JP4613153B2 - Reflective sensor for automatic door opening / closing control - Google Patents

Reflective sensor for automatic door opening / closing control Download PDF

Info

Publication number
JP4613153B2
JP4613153B2 JP2006266669A JP2006266669A JP4613153B2 JP 4613153 B2 JP4613153 B2 JP 4613153B2 JP 2006266669 A JP2006266669 A JP 2006266669A JP 2006266669 A JP2006266669 A JP 2006266669A JP 4613153 B2 JP4613153 B2 JP 4613153B2
Authority
JP
Japan
Prior art keywords
light
polarized
infrared light
automatic door
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006266669A
Other languages
Japanese (ja)
Other versions
JP2008083010A (en
Inventor
俊雄 菊池
Original Assignee
株式会社本田電子技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社本田電子技研 filed Critical 株式会社本田電子技研
Priority to JP2006266669A priority Critical patent/JP4613153B2/en
Publication of JP2008083010A publication Critical patent/JP2008083010A/en
Application granted granted Critical
Publication of JP4613153B2 publication Critical patent/JP4613153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Description

本発明は、赤外線を利用した自動ドア開閉制御用反射型センサに関し、さらに詳しく言えば、金属やガラスなどの光反射材から反射される強い反射光による自動ドアの誤動作を防止する自動ドア開閉制御用反射型センサに関するものである。   The present invention relates to a reflection type sensor for automatic door opening / closing control using infrared rays, and more specifically, automatic door opening / closing control for preventing malfunction of an automatic door caused by strong reflected light reflected from a light reflecting material such as metal or glass. The present invention relates to a reflection type sensor.

赤外線を利用した自動ドア開閉制御用反射型センサ(以下、単に「反射型センサ」ということがある。)においては、自動ドアの上方に赤外線発光素子と赤外線受光素子とが並設され、自動ドア近傍の床面を監視領域として、赤外線発光素子よりその監視領域に向けて赤外線を照射し、監視領域からの反射光を赤外線受光素子にて受光し、その受光量の変化にて自動ドアに接近する人などの物体を検知し、自動ドアに開信号を与えるようにしている。   In a reflective sensor for automatic door opening / closing control using infrared rays (hereinafter, simply referred to as “reflective sensor”), an infrared light emitting element and an infrared light receiving element are arranged in parallel above the automatic door, and the automatic door Use the nearby floor as a monitoring area, irradiate infrared light from the infrared light emitting element toward the monitoring area, receive the reflected light from the monitoring area with the infrared light receiving element, and approach the automatic door by changing the amount of light received It detects an object such as a person who performs, and gives an open signal to the automatic door.

通常、赤外線発光素子には赤外線発光ダイオードが用いられ、赤外線受光素子にはフォトダイオードが用いられる。また、多くの場合、その取り付け位置には自動ドアの無目部分が選択され、設置時に床面や周囲の壁面などからの反射を考慮して最適な感度となるように感度調整が行われる。   Usually, an infrared light emitting diode is used for the infrared light emitting element, and a photodiode is used for the infrared light receiving element. Further, in many cases, an invisible portion of the automatic door is selected as the mounting position, and sensitivity adjustment is performed so as to obtain an optimum sensitivity in consideration of reflection from a floor surface or a surrounding wall surface at the time of installation.

また、設置後の例えば床面のワックスがけや床面の汚れなどによる反射率の変化による影響に対しては、全体の反射光量に対して自動追尾型の感度調整機能を持たせ、ある程度の幅で全体の感度(閾値)を変更することにより対処するようにしている(類例として、特許文献1参照)。   In addition, with respect to the effects of changes in reflectance due to, for example, floor waxing or floor contamination after installation, an automatic tracking type sensitivity adjustment function is provided for the total amount of reflected light, and a certain range. In this case, the overall sensitivity (threshold value) is changed (see Patent Document 1 as an example).

特開2003−3750号公報JP 2003-3750 A

しかしながら、設置後にインテリア改修などにより、監視領域の床面に例えば金属鋲が打たれたり、また、自動ドア近傍にガラス装飾品などの強反射材が設置され、その強反射材に赤外線発光素子から出射された赤外線があたり強い反射光が発生した場合には、上記自動追尾型の感度調整機能では対応することができず、自動ドアが突然開いたりすることがある。   However, after installation, due to interior refurbishment, for example, a metal fence is struck on the floor surface of the monitoring area, or a strong reflective material such as a glass ornament is installed near the automatic door, and the strong reflective material is made from an infrared light emitting element. If the reflected infrared light hits and the reflected light is generated, the automatic tracking type sensitivity adjustment function cannot cope with it, and the automatic door may suddenly open.

また、上記強反射材による多重反射は鋭い指向性を持つことが多いため、当初はその反射光のレイトレースが赤外線受光素子に戻ることがなくても、荷重変化などにより建物に歪みが生じたりすると、反射光が突然赤外線受光素子に入射することもある。   In addition, since the multiple reflections by the strong reflectors often have a sharp directivity, even if the ray trace of the reflected light does not return to the infrared light receiving element at first, the building may be distorted due to a load change or the like. Then, the reflected light may suddenly enter the infrared light receiving element.

このような設置後に生ずる誤動作の原因解明は、その時々で現場で対応せざるを得ないが、赤外線であるがゆえに不可視であるため、上記強反射材による反射光のレイトレースは容易でなく、その原因解明に多くの時間を要することになる。   The elucidation of the cause of the malfunction that occurs after such installation must be dealt with in the field from time to time, but because it is invisible because it is infrared, ray tracing of the reflected light by the strong reflector is not easy, It will take a lot of time to elucidate the cause.

