 図2は本発明の実施形態に係る、MSE成長温度とMSEエピ膜及び原料のN濃度を示す相関図である。FIG. 2 is a correlation diagram showing the MSE growth temperature, the MSE epi film, and the N concentration of the raw material according to the embodiment of the present invention. 図3は従来のMSE法によりN不純物がMSEエピ膜へ混入することを示す断面図である。FIG. 3 is a cross-sectional view showing that N impurities are mixed into the MSE epi film by the conventional MSE method.

以下、本発明に係るMSEエピ膜の一実施形態について、図面に基づいて説明する。   Hereinafter, an embodiment of an MSE epifilm according to the present invention will be described with reference to the drawings.

図1に示すように、SiC製サセプタ6の上にカーボン製スペーサ7を配置する。そして、カーボン製スペーサ7の上に多結晶SiC原料基板1を配置し、更にその上にSi融液層用SiCスペーサ8を配置し、順にSi基板9、SiC単結晶基板4、カーボン製スペーサ7、SiC製重石10を配置した。この配置は従来のMSE法と同じである。   As shown in FIG. 1, a carbon spacer 7 is disposed on a SiC susceptor 6. Then, the polycrystalline SiC raw material substrate 1 is disposed on the carbon spacer 7, and the SiC melt layer SiC spacer 8 is further disposed thereon. In this order, the Si substrate 9, the SiC single crystal substrate 4, and the carbon spacer 7. The SiC heavy stone 10 was disposed. This arrangement is the same as the conventional MSE method.

実験条件として、多結晶SiC原料基板1のN濃度は、実験前に測定しておいた。また、SiC融液層用SiCスペーサ8は、Si融液層の厚みが40μmになるように、厚さ40μmにて製作した。更にMSE成長の圧力は70000Pa、SiC単結晶基板4の直径は3inchとした。   As an experimental condition, the N concentration of the polycrystalline SiC raw material substrate 1 was measured before the experiment. The SiC melt layer SiC spacer 8 was manufactured with a thickness of 40 μm so that the thickness of the Si melt layer was 40 μm. Further, the pressure for MSE growth was 70000 Pa, and the diameter of the SiC single crystal substrate 4 was 3 inches.

なお、前記スペーサ8については、Si融液層の厚みが40μmになるように、厚さ40μmにて製作するのが好ましいが、例えば、Si融液層の厚みが25〜200μmの範囲になるように、厚さ25〜200μmの範囲にて製作しても良い。   The spacer 8 is preferably manufactured to a thickness of 40 μm so that the thickness of the Si melt layer is 40 μm. For example, the thickness of the Si melt layer is in the range of 25 to 200 μm. Moreover, you may manufacture in the range of thickness 25-200 micrometers.

図1の部材配置及び前記の実験条件にて、MSE成長温度を1600〜1900℃まで変化させて、MSEエピ膜のN濃度を測定した。   The MS concentration of the MSE epi film was measured by changing the MSE growth temperature from 1600 to 1900 ° C. under the member arrangement of FIG. 1 and the above experimental conditions.

図2は、MSE成長温度とMSEエピ膜、1700℃付近で成長させたMSEエピ膜のN濃度が最小値を取るであろうと推測される。更に、1650℃と1750℃の実験結果を比較すると、1650℃の方が1750℃に比べてMSEエピ膜のN濃及び原料のN濃度を示した実験結果である。本図から、1700℃のとき、MSEエピ膜のN濃度が減少していることが分かる。実験前の前記SiC原料基板1のN濃度と比較すると度が減少したため、最小値は1650℃と1700℃の間にあると推測される。   FIG. 2 assumes that the MSE growth temperature and the MSE epi film and the N concentration of the MSE epi film grown at around 1700 ° C. will take the minimum values. Furthermore, when the experimental results at 1650 ° C. and 1750 ° C. are compared, the results at 1650 ° C. show the N concentration of the MSE epi film and the N concentration of the raw material compared to 1750 ° C. From this figure, it can be seen that at 1700 ° C., the N concentration of the MSE epi film decreases. Since the degree decreased compared with the N concentration of the SiC raw material substrate 1 before the experiment, the minimum value is estimated to be between 1650 ° C. and 1700 ° C.

今回の実験結果から、MSE成長温度の最適化によって、MSEエピ膜のN濃度をSiC原料基板のN濃度よりも減少させることが可能であることが判明した。
From the results of this experiment, it was found that the N concentration of the MSE epi film can be made lower than the N concentration of the SiC source substrate by optimizing the MSE growth temperature.

