JP2016018121A - Method for manufacturing optical amplification module - Google Patents

Method for manufacturing optical amplification module Download PDF

Info

Publication number
JP2016018121A
JP2016018121A JP2014141635A JP2014141635A JP2016018121A JP 2016018121 A JP2016018121 A JP 2016018121A JP 2014141635 A JP2014141635 A JP 2014141635A JP 2014141635 A JP2014141635 A JP 2014141635A JP 2016018121 A JP2016018121 A JP 2016018121A
Authority
JP
Japan
Prior art keywords
optical
light
connection member
optical amplification
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014141635A
Other languages
Japanese (ja)
Other versions
JP2016018121A5 (en
Inventor
康之 山内
Yasuyuki Yamauchi
康之 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Priority to JP2014141635A priority Critical patent/JP2016018121A/en
Priority to US14/794,387 priority patent/US9634463B2/en
Publication of JP2016018121A publication Critical patent/JP2016018121A/en
Priority to US15/462,595 priority patent/US9825427B2/en
Publication of JP2016018121A5 publication Critical patent/JP2016018121A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical amplification module in which an optical amplification element and an optical connection member having an isolator can be easily optically aligned.SOLUTION: There is provide the method for manufacturing an optical amplification module comprising a module body 10 for housing an optical amplification element 41, a first optical connection member 22 optically joined to one end face 41A of the optical amplification element 41, and a second optical connection member 32 optically joined to the other end face 41B and having a first isolator 35 for cutting off light from the optical amplification element 41. The method comprises a step of driving the optical amplification element 41 to cause the element 41 to generate first light comprising natural emission light, observing the first light via the first optical connection member 22, and carrying out optical alignment between the optical amplification element 41 and the first optical connection member 22, and a step of inputting second light from an end 32B of the second optical connection member 32 opposite the optical amplification element side, observing the second light amplified by the optical amplification element 41 via the first optical connection member 22, and carrying out optical alignment between the optical amplification element 41 and the second optical connection member 32.SELECTED DRAWING: Figure 1

Description

本発明は、光増幅モジュールを製造する方法に関する。   The present invention relates to a method for manufacturing an optical amplification module.

特許文献1は、半導体アンプについて開示する。この光増幅モジュールは、光信号を増幅する光増幅素子が収容されたモジュール本体と、モジュール本体に光学的に結合する光ファイバなどが含まれる光接続部材とを備えている。   Patent Document 1 discloses a semiconductor amplifier. The optical amplification module includes a module main body in which an optical amplification element that amplifies an optical signal is accommodated, and an optical connection member including an optical fiber that is optically coupled to the module main body.

特開平6−232814号公報Japanese Patent Laid-Open No. 6-232814

モジュール本体と光接続部材とは、光増幅素子と光接続部材との光学調芯が行われた後に接合される。光増幅素子と光接続部材との光学調芯では、例えば、光増幅素子の発光により発生した光が光接続部材を通過する通過光量が利用される。しかしながら、例えば、光増幅素子からの戻り光などを遮断するためのアイソレータが光接続部材に設けられた光増幅モジュールでは、光増幅素子の発光により発生した光を利用して光増幅素子と光接続部材との光学調芯を行うことは困難である。   The module body and the optical connecting member are joined after optical alignment between the optical amplifying element and the optical connecting member is performed. In the optical alignment between the optical amplifying element and the optical connecting member, for example, the amount of light passing through the optical connecting member that is generated by the light emitted from the optical amplifying element is used. However, for example, in an optical amplifying module in which an isolator for blocking return light from the optical amplifying element is provided in the optical connecting member, the optical amplifying element is optically connected using light generated by light emission of the optical amplifying element. It is difficult to perform optical alignment with the member.

本発明は、光増幅素子と、アイソレータを有する光接続部材との光学調芯が簡便に行える光増幅モジュールを製造する方法を提供することを目的とする。   An object of this invention is to provide the method of manufacturing the optical amplification module which can perform the optical alignment of an optical amplification element and the optical connection member which has an isolator simply.

本発明に係る光増幅モジュールを製造する方法は、光増幅素子を収容するモジュール本体と、光増幅素子の一の端面に光学的に結合される第1光接続部材と、光増幅素子の他の端面に光学的に結合され、光増幅素子に向かう光を通過させ光増幅素子からの光を遮断する第1アイソレータを有する第2光接続部材と、を備える光増幅モジュールを製造する方法であって、光増幅素子を駆動して自然放出光からなる第1光を発生させ、第1光を第1光接続部材を介して観測して、光増幅素子と第1光接続部材との光学調芯を行う工程と、第2光を第2光接続部材の光増幅素子側とは反対側の端部から入力し、光増幅素子によって増幅された第2光を前記第1光接続部材を介して観測して、光増幅素子と第2光接続部材との光学調芯を行う工程とを含む。   A method of manufacturing an optical amplification module according to the present invention includes a module main body that houses an optical amplification element, a first optical connection member that is optically coupled to one end face of the optical amplification element, and another optical amplification element. And a second optical connection member having a first isolator that is optically coupled to an end face and transmits light directed to the optical amplification element and blocks light from the optical amplification element. The optical amplifying element is driven to generate first light composed of spontaneously emitted light, the first light is observed through the first optical connecting member, and the optical alignment between the optical amplifying element and the first optical connecting member is performed. The second light is input from the end of the second optical connection member opposite to the optical amplification element side, and the second light amplified by the optical amplification element is passed through the first optical connection member. Observing and performing optical alignment between the optical amplifying element and the second optical connecting member. No.

本発明によれば、光増幅素子と、アイソレータを有する光接続部材との光学調芯が簡便に行える光増幅モジュールを製造する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing the optical amplification module which can perform the optical alignment of an optical amplification element and the optical connection member which has an isolator simply can be provided.

本発明の第1実施形態に係る製造方法によって製造される光増幅モジュールの断面図である。It is sectional drawing of the optical amplification module manufactured by the manufacturing method which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る光増幅モジュールを製造する方法を示す流れ図である。It is a flowchart which shows the method of manufacturing the optical amplification module which concerns on 1st Embodiment of this invention. 図2に示す光増幅モジュールを製造するための各工程を示す図である。It is a figure which shows each process for manufacturing the optical amplification module shown in FIG. 図2に示す光増幅モジュールを製造するための各工程を示す図である。It is a figure which shows each process for manufacturing the optical amplification module shown in FIG. 図2に示す光増幅モジュールを製造するための各工程を示す図である。It is a figure which shows each process for manufacturing the optical amplification module shown in FIG. 本発明の第2実施形態に係る製造方法によって製造される光増幅モジュールの断面図である。It is sectional drawing of the optical amplification module manufactured by the manufacturing method which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る光増幅モジュールを製造する方法を示す流れ図である。It is a flowchart which shows the method of manufacturing the optical amplification module which concerns on 2nd Embodiment of this invention. 図7に示す光増幅モジュールを製造するための各工程を示す図である。It is a figure which shows each process for manufacturing the optical amplification module shown in FIG. 図7に示す光増幅モジュールを製造するための各工程を示す図である。It is a figure which shows each process for manufacturing the optical amplification module shown in FIG. 図7に示す光増幅モジュールを製造するための各工程を示す図である。It is a figure which shows each process for manufacturing the optical amplification module shown in FIG. 図7に示す光増幅モジュールを製造するための各工程を示す図である。It is a figure which shows each process for manufacturing the optical amplification module shown in FIG. 本発明の第3実施形態に係る製造方法によって製造される光増幅モジュールの断面図である。It is sectional drawing of the optical amplification module manufactured by the manufacturing method which concerns on 3rd Embodiment of this invention.

