JP2004191063A - Light wave distance measuring device - Google Patents

Light wave distance measuring device Download PDF

Info

Publication number
JP2004191063A
JP2004191063A JP2002355619A JP2002355619A JP2004191063A JP 2004191063 A JP2004191063 A JP 2004191063A JP 2002355619 A JP2002355619 A JP 2002355619A JP 2002355619 A JP2002355619 A JP 2002355619A JP 2004191063 A JP2004191063 A JP 2004191063A
Authority
JP
Japan
Prior art keywords
light
measurement
objective lens
optical system
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355619A
Other languages
Japanese (ja)
Inventor
Junichi Furuhira
純一 古平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2002355619A priority Critical patent/JP2004191063A/en
Publication of JP2004191063A publication Critical patent/JP2004191063A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light wave distance measuring device capable of removing a trouble hindering ranging in a short distance, even when a reflecting mirror provided in an emission optical system, for reflecting measuring light from a light source part toward an objective lens, is provided coaxially with the center of the objective lens. <P>SOLUTION: This light wave distance measuring device is provided with the emission optical system 1 for irradiating the measuring light toward a measuring object, and a light-receiving optical system 2 having a light-receiving element 11 for receiving reflected measuring light. The emission optical system 1 is provided with the light source part for emitting linearly-polarized measuring light, the reflecting mirror 8 for reflecting the measuring light from the light source part toward the objective lens 9, and a quarter-wave plate 10 for converting the linearly-polarized measuring light reflected by the reflecting mirror 8 into circularly polarized light and converting circularly-polarized reflected measuring light into linear polarized light. The reflecting mirror 8 provided coaxially with the center of the objective lens 9 reflects the measuring light from the light source part and guides it to the quarter-wave plate 10, and transmits the reflected measuring light entering after passing the quarter-wave plate 10 and guides it to the light-receiving element 11. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光波距離測定装置の改良に関する。
【0002】
【従来の技術】
従来から、対物レンズを介して測定光を出射する射出光学系と、対物レンズを介して入射した反射測定光を受光する受光光学系とが同軸上に配置され、光源部の発光素子からの測定光を対物レンズへ向けて反射する反射ミラーが対物レンズの中心に対して偏心して設けられた光波距離測定装置が知られている(例えば、特許文献1参照。)。
【0003】
一般に、再帰反射プリズムが遠方にある場合、すなわち、測点が遠距離にある場合、対物レンズから出射された測定光、再帰反射プリズムから対物レンズに入射する反射測定光が多少なりとも拡散されるので、発光素子の測定光を対物レンズに向けて反射する反射ミラーが対物レンズの中心と同心に設けられていても、反射測定光が受光光学系の受光素子に受光される。
【0004】
これに対して、再帰反射プリズムが近傍にある場合、すなわち、測点が近距離にある場合、対物レンズから再帰反射プリズムへ向けて出射される測定光と対物レンズに入射する反射測定光の広がりとはほぼ同一となるので、反射ミラーにより受光光学系に入射した反射測定光が邪魔されて、受光素子に受光されないという不具合がある。
【0005】
再帰反射プリズムが近傍にある場合でも、反射ミラーが対物レンズの中心に対して偏心して設けられることにより、対物レンズに入射した反射測定光を反射ミラーに邪魔されることなく受光できることになり、近距離の測距を支障なく行うことができる。
【特許文献1】
特開平4−319687号公報(図1、図2)
【0006】
【発明が解決しようとする課題】
しかしながら、ミラーの中心と対物レンズの中心との偏心量が小さすぎると、近距離測距のときに対物レンズに入射する反射測定光が反射ミラーにより邪魔をされる割合が大きく、受光が困難となる場合もある。
【0007】
また、反射ミラーの中心と対物レンズの中心とが偏心しすぎていると、再帰反射シートを用いた場合に、対物レンズに入射した反射測定光が受光素子から外れた箇所に結像されてしまうため、近距離の測距に支障を来す不都合があり、補正用の光学部材が必要となる。特許文献1に開示のものは、反射ミラーの中心と対物レンズの中心との偏心量に依存して受光素子に入射する反射測定光の受光量が変化するので好ましくない。
【0008】
本発明は、上記の事情に鑑みて為されたもので、射出光学系に設けられて光源部からの測定光を対物レンズに向けて反射する反射ミラーを対物レンズの中心に同軸に設けた場合であっても、近距離の測距に支障を来す不都合を解消できる光波距離測定装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1に記載の光波距離測定装置は、測定対象物に向けて測定光を照射する射出光学系と、その反射測定光を受光するための受光素子を有する受光光学系とが設けられた光波距離測定装置において、
前記射出光学系には、直線偏光の測定光を発する光源部と、該光源部からの測定光を対物レンズに向けて反射する反射ミラーと、該反射ミラーで反射された直線偏光の測定光を円偏光に変換しかつ円偏光の反射測定光を直線偏光に変換する1/4波長板とが設けられ、前記反射ミラーは、前記対物レンズの中心と同心に設けられ、前記光源部からの測定光を反射して前記1/4波長板に導きかつ1/4波長板を通過して入射する前記反射測定光を通して前記受光素子に導くことを特徴とする。
【0010】
請求項2に記載の光波距離測定装置は、前記光源部が、レーザー光を発する光源と、該光源からのレーザー光を通す偏光板とを有し、該偏光板はレーザー光を直線偏光に変換することを特徴とする。
【0011】
請求項3に記載の光波距離測定装置は、前記1/4波長板が前記対物レンズに設けられていることを特徴とする。
【0012】
請求項4に記載の光波距離測定装置は、前記発光素子からの光を参照光と測定光とに分割する分割ミラーと、前記発光素子からの光を前記偏光板が配設された測定光路と前記受光素子に導く参照光路との間で光路を切り替える光路切り替え器と、前記測定光の光量を調整する光量調整器とが設けられていることを特徴とする。
【0013】
請求項5に記載の光波距離測定装置は、測定対象物を視準する視準光学系を有することを特徴とする。
【0014】
【発明の実施の形態】
(発明の実施の形態1)
図1は本発明に係わる光波距離測定装置の発明の実施の形態1の光学図であって、この図1において、1は射出光学系、2は受光光学系、3は再帰反射プリズムである。
【0015】
射出光学系1は、発光素子4、コリメートレンズ5、偏光板6、全反射ミラー7、反射ミラー8、対物レンズ9を備えている。発光素子4、コリメートレンズ5、偏光板6は光源部を構成している。
【0016】
発光素子4は例えばレーザーダイオードから構成され、コリメートレンズ5はレーザーダイオードから出射された光を測定光として平行光束に変換し、偏光板6はその平行光束を所定の偏光方向の直線偏光、例えば、S偏光の直線偏光を生成する役割を果たす。
【0017】
そのS偏光の直線偏光の測定光は全反射ミラー7により反射されて反射ミラー8に導かれる。反射ミラー8はその中心が対物レンズ9の中心Oと同軸に配設されている。その反射ミラー8はS偏光の光を反射しかつP偏光の光を透過する役割を果たし、全反射ミラー7により反射された測定光を対物レンズ9に向けて反射する。
