JP2016017803A - Optical monitoring device - Google Patents

Optical monitoring device Download PDF

Info

Publication number
JP2016017803A
JP2016017803A JP2014139792A JP2014139792A JP2016017803A JP 2016017803 A JP2016017803 A JP 2016017803A JP 2014139792 A JP2014139792 A JP 2014139792A JP 2014139792 A JP2014139792 A JP 2014139792A JP 2016017803 A JP2016017803 A JP 2016017803A
Authority
JP
Japan
Prior art keywords
light
transmission
unit
transmission light
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014139792A
Other languages
Japanese (ja)
Inventor
川添 浩平
Kohei Kawazoe
浩平 川添
窪田 隆博
Takahiro Kubota
隆博 窪田
山田 利幸
Toshiyuki Yamada
利幸 山田
潔俊 西村
Kiyotoshi Nishimura
潔俊 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014139792A priority Critical patent/JP2016017803A/en
Publication of JP2016017803A publication Critical patent/JP2016017803A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical monitoring device that can reduce the size of the entire device and increase efficiency of light utilization.SOLUTION: An optical monitoring device 1 includes: a transmission light transmitting unit 11 transmitting a transmission light Y; a transmission light receiving unit 12 receiving a reflecting light Z of the transmission light Y reflected by an object X; light dividing means 13 with a transmission light reflecting region 13a reflecting the transmission light Y and transmitting the light Y to the object X and a reflecting light penetrating region 13b allowing the reflecting light Z to penetrate the region 13b and transmitting the light Z to the transmission light receiving unit 12; and a transmission/receiving light unit 14 providing the transmission light Y with a predetermined spread angle and transmitting the light Y to the object X while collecting the reflecting light Z from the object X, the transmission light transmitting unit 11 applying the transmission light Y to the transmission light reflecting region 13a of the dividing means 13.SELECTED DRAWING: Figure 1

Description

本発明は、光学監視装置に関し、特に、対象物を簡易かつ効率良く監視又は捜索できる光学監視装置に関する。   The present invention relates to an optical monitoring apparatus, and more particularly to an optical monitoring apparatus that can monitor or search an object simply and efficiently.

従来、レーザ光を監視フィールドに照射して海上遭難者及び海上遭難船などを捜索するレーザ監視装置が提案されている(例えば、特許文献1参照)。このレーザ監視装置は、レーザ光送信部から照射されたレーザ光をハーフミラーで対象物に向けて反射すると共に、対象物から反射されたレーザ光の反射光をハーフミラーで透過させてレーザ光受信部で受信する。これにより、レーザ光の送信光の光軸と反射光の光軸とを一致させることができるので、レーザ監視装置の構成の簡素化が可能となる。   2. Description of the Related Art Conventionally, there has been proposed a laser monitoring device that irradiates a monitoring field with a laser beam to search for maritime victims, maritime distress ships, and the like (see, for example, Patent Document 1). This laser monitoring device reflects laser light emitted from a laser light transmitting unit toward an object with a half mirror, and transmits reflected light of the laser light reflected from the object with a half mirror to receive laser light. Received in the department. Thereby, the optical axis of the transmitted light of the laser light and the optical axis of the reflected light can be matched, so that the configuration of the laser monitoring device can be simplified.

特開2007−218807号公報JP 2007-218807 A

ところで、特許文献1に記載のレーザ監視装置においては、ハーフミラーを用いて送信側のレーザ光を反射すると共に、受信側のレーザ光の反射光を透過させているので、送光側及び受光側でそれぞれ50%の光の損失が発生し、レーザ監視装置の光利用効率が25%となる。このため、装置全体の小型化が可能であると共に、光利用効率を向上できる光学監視装置が望まれている。   By the way, in the laser monitoring apparatus described in Patent Document 1, the laser beam on the transmission side is reflected using the half mirror and the reflected light of the laser beam on the reception side is transmitted. Thus, 50% of light loss occurs, and the light utilization efficiency of the laser monitoring device is 25%. Therefore, there is a demand for an optical monitoring apparatus that can reduce the size of the entire apparatus and improve the light utilization efficiency.

本発明は、このような実情に鑑みてなされたものであり、装置全体の小型化が可能であり、しかも、光利用効率を向上できる光学監視装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical monitoring apparatus that can reduce the size of the entire apparatus and that can improve light utilization efficiency.

本発明の光学監視装置は、送信光を送信する送信光送信部と、対象物によって反射された前記送信光の反射光を受信する送信光受信部と、前記送信光を反射して前記対象物に送信する送信光反射領域、及び前記反射光を透過して前記送信光受信部に送信する反射光透過領域を有する光分離手段と、前記送信光に所定の拡がり角を付与して前記対象物へ前記送信光を送信すると共に、前記対象物からの前記反射光を集光する送受信光ユニットと、を具備し、前記送信光送信部は、前記光分離手段の前記送信光反射領域に前記送信光を照射することを特徴とする。   The optical monitoring device of the present invention includes a transmission light transmission unit that transmits transmission light, a transmission light reception unit that receives reflected light of the transmission light reflected by an object, and the object that reflects the transmission light and reflects the transmission light. A transmission light reflecting area for transmitting to the transmission light, and a light separating means having a reflected light transmission area for transmitting the reflected light and transmitting it to the transmission light receiving unit, and providing a predetermined divergence angle to the transmission light and the object. A transmission / reception light unit that collects the reflected light from the object and transmits the transmission light to the transmission light reflection region of the light separating means. It is characterized by irradiating light.

この構成によれば、光分離手段によって送信光と反射光とを分離することができるので、送受信光ユニットを送受信用として共用することが可能となり、装置全体の小型化が可能となる。しかも、対象物からの反射光の受光光路が光分離手段の一部の領域である送信光反射領域によってのみ遮蔽されるので、ハーフミラーの全面に送信光を照射して送信光と反射光とを分離する場合と比較して光の損失量を低減することが可能となる。したがって、装置全体の小型化が可能であり、しかも、光利用効率を向上できる光学監視装置を実現できる。   According to this configuration, since the transmission light and the reflected light can be separated by the light separation means, the transmission / reception light unit can be shared for transmission / reception, and the entire apparatus can be reduced in size. In addition, since the light receiving optical path of the reflected light from the object is shielded only by the transmission light reflection area, which is a partial area of the light separating means, the transmission light and the reflected light are irradiated by irradiating the entire surface of the half mirror with the transmission light. It is possible to reduce the amount of light loss compared to the case of separating the light. Therefore, it is possible to reduce the size of the entire apparatus and realize an optical monitoring apparatus that can improve the light utilization efficiency.

本発明の光学監視装置においては、前記光分離手段は、前記送信光反射領域において前記送信光を全反射することが好ましい。この構成により、送信光の損失量を低減できるので、光利用効率をより向上できる。   In the optical monitoring device according to the aspect of the invention, it is preferable that the light separating unit totally reflects the transmission light in the transmission light reflection region. With this configuration, the amount of transmission light loss can be reduced, so that the light utilization efficiency can be further improved.

本発明の光学監視装置は、送信光を送信する送信光送信部と、対象物によって反射された前記送信光の反射光を受信する送信光受信部と、前記送信光を透過して前記対象物に送信する送信光透過領域、及び前記反射光を反射して前記送信光受信部に送信する反射光反射領域を有する光分離手段と、前記送信光に所定の拡がり角を付与して前記対象物へ前記送信光を送信すると共に、前記対象物からの前記反射光を集光する送受信光ユニットと、を具備し、前記送信光送信部は、前記光分離手段の前記送信光透過領域に前記送信光を照射することを特徴とする。   The optical monitoring device of the present invention includes a transmission light transmission unit that transmits transmission light, a transmission light reception unit that receives reflected light of the transmission light reflected by an object, and the object that transmits the transmission light and transmits the transmission light. A transmission light transmitting area for transmitting to the transmission light, and a light separating means having a reflected light reflection area for reflecting the reflected light and transmitting the reflected light to the transmission light receiving unit, and a predetermined divergence angle to the transmission light to give the object A transmission / reception light unit that collects the reflected light from the object and transmits the transmission light to the transmission light transmission region of the light separation means. It is characterized by irradiating light.