本発明の実施形態の内容を説明する。本発明の一形態に係る光増幅モジュールを製造する方法は、光増幅素子を収容するモジュール本体と、光増幅素子の一の端面に光学的に結合される第1光接続部材と、光増幅素子の他の端面に光学的に結合され、光増幅素子に向かう光を通過させ光増幅素子からの光を遮断する第1アイソレータを有する第2光接続部材と、を備える光増幅モジュールを製造する方法であって、光増幅素子を駆動して自然放出光からなる第1光を発生させ、第1光を第1光接続部材を介して観測して、光増幅素子と第1光接続部材との光学調芯を行う工程と、第2光を第2光接続部材の光増幅素子側とは反対側の端部から入力し、光増幅素子によって増幅された第2光を前記第1光接続部材を介して観測して、光増幅素子と第2光接続部材との光学調芯を行う工程とを含む。   The contents of the embodiment of the present invention will be described. A method of manufacturing an optical amplification module according to an aspect of the present invention includes a module main body that houses an optical amplification element, a first optical connection member that is optically coupled to one end face of the optical amplification element, and an optical amplification element And a second optical connection member having a first isolator that is optically coupled to the other end face and passes light directed to the optical amplification element and blocks light from the optical amplification element. And driving the optical amplifying element to generate the first light composed of spontaneous emission light, observing the first light through the first optical connecting member, and determining the relationship between the optical amplifying element and the first optical connecting member. A step of performing optical alignment, and the second light is input from the end of the second optical connection member opposite to the optical amplification element side, and the second light amplified by the optical amplification element is supplied to the first optical connection member The optical alignment between the optical amplifying element and the second optical connecting member is performed through observation And a degree.

この光増幅モジュールを製造する方法によれば、第2光接続部材が第1アイソレータを有する光増幅モジュールにおいて、光増幅素子の発光と増幅との使い分けによって、光増幅素子と、第1光接続部材及び第2光接続部材の両方との光学調芯が簡便に行われる。即ち、この光増幅モジュールを製造する方法によれば、光増幅素子と第1光接続部材との光学調芯において、光増幅素子を発光させ、第1光接続部材を通過する第1通過光量を利用する。また、光増幅素子と第2光接続部材との光学調芯では、光増幅モジュールの外部から第2光を入射し、光増幅素子による増幅後に第1光接続部材を通過する第2通過光量を利用する。これにより、光増幅素子と、アイソレータを有する光接続部材との光学調芯を簡便に行うことができる。   According to the method for manufacturing the optical amplification module, in the optical amplification module in which the second optical connection member has the first isolator, the optical amplification element and the first optical connection member are selectively used by light emission and amplification of the optical amplification element. Optical alignment with both the second optical connecting member and the second optical connecting member is easily performed. That is, according to the method for manufacturing the optical amplification module, in the optical alignment between the optical amplification element and the first optical connection member, the optical amplification element emits light, and the first passing light amount that passes through the first optical connection member is obtained. Use. In addition, in the optical alignment between the optical amplifying element and the second optical connecting member, the second light is incident from the outside of the optical amplifying module, and the second passing light amount passing through the first optical connecting member after being amplified by the optical amplifying element is used. Use. Thereby, the optical alignment between the optical amplifying element and the optical connecting member having the isolator can be easily performed.

上記の光増幅モジュールを製造する方法では、第1光接続部材は、光増幅素子の一の端面に光学的に結合され、光増幅素子からの光を通過させ光増幅素子に向かう光を遮断する第2アイソレータを有することが好ましい。この光増幅モジュールを製造する方法によれば、第1光接続部材が第2アイソレータを有するので、例えば光増幅素子からの戻り光が第1光接続部材を通過することを抑制できる。これにより、例えば半導体レーザ素子が第1光接続部材に光学的に結合された光増幅モジュールにおいては、半導体レーザ素子が被る光損傷を低減することができる。そして、上記の光増幅モジュールによれば、このような場合であっても光増幅素子と光接続部材との光学調芯を簡便に行うことができる。   In the method of manufacturing the optical amplification module, the first optical connection member is optically coupled to one end face of the optical amplification element, and allows light from the optical amplification element to pass therethrough and blocks light traveling toward the optical amplification element. It is preferable to have a second isolator. According to this method for manufacturing an optical amplification module, since the first optical connection member has the second isolator, it is possible to suppress, for example, return light from the optical amplification element from passing through the first optical connection member. Thereby, for example, in the optical amplification module in which the semiconductor laser element is optically coupled to the first optical connection member, optical damage that the semiconductor laser element suffers can be reduced. And according to said optical amplification module, even in such a case, optical alignment with an optical amplification element and an optical connection member can be performed simply.

いくつかの実施形態に係る光増幅モジュールを製造する方法を、以下に図面を参照しつつ説明する。以下の説明では、図面の説明において同一の要素には同一の符号を付する。   A method for manufacturing an optical amplification module according to some embodiments will be described below with reference to the drawings. In the following description, the same reference numerals are given to the same elements in the description of the drawings.

(第1の実施の形態)
図1は、第1実施形態に係る製造方法によって製造される光増幅モジュールの断面図である。光増幅モジュール1は、モジュール本体10、第1光接続部材22、及び第2光接続部材32を備える。モジュール本体10は、光増幅素子41を収容する。第2光接続部材32は、光増幅素子41に光学的に結合され、光増幅素子41は、第1光接続部材22に光学的に結合される。図1の軸Ax1は、光増幅素子41と第1光接続部材22とを結ぶ光軸であり、軸Ax2は、第2光接続部材32と光増幅素子41とを結ぶ光軸である。
(First embodiment)
FIG. 1 is a cross-sectional view of an optical amplification module manufactured by the manufacturing method according to the first embodiment. The optical amplification module 1 includes a module body 10, a first optical connection member 22, and a second optical connection member 32. The module main body 10 accommodates the optical amplification element 41. The second optical connection member 32 is optically coupled to the optical amplification element 41, and the optical amplification element 41 is optically coupled to the first optical connection member 22. An axis Ax1 in FIG. 1 is an optical axis connecting the optical amplification element 41 and the first optical connection member 22, and an axis Ax2 is an optical axis connecting the second optical connection member 32 and the optical amplification element 41.

モジュール本体10は、第1接合面11Aを有し、第1接合面11Aは、第1開口部12を有する。第1開口部12には第1レンズ23が設置される。光増幅素子41は、第1レンズ23を介して第1光接続部材22に光学的に結合される。第1光接続部材22は、第2接合面22Aを有する。モジュール本体10の第1接合面11Aは、第1光接続部材22の第2接合面22Aと接合する。モジュール本体10は、例えばFe−Ni−Co合金からなる。第1光接続部材22は、例えば第1光ファイバ24を含むことができ、また、第1光接続部材22は、例えばステンレスからなる。   The module body 10 has a first joint surface 11 </ b> A, and the first joint surface 11 </ b> A has a first opening 12. A first lens 23 is installed in the first opening 12. The optical amplification element 41 is optically coupled to the first optical connection member 22 through the first lens 23. The first optical connection member 22 has a second bonding surface 22A. The first joint surface 11A of the module body 10 is joined to the second joint surface 22A of the first optical connection member 22. The module body 10 is made of, for example, an Fe—Ni—Co alloy. The first optical connection member 22 can include, for example, a first optical fiber 24, and the first optical connection member 22 is made of stainless steel, for example.