【0018】
対物レンズ9とミラー8との間には、1/4波長板10が設けられ、ここでは、1/4波長板10は対物レンズ9の内面に膜として形成されている。なお、この1/4波長板10は膜ではなくて対物レンズ9の内面に光学部材を貼り付けても良い。
【0019】
この1/4波長板10は、対物レンズ9から射出される直線偏光の光を円偏光の光に変換しかつ対物レンズ9に入射する円偏光の光を直線偏光の光に変換する役割を有する。この1/4波長板10を通り、対物レンズ9の中心部9Aを通った円偏光の測定光P1は再帰反射プリズム3に導かれ、再帰反射プリズム3により反射されて、再び対物レンズ9が存在する方向に向けられる。
【0020】
その再帰反射プリズム3により反射された反射測定光P2は、対物レンズ9の中心部9A、周辺部9Bを通って受光光学系2に導かれる。受光光学系2には受光素子11が設けられている。この受光素子11は図示を略す計測回路に接続されている。
【0021】
対物レンズ9の中心部9Aを通る円偏光の反射測定光P2は再び1/4波長板10を通り、S偏光と直交するP偏光の反射測定光として反射ミラー8に導かれる。反射ミラー8はS偏光を反射しかつP偏光を透過する特性を有しているので、対物レンズ9の中心部9Aを通る反射測定光P2は反射ミラ8ーに邪魔されることなく反射ミラー8を透過し、受光素子11に受光される。
【0022】
その受光素子11には、公知の参照光路を経由して参照光が導かれ、この参照光と反射測定光との位相差を測定することにより、再帰反射プリズム3までの距離が測距される。
(発明の実施の形態2)
図2は本発明に係わる光波距離測定装置の発明の実施の形態2の光学図であって、この発明の実施の形態2では、射出光学系1にはコリメータレンズ5と偏光板6との間に発光素子4からの光を測定光と参照光とに分割する分割ミラー12が設けられると共に、発光素子4からの光を偏光板6が存在する測定光路と受光素子11に導く全反射ミラー13が存在する参照光路との間で切り替える光路切り替え器14が設けられている。偏光板6と全反射ミラー7との間には、測定光の光量を調整する光量調整器15が設けられている。
【0023】
受光光学系2には視準光学系16の一部を構成する波長分割ミラー17が設けられ、対物レンズ9を通して入射した反射測定光はこの波長分割ミラー17によって受光素子11が存在する方向に反射され、可視光はこの波長分割ミラー17を透過して、接眼レンズ18に導かれる。測量作業者はその接眼レンズ18を通じて再帰反射プリズム3を視準できる。
【0024】
なお、発光素子4が半導体レーザー素子であって直線偏光を発する場合には、偏光板6を設けなくても良い。
【0025】
【発明の効果】
請求項1〜請求項5に記載の発明は、以上説明したように構成したので、射出光学系に設けられて光源部からの測定光を対物レンズに向けて反射する反射ミラーを対物レンズの中心に同軸に設けた場合であっても、近距離の測距に支障を来す不都合を解消できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の光波距離測定装置の発明の実施の形態1の光学図である。
【図2】本発明の光波距離測定装置の発明の実施の形態2の光学図である。
【符号の説明】
1…射出光学系
2…受光光学系
6…偏光板
8…反射ミラー
9…対物レンズ
10…1/4波長板
11…受光素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a lightwave distance measuring device.
[0002]
[Prior art]
Conventionally, an emission optical system that emits measurement light through an objective lens and a light receiving optical system that receives reflected measurement light incident through the objective lens are coaxially arranged, and measurement from a light emitting element of a light source unit is performed. 2. Description of the Related Art There is known an optical distance measuring apparatus in which a reflecting mirror for reflecting light toward an objective lens is provided eccentrically with respect to the center of the objective lens (for example, see Patent Document 1).
[0003]
In general, when the retroreflective prism is at a long distance, that is, when the measurement point is at a long distance, the measuring light emitted from the objective lens and the reflected measuring light entering the objective lens from the retroreflective prism are diffused at all. Therefore, even if a reflection mirror that reflects the measurement light of the light emitting element toward the objective lens is provided concentrically with the center of the objective lens, the reflection measurement light is received by the light receiving element of the light receiving optical system.
[0004]
On the other hand, when the retroreflective prism is in the vicinity, that is, when the measuring point is at a short distance, the spread of the measurement light emitted from the objective lens toward the retroreflective prism and the reflected measurement light incident on the objective lens Therefore, there is a problem that the reflection mirror interferes with the reflection measurement light incident on the light receiving optical system and is not received by the light receiving element.
[0005]
Even when the retroreflection prism is in the vicinity, the reflection mirror is provided eccentrically with respect to the center of the objective lens, so that the reflection measurement light incident on the objective lens can be received without being disturbed by the reflection mirror. Distance measurement can be performed without any trouble.
[Patent Document 1]
JP-A-4-319687 (FIGS. 1 and 2)
[0006]
[Problems to be solved by the invention]
However, if the amount of eccentricity between the center of the mirror and the center of the objective lens is too small, the ratio of the reflection measurement light incident on the objective lens during short distance measurement being disturbed by the reflection mirror is large, and light reception is difficult. It may be.
[0007]
Further, if the center of the reflecting mirror and the center of the objective lens are too eccentric, when the retroreflective sheet is used, the reflection measurement light incident on the objective lens is imaged at a position off the light receiving element. Therefore, there is an inconvenience that short distance measurement is hindered, and an optical member for correction is required. The technique disclosed in Patent Document 1 is not preferable because the amount of reflected measurement light incident on the light receiving element changes depending on the amount of eccentricity between the center of the reflecting mirror and the center of the objective lens.