この構成によれば、光分離手段によって送信光と反射光とを分離することができるので、送受信光ユニットを送受信用として共用することが可能となり、装置全体の小型化が可能となる。しかも、対象物からの反射光の光の損失量が送信光反射領域を透過する反射光のみとなるので、ハーフミラーの全面に送信光を照射して送信光と反射光とを分離する場合と比較して光の損失量を低減することが可能となる。したがって、装置全体の小型化が可能であり、しかも、光利用効率を向上できる光学監視装置を実現できる。   According to this configuration, since the transmission light and the reflected light can be separated by the light separation means, the transmission / reception light unit can be shared for transmission / reception, and the entire apparatus can be reduced in size. In addition, since the amount of light loss of the reflected light from the object is only the reflected light that passes through the transmission light reflection region, the transmission light and the reflected light are separated by irradiating the entire surface of the half mirror with the transmission light. In comparison, the amount of light loss can be reduced. Therefore, it is possible to reduce the size of the entire apparatus and realize an optical monitoring apparatus that can improve the light utilization efficiency.

本発明の光学監視装置においては、前記光分離手段は、前記反射光反射領域において前記反射光を全反射することが好ましい。この構成により、反射光の損失量を低減できるので、光利用効率をより向上できる。   In the optical monitoring apparatus according to the aspect of the invention, it is preferable that the light separating unit totally reflects the reflected light in the reflected light reflecting region. With this configuration, the loss amount of reflected light can be reduced, so that the light use efficiency can be further improved.

本発明の光学監視装置においては、前記送受信光ユニットと前記光分離手段との間に設けられ、前記反射光を略平行光にする第1の光学部材を備えることが好ましい。この構成により、光分離手段に入光する反射光の受光経路を拡大できるので、反射光の損失量をより低減でき、光の利用効率を一層低減できる。   The optical monitoring device of the present invention preferably includes a first optical member that is provided between the transmission / reception light unit and the light separation means and makes the reflected light substantially parallel light. With this configuration, the light receiving path of the reflected light entering the light separating means can be expanded, so that the amount of reflected light loss can be further reduced and the light utilization efficiency can be further reduced.

本発明の光学監視装置においては、前記第1の光学部材は、前記送信光を透過する送信光透過領域を有することが好ましい。この構成により、送信光を平行光として送受信光ユニットに入射させることが可能となる。   In the optical monitoring device according to the aspect of the invention, it is preferable that the first optical member has a transmission light transmission region that transmits the transmission light. With this configuration, the transmission light can be incident on the transmission / reception light unit as parallel light.

本発明の光学監視装置においては、前記第1の光学部材は、前記送信光透過領域において特定波長を有する前記送信光を当該送信光以外の波長を有する他の光に対して選択的に透過することが好ましい。この構成により、送信光を選択的に透過させることができる。   In the optical monitoring device of the present invention, the first optical member selectively transmits the transmission light having a specific wavelength in the transmission light transmission region with respect to other light having a wavelength other than the transmission light. It is preferable. With this configuration, transmission light can be selectively transmitted.

本発明の光学監視装置においては、前記送信光送信部と前記光分離手段との間に設けられ、前記送信光のビーム径を制御する第2の光学部材を備えることが好ましい。この構成により、送信光のビーム径を所望の範囲に制御できるので、送受信光ユニットから対象物に送信される送信光の拡がり範囲の制御が可能となる。   The optical monitoring device of the present invention preferably includes a second optical member that is provided between the transmission light transmission unit and the light separation unit and controls a beam diameter of the transmission light. With this configuration, since the beam diameter of the transmission light can be controlled within a desired range, it is possible to control the expansion range of the transmission light transmitted from the transmission / reception light unit to the object.

本発明の光学監視装置においては、前記光分離手段と前記送信光受信部との間に設けられ、前記反射光の偏光特性を制御する電気光学素子を備えることが好ましい。この構成により、送信光受信部で受信する反射光の偏光特性を制御できるので、送信光受信部において反射光のパルスの制御が可能となり、送信光の利用効率を向上できる。   In the optical monitoring apparatus according to the aspect of the invention, it is preferable that the optical monitoring device includes an electro-optical element that is provided between the light separation unit and the transmission light reception unit and controls a polarization characteristic of the reflected light. With this configuration, the polarization characteristics of the reflected light received by the transmission light receiving unit can be controlled, so that the pulse of the reflected light can be controlled in the transmission light receiving unit, and the utilization efficiency of the transmission light can be improved.

本発明の光学監視装置においては、前記送信光送信部と前記光分離手段との間に設けられ、前記送信光を直線偏光から円偏光に変換する第1の偏光素子を備えることが好ましい。この構成により、送信光及び反射光を円偏光に変換できるので、送信光受信部において反射光のパルスの制御が可能となり、送信光の利用効率を向上できる。   In the optical monitoring device of the present invention, it is preferable that the optical monitoring apparatus includes a first polarizing element that is provided between the transmission light transmission unit and the light separation unit and converts the transmission light from linearly polarized light to circularly polarized light. With this configuration, the transmitted light and the reflected light can be converted into circularly polarized light, so that the pulse of the reflected light can be controlled in the transmitted light receiving unit, and the utilization efficiency of the transmitted light can be improved.

本発明の光学監視装置においては、前記送信光送信部と前記光分離手段との間に設けられ、前記送信光を所望の偏光に変換する第2の偏光素子を備えることが好ましい。この構成により、送信光を所望の直線偏光に変換できるので、送信光受信部において反射光のパルスの制御が可能となり、送信光の利用効率を向上できる。   In the optical monitoring apparatus of the present invention, it is preferable that the optical monitoring apparatus includes a second polarizing element that is provided between the transmission light transmission unit and the light separation unit and converts the transmission light into desired polarization. With this configuration, since the transmission light can be converted into desired linearly polarized light, the pulse of the reflected light can be controlled in the transmission light reception unit, and the utilization efficiency of the transmission light can be improved.

本発明によれば、装置全体の小型化が可能であり、しかも、光利用効率を向上できる光学監視装置を実現できる。   According to the present invention, it is possible to realize an optical monitoring apparatus in which the entire apparatus can be reduced in size and the light utilization efficiency can be improved.

図1は、本発明の第1の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 1 is a schematic diagram showing an outline of an optical monitoring apparatus according to the first embodiment of the present invention. 図2は、本発明の第2の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 2 is a schematic diagram showing an outline of an optical monitoring apparatus according to the second embodiment of the present invention. 図3は、本発明の第3の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 3 is a schematic diagram showing an outline of an optical monitoring apparatus according to the third embodiment of the present invention. 図4は、本発明の第4の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 4 is a schematic diagram showing an outline of an optical monitoring apparatus according to the fourth embodiment of the present invention. 図5は、本発明の第5の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 5 is a schematic diagram showing an outline of an optical monitoring apparatus according to the fifth embodiment of the present invention. 図6は、本発明の第6の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 6 is a schematic diagram showing an outline of an optical monitoring apparatus according to the sixth embodiment of the present invention. 図7は、本発明の第7の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 7 is a schematic diagram showing an outline of an optical monitoring apparatus according to the seventh embodiment of the present invention. 図8は、本発明の第8の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 8 is a schematic diagram showing an outline of an optical monitoring apparatus according to the eighth embodiment of the present invention. 図9は、本発明の第9の実施の形態に係る光学監視装置の概略を示す模式図である。FIG. 9 is a schematic diagram showing an outline of an optical monitoring apparatus according to the ninth embodiment of the present invention.

以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、以下の各実施の形態に限定されるものではなく、適宜変更して実施可能である。また、以下の各実施の形態は適宜組み合わせて実施可能である。また、各実施の形態において共通する構成要素には同一の符号を付し、説明の重複を避ける。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited to each following embodiment, It can implement by changing suitably. Also, the following embodiments can be implemented in combination as appropriate. Moreover, the same code | symbol is attached | subjected to the component which is common in each embodiment, and duplication of description is avoided.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る光学監視装置の概略を示す模式図である。図1に示すように、本実施の形態に係る光学監視装置1は、送信光送信部11から対象物Xに向けて送信光Yを送信し、対象物Xから反射された反射光Zを送信光受信部12で受信することにより、対象物Xを簡易かつ効率よく監視及び捜索可能な光学監視装置である。この光学監視装置1は、送信光路上に配置された送信光送信部11と、送信光送信部11の後段に配置された光分離手段13と、光分離手段13の後段に配置された送受信光ユニット14とを備える。また、この光学監視装置1においては、受信光路上には、送受信光ユニット14の後段に光分離手段13が配置され、光分離手段13の後段に送信光受信部12が配置されている。
(First embodiment)
FIG. 1 is a schematic diagram showing an outline of an optical monitoring apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the optical monitoring device 1 according to the present embodiment transmits transmission light Y from the transmission light transmission unit 11 toward the object X, and transmits reflected light Z reflected from the object X. The optical monitoring device is capable of monitoring and searching for the object X simply and efficiently by receiving the light at the light receiving unit 12. The optical monitoring device 1 includes a transmission light transmission unit 11 disposed on a transmission light path, a light separation unit 13 disposed at a subsequent stage of the transmission light transmission unit 11, and a transmission / reception light disposed at a subsequent stage of the light separation unit 13. Unit 14 is provided. Further, in the optical monitoring device 1, the light separating unit 13 is disposed on the reception optical path after the transmission / reception light unit 14, and the transmission light receiving unit 12 is disposed after the light separating unit 13.