一方で、上記強反射材による反射光の存在を想定して、あらかじめ制御系全体の感度を落とすと、感度不足により本来検知すべき人が接近しても自動ドアが開かないことがあるため、その感度調整には何回もの試行錯誤を要し、時間的に不経済でもある。   On the other hand, assuming the presence of reflected light by the above strong reflectors, if the sensitivity of the entire control system is reduced in advance, the automatic door may not open even if a person who should be detected originally approaches due to insufficient sensitivity, The sensitivity adjustment requires many trials and errors, and is also uneconomical in time.

したがって、本発明の課題は、自動ドアの近傍の床面や壁面などに存在する金属やガラスなどの強反射材による反射光を拾わないようにした自動ドア開閉制御用反射型センサを提供することにある。   Therefore, an object of the present invention is to provide a reflective sensor for automatic door opening / closing control that does not pick up light reflected by a strong reflective material such as metal or glass existing on a floor surface or wall surface in the vicinity of the automatic door. It is in.

赤外線には、直線偏光として入射面に対して垂直(ドイツ語でsenkrecht)なS偏光成分と、入射面に対して平行(parallel)なP偏光成分とが含まれており、このうち、S偏光成分は金属やガラスなどの強反射材により全反射された場合、その偏光面が維持され反射光はS偏光である。これに対して、拡散反射の場合にはS偏光が崩れ、その反射光にはS偏光成分とP偏光成分の双方が存在する。   Infrared rays include, as linearly polarized light, an S-polarized component perpendicular to the incident surface (Senchrecht in German) and a P-polarized component parallel to the incident surface. When the component is totally reflected by a strong reflecting material such as metal or glass, its polarization plane is maintained and the reflected light is S-polarized light. On the other hand, in the case of diffuse reflection, the S-polarized light is broken, and both the S-polarized component and the P-polarized component exist in the reflected light.

なお、屈折率の異なる物質の界面で反射される光が完全に偏光となる入射角度をブリュースター角(または偏光角)と言い、P偏光成分の反射光はブリュースター角でほぼ「0」まで減少してその後増加するのに対して、S偏光成分は単調に増加すると言う特性を有している。   The incident angle at which the light reflected at the interface of substances having different refractive indexes becomes completely polarized is called the Brewster angle (or polarization angle), and the reflected light of the P-polarized component is approximately Brewster's angle up to “0”. While it decreases and then increases, the S-polarized component has a characteristic of increasing monotonously.

本発明は、この点に着目してなされたもので、上記課題を解決するため、自動ドア近傍を監視領域として、上記自動ドアに対して所定の位置に配置され上記監視領域に向けて赤外線を出射する赤外線発光素子と、上記自動ドアに対して所定の位置に配置され上記監視領域からの反射光を受光する赤外線受光素子とを含む自動ドア開閉制御用反射型センサにおいて、上記赤外線発光素子から上記監視領域に至る光往路に配置され、上記赤外線発光素子から出射される赤外線に含まれているS偏光成分のみを界面反射させるブリュースター角を有する第1偏光反射手段と、上記監視領域から上記赤外線受光素子に至る光復路に配置され、上記反射光に含まれているP偏光成分のみを界面反射させる第2偏光反射手段とを備え、上記第1偏光反射手段と上記第2偏光反射手段として、ガラス材などの光学部材からなり界面でS偏光成分を反射させるブリュースター角付近の曲面を有する第1および第2凹面鏡が用いられ、上記第2偏光反射手段としての上記第2凹面鏡の向きが、上記第1偏光反射手段としての上記第1凹面鏡に対して90゜ずらされていることを特徴としている。 The present invention has been made in view of this point, in order to solve the above problems, the automatic door near a surveillance area is located at a predetermined position with respect to the automatic door toward said monitoring area Infrared In the reflective sensor for automatic door opening / closing control, comprising: an infrared light emitting element that emits light; and an infrared light receiving element that is disposed at a predetermined position with respect to the automatic door and that receives reflected light from the monitoring area. A first polarized light reflecting means having a Brewster angle that is disposed in a light forward path from the light emitting element to the monitoring region and has an interface reflection of only the S-polarized component contained in the infrared light emitted from the infrared light emitting element, and from the monitoring region disposed backward light reaching to the infrared receiving component, only the P-polarized light component included in the reflected light and a second polarized light reflecting means for interfacial reflection, the first polarized light reflected hands As the second polarized light reflecting means, first and second concave mirrors made of an optical member such as a glass material and having a curved surface near the Brewster angle reflecting the S polarized light component at the interface are used. The direction of the second concave mirror is shifted by 90 ° with respect to the first concave mirror as the first polarized light reflecting means .

本発明によれば、赤外線発光素子から監視領域に至る光往路に赤外線発光素子から出射される赤外線に含まれているS偏光成分のみを界面反射させるブリュースター角を有する第1偏光反射手段を配置するとともに、監視領域から赤外線受光素子に至る光復路に反射光に含まれているP偏光成分のみを界面反射させる第2偏光反射手段を配置したことにより、監視領域に存在する人などによる拡散反射光のみが赤外線受光素子にて受光され、自動ドアの近傍の床面や壁面などに存在する金属やガラスなどの強反射材による反射光が拾われることがないため、自動ドアの信頼性をより高めることができる。 According to the onset bright, a first polarizing reflector means having a Brewster angle that only the interfacial reflected S-polarized component contained in the infrared radiation emitted from the infrared light-emitting element to the light outgoing path leading to the monitoring area from the infrared light emitting element with placing, by only P-polarized light component contained in reflected light to return the light reaching from the monitoring region to an infrared light receiving element by arranging the second polarized reflection means for interfacial reflection, such as a human which is present in the monitored area Reliability of automatic doors because only diffusely reflected light is received by the infrared light receiving element, and light reflected by strong reflective materials such as metal and glass existing on the floor or wall near the automatic door is not picked up. Can be further enhanced.