モジュール本体10は、第3接合面11Bを更に有し、第3接合面11Bは、第2開口部13を有する。第2開口部13には第2レンズ33が設置される。第2光接続部材32は、第2レンズ33を介して光増幅素子41に光学的に結合される。第2光接続部材32は、第4接合面32Aを有する。モジュール本体10の第3接合面11Bは、第2光接続部材32の第4接合面32Aと接合する。第2光接続部材32は、例えば光レセプタクルであることができ、また、第2光接続部材32は、例えばステンレスからなる。   The module main body 10 further has a third joint surface 11B, and the third joint surface 11B has a second opening 13. A second lens 33 is installed in the second opening 13. The second optical connection member 32 is optically coupled to the optical amplification element 41 via the second lens 33. The second optical connection member 32 has a fourth bonding surface 32A. The third joint surface 11 </ b> B of the module body 10 is joined to the fourth joint surface 32 </ b> A of the second optical connection member 32. The second optical connection member 32 can be, for example, an optical receptacle, and the second optical connection member 32 is made of, for example, stainless steel.

モジュール本体10内は、光増幅素子41に加えて、サブキャリア42、第1コリメートレンズ43、第2コリメートレンズ44、サーミスタ45、キャリア46、及び温度制御部47を更に有する。光増幅素子41は、例えば半導体光増幅器(SOA:Semiconductor Optical Amplifier)であることができる。SOAは、例えばInP系半導体からなる。具体的には、n型InP基板上に、n型InPクラッド層、活性層(InGaAsPウエル/InGaAsPバリアからなる多重量子井戸構造)、及びp型InPクラッド層が順に積層された構造を有する。光増幅素子41は、第1端面(一の端面)41Aと、第1端面41Aに対向する第2端面(他の端面)41Bとを有する。光増幅素子41は、第1コリメートレンズ43と第2コリメートレンズ44とによって挟まれ、光増幅素子41の第1端面41Aは第1コリメートレンズ43に光学的に結合される。第2端面41Bは、第2コリメートレンズ44と光学的に結合される。光増幅素子41の第1端面41A及び第2端面41Bからの戻り光を低減させるために、第1端面41A及び第2端面41Bは、軸Ax1及び軸Ax2に垂直な面に対して傾斜して対向している。   The module body 10 further includes a subcarrier 42, a first collimating lens 43, a second collimating lens 44, a thermistor 45, a carrier 46, and a temperature control unit 47 in addition to the optical amplification element 41. The optical amplification element 41 can be, for example, a semiconductor optical amplifier (SOA). The SOA is made of, for example, an InP-based semiconductor. Specifically, it has a structure in which an n-type InP clad layer, an active layer (multi-quantum well structure comprising an InGaAsP well / InGaAsP barrier), and a p-type InP clad layer are sequentially laminated on an n-type InP substrate. The optical amplifying element 41 has a first end face (one end face) 41A and a second end face (other end face) 41B facing the first end face 41A. The optical amplifying element 41 is sandwiched between the first collimating lens 43 and the second collimating lens 44, and the first end face 41 </ b> A of the optical amplifying element 41 is optically coupled to the first collimating lens 43. The second end surface 41B is optically coupled to the second collimating lens 44. In order to reduce the return light from the first end face 41A and the second end face 41B of the optical amplifying element 41, the first end face 41A and the second end face 41B are inclined with respect to the plane perpendicular to the axes Ax1 and Ax2. Opposite.

モジュール本体10内の温度制御部47上には、キャリア46には、半導体光増幅素子41を搭載したサブキャリア42、第1コリメートレンズ43、第2コリメートレンズ44、サーミスタ45が搭載されている。温度制御部47は、例えばペルチェ素子であることができる。サーミスタ45は、光増幅素子41の素子温度を検知するために、光増幅素子41の近傍に設置される。   On the temperature control unit 47 in the module main body 10, a subcarrier 42 on which the semiconductor optical amplification element 41 is mounted, a first collimating lens 43, a second collimating lens 44, and a thermistor 45 are mounted on the carrier 46. The temperature control unit 47 can be, for example, a Peltier element. The thermistor 45 is installed in the vicinity of the optical amplification element 41 in order to detect the element temperature of the optical amplification element 41.

モジュール本体10は、第1側面11Eを更に備える。第1側面11Eは、第3開口部14を有し、第3開口部14にフィードスルー51が設けられる。フィードスルー51には、例えば6つの金属配線52a〜52fが設けられ、金属配線52a〜52fは、それぞれ、温度制御部47、半導体光増幅素子41、サーミスタ45とワイヤを介して接続される。フィードスルー51には、金属配線52a〜52fにそれぞれ接続される外部端子53a〜53fが更に設けられる。外部端子53a〜53fは、例えば、光増幅素子41用の駆動端子、温度制御部47用の駆動端子、及びサーミスタ45用の駆動端子として利用される。半導体光増幅素子41およびサーミスタ45は、金属配線52a〜52f及び外部端子53a〜53fのいずれかを介して、光増幅モジュール1の外部との間で電気信号の送受信を行う。フィードスルー51は、例えばセラミックからなり、金属配線52a〜52f及び外部端子53a〜53fは、例えばAuからなる。   The module body 10 further includes a first side surface 11E. The first side surface 11 </ b> E has a third opening 14, and a feedthrough 51 is provided in the third opening 14. For example, six metal wirings 52a to 52f are provided in the feedthrough 51, and the metal wirings 52a to 52f are connected to the temperature control unit 47, the semiconductor optical amplification element 41, and the thermistor 45 through wires, respectively. The feedthrough 51 is further provided with external terminals 53a to 53f connected to the metal wirings 52a to 52f, respectively. The external terminals 53a to 53f are used as, for example, a drive terminal for the optical amplifying element 41, a drive terminal for the temperature control unit 47, and a drive terminal for the thermistor 45. The semiconductor optical amplifying element 41 and the thermistor 45 transmit and receive electrical signals to and from the outside of the optical amplification module 1 via any of the metal wirings 52a to 52f and the external terminals 53a to 53f. The feedthrough 51 is made of, for example, ceramic, and the metal wirings 52a to 52f and the external terminals 53a to 53f are made of, for example, Au.

第1実施形態では、第2光接続部材32が光レセプタクルであるときは、第2光接続部材32は、図1に示されるように、スタブ34及び第1アイソレータ35を有し、スタブ34は、第1アイソレータ35に光学的に結合され、第1アイソレータ35は、第2レンズ33に光学的に結合される。スタブ34は、光レセプタクルのための光結合部品であり、例えばセラミックからなる。第1アイソレータ35は、光増幅素子41の第2端面41Bに向かう光を通過させる一方で、光増幅素子41の第2端面41Bからの光を遮断するための光素子である。   In the first embodiment, when the second optical connecting member 32 is an optical receptacle, the second optical connecting member 32 includes a stub 34 and a first isolator 35 as shown in FIG. , Optically coupled to the first isolator 35, and the first isolator 35 is optically coupled to the second lens 33. The stub 34 is an optical coupling component for an optical receptacle, and is made of, for example, ceramic. The first isolator 35 is an optical element for blocking light from the second end face 41 </ b> B of the optical amplifying element 41 while allowing light traveling toward the second end face 41 </ b> B of the optical amplifying element 41 to pass therethrough.