送信光送信部11は、光源からの送信光Yを光ファイバ11aによって所定の照射位置に導光する。また、送信光送信部11は、光ファイバ11aの射出端11bから光分離手段13の送信光反射領域13aに向けて送信光Yを射出する。送信光Yとしては、本発明の効果を奏する範囲で各種光を用いることができ、例えば、照明光及びレーザ光などが挙げられる。   The transmission light transmission unit 11 guides the transmission light Y from the light source to a predetermined irradiation position by the optical fiber 11a. Further, the transmission light transmission unit 11 emits the transmission light Y from the emission end 11b of the optical fiber 11a toward the transmission light reflection region 13a of the light separation means 13. As the transmission light Y, various kinds of light can be used within the range where the effects of the present invention are exhibited, and examples thereof include illumination light and laser light.

光分離手段13は、送信光Yを反射する送信光反射領域13aと、対象物Xからの反射光を透過する反射光透過領域13bとを備える。送信光反射領域13aは、送信光送信部11から照射された送信光Yを送受信光ユニット14に向けて反射すると共に、対象物Xからの受信光路を遮蔽する。反射光透過領域13bは、送受信光ユニット14から入光した反射光Zを透過する。   The light separating means 13 includes a transmission light reflection region 13a that reflects the transmission light Y and a reflected light transmission region 13b that transmits the reflection light from the object X. The transmission light reflection region 13a reflects the transmission light Y emitted from the transmission light transmission unit 11 toward the transmission / reception light unit 14 and shields the reception light path from the object X. The reflected light transmission region 13 b transmits the reflected light Z that has entered from the transmission / reception light unit 14.

光分離手段13は、例えば、透明ガラス及び樹脂材料などの光透過性を有する基材の表面の一部に、ハーフミラー及び反射ミラーなどの送信光Yを反射する光学部品を配置することによって構成される。この場合、光分離手段13は、基材における送信光を反射する光学部品を設けた領域が送信光反射領域13aとなり、基材における送信光反射領域13a以外の領域が反射光透過領域13bとなる。なお、送信光反射領域13aは、基材の表面に金属材料などを蒸着することによって設けることもできる。本実施の形態においては、送信光反射領域13aは、反射光Zの遮蔽による損失を低減する観点から、面積を小さくすることが好ましい。送信光反射領域13aの面積は、例えば、光分離手段13の表面積に対して20%以下にすることが好ましく、10%以下にすることがより好ましい。   The light separating means 13 is configured by, for example, arranging an optical component that reflects the transmitted light Y such as a half mirror and a reflecting mirror on a part of the surface of a transparent substrate such as transparent glass and resin material. Is done. In this case, in the light separating means 13, the region where the optical component that reflects the transmission light on the base material is provided becomes the transmission light reflection region 13 a, and the region other than the transmission light reflection region 13 a on the base material becomes the reflected light transmission region 13 b. . The transmission light reflection region 13a can also be provided by vapor-depositing a metal material or the like on the surface of the base material. In the present embodiment, it is preferable to reduce the area of the transmission light reflection region 13a from the viewpoint of reducing the loss due to shielding of the reflected light Z. For example, the area of the transmission light reflecting region 13a is preferably 20% or less, more preferably 10% or less with respect to the surface area of the light separating means 13.

送受信光ユニット14は、複数のレンズ群(不図示)を備える。送受信光ユニット14は、送信光Yに所定の拡がり角を付与して対象物Xへ送信光(送光)を送信する。また、送受信光ユニット14は、対象物Xからの反射光Zを集光して光分離手段13に照射する。   The transmission / reception light unit 14 includes a plurality of lens groups (not shown). The transmission / reception light unit 14 gives a predetermined divergence angle to the transmission light Y and transmits the transmission light (light transmission) to the object X. The transmission / reception light unit 14 collects the reflected light Z from the object X and irradiates the light separating means 13 with it.

送信光受信部12は、レンズを備えた撮像カメラと、この撮像カメラに接続されたモニタを備える。送信光受信部12は、送受信光ユニット14によって集光され、光分離手段13を透過した反射光Zを受信する。   The transmission light receiving unit 12 includes an imaging camera provided with a lens and a monitor connected to the imaging camera. The transmission light receiving unit 12 receives the reflected light Z collected by the transmission / reception light unit 14 and transmitted through the light separating means 13.

次に、本実施の形態に係る光学監視装置1の全体動作について説明する。送信光送信部11は、光ファイバ11aによって導光した所定の位置から光分離手段13の送信光反射領域13aに向けて送信光Yを照射する。この送信光Yは、光分離手段13の送信光反射領域13aによって送受信光ユニット14に向けて反射される。ここで、本実施の形態においては、送信光送信部11が、光分離手段13の一部に設けた送信光反射領域13aに向けて送信光Yを照射するので、送信光Yの損失量を低減することが可能となる。   Next, the overall operation of the optical monitoring apparatus 1 according to the present embodiment will be described. The transmission light transmission unit 11 irradiates the transmission light Y from the predetermined position guided by the optical fiber 11 a toward the transmission light reflection region 13 a of the light separation unit 13. The transmission light Y is reflected toward the transmission / reception light unit 14 by the transmission light reflection region 13 a of the light separating means 13. Here, in the present embodiment, the transmission light transmission unit 11 irradiates the transmission light Y toward the transmission light reflection region 13 a provided in a part of the light separation means 13, so that the loss amount of the transmission light Y is reduced. It becomes possible to reduce.

送受信光ユニット14に向けて反射された送信光Yは、送受信光ユニット14によって所定の拡がり角が付与されて対象物Xに送信光として照射される。対象物Xによって反射された反射光Zは、送受信光ユニット14によって集光されて光分離手段13に照射される。この反射光Zは、反射光透過領域13bを介して送信光受信部12に照射されると共に、一部が送信光反射領域13aによって遮蔽される。ここで、本実施の形態においては、光分離手段13の一部に送信光反射領域13aが設けられているので、送信光反射領域13aによって遮蔽される反射光Zの損失量を低減することが可能となる。   The transmission light Y reflected toward the transmission / reception light unit 14 is given a predetermined divergence angle by the transmission / reception light unit 14 and is irradiated to the object X as transmission light. The reflected light Z reflected by the object X is collected by the transmission / reception light unit 14 and applied to the light separating means 13. The reflected light Z is applied to the transmission light receiving unit 12 through the reflected light transmission region 13b, and a part thereof is shielded by the transmission light reflection region 13a. Here, in the present embodiment, since the transmission light reflection region 13a is provided in a part of the light separation means 13, the loss amount of the reflected light Z shielded by the transmission light reflection region 13a can be reduced. It becomes possible.

以上説明したように、本実施の形態に係る光学監視装置1によれば、光分離手段13によって送信光Yと反射光Zとを分離することができるので、送受信光ユニット14を送受信用として共用することが可能となり、装置全体の小型化が可能となる。しかも、対象物Xからの反射光Zの受信光路が光分離手段13の一部の領域である送信光反射領域13aによってのみ遮蔽されるので、ハーフミラーの全面に送信光Yを照射して送信光Yと反射光Zとを分離する場合と比較して光の損失量を低減することが可能となる。したがって、装置全体の小型化が可能であり、しかも、光利用効率を向上できる光学監視装置1を実現できる。   As described above, according to the optical monitoring device 1 according to the present embodiment, since the transmission light Y and the reflected light Z can be separated by the light separation means 13, the transmission / reception optical unit 14 is shared for transmission / reception. It becomes possible to reduce the size of the entire apparatus. In addition, since the reception optical path of the reflected light Z from the object X is shielded only by the transmission light reflection region 13a that is a partial region of the light separating means 13, the entire surface of the half mirror is irradiated with the transmission light Y for transmission. Compared with the case where the light Y and the reflected light Z are separated, the amount of light loss can be reduced. Therefore, it is possible to realize the optical monitoring apparatus 1 that can reduce the size of the entire apparatus and improve the light utilization efficiency.