また、第1偏光反射手段と第2偏光反射手段として、ガラス材などの光学部材からなり界面でS偏光成分を反射させるブリュースター角付近の曲面を有する第1および第2凹面鏡が用いられ、第2偏光反射手段としての第2凹面鏡の向きが、第1偏光反射手段としての第1凹面鏡に対して90゜ずらされているため、第1凹面鏡と第2凹面鏡は実質的に同一であってよいとともに、凹面鏡の集光作用によりレンズ系を不要として、その分コストの削減が図られる。 Further, as the first polarized light reflecting means and the second polarized light reflecting means, there are used first and second concave mirrors made of an optical member such as a glass material and having a curved surface near the Brewster angle that reflects the S polarized light component at the interface. Since the direction of the second concave mirror as the two-polarized reflecting means is shifted by 90 ° with respect to the first concave mirror as the first polarized-reflecting means, the first concave mirror and the second concave mirror may be substantially the same. At the same time, the lens system is not required due to the condensing action of the concave mirror, and the cost can be reduced accordingly.

次に、図1ないし図6により、第1ないし第4の実施形態について説明するが、第1,第2および第4実施形態は参考実施形態であり、第3実施形態が請求項1に係る実施形態である。 Next, the first to fourth embodiments will be described with reference to FIGS. 1 to 6. The first, second, and fourth embodiments are reference embodiments, and the third embodiment relates to claim 1. It is an embodiment.

まず、図1に示す本発明の第1実施形態(参考実施形態)について説明する。この第1実施形態に係る反射型センサは、基本的な構成として、赤外線発光ダイオードなどの赤外線発光素子10と、フォトダイオードなどからなる赤外線受光素子20とを備える。なお、図には赤外線発光素子10と赤外線受光素子20とが対としてそれぞれひとつしか示されていないが、実際にはその複数対が用いられる。 First, a first embodiment (reference embodiment) of the present invention shown in FIG. 1 will be described. The reflection type sensor according to the first embodiment includes an infrared light emitting element 10 such as an infrared light emitting diode and an infrared light receiving element 20 including a photodiode as a basic configuration. Although only one infrared light emitting element 10 and one infrared light receiving element 20 are shown as a pair in the figure, a plurality of pairs are actually used.

赤外線発光素子10と赤外線受光素子20は、図示しない自動ドアの例えば無目部分に並設され、赤外線発光素子10は、自動ドア近傍の床面を監視領域Fとして、その監視領域Fに向けて赤外線を出射する。なお、この第1実施形態および後述する各実施形態では、監視領域F内に本来検知すべき物体である人Hと、強反射材である金属鋲Rとが存在していることを想定している。   The infrared light emitting element 10 and the infrared light receiving element 20 are arranged side by side in an unshown automatic door, for example, and the infrared light emitting element 10 has a floor surface in the vicinity of the automatic door as a monitoring area F, and faces the monitoring area F. Infrared rays are emitted. In the first embodiment and each embodiment described later, it is assumed that a person H that is an object to be detected and a metal rod R that is a strong reflector exist in the monitoring area F. Yes.

なお、赤外線発光素子10と赤外線受光素子20を例えば自動ドアの側方もしくは斜め上方に配置し、その監視領域に床面のみでなく自動ドア近傍の壁面を含ませてもよい。 Note that placing an infrared light-emitting element 10 and the infrared light receiving element 20 for example on the side or diagonally above the automatic door, but it may also be impregnated with the wall near the automatic door not only floor in the surveillance area.

赤外線受光素子20は、監視領域Fからの反射光を受光し、その受光信号を増幅器31を介して制御系に含まれる判定論理回路32に与える。判定論理回路32には、例えばウインドコンパレータが設けられており、反射光の受光量(もしくは強度)が所定の閾値を超えたとき、自動ドアのドアエンジンに開信号を出力する。判定論理回路32は、通常よく用いられるものであってよい。   The infrared light receiving element 20 receives the reflected light from the monitoring region F, and supplies the received light signal to the determination logic circuit 32 included in the control system via the amplifier 31. The determination logic circuit 32 is provided with, for example, a window comparator, and outputs an open signal to the door engine of the automatic door when the amount (or intensity) of reflected light exceeds a predetermined threshold value. The determination logic circuit 32 may be a commonly used one.

なお、本発明においては、後述するように赤外線発光素子10から出射される光量のうち、赤外線受光素子20は一方向の偏光のみを受光する。したがって、受光光量が低下するので、例えば増幅器31の増幅度を高める必要がある。   In the present invention, the infrared light receiving element 20 receives only polarized light in one direction out of the amount of light emitted from the infrared light emitting element 10 as will be described later. Therefore, since the amount of received light decreases, it is necessary to increase the amplification degree of the amplifier 31, for example.

この第1実施形態では、赤外線発光素子10から監視領域Fに至る光往路Aに第1偏光フィルタ11と投光レンズ12とが配置され、監視領域Fから赤外線受光素子20に至る光復路Bに第2偏光フィルタ21と集光レンズ22とが配置される。   In the first embodiment, the first polarizing filter 11 and the light projecting lens 12 are arranged on the light forward path A from the infrared light emitting element 10 to the monitoring area F, and on the light return path B from the monitoring area F to the infrared light receiving element 20. A second polarizing filter 21 and a condenser lens 22 are disposed.

発光側の第1偏光フィルタ11は、赤外線発光素子10から出射される赤外線に含まれているS偏光成分のみを通過させる偏光フィルタであり、受光側の第2偏光フィルタ21は、監視領域Fからの反射光に含まれているP偏光成分のみを通過させる偏光フィルタである。第1偏光フィルタ11と第2偏光フィルタ21には、回折格子型や偏光フィルムなど各種のものを使用することができる。   The first polarizing filter 11 on the light emitting side is a polarizing filter that passes only the S-polarized component contained in the infrared light emitted from the infrared light emitting element 10, and the second polarizing filter 21 on the light receiving side is from the monitoring region F. This is a polarizing filter that allows only the P-polarized component contained in the reflected light to pass through. As the first polarizing filter 11 and the second polarizing filter 21, various types such as a diffraction grating type and a polarizing film can be used.