[0008]
The present invention has been made in view of the above circumstances, and a case where a reflecting mirror provided in an emission optical system and reflecting measurement light from a light source unit toward an objective lens is provided coaxially with the center of the objective lens. However, it is an object of the present invention to provide a lightwave distance measuring device that can solve the problem of hindering short distance measurement.
[0009]
[Means for Solving the Problems]
The lightwave distance measuring device according to claim 1, wherein an emission optical system that irradiates the measuring object with the measuring light and a light receiving optical system that has a light receiving element for receiving the reflected measuring light are provided. In the distance measuring device,
The emission optical system includes a light source unit that emits linearly polarized measurement light, a reflection mirror that reflects the measurement light from the light source unit toward the objective lens, and a linearly polarized measurement light that is reflected by the reflection mirror. A quarter-wave plate for converting the light into circularly polarized light and converting the reflected measurement light of circularly polarized light into linearly polarized light is provided. The reflection mirror is provided concentrically with the center of the objective lens, and measures the light from the light source unit. Light is reflected and guided to the 1 / wavelength plate, and guided to the light receiving element through the reflected measurement light that passes through the 波長 wavelength plate and enters.
[0010]
The light wave distance measuring device according to claim 2, wherein the light source unit has a light source that emits laser light, and a polarizing plate that passes the laser light from the light source, and the polarizing plate converts the laser light into linearly polarized light. It is characterized by doing.
[0011]
According to a third aspect of the present invention, in the optical distance measuring apparatus, the quarter wavelength plate is provided on the objective lens.
[0012]
The lightwave distance measuring device according to claim 4, wherein a split mirror that splits light from the light emitting element into reference light and measurement light, and a measurement optical path on which the light from the light emitting element is provided with the polarizing plate. An optical path switching device for switching an optical path between a reference optical path leading to the light receiving element and a light amount adjuster for adjusting the light amount of the measurement light is provided.
[0013]
According to a fifth aspect of the present invention, there is provided an optical distance measuring apparatus including a collimating optical system for collimating an object to be measured.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 is an optical diagram of a first embodiment of an optical distance measuring apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes an exit optical system, 2 denotes a light receiving optical system, and 3 denotes a retroreflective prism.
[0015]
The emission optical system 1 includes a light emitting element 4, a collimator lens 5, a polarizing plate 6, a total reflection mirror 7, a reflection mirror 8, and an objective lens 9. The light emitting element 4, the collimating lens 5, and the polarizing plate 6 constitute a light source unit.
[0016]
The light emitting element 4 is composed of, for example, a laser diode, the collimating lens 5 converts light emitted from the laser diode into a parallel light beam as measurement light, and the polarizing plate 6 converts the parallel light beam into a linearly polarized light having a predetermined polarization direction, for example. It serves to generate S-polarized linearly polarized light.
[0017]
The S-polarized linearly polarized measurement light is reflected by the total reflection mirror 7 and guided to the reflection mirror 8. The center of the reflecting mirror 8 is disposed coaxially with the center O of the objective lens 9. The reflection mirror 8 has a role of reflecting S-polarized light and transmitting P-polarized light, and reflects the measurement light reflected by the total reflection mirror 7 toward the objective lens 9.
[0018]