(第2の実施の形態)
図2は、本発明の第2の実施の形態に係る光学監視装置2の概略を示す模式図である。図2に示すように、本実施の形態に係る光学監視装置2は、上述した第1の実施の形態に係る光学監視装置1の構成に加えて、送信光路上の光分離手段13の後段であって、送受信光ユニット14の前段に配置されたコリメートレンズ(光学部材)21を備える。このコリメートレンズ21は、送受信光ユニット14によって集光されつつ光分離手段13に向けて照射される反射光Zを略平行光にする機能を有する。このコリメートレンズ21は、送信光受信部12の受信面(例えば、撮像カメラのレンズの全面)に対応した面積を有する。その他の構成については、上述した第1の実施の形態に係る光学監視装置1と同様のため説明を省略する。
(Second Embodiment)
FIG. 2 is a schematic diagram showing an outline of the optical monitoring device 2 according to the second embodiment of the present invention. As shown in FIG. 2, in addition to the configuration of the optical monitoring device 1 according to the first embodiment described above, the optical monitoring device 2 according to the present embodiment is provided at the subsequent stage of the light separating means 13 on the transmission optical path. A collimating lens (optical member) 21 is provided in front of the transmission / reception light unit 14. The collimating lens 21 has a function of making the reflected light Z, which is collected by the transmission / reception light unit 14 and irradiated toward the light separating means 13, substantially parallel light. The collimating lens 21 has an area corresponding to the receiving surface of the transmission light receiving unit 12 (for example, the entire surface of the lens of the imaging camera). Since other configurations are the same as those of the optical monitoring device 1 according to the first embodiment described above, description thereof is omitted.

次に、本実施の形態に係る光学監視装置2の全体動作について上述した光学監視装置1との相違点を中心に説明する。対象物Xによって反射された反射光Zは、送受信光ユニット14によって集光されつつ、コリメートレンズ21に入射して略平行光に光路が揃えられる。ここで、本実施の形態においては、コリメートレンズ21によって反射光Zを略平行光とするので、コリメートレンズ21を設けずに送受信光ユニット14によって集光されつつ光分離手段13に反射光Zを照射する場合と比較して、光分離手段13の反射光透過領域13bに対する反射光Zの照射面積A1を拡大できる。しかも、コリメートレンズ21が送信光受信部12の受信面に対応した面積を有するので、送信光受信部12の最大範囲に反射光Zを照射することが可能となる。したがって、反射光Zの損失量をより低減することが可能となる。   Next, the overall operation of the optical monitoring apparatus 2 according to the present embodiment will be described focusing on the differences from the optical monitoring apparatus 1 described above. The reflected light Z reflected by the object X enters the collimating lens 21 while being collected by the transmission / reception light unit 14, and the optical path is aligned with substantially parallel light. Here, in the present embodiment, since the reflected light Z is made substantially parallel light by the collimating lens 21, the reflected light Z is condensed on the light separating means 13 while being condensed by the transmission / reception light unit 14 without providing the collimating lens 21. Compared with the case of irradiation, the irradiation area A1 of the reflected light Z with respect to the reflected light transmission region 13b of the light separating means 13 can be enlarged. In addition, since the collimating lens 21 has an area corresponding to the receiving surface of the transmission light receiving unit 12, it is possible to irradiate the reflected light Z to the maximum range of the transmission light receiving unit 12. Therefore, the loss amount of the reflected light Z can be further reduced.

なお、本実施の形態においては、反射光Zを略平行光にする光学部材としてコリメートレンズ21を用いる例について説明したが、光学部材は、反射光Zを略平行光にできるものであれば特に制限されるものではない。   In the present embodiment, the example in which the collimator lens 21 is used as the optical member that makes the reflected light Z substantially parallel light has been described. However, the optical member is particularly capable of making the reflected light Z substantially parallel light. It is not limited.

(第3の実施の形態)
図3は、本発明の第3の実施の形態に係る光学監視装置3の概略を示す模式図である。図3に示すように、本実施の形態に係る光学監視装置3は、上述した第2の実施の形態に係る光学監視装置2の光分離手段13に代えて開口部を有する光分離手段22を備える。この光分離手段22においては、開口部が送信光Yを透過する送信光透過領域22aとなり、開口部以外の表面が反射光Zを送信光受信部12に向けて反射する反射光反射領域22bとなる。光分離手段22としては、例えば、反射ミラー及びハーフミラーに送信光Yが透過する開口を設けたものを用いることができる。また、光分離手段22としては、透明ガラス及び樹脂材料などの光透過性を有する基材の表面の一部に、ハーフミラー及び反射ミラーなどの送信光を反射する光学部品を配置することによって構成される。この場合、光分離手段22は、基材における送信光を反射する光学部品を設けた領域が反射光反射領域22bとなり、基材における反射光反射領域22b以外の領域が送信光透過領域22aとなる。なお、反射光反射領域22bは、基材の表面に金属材料などを蒸着することによって設けることもできる。
(Third embodiment)
FIG. 3 is a schematic diagram showing an outline of the optical monitoring device 3 according to the third embodiment of the present invention. As shown in FIG. 3, the optical monitoring device 3 according to the present embodiment includes a light separation means 22 having an opening instead of the light separation means 13 of the optical monitoring device 2 according to the second embodiment described above. Prepare. In this light separating means 22, the opening becomes a transmission light transmission region 22 a that transmits the transmission light Y, and the surface other than the opening reflects the reflected light Z toward the transmission light reception unit 12. Become. As the light separation means 22, for example, a reflection mirror and a half mirror provided with an opening through which the transmission light Y is transmitted can be used. In addition, the light separating means 22 is configured by disposing an optical component that reflects transmission light, such as a half mirror and a reflecting mirror, on a part of the surface of a transparent substrate such as transparent glass and resin material. Is done. In this case, in the light separating means 22, the region where the optical component that reflects the transmission light on the base material is provided becomes the reflected light reflection region 22b, and the region other than the reflected light reflection region 22b on the base material becomes the transmission light transmission region 22a. . The reflected light reflecting region 22b can also be provided by evaporating a metal material or the like on the surface of the substrate.

本実施の形態においては、送信光透過領域22aは、反射光Zの透過による損失を低減する観点から、面積を小さくすることが好ましい。送信光透過領域22aの面積は、例えば、光分離手段22の表面積に対して20%以下にすることが好ましく、10%以下にすることがより好ましい。また、本実施の形態においては、開口部を設けて送信光透過領域22aを設けた例について説明したが、この構成に限定されない。送信光透過領域22aは、例えば、反射光反射領域22bと比較して、特定波長を有する送信光Yを当該特定波長以外の波長領域を有する反射光Zなどの他の光に対して選択的に透過させるように構成してもよい。このように構成しても、送信光Yを選択的に透過して対象物Xに対して送信することができるので、送信光Yの利用効率が向上する。その他の構成については、上述した第2の実施の形態に係る光学監視装置2と同様のため説明を省略する。   In the present embodiment, it is preferable to reduce the area of the transmission light transmission region 22a from the viewpoint of reducing loss due to transmission of the reflected light Z. For example, the area of the transmission light transmission region 22a is preferably 20% or less, and more preferably 10% or less, with respect to the surface area of the light separation means 22. In the present embodiment, the example in which the opening is provided and the transmission light transmission region 22a is provided has been described. However, the present invention is not limited to this configuration. For example, the transmission light transmission region 22a selectively transmits the transmission light Y having a specific wavelength with respect to other light such as the reflection light Z having a wavelength region other than the specific wavelength, as compared with the reflection light reflection region 22b. You may comprise so that it may permeate | transmit. Even if comprised in this way, since the transmission light Y can be selectively permeate | transmitted and transmitted with respect to the target object X, the utilization efficiency of the transmission light Y improves. Since other configurations are the same as those of the optical monitoring device 2 according to the second embodiment described above, description thereof is omitted.