これによれば、赤外線発光素子10からS偏光成分のみの赤外光(S偏光光)が監視領域Fに照射される。このS偏光光のうち、金属鋲Rで全反射された反射光は、その偏光面が維持され依然としてS偏光光であるため、受光側の第2偏光フィルタ21で阻止されることになり、赤外線受光素子20には入射されない   According to this, the infrared light (S-polarized light) having only the S-polarized component is emitted from the infrared light emitting element 10 to the monitoring region F. Of this S-polarized light, the reflected light totally reflected by the metal rod R is still S-polarized light while maintaining its polarization plane, and is therefore blocked by the second polarizing filter 21 on the light receiving side. Not incident on the light receiving element 20

これに対して、人Hによる反射は拡散反射であるためS偏光光の偏光が崩れ、その反射光にはS偏光成分とP偏光成分とが含まれる。したがって、そのP偏光成分の赤外光(P偏光光)のみが受光側の第2偏光フィルタ21を通過して、赤外線受光素子20に入射されることになる。判定論理回路32は、このP偏光光の変動量(もしくは強度)に基づいてドアエンジンに「ドア開」もしくは「ドア閉」信号を出力する。   On the other hand, since the reflection by the person H is diffuse reflection, the polarization of the S-polarized light is lost, and the reflected light includes an S-polarized component and a P-polarized component. Therefore, only the infrared light (P-polarized light) of the P-polarized component passes through the second polarizing filter 21 on the light receiving side and enters the infrared light receiving element 20. The determination logic circuit 32 outputs a “door open” or “door close” signal to the door engine based on the fluctuation amount (or intensity) of the P-polarized light.

なお、ここで説明する実施形態では、説明の便宜上、発光側をS偏光,受光側をP偏光としているが、これらは直交する偏光であればよい。   In the embodiment described here, for convenience of explanation, the light emitting side is S-polarized light and the light receiving side is P-polarized light, but these may be orthogonally polarized light.

このようにして、金属やガラスなどの強反射材から全反射される指向性の強い反射光が除去されるのであるが、第1偏光フィルタ11に、例えば特開平2004−145305号公報に記載されているようなPS偏光変換素子を用いることにより、原理的に第1偏光フィルタ11で光の強度が1/2になるのを防ぐことができ、これにより赤外線発光素子10の出力パワーを相対的に下げることができる。   In this way, the highly directional reflected light that is totally reflected from a strong reflecting material such as metal or glass is removed. The first polarizing filter 11 is described in, for example, Japanese Patent Application Laid-Open No. 2004-145305. By using such a PS polarization conversion element, it is possible in principle to prevent the light intensity of the first polarizing filter 11 from being halved, and thereby the output power of the infrared light emitting element 10 can be relatively reduced. Can be lowered.

また、赤外線発光素子10として、図2に示す赤外レーザ光源110を用いることもできる。この赤外レーザ光源110は任意の偏光光を出射し得るレーザ光源で、レーザ発生部111の一方の出射面111a側に被照射体に向けてレーザ光を照射するハーフミラー112が配置され、他方の出射面111b側にレーザ光を増幅するための光反射板113が配置されている。   Moreover, the infrared laser light source 110 shown in FIG. This infrared laser light source 110 is a laser light source capable of emitting arbitrarily polarized light, and a half mirror 112 for irradiating a laser beam toward an irradiated body is disposed on one emission surface 111a side of the laser generator 111, and the other. A light reflecting plate 113 for amplifying laser light is disposed on the emission surface 111b side.

この赤外レーザ光源110によると、例えば他方の出射面111b側のブリュースター角θaを選択し、その偏光モードで発振させることにより、S偏光の赤外レーザを得ることができる。したがって、この赤外レーザ光源110を用いることにより、発光側の第1偏光フィルタ11を省略することができる。   According to the infrared laser light source 110, for example, an S-polarized infrared laser can be obtained by selecting the Brewster angle θa on the other emission surface 111b side and oscillating in the polarization mode. Therefore, by using the infrared laser light source 110, the first polarizing filter 11 on the light emission side can be omitted.

なお、発光側の投光レンズ12と受光側の集光レンズ22は、偏光フィルタ11,21の前後のいずれかに配置されてよいが、赤外線発光素子10と赤外線受光素子20とが複数個用いられる場合には、偏光フィルタの使用個数(コスト)を削減するうえで、赤外線発光素子10側と赤外線受光素子20側とに配置されることが好ましい。   The light emitting side light projecting lens 12 and the light receiving side condensing lens 22 may be arranged either before or after the polarizing filters 11 and 21, but a plurality of infrared light emitting elements 10 and infrared light receiving elements 20 are used. In order to reduce the number (cost) of the polarizing filter used, it is preferable that the polarizing filter is disposed on the infrared light emitting element 10 side and the infrared light receiving element 20 side.

次に、図3に示す本発明の第2実施形態(参考実施形態)について説明する。この第2実施形態では、上記第1実施形態における第1,第2偏光フィルタ11,12に代えて、赤外線発光素子10から監視領域Fに至る光往路Aに第1偏光反射板13が配置され、監視領域Fから赤外線受光素子20に至る光復路Bに第2偏光反射板23が配置される。 Next, a second embodiment (reference embodiment) of the present invention shown in FIG. 3 will be described. In the second embodiment, instead of the first and second polarizing filters 11 and 12 in the first embodiment, the first polarizing reflector 13 is disposed in the light forward path A from the infrared light emitting element 10 to the monitoring region F. The second polarizing reflector 23 is disposed in the optical return path B from the monitoring region F to the infrared light receiving element 20.