1 多結晶SiC原料基板
2 Si溶液
3 MSEエピ膜
4 SiC単結晶基板
5 窒素不純物
6 SiC製サセプタ
7 カーボン製スペーサ
8 Si融液層用SiCスペーサ
9 Si基板
10 SiC製重石
DESCRIPTION OF SYMBOLS 1 Polycrystalline SiC raw material substrate 2 Si solution 3 MSE epi film 4 SiC single crystal substrate 5 Nitrogen impurity 6 SiC susceptor 7 Carbon spacer 8 SiC spacer for Si melt layer 9 Si substrate 10 SiC weight

Claims (4)

単結晶炭化ケイ素エピタキシャル成長において、成長温度を最適化することでMSEエピ膜に混入する窒素不純物を低濃度とすることを特徴とするMSE法。   In the single crystal silicon carbide epitaxial growth, the MSE method is characterized in that the nitrogen impurity mixed in the MSE epi film is reduced in concentration by optimizing the growth temperature. 単結晶炭化ケイ素エピタキシャル成長において、Si融液層の厚みが25〜200μmのとき、成長温度を1600〜1850℃の間で最適化することで、MSEエピ膜に混入する窒素不純物を1E+16(atoms/cc)よりも低濃度とすることを特徴とするMSE法。   In single crystal silicon carbide epitaxial growth, when the thickness of the Si melt layer is 25 to 200 μm, the growth temperature is optimized between 1600 and 1850 ° C., so that nitrogen impurities mixed in the MSE epi film can be reduced to 1E + 16 (atoms / cc The MSE method is characterized in that the concentration is lower than that in (1). 単結晶炭化ケイ素エピタキシャル成長において、成長温度を最適化することでMSEエピ膜に混入する窒素不純物を低濃度とすることを特徴とするMSE法に基づいて、製作されたエピ膜。   In single crystal silicon carbide epitaxial growth, an epitaxial film manufactured based on an MSE method characterized in that a nitrogen impurity mixed in the MSE epi film is reduced in concentration by optimizing the growth temperature. 単結晶炭化ケイ素エピタキシャル成長において、Si融液層の厚みが25〜200μmのとき、成長温度を1600〜1850℃の間で最適化することで、MSEエピ膜に混入する窒素不純物を1E+16(atoms/cc)よりも低濃度とすることを特徴とするMSE法に基づいて、製作されたエピ膜。   In single crystal silicon carbide epitaxial growth, when the thickness of the Si melt layer is 25 to 200 μm, the growth temperature is optimized between 1600 and 1850 ° C., so that nitrogen impurities mixed in the MSE epi film can be reduced to 1E + 16 (atoms / cc An epitaxial film manufactured on the basis of the MSE method, characterized in that the concentration is lower than that of (1).
JP2014144040A 2014-07-14 2014-07-14 Forming method for single crystal silicon semiconductor thin film Pending JP2016020288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014144040A JP2016020288A (en) 2014-07-14 2014-07-14 Forming method for single crystal silicon semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014144040A JP2016020288A (en) 2014-07-14 2014-07-14 Forming method for single crystal silicon semiconductor thin film

Publications (1)

Publication Number Publication Date
JP2016020288A true JP2016020288A (en) 2016-02-04

Family

ID=55265413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014144040A Pending JP2016020288A (en) 2014-07-14 2014-07-14 Forming method for single crystal silicon semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2016020288A (en)

Similar Documents

Publication Publication Date Title
Kimoto Bulk and epitaxial growth of silicon carbide
US9893152B2 (en) Semi-insulating silicon carbide monocrystal and method of growing the same
JP5470349B2 (en) P-type silicon single crystal and manufacturing method thereof
JP5420548B2 (en) Silicon ingot, silicon wafer and epitaxial wafer manufacturing method, and silicon ingot
JP5865777B2 (en) Method for manufacturing silicon carbide epitaxial wafer
US10026610B2 (en) Silicon carbide semiconductor device manufacturing method
JP2012038973A (en) Silicon wafer and method of producing the same
JP2011236085A (en) Epitaxial silicon carbide single-crystal substrate and method for producing the same
JP5031651B2 (en) Method for producing silicon carbide single crystal ingot
US11655561B2 (en) n-Type 4H—SiC single crystal substrate and method of producing n-type 4H—SiC single crystal substrate
SG189506A1 (en) Method of manufacturing silicon single crystal, silicon single crystal, and wafer
JP6749309B2 (en) Compound semiconductor wafer and photoelectric conversion element
JP5372105B2 (en) N-type silicon single crystal and manufacturing method thereof
JP2021502944A (en) Semi-insulating silicon carbide single crystal doped with a small amount of vanadium, substrate, manufacturing method
US8802546B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6335716B2 (en) Method for producing silicon carbide single crystal ingot
JP2004343133A (en) Manufacturing method of silicon carbide, silicon carbide, and semiconductor device
JP2016020288A (en) Forming method for single crystal silicon semiconductor thin film
JP6594148B2 (en) Silicon carbide single crystal ingot
JP2014218397A (en) Manufacturing method of silicon carbide single crystal
JP6672481B2 (en) Method for manufacturing single crystal silicon semiconductor wafer, apparatus for manufacturing single crystal silicon semiconductor wafer, and single crystal silicon semiconductor wafer
JP2017188507A (en) Method for manufacturing silicon epitaxial wafer
KR100977631B1 (en) Silicon single crystal having high resistivity, producing method and wafer thereof
JP2017088460A (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP2015040142A (en) Manufacturing method of silicon single crystal material, and silicon single crystal material