図2は、第1実施形態に係る光増幅モジュールを製造する方法を示す流れ図である。第1実施形態の製造方法は、工程S11〜工程S13を有している。図3〜図5は、それぞれ、図2に示す光増幅モジュールを製造するための各工程S11〜S13を示す図である。   FIG. 2 is a flowchart showing a method of manufacturing the optical amplification module according to the first embodiment. The manufacturing method of 1st Embodiment has process S11-process S13. 3 to 5 are diagrams showing steps S11 to S13 for manufacturing the optical amplification module shown in FIG.

図3に示されるように、第1実施形態の製造方法では、初めに、モジュール本体10内には、半導体光増幅素子41を搭載したサブキャリア42、第1コリメートレンズ43、第2コリメートレンズ44、サーミスタ45が搭載されたキャリア46を上部に備える温度制御部47が収容される(工程S11)。また、工程S11の前工程として、第1レンズ23がモジュール本体10の第1開口部12に設けられ、第2レンズ33が第2開口部13に設けられる。更に、フィードスルー51がモジュール本体10の第3開口部14に設けられる。   As shown in FIG. 3, in the manufacturing method of the first embodiment, first, in the module main body 10, the subcarrier 42 on which the semiconductor optical amplifying element 41 is mounted, the first collimating lens 43, and the second collimating lens 44. The temperature control unit 47 having the carrier 46 on which the thermistor 45 is mounted is housed (step S11). Further, as a pre-process of step S <b> 11, the first lens 23 is provided in the first opening 12 of the module body 10, and the second lens 33 is provided in the second opening 13. Further, a feedthrough 51 is provided in the third opening 14 of the module body 10.

図4に示されるように、第1実施形態の製造方法では、次に、モジュール本体10と第1光接続部材22とが接合される(工程S12)。工程S12では、光増幅素子41が発光させられ、この発光により、自然放出光が発生する。自然放出光である第1光L1が、光増幅素子41の第1端面41Aから出射され、出射された第1光L1が第1コリメートレンズ43によってコリメートされる。第1光L1が第1光接続部材22を通過するように、第1光接続部材22がモジュール本体10に当接された後、第1光L1が、第1レンズ23によって集光されて第1光接続部材22に入射する。第1光接続部材22を通過した第1光L1は、光増幅モジュール1の外部に設けられた光検出器(不図示)によって検出される。第1光接続部材22を通過した第1光L1の第1通過光量に基づいて、光増幅素子41と第1光接続部材22との光学調芯が行われる。この光学調芯の後に、モジュール本体10と第1光接続部材22とが、例えばレーザ溶接されて、モジュール本体10の第1接合面11Aと第1光接続部材22の第2接合面22Aとが接合される。このとき、レーザ光は、モジュール本体10の第1接合面11Aと第1光接続部材22の第2接合面22Aの接合部の外側端部に照射され、レーザ溶接される。レーザ溶接用の光源としては、例えばYAGレーザが用いられることができる。   As shown in FIG. 4, in the manufacturing method according to the first embodiment, the module body 10 and the first optical connection member 22 are then joined (step S12). In step S12, the light amplifying element 41 emits light, and spontaneous emission light is generated by this light emission. The first light L <b> 1 that is spontaneous emission light is emitted from the first end face 41 </ b> A of the optical amplification element 41, and the emitted first light L <b> 1 is collimated by the first collimating lens 43. After the first light connection member 22 is brought into contact with the module body 10 so that the first light L1 passes through the first light connection member 22, the first light L1 is collected by the first lens 23 and is first condensed. 1 enters the optical connection member 22. The first light L1 that has passed through the first optical connection member 22 is detected by a photodetector (not shown) provided outside the optical amplification module 1. Based on the first passing light amount of the first light L1 that has passed through the first optical connecting member 22, optical alignment between the optical amplifying element 41 and the first optical connecting member 22 is performed. After this optical alignment, the module main body 10 and the first optical connection member 22 are laser-welded, for example, so that the first bonding surface 11A of the module main body 10 and the second bonding surface 22A of the first optical connection member 22 are connected. Be joined. At this time, the laser beam is applied to the outer end of the joint between the first joint surface 11A of the module body 10 and the second joint surface 22A of the first optical connection member 22, and laser welding is performed. As a light source for laser welding, for example, a YAG laser can be used.

図5に示されるように、第1実施形態の製造方法では、続いて、モジュール本体10と第2光接続部材32とが接合される(工程S13)。第1実施形態の第2光接続部材32には、第1アイソレータ35が設けられるので、光増幅素子41の第2端面41Bからの自然放出光は第2光接続部材32を通過し難い。このため、工程S13では、第2光L2が、第2光接続部材32の光増幅素子側とは反対側の端部32Bから、モジュール本体10に当接された第2光接続部材32を介して光増幅素子41の第2端面41Bに入射される。第2光L2は、光増幅素子41によって増幅されて、第1端面41Aから出射される。出射された第2光L2は第1コリメートレンズ43によってコリメートされる。第2光L2は、コリメート後に第1レンズ23によって集光されて第1光接続部材22に入射される。工程S12と同様に、光検出器(不図示)が設置され、この光検出器が、第1レンズ23によって集光された第2光L2が第1光接続部材22を通過する第2通過光量を検出する。第2通過光量に基づいて、光増幅素子41と第2光接続部材32との光学調芯が行われる。この光学調心の後にモジュール本体10と第2光接続部材32とが、例えばレーザ溶接されて、モジュール本体10の第3接合面11Bと第2光接続部材32の第4接合面32Aとが接合される。このとき、レーザ光は、モジュール本体10の第3接合面11Bと第2光接続部材32の第4接合面32Aの接合部の外側端部に照射され、レーザ溶接される。   As shown in FIG. 5, in the manufacturing method of the first embodiment, the module body 10 and the second optical connection member 32 are subsequently joined (step S13). Since the second optical connecting member 32 of the first embodiment is provided with the first isolator 35, the spontaneous emission light from the second end face 41 </ b> B of the optical amplifying element 41 is difficult to pass through the second optical connecting member 32. For this reason, in step S13, the second light L2 passes through the second optical connection member 32 in contact with the module main body 10 from the end 32B of the second optical connection member 32 opposite to the optical amplification element side. Then, the light is incident on the second end face 41B of the optical amplifying element 41. The second light L2 is amplified by the optical amplification element 41 and emitted from the first end face 41A. The emitted second light L2 is collimated by the first collimating lens 43. The second light L <b> 2 is collected by the first lens 23 after collimation and is incident on the first optical connection member 22. Similarly to step S <b> 12, a photodetector (not shown) is installed, and this photodetector detects the second passing light amount through which the second light L <b> 2 collected by the first lens 23 passes through the first optical connection member 22. Is detected. Based on the second passing light amount, optical alignment between the optical amplifying element 41 and the second optical connecting member 32 is performed. After this optical alignment, the module body 10 and the second optical connection member 32 are laser-welded, for example, and the third joint surface 11B of the module body 10 and the fourth joint surface 32A of the second optical connection member 32 are joined. Is done. At this time, the laser light is applied to the outer end of the joint between the third joint surface 11B of the module body 10 and the fourth joint surface 32A of the second optical connection member 32, and laser welding is performed.