第1偏光反射板13と第2偏光反射板23は、ともに平板ガラスなどの平面反射体からなり、発光側の第1偏光反射板13は、赤外線発光素子10から出射される赤外線の入射角がS偏光成分のみを界面反射させるブリュースター角θbとなるように配置される。   The first polarizing reflector 13 and the second polarizing reflector 23 are both made of a flat reflector such as flat glass, and the first polarizing reflector 13 on the light emission side has an incident angle of infrared light emitted from the infrared light emitting element 10. The Brewster angle θb that reflects only the S-polarized component at the interface is arranged.

これに対して、受光側の第2偏光反射板23は、監視領域Fからの反射光に含まれているP偏光成分のみを界面反射させる。これを実現するには、S偏光成分とP偏光成分は偏波面が90゜ずれているため、第2偏光反射板23に対する反射光の入射角が第1偏光反射板13と同じブリュースター角θbとなるようにして、第2偏光反射板23の偏光面を第1偏光反射板13の偏光面に対して90゜ずらせばよい。   On the other hand, the second polarization reflector 23 on the light receiving side reflects only the P-polarized component included in the reflected light from the monitoring region F at the interface. In order to realize this, since the polarization planes of the S polarization component and the P polarization component are shifted by 90 °, the incident angle of the reflected light with respect to the second polarization reflection plate 23 is the same Brewster angle θb as that of the first polarization reflection plate 13. Thus, the polarization plane of the second polarization reflector 23 may be shifted by 90 ° with respect to the polarization plane of the first polarization reflector 13.

この第2実施形態においても、発光側の第1偏光反射板13によりS偏光成分のみの赤外光(S偏光光)が監視領域Fに照射され、金属鋲Rで全反射されたS偏光の反射光は、受光側の第2偏光反射板23で阻止されることになるため、赤外線受光素子20には入射されない   Also in the second embodiment, infrared light having only the S-polarized component (S-polarized light) is irradiated onto the monitoring region F by the first polarizing reflector 13 on the light emission side, and the S-polarized light totally reflected by the metal rod R is irradiated. Since the reflected light is blocked by the second polarizing reflection plate 23 on the light receiving side, it is not incident on the infrared light receiving element 20.

これに対して、人Hによる反射は拡散反射で、その反射光にはS偏光成分とP偏光成分とが含まれることになり、そのうちのP偏光成分の赤外光(P偏光光)のみが受光側の第2偏光反射板23により選択されて、赤外線受光素子20に入射されることになる。   On the other hand, the reflection by the person H is diffuse reflection, and the reflected light includes an S-polarized component and a P-polarized component, and only infrared light (P-polarized light) of the P-polarized component is included. The light is selected by the second polarizing reflector 23 on the light receiving side and is incident on the infrared light receiving element 20.

なお、この第2実施形態では、投光レンズ12と集光レンズ22は、それぞれ赤外線発光素子10と赤外線受光20側とに配置されているが、場合によっては、上記第1実施形態のように反素子10,20側に配置されてもよい。   In the second embodiment, the light projecting lens 12 and the condenser lens 22 are disposed on the infrared light emitting element 10 and the infrared light receiving 20 side, respectively. However, in some cases, as in the first embodiment. You may arrange | position on the counter element 10 and 20 side.

次に、図4により本発明の第3実施形態(請求項1に係る実施形態)について説明する。この第3実施形態は、特に赤外線発光素子10と赤外線受光素子20を複数対(この例では3対)として用いる場合にコスト的に有効であり、上記第2実施形態での第1,第2偏光反射板13,14に代えて、発光側と受光側とに第1,第2凹面鏡14,24を用いる。 Next, a third embodiment ( embodiment according to claim 1) of the present invention will be described with reference to FIG. The third embodiment is cost effective particularly when the infrared light emitting element 10 and the infrared light receiving element 20 are used as a plurality of pairs (three pairs in this example). The first and second embodiments in the second embodiment are effective. Instead of the polarizing reflectors 13 and 14, the first and second concave mirrors 14 and 24 are used on the light emitting side and the light receiving side.

これによれば、監視領域Fに複数の光スポットを形成する場合、凹面鏡の集光作用により、従来必要とされていた投光レンズ,集光レンズを含むレンズ系が不要となり、その分コスト削減が図れる。   According to this, when a plurality of light spots are formed in the monitoring area F, the lens system including the light projecting lens and the condensing lens, which has been conventionally required, is unnecessary due to the condensing function of the concave mirror, and the cost is reduced accordingly. Can be planned.

第1,第2凹面鏡14,24ともに、好ましくはガラスもしくはPMMAアクリル樹脂やASアクリルスチレン樹脂などの高光学屈折率の透明材からなり界面でS偏光成分を反射させるブリュースター角θb付近の曲面を有する凹面鏡である。   Both the first and second concave mirrors 14 and 24 are preferably made of a transparent material having a high optical refractive index such as glass or PMMA acrylic resin or AS acrylic styrene resin, and have a curved surface near the Brewster angle θb that reflects the S-polarized light component at the interface. It is a concave mirror.

この場合、第1,第2凹面鏡14,24は透明材からなるため、それらの裏面側に透過光吸収用の黒色体14a,24aを配置することが好ましい。なお、凹面鏡は必ずしも透明材である必要はなく、屈折率が高ければ黒色体などであってもよい。   In this case, since the first and second concave mirrors 14 and 24 are made of a transparent material, it is preferable to dispose black bodies 14a and 24a for absorbing transmitted light on the back surfaces thereof. The concave mirror is not necessarily made of a transparent material, and may be a black body or the like as long as the refractive index is high.