A 波長 wavelength plate 10 is provided between the objective lens 9 and the mirror 8. Here, the 波長 wavelength plate 10 is formed as a film on the inner surface of the objective lens 9. Note that the quarter-wave plate 10 may be an optical member attached to the inner surface of the objective lens 9 instead of a film.
[0019]
The quarter-wave plate 10 has a role of converting linearly polarized light emitted from the objective lens 9 into circularly polarized light and converting circularly polarized light incident on the objective lens 9 into linearly polarized light. . The circularly polarized measurement light P1 passing through the quarter-wave plate 10 and passing through the central portion 9A of the objective lens 9 is guided to the retroreflection prism 3, is reflected by the retroreflection prism 3, and the objective lens 9 is present again. In the direction you want.
[0020]
The reflection measurement light P2 reflected by the retroreflection prism 3 is guided to the light receiving optical system 2 through the central portion 9A and the peripheral portion 9B of the objective lens 9. The light receiving optical system 2 is provided with a light receiving element 11. The light receiving element 11 is connected to a measuring circuit (not shown).
[0021]
The circularly-polarized reflection measurement light P2 passing through the central portion 9A of the objective lens 9 passes through the quarter-wave plate 10 again, and is guided to the reflection mirror 8 as P-polarization reflection measurement light orthogonal to S-polarization. Since the reflection mirror 8 has a characteristic of reflecting S-polarized light and transmitting P-polarized light, the reflection measurement light P2 passing through the central portion 9A of the objective lens 9 can be reflected by the reflection mirror 8 without being disturbed by the reflection mirror 8. And is received by the light receiving element 11.
[0022]
The reference light is guided to the light receiving element 11 via a known reference light path, and the distance to the retroreflective prism 3 is measured by measuring the phase difference between the reference light and the reflection measurement light. .
(Embodiment 2)
FIG. 2 is an optical diagram of Embodiment 2 of the lightwave distance measuring apparatus according to the present invention. In Embodiment 2 of the present invention, the exit optical system 1 includes a collimator lens 5 and a polarizing plate 6. Is provided with a split mirror 12 for splitting light from the light emitting element 4 into measurement light and reference light, and a total reflection mirror 13 for guiding the light from the light emitting element 4 to the measurement optical path where the polarizing plate 6 is present and the light receiving element 11. There is provided an optical path switch 14 for switching between a reference optical path and a reference optical path. Between the polarizing plate 6 and the total reflection mirror 7, a light amount adjuster 15 for adjusting the light amount of the measurement light is provided.
[0023]
The light receiving optical system 2 is provided with a wavelength division mirror 17 which constitutes a part of the collimating optical system 16, and the reflection measurement light incident through the objective lens 9 is reflected by the wavelength division mirror 17 in the direction in which the light receiving element 11 exists. The visible light passes through the wavelength division mirror 17 and is guided to the eyepiece 18. The surveying operator can collimate the retroreflective prism 3 through the eyepiece 18.
[0024]
When the light emitting element 4 is a semiconductor laser element and emits linearly polarized light, the polarizing plate 6 need not be provided.
[0025]
【The invention's effect】
Since the invention according to claims 1 to 5 is configured as described above, the reflection mirror provided in the emission optical system and reflecting the measurement light from the light source unit toward the objective lens is provided at the center of the objective lens. Even in the case of being provided coaxially with the camera, it is possible to eliminate the inconvenience that hinders short distance measurement.
[Brief description of the drawings]
FIG. 1 is an optical diagram of a first embodiment of an optical distance measuring apparatus according to the present invention.
FIG. 2 is an optical diagram of a lightwave distance measuring apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Outgoing optical system 2 ... Light receiving optical system 6 ... Polarizing plate 8 ... Reflecting mirror 9 ... Objective lens 10 ... 1/4 wavelength plate 11 ... Light receiving element