以上に説明した光増幅モジュール1を製造する方法によって得られる効果について説明する。この光増幅モジュール1を製造する方法によれば、第2光接続部材32が第1アイソレータ35を有する光増幅モジュール1において、光増幅素子41の発光と増幅との使い分けによって、光増幅素子41と、第1光接続部材22及び第2光接続部材32の両方との光学調芯が簡便に行われる。即ち、この光増幅モジュール1を製造する方法によれば、光増幅素子41と第1光接続部材22との光学調芯において、光増幅素子41を発光させ、自然放出光である第1光L1が第1光接続部材22を通過する第1通過光量を利用する。また、光増幅素子41と第2光接続部材32との光学調芯では、光増幅モジュール1の外部から第2光L2を入射し、光増幅素子41による増幅後に第1光接続部材22を通過する第2通過光量を利用する。これにより、光増幅素子と、アイソレータを有する光接続部材との光学調芯を簡便に行うことができる。   The effects obtained by the method for manufacturing the optical amplification module 1 described above will be described. According to the method of manufacturing the optical amplification module 1, in the optical amplification module 1 in which the second optical connection member 32 includes the first isolator 35, the light amplification element 41 and the light amplification element 41 are separated from each other by using light emission and amplification. The optical alignment with both the first optical connecting member 22 and the second optical connecting member 32 is easily performed. That is, according to the method for manufacturing the optical amplification module 1, the optical amplification element 41 is caused to emit light in the optical alignment between the optical amplification element 41 and the first optical connection member 22, and the first light L1 that is spontaneous emission light is emitted. Uses the first passing light amount that passes through the first optical connecting member 22. In the optical alignment between the optical amplifying element 41 and the second optical connecting member 32, the second light L2 is incident from the outside of the optical amplifying module 1, and passes through the first optical connecting member 22 after being amplified by the optical amplifying element 41. The second passing light amount is used. Thereby, the optical alignment between the optical amplifying element and the optical connecting member having the isolator can be easily performed.

また、第2光接続部材32に第1アイソレータ35が設けられることによって、光増幅素子41などからの第2光接続部材32への戻り光が低減する。例えば半導体レーザ素子が第2光接続部材32に光学的に結合された光増幅モジュールにおいて、半導体レーザ素子が戻り光によって被る光損傷が低減する。   In addition, since the first isolator 35 is provided in the second optical connection member 32, the return light from the optical amplification element 41 or the like to the second optical connection member 32 is reduced. For example, in an optical amplification module in which a semiconductor laser element is optically coupled to the second optical connection member 32, optical damage that the semiconductor laser element suffers from return light is reduced.

(第2の実施の形態)
図6は、第2実施形態に係る製造方法によって製造される光増幅モジュールの断面図である。第2実施形態の光増幅モジュール1Pの構成は、モジュール本体10Pの第1接合面11C及び第3接合面11Dと、新たに設けられる第1中間部材21及び第2中間部材31とを除いて、第1実施形態の光増幅モジュール1の構成と同様である。
(Second Embodiment)
FIG. 6 is a cross-sectional view of an optical amplification module manufactured by the manufacturing method according to the second embodiment. The configuration of the optical amplification module 1P of the second embodiment is different from the first joint surface 11C and the third joint surface 11D of the module body 10P, and the first intermediate member 21 and the second intermediate member 31 that are newly provided, The configuration is the same as that of the optical amplification module 1 of the first embodiment.

第2実施形態の光増幅モジュール1Pでは、モジュール本体10Pの第1接合面11Cを含む側壁及び第3接合面11Dを含む側壁の厚みが、共に、第1実施形態の第1側面11Eを含む側壁の厚みと比べて薄くなっている。また、これに合わせて、第1接合面11C及び第3接合面11Dは、それぞれ第1開口部12P及び第2開口部13Pを有する一方で、第1開口部12P及び第2開口部13Pに、それぞれ第1レンズ23及び第2レンズ33を有さない。新たに設けられる第1中間部材21及び第2中間部材31が、それぞれ第4開口部21c及び第5開口部31cを備え、第4開口部21c及び第5開口部31cが、それぞれ第1レンズ23P及び第2レンズ33Pを内包する。   In the optical amplifying module 1P of the second embodiment, the thickness of the side wall including the first joint surface 11C and the side wall including the third joint surface 11D of the module body 10P are both the side walls including the first side surface 11E of the first embodiment. It is thinner than the thickness of. In accordance with this, the first bonding surface 11C and the third bonding surface 11D have the first opening 12P and the second opening 13P, respectively, while the first opening 12P and the second opening 13P The first lens 23 and the second lens 33 are not provided. The first intermediate member 21 and the second intermediate member 31 that are newly provided include a fourth opening 21c and a fifth opening 31c, respectively, and the fourth opening 21c and the fifth opening 31c are respectively the first lens 23P. And the second lens 33P.

第1中間部材21は、第5接合面21A、及び第5接合面21Aに対向する第6接合面21Bを有する。光増幅素子41は、第1中間部材21の第1レンズ23Pに光学的に結合され、第1中間部材21の第1レンズ23Pは、第1光接続部材22に光学的に結合される。第2中間部材31は、第7接合面31A、及び第7接合面31Aに対向する第8接合面31Bを有する。第2光接続部材32は、第2中間部材31の第2レンズ33Pに光学的に結合され、第2中間部材31の第2レンズ33Pは、光増幅素子41に光学的に結合される。   The first intermediate member 21 has a fifth joint surface 21A and a sixth joint surface 21B facing the fifth joint surface 21A. The optical amplifying element 41 is optically coupled to the first lens 23P of the first intermediate member 21, and the first lens 23P of the first intermediate member 21 is optically coupled to the first optical connecting member 22. The second intermediate member 31 has a seventh joint surface 31A and an eighth joint surface 31B facing the seventh joint surface 31A. The second optical connecting member 32 is optically coupled to the second lens 33P of the second intermediate member 31, and the second lens 33P of the second intermediate member 31 is optically coupled to the optical amplification element 41.

モジュール本体10Pの第1接合面11Cは、第1中間部材21の第5接合面21Aと接合し、第1中間部材21の第6接合面21Bは、第1光接続部材22の第2接合面22Aと接合している。モジュール本体10Pの第3接合面11Dは、第2中間部材31の第7接合面31Aと接合し、第2中間部材31の第8接合面31Bは、第2光接続部材32の第4接合面32Aと接合している。第1中間部材21及び第2中間部材31は、共に、例えばステンレスからなる。   The first joint surface 11C of the module body 10P is joined to the fifth joint surface 21A of the first intermediate member 21, and the sixth joint surface 21B of the first intermediate member 21 is the second joint surface of the first optical connection member 22. 22A is joined. The third joint surface 11D of the module body 10P is joined to the seventh joint surface 31A of the second intermediate member 31, and the eighth joint surface 31B of the second intermediate member 31 is the fourth joint surface of the second optical connection member 32. It is joined to 32A. Both the first intermediate member 21 and the second intermediate member 31 are made of stainless steel, for example.

図7は、第2実施形態に係る光増幅モジュールを製造する方法を示す流れ図である。第2実施形態の製造方法は、工程S21〜工程S24を有している。図8〜図11は、それぞれ、図7に示す光増幅モジュールを製造するための各工程S21〜S24を示す図である。   FIG. 7 is a flowchart showing a method of manufacturing the optical amplification module according to the second embodiment. The manufacturing method of 2nd Embodiment has process S21-process S24. 8 to 11 are diagrams showing respective steps S21 to S24 for manufacturing the optical amplification module shown in FIG.