上記したように、S偏光成分とP偏光成分は位相が90゜ずれていることから、受光側の第2凹面鏡24でP偏光成分のみを選択するため、受光側の第2凹面鏡24の偏光面を発光側の第1凹面鏡14の偏光面に対して90゜ずらす。図4に示すように、発光側の第1凹面鏡14の偏光面が正面に向いているとすれば、受光側の第2凹面鏡24の偏光面を横向きとする。 As described above, since the S-polarized light component and P-polarized light component phase is 90 DEG, in order to select only P-polarized light component in the second concave mirror 24 on the light receiving side, the polarization plane of the second concave mirror 24 on the light receiving side Is shifted by 90 ° with respect to the polarization plane of the first concave mirror 14 on the light emitting side. As shown in FIG. 4, if the polarization plane of the first concave mirror 14 on the light emitting side is facing the front, the polarization plane of the second concave mirror 24 on the light receiving side is set sideways.

この第3実施形態によれば、複数の赤外線発光素子10から出射された赤外線に含まれているS偏光成分のみが第1凹面鏡14にて選択されて監視領域Fに照射される。これに対して、監視領域Fからの反射光は第2凹面鏡24に集められ、その反射光に含まれているP偏光成分のみが選択されて各赤外線発光素子10と対応する各赤外線受光素子20に入射される。   According to the third embodiment, only the S-polarized component included in the infrared rays emitted from the plurality of infrared light emitting elements 10 is selected by the first concave mirror 14 and irradiated to the monitoring region F. On the other hand, the reflected light from the monitoring region F is collected by the second concave mirror 24, and only the P-polarized component included in the reflected light is selected, and each infrared light receiving element 20 corresponding to each infrared light emitting element 10 is selected. Is incident on.

なお、各凹面鏡14,24の曲面は、放物面,楕円面,球面,非球面など、用途や精度に応じて種々選択されてよいが、いずれにしても、複数の赤外線発光素子10,複数の赤外線受光素子20に各ひとつの凹面鏡14,24で対応させるためには、各素子10,20を接近させて配置し、焦点付近に近づけることが重要である。また、透明板1枚ではS偏光成分の反射が少ない場合には、透明板を多重に重ねるか、もしくは多重反射膜をガラス面に生成すればよい。   The curved surfaces of the concave mirrors 14 and 24 may be variously selected depending on the application and accuracy, such as a paraboloid, an ellipsoid, a spherical surface, and an aspherical surface. In order to correspond to each of the infrared light receiving elements 20 with each one of the concave mirrors 14 and 24, it is important to place the elements 10 and 20 close to each other and bring them close to the focal point. Further, when the reflection of the S-polarized light component is small in one transparent plate, the transparent plates may be stacked in multiple layers or a multiple reflection film may be formed on the glass surface.

また、監視領域Fが広い場合には、図5に示すように、上記第3実施形態による反射型センサを複数台(この例では3台)を並設して用いればよい。この場合、隣接する赤外線受光素子20間での迷光を防止するため、それらの間に遮光カバー24aを配置することが好ましい。   When the monitoring area F is wide, as shown in FIG. 5, a plurality of (three in this example) reflective sensors according to the third embodiment may be used in parallel. In this case, in order to prevent stray light between adjacent infrared light receiving elements 20, it is preferable to arrange a light shielding cover 24a between them.

次に、図6により本発明の第4実施形態(参考実施形態)について説明する。この第4実施形態は、金属やガラスなどの強反射材で全反射される反射光は偏光方向が左右反転することに着目したものである。なお、図6において、赤外線受光素子20に接続される増幅回路31および制御系の判定論理回路32は省略されている。 Next, a fourth embodiment (reference embodiment) of the present invention will be described with reference to FIG. In the fourth embodiment, attention is paid to the fact that the polarization direction of the reflected light totally reflected by a strong reflecting material such as metal or glass is reversed left and right. In FIG. 6, the amplifier circuit 31 connected to the infrared light receiving element 20 and the determination logic circuit 32 of the control system are omitted.

この第4実施形態によると、赤外線発光素子1から監視領域Fに至る光往路Aと、監視領域Fから赤外線受光素子20に至る光復路Bとに、赤外線発光素子10から出射される赤外線および監視領域Fからの反射光に含まれるS偏光成分もしくはP偏光成分のいずれか一方の直線偏光成分のみを通過させる同一特性の偏光フィルタ61がそれぞれ配置される。   According to the fourth embodiment, the infrared rays emitted from the infrared light emitting element 10 and the monitoring are sent to the optical forward path A from the infrared light emitting element 1 to the monitoring area F and the optical backward path B from the monitoring area F to the infrared light receiving element 20. Polarization filters 61 having the same characteristics that allow only one of the S-polarized component and the P-polarized component included in the reflected light from the region F to pass are disposed.

また、発光側では偏光フィルタ61の光出射側,受光側では偏光フィルタ61の光入射側にそれぞれ1/4波長板62が配置される。なお、この例では、1/4波長板62と監視領域Fとの間に投光および集光用のレンズ63が配置されているが、レンズ63は偏光フィルタ61と1/4波長板62との間もしくは素子10,20側に配置されてもよい。   A quarter-wave plate 62 is disposed on the light emitting side of the polarizing filter 61 on the light emitting side and on the light incident side of the polarizing filter 61 on the light receiving side. In this example, a lens 63 for projecting and collecting light is disposed between the quarter wavelength plate 62 and the monitoring region F. However, the lens 63 includes the polarizing filter 61 and the quarter wavelength plate 62. Or between the elements 10 and 20.