次に、本実施の形態に係る光学監視装置3の全体動作について上述した光学監視装置2との相違点を中心に説明する。送信光送信部11は、光ファイバ11aによって導光した所定の位置から光分離手段22の送信光透過領域22aに向けて送信光Yを照射する。この送信光Yは、光分離手段22の送信光透過領域22aを介して送受信光ユニット14に向けて照射される。ここで、本実施の形態においては、光ファイバ11aで導光したビーム径が小さい送信光Yを光分離手段22の一部に設けた送信光透過領域22aに向けて照射するので、送信光Yの損失量を低減することが可能となる。   Next, the overall operation of the optical monitoring apparatus 3 according to the present embodiment will be described focusing on differences from the optical monitoring apparatus 2 described above. The transmission light transmission unit 11 irradiates the transmission light Y from the predetermined position guided by the optical fiber 11 a toward the transmission light transmission region 22 a of the light separation unit 22. The transmission light Y is irradiated toward the transmission / reception light unit 14 via the transmission light transmission region 22a of the light separation means 22. Here, in the present embodiment, since the transmission light Y having a small beam diameter guided by the optical fiber 11a is irradiated toward the transmission light transmission region 22a provided in a part of the light separation means 22, the transmission light Y It is possible to reduce the amount of loss.

対象物Xによって反射された反射光Zは、送受信光ユニット14によって集光されて光分離手段22に照射される。この反射光Zは、反射光反射領域22bを介して送信光受信部12に照射されると共に、一部が送信光透過領域22aを透過する。ここで、本実施の形態においては、光分離手段22の一部に送信光透過領域22aを設けているので、送信光透過領域22aを透過する反射光Zの損失量を低減することが可能となる。   The reflected light Z reflected by the object X is collected by the transmission / reception light unit 14 and applied to the light separating means 22. The reflected light Z is applied to the transmission light receiving unit 12 through the reflected light reflection region 22b, and part of the reflected light Z is transmitted through the transmission light transmission region 22a. Here, in the present embodiment, since the transmission light transmission region 22a is provided in a part of the light separation means 22, it is possible to reduce the loss amount of the reflected light Z transmitted through the transmission light transmission region 22a. Become.

(第4の実施の形態)
図4は、本発明の第4の実施の形態に係る光学監視装置4の概略を示す模式図である。図4に示すように、本実施の形態に係る光学監視装置4は、上述した第3の実施の形態に係る光学監視装置3の構成に加えて、送信光路上の光分離手段22の後段であって、送受信光ユニット14の前段に配置された開口部23Aを有するコリメートレンズ(光学部材)23を備える。このコリメートレンズ23は、送受信光ユニット14によって集光されつつ光分離手段22に向けて照射される反射光Zを略平行光にする機能を有する。このコリメートレンズ23は、送信光受信部12の受信面(例えば、撮像カメラのレンズの全面)に対応した面積を有する。その他の構成については、上述した第3の実施の形態に係る光学監視装置3と同様のため説明を省略する。
(Fourth embodiment)
FIG. 4 is a schematic diagram showing an outline of the optical monitoring device 4 according to the fourth embodiment of the present invention. As shown in FIG. 4, in addition to the configuration of the optical monitoring device 3 according to the third embodiment described above, the optical monitoring device 4 according to the present embodiment is provided at the subsequent stage of the light separating means 22 on the transmission optical path. In addition, a collimating lens (optical member) 23 having an opening 23 </ b> A disposed in front of the transmission / reception light unit 14 is provided. The collimating lens 23 has a function of making the reflected light Z, which is collected by the transmission / reception light unit 14 and radiated toward the light separating means 22, substantially parallel light. The collimating lens 23 has an area corresponding to the receiving surface of the transmission light receiving unit 12 (for example, the entire surface of the lens of the imaging camera). Other configurations are the same as those of the optical monitoring device 3 according to the third embodiment described above, and thus the description thereof is omitted.

次に、本実施の形態に係る光学監視装置4の全体動作について上述した光学監視装置3との相違点を中心に説明する。送受信光ユニット14に向けて反射された送信光Yは、コリメートレンズ23の開口部23Aを介して平行光として送受信光ユニット14に照射される。対象物Xによって反射された反射光Zは、送受信光ユニット14によって集光されて光分離手段22に照射される。対象物Xによって反射された反射光Zは、送受信光ユニット14によって集光されつつ、コリメートレンズ23に入射して略平行光に光路が揃えられる。ここで、本実施の形態においては、送信光Yが、コリメートレンズ23の開口部23Aを通過して送受信光ユニット14に送信されるので、開口部23Aを設けない場合と比較してコリメートレンズ23を透過する際に発生する送信光Yのコリメートレンズ23での表面反射及びコリメートレンズ23での送信光Yの減衰を回避できる。また、送信光Yが開口部23Aを介して送信させるので、コリメートレンズ23での表面反射を防ぐことができるので、送信光Yの散乱を抑制することもできる。したがって、送信光Yの損失量をより低減することが可能となる。   Next, the overall operation of the optical monitoring device 4 according to the present embodiment will be described focusing on the differences from the optical monitoring device 3 described above. The transmission light Y reflected toward the transmission / reception light unit 14 is irradiated to the transmission / reception light unit 14 as parallel light through the opening 23 </ b> A of the collimator lens 23. The reflected light Z reflected by the object X is collected by the transmission / reception light unit 14 and applied to the light separating means 22. The reflected light Z reflected by the object X enters the collimating lens 23 while being collected by the transmission / reception light unit 14, and the optical path is aligned with substantially parallel light. Here, in the present embodiment, the transmission light Y is transmitted to the transmission / reception light unit 14 through the opening 23A of the collimating lens 23, so that the collimating lens 23 is compared with the case where the opening 23A is not provided. Thus, it is possible to avoid surface reflection of the transmission light Y at the collimating lens 23 and attenuation of the transmission light Y from the collimating lens 23 that occur when the light passes through the beam. In addition, since the transmission light Y is transmitted through the opening 23A, surface reflection at the collimating lens 23 can be prevented, so that scattering of the transmission light Y can also be suppressed. Therefore, the loss amount of the transmission light Y can be further reduced.

(第5の実施の形態)
図5は、本発明の第5の実施の形態に係る光学監視装置5の概略を示す模式図である。図5に示すように、本実施の形態に係る光学監視装置5は、上述した第1の実施の形態に係る光学監視装置1の構成に加えて送信光路の送信光送信部11の後段であって、光分離手段13の前段に配置された成形レンズ15を備える。この成形レンズ15は、送信光Yを所望のビーム径に成形する。その他の構成については、上述した第1の実施の形態に係る光学監視装置1と同様のため説明を省略する。
(Fifth embodiment)
FIG. 5 is a schematic diagram showing an outline of the optical monitoring device 5 according to the fifth embodiment of the present invention. As shown in FIG. 5, the optical monitoring device 5 according to the present embodiment is a subsequent stage of the transmission light transmission unit 11 in the transmission light path in addition to the configuration of the optical monitoring device 1 according to the first embodiment described above. And a molded lens 15 disposed in front of the light separating means 13. The shaping lens 15 shapes the transmission light Y into a desired beam diameter. Since other configurations are the same as those of the optical monitoring device 1 according to the first embodiment described above, description thereof is omitted.

次に、本実施の形態に係る光学監視装置5の全体動作について上述した光学監視装置1との相違点を中心に説明する。送信光送信部11から照射された送信光Yは、成形レンズ15によって所望のビーム径に成形された後、光分離手段13の送信光反射領域13aによって送受信光ユニット14に向けて反射される。これにより、例えば、光学監視装置5は、送信光受信部12の撮像カメラのレンズの画角に合わせビーム径に送信光を合わせることが可能となる。また、光学監視装置5は、光分離手段13の送信光反射領域13aの面積に対応したビーム径に送信光Yを成形することも可能となる。   Next, the overall operation of the optical monitoring apparatus 5 according to the present embodiment will be described focusing on differences from the optical monitoring apparatus 1 described above. The transmission light Y emitted from the transmission light transmission unit 11 is shaped into a desired beam diameter by the shaping lens 15 and then reflected toward the transmission / reception light unit 14 by the transmission light reflection region 13 a of the light separation means 13. Thereby, for example, the optical monitoring device 5 can adjust the transmission light to the beam diameter in accordance with the angle of view of the lens of the imaging camera of the transmission light receiving unit 12. Further, the optical monitoring device 5 can also shape the transmission light Y to a beam diameter corresponding to the area of the transmission light reflection region 13a of the light separating means 13.