図8に示されるように、第2実施形態の製造方法では、初めに、モジュール本体10Pと、第1中間部材21及び第2中間部材31とが接合される(工程S21)。即ち、第2実施形態の製造方法では、モジュール本体10Pの第1接合面11Cと第1中間部材21の第5接合面21Aとが接合され、また、モジュール本体10Pの第3接合面11Dと第2中間部材31の第7接合面31Aとが接合される。この接合は、第1実施形態の製造方法と同様に、例えば、半田付けによることができる。半田付けによる場合には、第1中間部材21の第5接合面21A及び第2中間部材31の第7接合面31Aが、例えば電磁誘導加熱法によって加熱される。加熱によって、例えば第5接合面21A及び第7接合面31Aの上に載せられた半田が溶融され、この溶融された半田によって、第1中間部材21の第5接合面21Aが、モジュール本体10の第1接合面11Aに接合され、第2中間部材31の第7接合面31Aが、モジュール本体10の第3接合面11Bに接合される。工程S21の前工程として、モジュール本体10の第1側面11Eは、第3開口部14にフィードスルー51を設ける。   As shown in FIG. 8, in the manufacturing method of the second embodiment, first, the module body 10P, the first intermediate member 21 and the second intermediate member 31 are joined (step S21). That is, in the manufacturing method of the second embodiment, the first joint surface 11C of the module body 10P and the fifth joint surface 21A of the first intermediate member 21 are joined, and the third joint surface 11D of the module body 10P and the first joint surface 11D are joined. 2 The seventh joining surface 31A of the intermediate member 31 is joined. This joining can be performed by soldering, for example, as in the manufacturing method of the first embodiment. In the case of soldering, the fifth joint surface 21A of the first intermediate member 21 and the seventh joint surface 31A of the second intermediate member 31 are heated by, for example, an electromagnetic induction heating method. For example, the solder placed on the fifth joint surface 21A and the seventh joint surface 31A is melted by heating, and the melted solder causes the fifth joint surface 21A of the first intermediate member 21 to move to the module body 10. The seventh joint surface 31 </ b> A of the second intermediate member 31 is joined to the first joint surface 11 </ b> A, and the seventh joint surface 11 </ b> B of the module body 10 is joined. As a pre-process of the process S <b> 21, the first side surface 11 </ b> E of the module body 10 is provided with a feedthrough 51 in the third opening 14.

図9に示されるように、第2実施形態の製造方法では、次に、モジュール本体10P内には、半導体光増幅素子41を搭載したサブキャリア42、第1コリメートレンズ43、第2コリメートレンズ44、サーミスタ45が搭載されたキャリア46を上部に備える温度制御部47が収容される(工程S22)。   As shown in FIG. 9, in the manufacturing method of the second embodiment, next, in the module main body 10 </ b> P, the subcarrier 42 on which the semiconductor optical amplifying element 41 is mounted, the first collimating lens 43, and the second collimating lens 44. The temperature control unit 47 having the carrier 46 on which the thermistor 45 is mounted is housed (step S22).

図10に示されるように、第2実施形態の製造方法では、続いて、第1中間部材21と第1光接続部材22とが接合される(工程S23)。工程S23では、第1実施形態の製造方法と同様に、第1光L1が光増幅素子41の発光によって発生し、第1端面41Aを出射した第1光L1が第1光接続部材22を通過する第1通過光量に基づいて、光増幅素子41と第1光接続部材22との光学調芯が行われる。この光学調芯の後に、第1中間部材21と第1光接続部材22とが、例えばレーザ溶接されて、第1中間部材21の第6接合面21Bと第1光接続部材22の第2接合面22Aとが接合される。このとき、レーザ光は、第1中間部材21の第6接合面21Bと第1光接続部材22の第2接合面22Aの接合部の外側端部に照射され、レーザ溶接される。   As shown in FIG. 10, in the manufacturing method according to the second embodiment, the first intermediate member 21 and the first optical connection member 22 are subsequently joined (step S23). In step S23, as in the manufacturing method of the first embodiment, the first light L1 is generated by the light emission of the optical amplification element 41, and the first light L1 emitted from the first end face 41A passes through the first optical connection member 22. The optical alignment between the optical amplifying element 41 and the first optical connecting member 22 is performed based on the first passing light amount. After this optical alignment, the first intermediate member 21 and the first optical connection member 22 are laser-welded, for example, so that the sixth joint surface 21B of the first intermediate member 21 and the second joint of the first optical connection member 22 The surface 22A is joined. At this time, the laser beam is applied to the outer end of the joint between the sixth joint surface 21B of the first intermediate member 21 and the second joint surface 22A of the first optical connection member 22, and laser welding is performed.

図11に示されるように、第2実施形態の製造方法では、続いて、第1実施形態の製造方法と同様に、第2中間部材31と第2光接続部材32とが接合される(工程S24)。第2実施形態の第2光接続部材32には、第1アイソレータ35が設けられるので、光増幅素子41の第2端面41Bからの自然放出光は第2光接続部材32を通過し難い。このため、工程S24では、第2光L2が光増幅モジュール1Pの外部から第2光接続部材32を介して光増幅素子41に照射され、光増幅素子41によって増幅された第2光L2が第1光接続部材22を通過する第2通過光量に基づいて、光増幅素子41と第2光接続部材32との光学調芯が行われる。この光学調心の後に、第2中間部材31と第2光接続部材32とが、例えばレーザ溶接されて、第2中間部材31の第8接合面31Bと、第2光接続部材32の第4接合面32Aとが接合される。このとき、レーザ光は、第2中間部材31の第8接合面31Bと、第2光接続部材32の第4接合面32Aの接合部の外側端部に照射され、レーザ溶接される。   As shown in FIG. 11, in the manufacturing method of the second embodiment, the second intermediate member 31 and the second optical connection member 32 are subsequently joined (step) as in the manufacturing method of the first embodiment. S24). Since the second optical connection member 32 of the second embodiment is provided with the first isolator 35, the spontaneous emission light from the second end face 41 </ b> B of the optical amplification element 41 is unlikely to pass through the second optical connection member 32. Therefore, in step S24, the second light L2 is irradiated from the outside of the optical amplification module 1P to the optical amplification element 41 via the second optical connection member 32, and the second light L2 amplified by the optical amplification element 41 is Based on the second light amount passing through the first optical connecting member 22, the optical alignment between the optical amplifying element 41 and the second optical connecting member 32 is performed. After the optical alignment, the second intermediate member 31 and the second optical connection member 32 are laser-welded, for example, so that the eighth joint surface 31B of the second intermediate member 31 and the fourth optical connection member 32 are fourth. The joining surface 32A is joined. At this time, the laser beam is applied to the outer end portion of the joint portion of the eighth joint surface 31B of the second intermediate member 31 and the fourth joint surface 32A of the second optical connection member 32, and laser welding is performed.

以上に説明した光増幅モジュール1Pを製造する方法によって得られる効果について説明する。本実施形態の光増幅モジュール1Pを製造する方法では、モジュール本体10Pの第1接合面11Cと第1中間部材21の第5接合面21Aとが接合され、また、モジュール本体10Pの第3接合面11Dと第2中間部材31の第7接合面31Aとが、半田付けによって接合がされる。このため、モジュール本体の第1接合面11C及び第3接合面11Dの厚みが薄い場合でも、第1接合面11C及び第3接合面11Dに貫通等を生じさせないような接合が簡便に行われる。また、第1中間部材21の第6接合面21Bと第1光接続部材22の第2接合面22Aとが、レーザ溶接によって簡便に接合され、また、第2中間部材31の第8接合面31Bと、第2光接続部材32の第4接合面32Aとが、レーザ溶接によって簡便に接合される。この光増幅モジュール1Pを製造する方法によれば、モジュール本体の接合面の厚みが薄い光増幅モジュールの製造工程が更に簡便になる。   The effects obtained by the method for manufacturing the optical amplification module 1P described above will be described. In the method for manufacturing the optical amplification module 1P of the present embodiment, the first joint surface 11C of the module body 10P and the fifth joint surface 21A of the first intermediate member 21 are joined, and the third joint surface of the module body 10P. 11D and the seventh joining surface 31A of the second intermediate member 31 are joined by soldering. For this reason, even when the thickness of the first joint surface 11C and the third joint surface 11D of the module main body is thin, joining that does not cause penetration or the like in the first joint surface 11C and the third joint surface 11D is easily performed. Further, the sixth joint surface 21B of the first intermediate member 21 and the second joint surface 22A of the first optical connection member 22 are simply joined by laser welding, and the eighth joint surface 31B of the second intermediate member 31 is joined. And the 4th joint surface 32A of the 2nd optical connection member 32 is simply joined by laser welding. According to the method for manufacturing the optical amplification module 1P, the manufacturing process of the optical amplification module in which the thickness of the joint surface of the module main body is thin is further simplified.