例えば、偏光フィルタ61がS偏光成分(S偏光光)のみを通過させる偏光フィルタで、そのS偏光光が1/4波長板62にて例えば左旋回の円偏光に変換されて、監視領域Fに照射され強反射材として例示されている金属鋲Rにて全反射されると、偏光方向が左右反転するため反射光は右旋回の円偏光となる。   For example, the polarizing filter 61 is a polarizing filter that allows only the S-polarized component (S-polarized light) to pass through. The S-polarized light is converted into, for example, left-handed circularly polarized light by the quarter-wave plate 62, and is input to the monitoring region F. When it is irradiated and totally reflected by the metal rod R exemplified as a strong reflection material, the polarization direction is reversed left and right, so that the reflected light becomes right-handed circularly polarized light.

上記反射光は1/4波長板62にて再度直線偏光に戻されるが、その偏光面は照射時のS偏光と逆のP偏光となっているため、偏光フィルタ61にて通過が阻止される。これにより、強反射材による反射光は赤外線受光素子20にて検出されない。   The reflected light is returned to linearly polarized light again by the quarter-wave plate 62, but its polarization plane is P-polarized light that is opposite to S-polarized light at the time of irradiation, so that the polarizing filter 61 blocks its passage. . Thereby, the reflected light from the strong reflecting material is not detected by the infrared light receiving element 20.

これに対して、人Hなどにより反射された反射光は拡散反射光でS偏光成分とP偏光成分とが含まれているため、このうちのS偏光成分が1/4波長板62にて再度直線偏光に戻され、偏光フィルタ61を通過して赤外線受光素子20にて検出される。   On the other hand, the reflected light reflected by the person H or the like is diffusely reflected light and contains an S-polarized component and a P-polarized component. The light is returned to linearly polarized light, passes through the polarizing filter 61, and is detected by the infrared light receiving element 20.

このようにして、第4実施形態においても、強反射材による反射光を拾うことなく、自動ドアに近づく人などの物体を確実に検知することができるが、第4実施形態の場合、照射光を1/4波長板62にて円偏光に変換しているため、直線偏光に比べて、傾斜した金属面などによる反射光に対しても効果が大きい。   Thus, in the fourth embodiment, an object such as a person approaching the automatic door can be reliably detected without picking up the reflected light from the strong reflector, but in the case of the fourth embodiment, the irradiation light Is converted into circularly polarized light by the ¼ wavelength plate 62, and therefore, it is more effective for reflected light from an inclined metal surface or the like than linearly polarized light.

本発明の第1実施形態を示す模式図。The schematic diagram which shows 1st Embodiment of this invention. 上記第1実施形態に適用可能なレーザ光源を示す模式図。The schematic diagram which shows the laser light source applicable to the said 1st Embodiment. 本発明の第2実施形態を示す模式図。The schematic diagram which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す模式図。The schematic diagram which shows 3rd Embodiment of this invention. 上記第3実施形態の変形例を示す模式図。The schematic diagram which shows the modification of the said 3rd Embodiment. 本発明の第4実施形態を示す模式図。The schematic diagram which shows 4th Embodiment of this invention.

10 赤外線発光素子
11 第1偏光フィルタ
12 投光レンズ
13 第1偏光反射板
14 第1凹面鏡
20 赤外線受光素子
21 第2偏光フィルタ
22 集光レンズ
23 第2偏光反射板
24 第2凹面鏡
32 判定論理回路
61 偏光フィルタ
62 1/4波長板
DESCRIPTION OF SYMBOLS 10 Infrared light emitting element 11 1st polarizing filter 12 Projection lens 13 1st polarizing reflector 14 1st concave mirror 20 Infrared light receiving element 21 2nd polarizing filter 22 Condensing lens 23 2nd polarizing reflector 24 2nd concave mirror 32 Judgment logic circuit 61 Polarizing filter 62 1/4 wavelength plate

Claims (1)

自動ドア近傍を監視領域として、上記自動ドアに対して所定の位置に配置され上記監視領域に向けて赤外線を出射する赤外線発光素子と、上記自動ドアに対して所定の位置に配置され上記監視領域からの反射光を受光する赤外線受光素子とを含む自動ドア開閉制御用反射型センサにおいて、
上記赤外線発光素子から上記監視領域に至る光往路に配置され、上記赤外線発光素子から出射される赤外線に含まれているS偏光成分のみを界面反射させるブリュースター角を有する第1偏光反射手段と、上記監視領域から上記赤外線受光素子に至る光復路に配置され、上記反射光に含まれているP偏光成分のみを界面反射させる第2偏光反射手段とを備え
上記第1偏光反射手段と上記第2偏光反射手段として、ガラス材などの光学部材からなり界面でS偏光成分を反射させるブリュースター角付近の曲面を有する第1および第2凹面鏡が用いられ、上記第2偏光反射手段としての上記第2凹面鏡の向きが、上記第1偏光反射手段としての上記第1凹面鏡に対して90゜ずらされていることを特徴とする自動ドア開閉制御用反射型センサ。
An infrared light emitting element that is arranged at a predetermined position with respect to the automatic door and emits infrared rays toward the monitoring area, and a monitoring area that is arranged at a predetermined position with respect to the automatic door, with the vicinity of the automatic door as a monitoring area In a reflective sensor for automatic door opening and closing control including an infrared light receiving element that receives reflected light from
A first polarized light reflecting means disposed on an optical path from the infrared light emitting element to the monitoring region, and having a Brewster angle for interfacial reflection of only the S-polarized component contained in the infrared light emitted from the infrared light emitting element; A second polarized light reflecting means disposed on the optical return path from the monitoring region to the infrared light receiving element and configured to interface-reflect only the P-polarized light component contained in the reflected light ;
As the first polarized light reflecting means and the second polarized light reflecting means, there are used first and second concave mirrors made of an optical member such as a glass material and having a curved surface near the Brewster angle that reflects the S polarized light component at the interface. A reflection type sensor for automatic door opening / closing control, characterized in that the second concave mirror as the second polarized light reflecting means is shifted by 90 ° with respect to the first concave mirror as the first polarized light reflecting means .
JP2006266669A 2006-09-29 2006-09-29 Reflective sensor for automatic door opening / closing control Active JP4613153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266669A JP4613153B2 (en) 2006-09-29 2006-09-29 Reflective sensor for automatic door opening / closing control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266669A JP4613153B2 (en) 2006-09-29 2006-09-29 Reflective sensor for automatic door opening / closing control

