JP2016017523A - Bushing - Google Patents

Bushing Download PDF

Info

Publication number
JP2016017523A
JP2016017523A JP2014138270A JP2014138270A JP2016017523A JP 2016017523 A JP2016017523 A JP 2016017523A JP 2014138270 A JP2014138270 A JP 2014138270A JP 2014138270 A JP2014138270 A JP 2014138270A JP 2016017523 A JP2016017523 A JP 2016017523A
Authority
JP
Japan
Prior art keywords
axial
axial direction
vibration
outer cylinder
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014138270A
Other languages
Japanese (ja)
Other versions
JP6359361B2 (en
Inventor
翼 内田
Tsubasa Uchida
翼 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2014138270A priority Critical patent/JP6359361B2/en
Publication of JP2016017523A publication Critical patent/JP2016017523A/en
Application granted granted Critical
Publication of JP6359361B2 publication Critical patent/JP6359361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a bushing capable of restricting an axial displacement while assuring a characteristic of a vibration isolator and improving durability.SOLUTION: A bored section 41 formed at each of axial end surfaces of a vibration isolator 40 can assure soft spring characteristics in both radial direction and an axial direction because each of bottom portions 44 is positioned at axial inside part than from each of starting points 32 at two bent portions 31 or on each of the starting points 32 at a section including an axial center O. A protrusion part 22 protruded toward an outer cylinder 30 has Young's modulus in its axial direction is set to be higher than a Young's modulus in an axial direction of the vibration isolator 40. The protrusion part 22 can restrict an excessive displacement in an axial direction of the vibration isolator 40 by the protrusion part 22 and the bent portions 31 at a section including the axial center O to improve durability because the protrusion part 22 is arranged at axial inside of the two bent portions 31.SELECTED DRAWING: Figure 1

Description

本発明はブッシュに関し、特に防振基体の特性と耐久性とを両立できるブッシュに関するものである。   The present invention relates to a bush, and more particularly to a bush that can achieve both the characteristics and durability of a vibration-proof base.

自動車のサスペンション装置等において、車体と振動側の部材との間にブッシュが配置される(特許文献1)。特許文献1に開示されるブッシュは、防振基体の軸方向端面に環状のすぐりが形成されており、防振基体によって内筒と連結された外筒は、軸方向両端が径方向内方へ屈曲する2つの屈曲部を備えている。このブッシュでは、すぐりによって防振基体の径方向のばね定数を小さくできる。また、屈曲部によって、径方向の大きな振動が入力されたときの防振基体の過大な変位を規制できるので、防振基体の耐久性を確保できる。   In an automobile suspension device or the like, a bush is disposed between a vehicle body and a vibration-side member (Patent Document 1). In the bush disclosed in Patent Document 1, an annular curl is formed on the axial end surface of the vibration isolating base, and the outer cylinder connected to the inner cylinder by the vibration isolating base has both axial ends inward in the radial direction. It has two bent parts that bend. In this bush, the spring constant in the radial direction of the vibration-proof base can be reduced by the improvement. Further, since the bending portion can restrict an excessive displacement of the vibration isolating base when a large radial vibration is input, durability of the vibration isolating base can be ensured.

特開2002−161943号公報JP 2002-161943 A

しかしながら上述した従来の技術では、軸方向の大きな振動が入力されたときの防振基体の過大な変位を規制できないという問題がある。   However, the above-described conventional technique has a problem that it is not possible to regulate an excessive displacement of the vibration-proof base when a large axial vibration is input.

本発明は上述した問題を解決するためになされたものであり、防振基体の特性を確保しつつ軸方向の変位を規制して耐久性を向上できるブッシュを提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a bushing that can improve durability by restricting axial displacement while ensuring the characteristics of the vibration-proof base.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

この目的を達成するために請求項1記載のブッシュによれば、内筒の径方向外側に距離を隔てて同軸状に外筒が配置され、ゴム状弾性体から構成される防振基体により外筒と内筒とが一体的に連結される。外筒は、軸方向両端が径方向内方へ屈曲する2つの屈曲部を備え、防振基体は、周方向に1周する環状のすぐりが、軸方向端面にそれぞれ形成される。すぐりは、軸心を含む断面において、2つの屈曲部の各起点よりも軸方向の内側または各起点の軸方向の位置に底部がそれぞれ位置するので、防振基体の径方向および軸方向の軟らかいばね特性を確保できる。   In order to achieve this object, according to the bush of the first aspect, the outer cylinder is coaxially arranged at a distance on the outer side in the radial direction of the inner cylinder, and is externally provided by a vibration-isolating base composed of a rubber-like elastic body. The cylinder and the inner cylinder are integrally connected. The outer cylinder includes two bent portions whose both ends in the axial direction are bent inward in the radial direction, and the antivibration base is formed with an annular curl that makes one round in the circumferential direction on the axial end surface. In the cross section including the axial center, since the bottom portion is located inside the axial direction of the two bent portions or at the axial position of the respective starting points, the radial direction and the axial direction of the vibration-proof base are soft. Spring characteristics can be secured.