(第6の実施の形態)
図6は、本発明の第6の実施の形態に係る光学監視装置6の概略を示す模式図である。図6に示すように、本実施の形態に係る光学監視装置6は、上述した第3の実施の形態に係る光学監視装置3の構成に加えて光分離手段22と送信光受信部12との間に電気光学素子24が配置されている。この電気光学素子24は、圧電性を有する誘電性の等方性結晶によって構成される素子及び偏光板を備えてなり、所定の電圧を印加すると素子における屈折率が変化する。この電気光学素子24は、所定の電圧を印加することにより、送信光受信部12に照射される反射光Zの偏光方向を所望の偏光方向に制御する。この電気光学素子24は、送信光送信部11からの直線偏光の送信光Yが送信光受光部12に入射する際には、送信光Yの直線偏光を偏光板の偏光方向と直交させる方向に変化させて送信光Yの送信光受光部12へ入射を抑制する。また、電気光学素子24は、対象物Xからの反射光Zが送信光受光部12に入射する際には、反射光Zの偏光方向の制御を行わずに、反射光Zが偏光板を透過するように制御して送信光受光部12で受光可能とする。その他の構成については、上述した第3の実施の形態に係る光学監視装置3と同様のため説明を省略する。
(Sixth embodiment)
FIG. 6 is a schematic diagram showing an outline of the optical monitoring device 6 according to the sixth embodiment of the present invention. As shown in FIG. 6, the optical monitoring device 6 according to the present embodiment includes an optical separating unit 22 and a transmission light receiving unit 12 in addition to the configuration of the optical monitoring device 3 according to the third embodiment described above. An electro-optic element 24 is disposed therebetween. The electro-optic element 24 includes an element composed of a dielectric isotropic crystal having piezoelectricity and a polarizing plate. When a predetermined voltage is applied, the refractive index of the element changes. The electro-optic element 24 controls the polarization direction of the reflected light Z irradiated to the transmission light receiving unit 12 to a desired polarization direction by applying a predetermined voltage. The electro-optic element 24 is configured so that when the linearly polarized transmission light Y from the transmission light transmitting unit 11 enters the transmission light receiving unit 12, the linearly polarized light of the transmission light Y is orthogonal to the polarization direction of the polarizing plate. By changing, the transmission light Y is prevented from entering the transmission light receiving unit 12. In addition, when the reflected light Z from the object X enters the transmission light receiving unit 12, the electro-optic element 24 does not control the polarization direction of the reflected light Z, and the reflected light Z passes through the polarizing plate. In this way, the transmission light receiving unit 12 can receive light. Other configurations are the same as those of the optical monitoring device 3 according to the third embodiment described above, and thus the description thereof is omitted.

次に、本実施の形態に係る光学監視装置6の全体動作について上述した光学監視装置3との相違点を中心に説明する。対象物Xによって反射された反射光Zは、反射光反射領域22bによって反射され、電気光学素子24を介して送信光受信部12に照射される。ここで、本実施の形態においては、電気光学素子24に電圧を印加することにより、送信光送信部11から照射される送信光Yは、電気光学素子24によって偏光方向を偏光板と直交する方向に変化させることにより電気光学素子24の偏光板によって遮断され、送信受信部12への入射を防ぐことが可能となる。また、対象物Xからの反射光Zは、電気光学素子24による制御を行わないことで、電気光学素子24の偏光板によって遮断されることなく受光される。これらにより、送信光受信部12に照射される反射光Zのパルスの制御が可能となり、送信光Yの利用効率が向上する。   Next, the overall operation of the optical monitoring apparatus 6 according to the present embodiment will be described focusing on the differences from the optical monitoring apparatus 3 described above. The reflected light Z reflected by the object X is reflected by the reflected light reflecting region 22 b and is applied to the transmission light receiving unit 12 via the electro-optic element 24. Here, in the present embodiment, by applying a voltage to the electro-optical element 24, the transmission light Y irradiated from the transmission light transmitting unit 11 is polarized in the direction orthogonal to the polarizing plate by the electro-optical element 24. By being changed to, it is blocked by the polarizing plate of the electro-optic element 24 and can be prevented from entering the transmission / reception unit 12. In addition, the reflected light Z from the object X is received without being blocked by the polarizing plate of the electro-optic element 24 without being controlled by the electro-optic element 24. Thus, it is possible to control the pulse of the reflected light Z irradiated to the transmission light receiving unit 12, and the utilization efficiency of the transmission light Y is improved.

(第7の実施の形態)
図7は、本発明の第7の実施の形態に係る光学監視装置7の概略を示す模式図である。図7に示すように、本実施の形態に係る光学監視装置7は、上述した第6の実施の形態に係る光学監視装置6の構成に加えて送信光送信部11と光分離手段22との間に配置された1/4λ素子(第1の偏光素子)25を備える。この1/4λ素子25は、送信光Yの偏光の位相を変換し、直線偏光から円偏光に変換する。その他の構成については、上述した第6の実施の形態に係る光学監視装置6と同様のため説明を省略する。
(Seventh embodiment)
FIG. 7 is a schematic diagram showing an outline of the optical monitoring device 7 according to the seventh embodiment of the present invention. As shown in FIG. 7, the optical monitoring device 7 according to the present embodiment includes a transmission light transmission unit 11 and a light separation unit 22 in addition to the configuration of the optical monitoring device 6 according to the sixth embodiment described above. A quarter-lambda element (first polarizing element) 25 is provided between them. The ¼λ element 25 converts the phase of the polarization of the transmission light Y and converts the linearly polarized light into circularly polarized light. Since other configurations are the same as those of the optical monitoring apparatus 6 according to the sixth embodiment described above, description thereof is omitted.

次に、本実施の形態に係る光学監視装置7の全体動作について上述した光学監視装置6との相違点を中心に説明する。送信光送信部11から照射された直線偏光の送信光Yは、1/4λ素子25により直線偏光から円偏光に変換されて送受信光ユニット14に向けて照射される。一方で、対象物Xによって反射された直線偏光の反射光Zは、送受信光ユニット14によって集光されて電気光学素子24を介して送信光受信部12に入射する。ここで、本実施の形態においては、1/4λ素子25により円偏光に変換して照射される送信光Yは、電気光学素子24により送信光Yの偏光を円偏光から偏光板と直交する偏光方向の直線偏光に変化させるので、送信光受光部12への入射が抑制される。また、対象物Xからの反射光Zは、電気光学素子24による偏光方向の制御を行わないことで、反射光Zが電気光学素子24の偏光板を透過するように制御して送信光受光部12で受光可能とすることができる。これらにより、送信光受信部12に照射される反射光Zのパルスの制御が可能となり、送信光Yの利用効率が向上する。   Next, the overall operation of the optical monitoring device 7 according to the present embodiment will be described focusing on the differences from the optical monitoring device 6 described above. The linearly polarized transmission light Y emitted from the transmission light transmitting unit 11 is converted from linearly polarized light to circularly polarized light by the ¼λ element 25 and irradiated toward the transmission / reception light unit 14. On the other hand, the linearly polarized reflected light Z reflected by the object X is collected by the transmission / reception light unit 14 and enters the transmission light receiving unit 12 via the electro-optic element 24. Here, in the present embodiment, the transmission light Y that is irradiated after being converted into circularly polarized light by the ¼λ element 25 is polarized light whose polarization of the transmission light Y is orthogonally crossed from the circularly polarized light by the electro-optic element 24. Since the direction is changed to linearly polarized light, the incidence on the transmission light receiving unit 12 is suppressed. The reflected light Z from the object X is controlled so that the reflected light Z is transmitted through the polarizing plate of the electro-optic element 24 by not controlling the polarization direction by the electro-optic element 24. 12, the light can be received. Thus, it is possible to control the pulse of the reflected light Z irradiated to the transmission light receiving unit 12, and the utilization efficiency of the transmission light Y is improved.

(第8の実施の形態)
図8は、本発明の第8の実施の形態に係る光学監視装置8の概略を示す模式図である。図8に示すように、本実施の形態に係る光学監視装置8は、上述した第6の実施の形態に係る光学監視装置6の構成に加えて、送信光送信部11と光分離手段22との間に配置された偏光板(第2の偏光素子)26を有する。この偏光板26は、送信光Yを所望の偏光に変換する。その他の構成については、上述した第6の実施の形態に係る光学監視装置6と同様のため説明を省略する。
(Eighth embodiment)
FIG. 8 is a schematic diagram showing an outline of the optical monitoring device 8 according to the eighth embodiment of the present invention. As shown in FIG. 8, in addition to the configuration of the optical monitoring device 6 according to the sixth embodiment described above, the optical monitoring device 8 according to the present embodiment includes a transmission light transmitter 11 and a light separating unit 22. The polarizing plate (second polarizing element) 26 is disposed between the two. The polarizing plate 26 converts the transmitted light Y into a desired polarized light. Since other configurations are the same as those of the optical monitoring apparatus 6 according to the sixth embodiment described above, description thereof is omitted.