Publications (2)

Publication Number Publication Date
JP2008083010A JP2008083010A (en) 2008-04-10
JP4613153B2 true JP4613153B2 (en) 2011-01-12

Family

ID=39354013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266669A Active JP4613153B2 (en) 2006-09-29 2006-09-29 Reflective sensor for automatic door opening / closing control

Country Status (1)

Country Link
JP (1) JP4613153B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146759B (en) * 2010-02-10 2014-07-30 南京德朔实业有限公司 Safety system for detecting obstacles for garage door moving along doorframe
JP5585874B2 (en) * 2010-09-13 2014-09-10 株式会社リコー Laser radar equipment
JP2013238087A (en) * 2012-05-17 2013-11-28 Optex Co Ltd Simplified passage limitation device
JP6223706B2 (en) * 2013-04-12 2017-11-01 パナソニック デバイスSunx株式会社 Reflective photoelectric sensor
JP6254770B2 (en) * 2013-05-08 2017-12-27 富士フイルム株式会社 Circularly polarized light separating film, method for producing circularly polarized light separating film, and infrared sensor
CN105190382B (en) * 2013-05-08 2019-01-04 富士胶片株式会社 Circularly polarized light separating film, the preparation method of circularly polarized light separating film, infrared sensor, detection system and detection method using light
JP6254769B2 (en) * 2013-05-08 2017-12-27 富士フイルム株式会社 Circularly polarized light separating film, method for producing circularly polarized light separating film, and infrared sensor
DE112014003848T5 (en) * 2013-08-21 2016-05-19 Fujifilm Corporation Circular polarizing filter and application thereof
JP6315428B2 (en) * 2014-12-09 2018-04-25 Toto株式会社 Automatic faucet device
JP6977355B2 (en) * 2017-07-20 2021-12-08 大日本印刷株式会社 Detection device
JP2017227924A (en) * 2017-09-25 2017-12-28 富士フイルム株式会社 Circularly polarized light separation film and production method of circularly polarized light separation film, and infrared ray sensor
JP6588517B2 (en) * 2017-09-25 2019-10-09 富士フイルム株式会社 Circularly polarized light separating film, method for producing circularly polarized light separating film, and infrared sensor
JP6975258B2 (en) 2017-12-27 2021-12-01 富士フイルム株式会社 Optical elements and sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176974A (en) * 1984-09-04 1986-04-19 レイセオン カンパニ− Laser-beam interferometer
JPH0651073A (en) * 1991-07-03 1994-02-25 Nippon Ceramic Co Ltd Infrared object sensing device
JP2000321367A (en) * 1999-05-12 2000-11-24 Tokuyama Corp Using method for optical detector
JP2004191063A (en) * 2002-12-06 2004-07-08 Topcon Corp Light wave distance measuring device
JP2005037733A (en) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Polarization transducer and block for polarization transducer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176974A (en) * 1984-09-04 1986-04-19 レイセオン カンパニ− Laser-beam interferometer
JPH0651073A (en) * 1991-07-03 1994-02-25 Nippon Ceramic Co Ltd Infrared object sensing device
JP2000321367A (en) * 1999-05-12 2000-11-24 Tokuyama Corp Using method for optical detector
JP2004191063A (en) * 2002-12-06 2004-07-08 Topcon Corp Light wave distance measuring device
JP2005037733A (en) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Polarization transducer and block for polarization transducer

Also Published As

Publication number Publication date
JP2008083010A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4613153B2 (en) Reflective sensor for automatic door opening / closing control
US5502434A (en) Smoke sensor
US11500069B2 (en) Optical system for detecting a scanning field
US7589311B2 (en) Optoelectronic sensor and method for detecting objects with polarized light
JP2005241556A (en) Passive-type infrared detector and obstruction detection system used therefor
US20210063318A1 (en) Detection device for detecting contamination
EP2719079B1 (en) Optical proximity sensor comprising a linear polarizer for reducing optical crosstalk
US7391007B2 (en) Optoelectronic apparatus and method of operating the optoelectronic apparatus in order to detect an object
FR2970095A1 (en) DEVICE FOR DETECTING AN ANGULAR DIRECTION IN WHICH IS AN OBJECT
JP4868485B2 (en) Method and apparatus for optically measuring distance or velocity
US10539289B2 (en) Laser lighting module with safety function
JP2007333592A (en) Distance measurement device
CA2564282A1 (en) Endoscopic light source safety and control system with optical sensor
JP2018151278A (en) Measurement device
JP2006351680A (en) Regression reflection photoelectric switch
CN113748584A (en) Safety housing for wireless power supply
US9897544B2 (en) Latent fingerprint detection
US20070146583A1 (en) Reflective light barrier
US7869048B2 (en) Photoelectonic sensor
US6596997B2 (en) Retro-reflector warm stop for uncooled thermal imaging cameras and method of using the same
KR20220031671A (en) Polarization Filtering in LiDAR Systems
JP2009099345A (en) Reflection type photoelectric sensor
JP2007003348A (en) Regression reflection typed photo-electronic sensor
TW200604577A (en) Photoelectric sensor
CN201213024Y (en) Collapsible infrared alarm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4613153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250