また、本実施形態の光増幅モジュール1Pを製造する方法と同様に、第2光接続部材32に第1アイソレータ35が設けられることによって、第2光接続部材32に設けられる半導体レーザ素子などが戻り光によって被る光損傷が低減する。さらに、第2光接続部材32が第1アイソレータ35を有する光増幅モジュールにおいて、光増幅素子41の発光と増幅との使い分けによって、光増幅素子41と、第1光接続部材22及び第2光接続部材32の両方との光学調芯が簡便に行われる。   Similarly to the method of manufacturing the optical amplification module 1P of the present embodiment, the first optical isolator 35 is provided in the second optical connection member 32, so that the semiconductor laser element provided in the second optical connection member 32 is returned. Light damage caused by light is reduced. Further, in the optical amplifying module in which the second optical connecting member 32 has the first isolator 35, the optical amplifying element 41, the first optical connecting member 22, and the second optical connecting are selected depending on the light emission and amplification of the optical amplifying element 41. Optical alignment with both of the members 32 is easily performed.

(第3の実施の形態)
図12は、第3実施形態に係る製造方法によって製造される光増幅モジュールの断面図である。第3実施形態の光増幅モジュール1Qの構成は、第1光接続部材22Qに含まれる第1光ファイバ24Qが第2アイソレータ25を有することを除いて、第2実施形態の光増幅モジュール1Pの構成と同様である。
(Third embodiment)
FIG. 12 is a cross-sectional view of an optical amplification module manufactured by the manufacturing method according to the third embodiment. The configuration of the optical amplification module 1Q of the third embodiment is the same as the configuration of the optical amplification module 1P of the second embodiment, except that the first optical fiber 24Q included in the first optical connection member 22Q has the second isolator 25. It is the same.

第2アイソレータ25は、光増幅素子41の第1端面41Aからの光を通過させる一方で、光増幅素子41の第1端面41Aに向かう光を遮断する光素子である。これ故に、光増幅素子41と第1光接続部材22Qとの光学調芯のときに、光増幅素子41の発光によって生じる自然放出光が利用されることができる。即ち、光増幅素子41の第1端面41Aから出射された第1光L1が、第1光接続部材22Qを通過できるので、第1光L1が第1光接続部材22Qを通過する第1通過光量が検出される。第1通過光量に基づいて、光増幅素子41と第1光接続部材22Qとの光学調芯が行われ、この光学調心の後に、第1中間部材21と第1光接続部材22Qとが、例えばレーザ溶接される。その結果、第1中間部材21の第6接合面21Bと、第1光接続部材22Qの第2接合面22Aとが接合される。このとき、レーザ光は、第1中間部材21の第6接合面21Bと、第1光接続部材22Qの第2接合面22Aの接合部の外側端部に照射され、レーザ溶接される。   The second isolator 25 is an optical element that allows light from the first end face 41 </ b> A of the optical amplifying element 41 to pass therethrough while blocking light directed toward the first end face 41 </ b> A of the optical amplifying element 41. Therefore, the spontaneous emission light generated by the light emission of the light amplifying element 41 can be used during the optical alignment between the light amplifying element 41 and the first optical connecting member 22Q. That is, since the first light L1 emitted from the first end face 41A of the light amplifying element 41 can pass through the first optical connection member 22Q, the first passing light amount through which the first light L1 passes through the first optical connection member 22Q. Is detected. Based on the first passing light amount, optical alignment between the optical amplifying element 41 and the first optical connection member 22Q is performed, and after this optical alignment, the first intermediate member 21 and the first optical connection member 22Q are For example, laser welding is performed. As a result, the sixth joint surface 21B of the first intermediate member 21 and the second joint surface 22A of the first optical connection member 22Q are joined. At this time, the laser light is applied to the outer end portion of the joint portion of the sixth joint surface 21B of the first intermediate member 21 and the second joint surface 22A of the first optical connection member 22Q, and laser welding is performed.

本実施形態の光増幅モジュール1Qを製造する方法では、第1光接続部材22が第2アイソレータ25を有するので、例えば光増幅素子41からの戻り光が第1光接続部材22を通過することを抑制できる。これにより、例えば半導体レーザ素子が第1光接続部材22に光学的に結合された光増幅モジュール1Qにおいては、半導体レーザ素子が被る光損傷を低減することができる。そして、上記の光増幅モジュール1Qによれば、このような場合であっても光増幅素子と光接続部材との光学調芯を簡便に行うことができる。   In the method for manufacturing the optical amplification module 1Q of the present embodiment, since the first optical connection member 22 has the second isolator 25, for example, the return light from the optical amplification element 41 passes through the first optical connection member 22. Can be suppressed. Thereby, for example, in the optical amplification module 1Q in which the semiconductor laser element is optically coupled to the first optical connection member 22, the optical damage that the semiconductor laser element suffers can be reduced. And according to said optical amplification module 1Q, even in such a case, optical alignment with an optical amplification element and an optical connection member can be performed simply.

以上、好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置及び詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲及びその精神の範囲から来る全ての修正及び変更に権利を請求する。   While the principles of the invention have been illustrated and described in the preferred embodiments, it will be appreciated by those skilled in the art that the invention can be modified in arrangement and detail without departing from such principles. The present invention is not limited to the specific configuration disclosed in the present embodiment. We therefore claim all modifications and changes that come within the scope and spirit of the following claims.

1、1P、1Q…光増幅モジュール、10、10P…モジュール本体、11A、11C…第1接合面、11B、11D…第3接合面、21…第1中間部材、21A…第5接合面、21B…第6接合面、22、22Q…第1光接続部材、22A…第2接合面、23…第1レンズ、25…第2アイソレータ、31…第2中間部材、31A…第7接合面、31B…第8接合面、32…第2光接続部材、32A…第4接合面、32B…端部、35…第1アイソレータ、41…光増幅素子、41A…第1端面(一の端面)、41B…第2端面(他の端面)、L1…第1光、L2…第2光。 DESCRIPTION OF SYMBOLS 1, 1P, 1Q ... Optical amplification module 10, 10P ... Module main body, 11A, 11C ... 1st junction surface, 11B, 11D ... 3rd junction surface, 21 ... 1st intermediate member, 21A ... 5th junction surface, 21B ... 6th joint surface, 22, 22Q ... 1st optical connection member, 22A ... 2nd joint surface, 23 ... 1st lens, 25 ... 2nd isolator, 31 ... 2nd intermediate member, 31A ... 7th joint surface, 31B ... 8th joining surface, 32 ... 2nd optical connection member, 32A ... 4th joining surface, 32B ... End part, 35 ... 1st isolator, 41 ... Optical amplification element, 41A ... 1st end surface (one end surface), 41B ... 2nd end surface (other end surface), L1 ... 1st light, L2 ... 2nd light.