Claims (5)

測定対象物に向けて測定光を照射する射出光学系と、その反射測定光を受光するための受光素子を有する受光光学系とが設けられた光波距離測定装置において、
前記射出光学系には、直線偏光の測定光を発する光源部と、該光源部からの測定光を対物レンズに向けて反射する反射ミラーと、該反射ミラーで反射された直線偏光の測定光を円偏光に変換しかつ円偏光の反射測定光を直線偏光に変換する1/4波長板とが設けられ、前記反射ミラーは、前記対物レンズの中心と同心に設けられ、前記光源部からの測定光を反射して前記1/4波長板に導きかつ1/4波長板を通過して入射する前記反射測定光を通して前記受光素子に導くことを特徴とする光波距離測定装置。
An emission optical system that irradiates the measurement light toward the object to be measured, and a light-wave distance measuring device provided with a light-receiving optical system having a light-receiving element for receiving the reflected measurement light,
The emission optical system includes a light source unit that emits linearly polarized measurement light, a reflection mirror that reflects the measurement light from the light source unit toward the objective lens, and a linearly polarized measurement light that is reflected by the reflection mirror. A quarter-wave plate for converting the light into circularly polarized light and converting the circularly polarized reflection measurement light into linearly polarized light; the reflecting mirror is provided concentrically with the center of the objective lens; A light wave distance measuring device, wherein light is reflected to guide the light to the quarter-wave plate, and is guided to the light receiving element through the reflected measurement light that passes through the quarter-wave plate and enters.
前記光源部は、レーザー光を発する光源と、該光源からのレーザー光を通す偏光板とを有し、該偏光板はレーザー光を直線偏光に変換することを特徴とする請求項1に記載の光波距離測定装置。The light source unit according to claim 1, wherein the light source unit includes a light source that emits a laser beam, and a polarizing plate that passes the laser beam from the light source, wherein the polarizing plate converts the laser beam into linearly polarized light. Lightwave distance measuring device. 前記1/4波長板が前記対物レンズに設けられていることを特徴とする請求項1に記載の光波距離測定装置。The light wave distance measuring device according to claim 1, wherein the quarter wavelength plate is provided on the objective lens. 前記射出光学系は、前記発光素子からの光を参照光と測定光とに分割する分割ミラーと、前記発光素子からの光を前記偏光板が配設された測定光路と前記受光素子に導く参照光路との間で光路を切り替える光路切り替え器と、前記測定光の光量を調整する光量調整器とが設けられていることを特徴とする請求項2又は請求項3に記載の光波距離測定装置。The emission optical system includes a split mirror that splits light from the light emitting element into reference light and measurement light, and guides light from the light emitting element to a measurement optical path on which the polarizing plate is provided and the light receiving element. The lightwave distance measuring device according to claim 2, further comprising: an optical path switch that switches an optical path between the optical path and an optical path, and a light amount adjuster that adjusts a light amount of the measurement light. 前記測定対象物を視準する視準光学系を有することを特徴とする請求項3に記載の光波距離測定装置。The optical distance measuring apparatus according to claim 3, further comprising a collimating optical system that collimates the measurement target.
JP2002355619A 2002-12-06 2002-12-06 Light wave distance measuring device Pending JP2004191063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355619A JP2004191063A (en) 2002-12-06 2002-12-06 Light wave distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355619A JP2004191063A (en) 2002-12-06 2002-12-06 Light wave distance measuring device