次に、本実施の形態に係る光学監視装置8の全体動作について上述した光学監視装置6との相違点を中心に説明する。送信光送信部11から照射された直線偏光の送信光Yは、偏光板26によって反射光Zとは異なる所望の偏光方向に変換されて対象物Xに照射される。一方で、対象物Xによって反射された直線偏光の反射光Zは、偏光方向が変換されずに送信光受信部12に照射される。ここで、本実施の形態においては、電気光学素子24に電圧を印加することにより、送信光送信部11から偏光板26を介して照射される送信光Yは、電気光学素子24によって偏光方向を偏光板と直交する方向に変化させることにより電気光学素子24の偏光板によって遮断され、送信受信部12への入射が抑制される。また、対象物Xからの反射光Zは、電気光学素子24による制御を行わないことで、電気光学素子24の偏光板によって遮断されることなく受光される。これらにより、送信光受信部12に照射される反射光Zのパルスの制御が可能となり、送信光Yの利用効率が向上する。   Next, the overall operation of the optical monitoring apparatus 8 according to the present embodiment will be described focusing on the differences from the optical monitoring apparatus 6 described above. The linearly polarized transmission light Y emitted from the transmission light transmission unit 11 is converted into a desired polarization direction different from the reflected light Z by the polarizing plate 26 and irradiated to the object X. On the other hand, the linearly polarized reflected light Z reflected by the object X is irradiated to the transmission light receiving unit 12 without changing the polarization direction. Here, in the present embodiment, by applying a voltage to the electro-optical element 24, the transmission light Y irradiated from the transmission light transmitting unit 11 via the polarizing plate 26 is polarized by the electro-optical element 24. By changing in the direction orthogonal to the polarizing plate, the electro-optical element 24 is blocked by the polarizing plate, and the incidence on the transmission / reception unit 12 is suppressed. In addition, the reflected light Z from the object X is received without being blocked by the polarizing plate of the electro-optic element 24 without being controlled by the electro-optic element 24. Thus, it is possible to control the pulse of the reflected light Z irradiated to the transmission light receiving unit 12, and the utilization efficiency of the transmission light Y is improved.

(第9の実施の形態)
図9は、本発明の第9の実施の形態に係る光学監視装置9の概略を示す模式図である。図9に示すように、本実施の形態に係る光学監視装置9は、上述した第8の実施の形態に係る光学監視装置8の構成に加えて、光分離手段22と送受信光ユニット14との間に配置された1/4λ素子(第1の偏光素子)25を備える。その他の構成については、上述した第8の実施の形態に係る光学監視装置8と同様のため説明を省略する。
(Ninth embodiment)
FIG. 9 is a schematic diagram showing an outline of an optical monitoring device 9 according to the ninth embodiment of the present invention. As shown in FIG. 9, in addition to the configuration of the optical monitoring device 8 according to the eighth embodiment described above, the optical monitoring device 9 according to the present embodiment includes an optical separation unit 22 and a transmission / reception light unit 14. A quarter-lambda element (first polarizing element) 25 is provided between them. Other configurations are the same as those of the optical monitoring device 8 according to the eighth embodiment described above, and thus the description thereof is omitted.

次に、本実施の形態に係る光学監視装置9の全体動作について上述した光学監視装置6〜8との相違点を中心に説明する。送信光送信部11から照射された直線偏光の送信光Yは、偏光板26によって反射光Zとは異なる所望の偏光方向に変換され、1/4λ素子25により直線偏光から円偏光に変換されて送受信光ユニット14に向けて照射される。一方で、対象物Xによって反射された反射光Zは、反射光反射領域22bによって反射され、電気光学素子24を介して送信光受信部12に照射される。ここで、本実施の形態においては、電気光学素子24に電圧を印加することにより、送信光送信部11から偏光板26及び1/4λ素子25を介して対象物Xに向けて照射される送信光Yは、電気光学素子24によって偏光方向を偏光板と直交する方向に変化させることにより電気光学素子24の偏光板によって遮断され、送信受信部12への入射が抑制される。また、対象物Xからの反射光Zは、電気光学素子24による制御を行わないことで、電気光学素子24の偏光板によって遮断されることなく受光される。これらにより、送信光受信部12に照射される反射光Zのパルスの制御が可能となり、送信光Yの利用効率が向上する。   Next, the overall operation of the optical monitoring device 9 according to the present embodiment will be described focusing on differences from the optical monitoring devices 6 to 8 described above. The linearly polarized transmission light Y emitted from the transmission light transmission unit 11 is converted into a desired polarization direction different from the reflected light Z by the polarizing plate 26, and converted from linearly polarized light to circularly polarized light by the ¼λ element 25. Irradiated toward the transmission / reception light unit 14. On the other hand, the reflected light Z reflected by the object X is reflected by the reflected light reflecting region 22 b and is applied to the transmission light receiving unit 12 via the electro-optic element 24. Here, in the present embodiment, by applying a voltage to the electro-optic element 24, the transmission irradiated from the transmission light transmission unit 11 toward the object X through the polarizing plate 26 and the ¼λ element 25. The light Y is blocked by the polarizing plate of the electro-optic element 24 by changing the polarization direction in the direction orthogonal to the polarizing plate by the electro-optic element 24, and the incidence to the transmission / reception unit 12 is suppressed. In addition, the reflected light Z from the object X is received without being blocked by the polarizing plate of the electro-optic element 24 without being controlled by the electro-optic element 24. Thus, it is possible to control the pulse of the reflected light Z irradiated to the transmission light receiving unit 12, and the utilization efficiency of the transmission light Y is improved.

1〜9 光学監視装置
11 送信光送信部
11a 光ファイバ
11b 射出端
12 送信光受信部
13 光分離手段
13a 送信光反射領域
13b 反射光透過領域
14 送受信光ユニット
15 成形レンズ
21,23 コリメートレンズ(光学部材)
22 光分離手段
22a 送信光透過領域
22b 反射光反射領域
24 電気光学素子
25 1/4λ素子
26 偏光板
X 対象物
Y 送信光
Z 反射光
DESCRIPTION OF SYMBOLS 1-9 Optical monitoring apparatus 11 Transmission light transmission part 11a Optical fiber 11b Emission end 12 Transmission light receiving part 13 Light separation means 13a Transmission light reflection area 13b Reflection light transmission area 14 Transmission / reception light unit 15 Molding lens 21, 23 Collimating lens (Optical) Element)
22 Light separating means 22a Transmitted light transmission region 22b Reflected light reflection region 24 Electro-optic element 25 1 / 4λ element 26 Polarizing plate X Target object Y Transmitted light Z Reflected light

Claims (11)