Claims (2)

光増幅素子を収容するモジュール本体と、
前記光増幅素子の一の端面に光学的に結合される第1光接続部材と、
前記光増幅素子の他の端面に光学的に結合され、前記光増幅素子に向かう光を通過させ前記光増幅素子からの光を遮断する第1アイソレータを有する第2光接続部材と、を備える光増幅モジュールを製造する方法であって、
前記光増幅素子を駆動して自然放出光からなる第1光を発生させ、前記第1光を前記第1光接続部材を介して観測して、前記光増幅素子と前記第1光接続部材との光学調芯を行う工程と、
第2光を前記第2光接続部材の前記光増幅素子側とは反対側の端部から入力し、前記光増幅素子によって増幅された前記第2光を前記第1光接続部材を介して観測して、前記光増幅素子と前記第2光接続部材との光学調芯を行う工程とを含む、光増幅モジュールを製造する方法。
A module body that houses the optical amplification element;
A first optical connection member optically coupled to one end face of the optical amplification element;
A second optical connection member that is optically coupled to the other end face of the optical amplifying element, and has a first isolator that passes light directed to the optical amplifying element and blocks light from the optical amplifying element. A method of manufacturing an amplification module, comprising:
Driving the optical amplifying element to generate first light composed of spontaneous emission light, observing the first light through the first optical connecting member, and the optical amplifying element and the first optical connecting member; A step of performing optical alignment of
Second light is input from the end of the second optical connection member opposite to the optical amplification element side, and the second light amplified by the optical amplification element is observed through the first optical connection member. And the method of manufacturing an optical amplification module including the process of performing optical alignment with the said optical amplification element and the said 2nd optical connection member.
前記第1光接続部材は、前記光増幅素子の前記一の端面に光学的に結合され、前記光増幅素子からの光を通過させ前記光増幅素子に向かう光を遮断する第2アイソレータを有する、請求項1に記載の光増幅モジュールを製造する方法。   The first optical connecting member includes a second isolator that is optically coupled to the one end face of the optical amplifying element, and that blocks the light that passes through the light amplifying element and that is directed to the optical amplifying element. A method for manufacturing the optical amplification module according to claim 1.
JP2014141635A 2014-07-09 2014-07-09 Method for manufacturing optical amplification module Pending JP2016018121A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014141635A JP2016018121A (en) 2014-07-09 2014-07-09 Method for manufacturing optical amplification module
US14/794,387 US9634463B2 (en) 2014-07-09 2015-07-08 Optical module installing a semiconductor optical amplifier and process of assembling the same
US15/462,595 US9825427B2 (en) 2014-07-09 2017-03-17 Optical module installing a semiconductor optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141635A JP2016018121A (en) 2014-07-09 2014-07-09 Method for manufacturing optical amplification module

Publications (2)

Publication Number Publication Date
JP2016018121A true JP2016018121A (en) 2016-02-01
JP2016018121A5 JP2016018121A5 (en) 2017-07-20

Family

ID=55233373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141635A Pending JP2016018121A (en) 2014-07-09 2014-07-09 Method for manufacturing optical amplification module

Country Status (1)

Country Link
JP (1) JP2016018121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063354A (en) * 2016-10-13 2018-04-19 アンリツ株式会社 Method of manufacturing semiconductor optical amplifier module
JPWO2018117251A1 (en) * 2016-12-22 2019-10-31 古河電気工業株式会社 Semiconductor laser module and method for manufacturing semiconductor laser module
WO2020085509A1 (en) * 2018-10-25 2020-04-30 古河電気工業株式会社 Optical module, optical module mounting substrate, and container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713047A (en) * 1993-06-23 1995-01-17 Hitachi Ltd Optical element module
JP2003177075A (en) * 2001-10-05 2003-06-27 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for screening characteristics of semiconductor optical amplifier
JP2004348115A (en) * 2003-04-30 2004-12-09 Sumitomo Electric Ind Ltd Optical communication module
US20120038974A1 (en) * 2010-08-13 2012-02-16 Alphion Corporation Systems and Methods for Measuring Power Levels in an Optical Device
JP2012242540A (en) * 2011-05-18 2012-12-10 Sumitomo Electric Device Innovations Inc Optical semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713047A (en) * 1993-06-23 1995-01-17 Hitachi Ltd Optical element module
JP2003177075A (en) * 2001-10-05 2003-06-27 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for screening characteristics of semiconductor optical amplifier
JP2004348115A (en) * 2003-04-30 2004-12-09 Sumitomo Electric Ind Ltd Optical communication module
US20120038974A1 (en) * 2010-08-13 2012-02-16 Alphion Corporation Systems and Methods for Measuring Power Levels in an Optical Device
JP2012242540A (en) * 2011-05-18 2012-12-10 Sumitomo Electric Device Innovations Inc Optical semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063354A (en) * 2016-10-13 2018-04-19 アンリツ株式会社 Method of manufacturing semiconductor optical amplifier module
JPWO2018117251A1 (en) * 2016-12-22 2019-10-31 古河電気工業株式会社 Semiconductor laser module and method for manufacturing semiconductor laser module
JP7166932B2 (en) 2016-12-22 2022-11-08 古河電気工業株式会社 Semiconductor laser module and method for manufacturing semiconductor laser module
US11545814B2 (en) 2016-12-22 2023-01-03 Furukawa Electric Co., Ltd. Semiconductor laser module and method of manufacturing semiconductor laser module
WO2020085509A1 (en) * 2018-10-25 2020-04-30 古河電気工業株式会社 Optical module, optical module mounting substrate, and container

Similar Documents

Publication Publication Date Title
US6659659B1 (en) High-speed optical sub-assembly utilizing ceramic substrate, direct coupling and laser welding
JP2016018121A (en) Method for manufacturing optical amplification module
JP2016058738A (en) Control method for optical amplifying apparatus, and optical apparatus
JP6558688B2 (en) Semiconductor optical amplifier
US20170194762A1 (en) Optical module installing a semiconductor optical amplifier
EP1492208A2 (en) Semiconductor laser module and method of assembling the same
WO2014017250A1 (en) Light emitting device, method for manufacturing same, and package member
JP2006216695A (en) Semiconductor laser module
JP2010147108A (en) Fiber laser device, laser processing device, and laser processing method
JP2014060251A (en) Optical power monitoring device, optical power monitoring method, and laser generator using optical power monitoring device
JP2016143734A (en) Method for controlling optical device
JP2016028273A (en) Method for manufacturing optical module and optical module
EP2043204A1 (en) Cassette for optical fiber amplifier, optical fiber amplifier and light source device
JP2013148825A (en) Optical module
KR20080017283A (en) Optical connector, optical fiber module and method of assembling the same
JP2003133651A (en) Semiconductor optical amplifier module with monitoring device
JP2013102007A (en) Fiber laser device
US20120014402A1 (en) Laser module
JP4581746B2 (en) Photodetector and light source module
JP2018063354A (en) Method of manufacturing semiconductor optical amplifier module
US8236588B2 (en) Method for manufacturing a multi-wavelength integrated semiconductor laser
EP1318583A3 (en) Semiconductor laser with two active layers and optical fiber amplifier using the same
JP2018010030A (en) Optical module
JP2016111240A (en) Housing for accommodating semiconductor device, semiconductor module, and method for manufacturing housing for accommodating semiconductor device
JP2018129389A (en) Fiber laser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180814