Publications (1)

Publication Number Publication Date
JP2004191063A true JP2004191063A (en) 2004-07-08

Family

ID=32756262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355619A Pending JP2004191063A (en) 2002-12-06 2002-12-06 Light wave distance measuring device

Country Status (1)

Country Link
JP (1) JP2004191063A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083010A (en) * 2006-09-29 2008-04-10 Honda Denshi Giken:Kk Reflection-type sensor for opening and closing control of automatic door
JP2008275386A (en) * 2007-04-26 2008-11-13 Hamamatsu Photonics Kk Light wave range finder
JP2016017803A (en) * 2014-07-07 2016-02-01 三菱重工業株式会社 Optical monitoring device
WO2018150999A1 (en) * 2017-02-17 2018-08-23 北陽電機株式会社 Object capturing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083010A (en) * 2006-09-29 2008-04-10 Honda Denshi Giken:Kk Reflection-type sensor for opening and closing control of automatic door
JP4613153B2 (en) * 2006-09-29 2011-01-12 株式会社本田電子技研 Reflective sensor for automatic door opening / closing control
JP2008275386A (en) * 2007-04-26 2008-11-13 Hamamatsu Photonics Kk Light wave range finder
JP2016017803A (en) * 2014-07-07 2016-02-01 三菱重工業株式会社 Optical monitoring device
WO2018150999A1 (en) * 2017-02-17 2018-08-23 北陽電機株式会社 Object capturing device
JPWO2018150999A1 (en) * 2017-02-17 2019-12-12 北陽電機株式会社 Object capture device
US10823828B2 (en) 2017-02-17 2020-11-03 Hokuyo Automatic Co., Ltd. Object capturing device
JP7133220B2 (en) 2017-02-17 2022-09-08 北陽電機株式会社 object capture device
JP2022159559A (en) * 2017-02-17 2022-10-17 北陽電機株式会社 Object capturing device
JP7425510B2 (en) 2017-02-17 2024-01-31 北陽電機株式会社 object capture device

Similar Documents

Publication Publication Date Title
US7391521B2 (en) Position detection apparatus and method
TWI507657B (en) Displacement sensor
WO1990014582A1 (en) Wavelength detector
KR20180104643A (en) Laser processing equipment and laser output devices
JP2022000659A (en) Measurement device
CN113167865A (en) Polarization encoded beam transmission and collection
JP2003255551A5 (en) Exposure apparatus and control method of converging lens
JP2003098597A5 (en)
JP2004191063A (en) Light wave distance measuring device
US9945656B2 (en) Multi-function spectroscopic device
JP3507739B2 (en) Spatial optical transmission equipment
JP2000275043A5 (en)
CN113448189B (en) Alignment system and photoetching machine
JP2004163164A (en) Surveying instrument having automatic collimating function and distance measuring function
US20080309907A1 (en) Adjusting device for a microlithography projection exposure installation, and related illumination system and projection exposure installation
JP2002005617A (en) Optical measurement device
US11786988B2 (en) Machining head and method for laser machining
CN115916448B (en) Machining head and method for laser machining
JP2004349283A (en) Variable wavelength light source
JP6169420B2 (en) Optical interferometer
JP6551891B2 (en) Optical distribution device
KR20220129302A (en) Image capturing device
JP2004053525A (en) Condensed laser beam measuring method and device
KR20160017718A (en) Optical device of providing parallel output beams
KR20220129299A (en) Image capturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313