送信光を送信する送信光送信部と、
対象物によって反射された前記送信光の反射光を受信する送信光受信部と、
前記送信光を反射して前記対象物に送信する送信光反射領域、及び前記反射光を透過して前記送信光受信部に送信する反射光透過領域を有する光分離手段と、
前記送信光に所定の拡がり角を付与して前記対象物へ前記送信光を送信すると共に、前記対象物からの前記反射光を集光する送受信光ユニットと、を具備し、
前記送信光送信部は、前記光分離手段の前記送信光反射領域に前記送信光を照射することを特徴とする、光学監視装置。
A transmission light transmitter for transmitting the transmission light;
A transmission light receiving unit that receives the reflected light of the transmission light reflected by the object;
A light separation means having a transmission light reflection region that reflects the transmission light and transmits it to the object, and a reflected light transmission region that transmits the reflection light and transmits the transmission light to the transmission light receiver;
A transmission / reception light unit that gives the transmission light a predetermined divergence angle and transmits the transmission light to the object, and condenses the reflected light from the object; and
The optical monitoring device, wherein the transmission light transmission unit irradiates the transmission light to the transmission light reflection region of the light separation means.
前記光分離手段は、前記送信光反射領域において前記送信光を全反射する、請求項1に記載の光学監視装置。   The optical monitoring apparatus according to claim 1, wherein the light separation unit totally reflects the transmission light in the transmission light reflection region. 送信光を送信する送信光送信部と、
対象物によって反射された前記送信光の反射光を受信する送信光受信部と、
前記送信光を透過して前記対象物に送信する送信光透過領域、及び前記反射光を反射して前記送信光受信部に送信する反射光反射領域を有する光分離手段と、
前記送信光に所定の拡がり角を付与して前記対象物へ前記送信光を送信すると共に、前記対象物からの前記反射光を集光する送受信光ユニットと、を具備し、
前記送信光送信部は、前記光分離手段の前記送信光透過領域に前記送信光を照射することを特徴とする、光学監視装置。
A transmission light transmitter for transmitting the transmission light;
A transmission light receiving unit that receives the reflected light of the transmission light reflected by the object;
A light separating means having a transmission light transmission region that transmits the transmission light and transmits the transmission light to the object, and a reflected light reflection region that reflects the reflected light and transmits the reflected light to the transmission light reception unit;
A transmission / reception light unit that gives the transmission light a predetermined divergence angle and transmits the transmission light to the object, and condenses the reflected light from the object; and
The optical monitoring device, wherein the transmission light transmission unit irradiates the transmission light to the transmission light transmission region of the light separation means.
前記光分離手段は、前記反射光反射領域において前記反射光を全反射する、請求項3に記載の光学監視装置。   The optical monitoring device according to claim 3, wherein the light separating unit totally reflects the reflected light in the reflected light reflecting region. 前記送受信光ユニットと前記光分離手段との間に設けられ、前記反射光を略平行光にする第1の光学部材を備えた、請求項1から請求項4のいずれか1項に記載の光学監視装置。   The optical according to any one of claims 1 to 4, further comprising a first optical member that is provided between the transmission / reception light unit and the light separating unit and makes the reflected light substantially parallel light. Monitoring device. 前記第1の光学部材は、前記送信光を透過する送信光透過領域を有する、請求項1から請求項5のいずれか1項に記載の光学監視装置。   The optical monitoring device according to claim 1, wherein the first optical member has a transmission light transmission region that transmits the transmission light. 前記第1の光学部材は、前記送信光透過領域において特定波長を有する前記送信光を当該送信光以外の波長を有する他の光に対して選択的に透過する、請求項6に記載の光学監視装置。   The optical monitoring according to claim 6, wherein the first optical member selectively transmits the transmission light having a specific wavelength in the transmission light transmission region with respect to other light having a wavelength other than the transmission light. apparatus. 前記送信光送信部と前記光分離手段との間に設けられ、前記送信光のビーム径を制御する第2の光学部材を備えた、請求項1から請求項7のいずれか1項に記載の光学監視装置。   8. The apparatus according to claim 1, further comprising a second optical member that is provided between the transmission light transmission unit and the light separating unit and controls a beam diameter of the transmission light. 9. Optical monitoring device. 前記光分離手段と前記送信光受信部との間に設けられ、前記反射光の偏光特性を制御する電気光学素子を備えた、請求項1から請求項8のいずれか1項に記載の光学監視装置。   9. The optical monitoring according to claim 1, further comprising an electro-optic element that is provided between the light separation unit and the transmission light reception unit and controls a polarization characteristic of the reflected light. 10. apparatus. 前記送信光送信部と前記光分離手段との間に設けられ、前記送信光を直線偏光から円偏光に変換する第1の偏光素子を備えた、請求項1から請求項9のいずれか1項に記載の光学監視装置。   10. The apparatus according to claim 1, further comprising a first polarizing element that is provided between the transmission light transmission unit and the light separation unit and converts the transmission light from linearly polarized light to circularly polarized light. The optical monitoring device described in 1. 前記送信光送信部と前記光分離手段との間に設けられ、前記送信光を所望の偏光に変換する第2の偏光素子を備えた、請求項1から請求項10のいずれか1項に記載の光学監視装置。   11. The apparatus according to claim 1, further comprising: a second polarizing element that is provided between the transmission light transmission unit and the light separation unit and converts the transmission light into a desired polarization. Optical monitoring device.
JP2014139792A 2014-07-07 2014-07-07 Optical monitoring device Pending JP2016017803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014139792A JP2016017803A (en) 2014-07-07 2014-07-07 Optical monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014139792A JP2016017803A (en) 2014-07-07 2014-07-07 Optical monitoring device

Publications (1)

Publication Number Publication Date
JP2016017803A true JP2016017803A (en) 2016-02-01

Family

ID=55233122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014139792A Pending JP2016017803A (en) 2014-07-07 2014-07-07 Optical monitoring device

Country Status (1)

Country Link
JP (1) JP2016017803A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318648A (en) * 1994-05-26 1995-12-08 Matsushita Electric Works Ltd Electro-optical distance measuring apparatus
JPH11304909A (en) * 1998-04-24 1999-11-05 Ishikawajima Harima Heavy Ind Co Ltd Laser radar with electro-optical correction device for signal light
JP2004191063A (en) * 2002-12-06 2004-07-08 Topcon Corp Light wave distance measuring device
JP2005221336A (en) * 2004-02-04 2005-08-18 Nippon Densan Corp Scanning-type range sensor
US20050179888A1 (en) * 2002-02-28 2005-08-18 Vaisala Oyj Lidar
JP2006053055A (en) * 2004-08-12 2006-02-23 Inc Engineering Co Ltd Laser measuring apparatus
JP2010112952A (en) * 2008-11-05 2010-05-20 Rosemount Aerospace Inc Apparatus and method for in-flight detection of airborne water droplets and ice crystals
JP2012247255A (en) * 2011-05-26 2012-12-13 Rexxam Co Ltd Laser displacement gauge
JP2014055860A (en) * 2012-09-13 2014-03-27 Ricoh Co Ltd Distance measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318648A (en) * 1994-05-26 1995-12-08 Matsushita Electric Works Ltd Electro-optical distance measuring apparatus
JPH11304909A (en) * 1998-04-24 1999-11-05 Ishikawajima Harima Heavy Ind Co Ltd Laser radar with electro-optical correction device for signal light
US20050179888A1 (en) * 2002-02-28 2005-08-18 Vaisala Oyj Lidar
JP2004191063A (en) * 2002-12-06 2004-07-08 Topcon Corp Light wave distance measuring device
JP2005221336A (en) * 2004-02-04 2005-08-18 Nippon Densan Corp Scanning-type range sensor
JP2006053055A (en) * 2004-08-12 2006-02-23 Inc Engineering Co Ltd Laser measuring apparatus
JP2010112952A (en) * 2008-11-05 2010-05-20 Rosemount Aerospace Inc Apparatus and method for in-flight detection of airborne water droplets and ice crystals
JP2012247255A (en) * 2011-05-26 2012-12-13 Rexxam Co Ltd Laser displacement gauge
JP2014055860A (en) * 2012-09-13 2014-03-27 Ricoh Co Ltd Distance measuring device

Similar Documents

Publication Publication Date Title
CN110646776B (en) Chip-scale LIDAR with a single MEMS scanner in a compact optical package
US20160363669A1 (en) Lidar imaging system
IL308961A (en) Lidar with co-aligned transmit and receive paths
PH12017501062A1 (en) High efficiency optical combiner for multiple non-coherent light sources
WO2015006784A3 (en) Planar waveguide apparatus with diffraction element(s) and system employing same
WO2012145566A3 (en) Talbot-illuminated imaging devices, systems, and methods for focal plane tuning
JP6341500B2 (en) Laser radar equipment
JP2015011302A5 (en)
JP2017513071A5 (en)
WO2018107452A1 (en) Optical communication device and method and transmitting antenna in free-space optical communication system
JPWO2019180924A1 (en) Laser radar device
JP2016109517A (en) Laser radar device
JP5944156B2 (en) Optical system in which illumination optical system and imaging optical system are integrated, and three-dimensional image acquisition apparatus including the same
TW567346B (en) Apparatus for combining and collimating light, engraver and target pointing system having the apparatus, atmospheric optical network, and atmospheric optical data node
KR101527002B1 (en) Laser beam generator
JP2018151278A (en) Measurement device
KR102205382B1 (en) Method for extracting optical energy from an optical beam
JP2016017803A (en) Optical monitoring device
US10197228B2 (en) Illuminating device comprising a pump radiation source
KR101538731B1 (en) Apparatus for protecting laser in target optical
RU2572463C1 (en) Optical laser range-finder sight
KR101986900B1 (en) Dot sighting device
CN102853716A (en) Device used for realizing beam-combination alignment for lasers at different wave bands and different wave lengths
JP2014513811A (en) Laser beam irradiance control system
KR101529512B1 (en) Transfering and receiving apparatus for laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403