内筒は、外周に設けられる突起部が外筒へ向かって突き出し、突起部は、軸方向のヤング率が、防振基体の軸方向のヤング率よりも大きい値に設定される。突起部は、軸心を含む断面において、2つの屈曲部の軸方向の内側に設けられるので、ヤング率の大きい突起部および屈曲部によって、軸方向の大きな振動が入力されたときの防振基体の過大な変位を規制できる。その結果、防振基体の特性を確保しつつ軸方向の変位を規制して耐久性を向上できる効果がある。   In the inner cylinder, a protrusion provided on the outer periphery protrudes toward the outer cylinder, and the protrusion has an axial Young's modulus set to a value larger than the axial Young's modulus of the vibration-proof base. Since the protrusion is provided on the inner side in the axial direction of the two bent portions in the cross section including the shaft center, the vibration-proof base when a large vibration in the axial direction is input by the protrusion and the bent portion having a large Young's modulus. The excessive displacement of can be regulated. As a result, there is an effect that the durability can be improved by restricting the axial displacement while ensuring the characteristics of the vibration-proof substrate.

請求項2記載のブッシュによれば、防振基体は、外筒の縮径により外筒と内筒との間で径方向の予圧縮が付与されるので、径方向のばね定数を適宜設定できる。なお、すぐりは、軸心を含む断面において、2つの屈曲部の各起点よりも軸方向の内側または各起点の軸方向の位置に底部がそれぞれ位置するので、屈曲部により防振基体へ予圧縮が付与されないようにできる。よって、請求項1の効果に加え、防振基体の径方向のばね定数を適宜設定できる効果がある。   According to the bush of the second aspect, since the vibration-proof base is preliminarily compressed in the radial direction between the outer cylinder and the inner cylinder due to the reduced diameter of the outer cylinder, the radial spring constant can be appropriately set. . In addition, in the cross section including the shaft center, the bottom is located inside the axial direction of each of the two bent portions or at the axial position of each of the started points, so that the bent portion is pre-compressed to the anti-vibration base. Can be prevented from being granted. Therefore, in addition to the effect of the first aspect, there is an effect that the spring constant in the radial direction of the vibration-proof base can be appropriately set.

請求項3記載のブッシュによれば、屈曲部は、内径の最小値が、突起部の外径の最大値よりも小さく設定されている。これにより、突起部と屈曲部との間に径方向の重なり代を確保できる。その重なり代によって、請求項1又は2の効果に加え、軸方向の大きな振動が入力されたときの防振基体の過大な変位の規制効果を向上できる。さらに、重なり代があるので、防振基体に剥がれや破断が生じても、内筒が外筒から抜けてそれらが完全に分離してしまうことを防止できる効果がある。   According to the bush of the third aspect, the bent portion is set such that the minimum value of the inner diameter is smaller than the maximum value of the outer diameter of the protruding portion. Thereby, the overlap margin of radial direction can be ensured between a projection part and a bending part. Due to the overlap margin, in addition to the effect of the first or second aspect, it is possible to improve the restriction effect of excessive displacement of the vibration-proof base when a large axial vibration is input. Furthermore, since there is an overlap margin, even if the vibration-proof substrate is peeled off or broken, there is an effect that the inner cylinder can be prevented from coming off from the outer cylinder and completely separating them.

請求項4記載のブッシュによれば、突起部は、ゴム状弾性体から構成される凸部が、軸方向の外側に位置する屈曲部へ向けて突出するので、軸方向の大きな振動が入力されたときに、突起部と屈曲部との間に凸部を介在させることができる。その結果、請求項1から3のいずれかの効果に加え、突起部と屈曲部とが干渉するときの衝撃を凸部により抑制できる効果がある。   According to the bush of the fourth aspect, since the protruding portion of the protruding portion made of the rubber-like elastic body protrudes toward the bent portion positioned outside in the axial direction, large vibration in the axial direction is input. A protrusion can be interposed between the protrusion and the bent portion. As a result, in addition to the effect of any one of claims 1 to 3, there is an effect that an impact when the protrusion and the bent part interfere can be suppressed by the convex part.

本発明の第1実施の形態におけるブッシュの軸方向断面図である。It is an axial sectional view of a bush in a 1st embodiment of the present invention. 図1のIIで示す部分を拡大して示すブッシュの拡大断面図である。It is an expanded sectional view of the bush which expands and shows the part shown by II of FIG. 外筒が縮径される前の成形体の軸方向断面図である。It is an axial sectional view of the molded product before the outer cylinder is reduced in diameter. 第2実施の形態におけるブッシュの軸方向断面図である。It is an axial sectional view of a bush in a 2nd embodiment. 図4のVで示す部分を拡大して示すブッシュの拡大断面図である。It is an expanded sectional view of the bush which expands and shows the part shown by V of FIG. 外筒が縮径される前の成形体の軸方向断面図である。It is an axial sectional view of the molded product before the outer cylinder is reduced in diameter. 第3実施の形態におけるブッシュの軸方向断面図である。It is an axial direction sectional view of a bush in a 3rd embodiment. 第4実施の形態におけるブッシュの軸方向断面図である。It is an axial direction sectional view of a bush in a 4th embodiment.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の第1実施の形態におけるブッシュ10の軸方向断面図であり、図2は図1のIIで示す部分を拡大して示すブッシュ10の拡大断面図である。図1に示すようにブッシュ10は、内筒20と、内筒20の外周21に距離を隔てて同軸状に配置される外筒30と、ゴム状弾性体から構成されると共に内筒20と外筒30との間に介設される防振基体40とを備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an axial cross-sectional view of the bush 10 in the first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of the bush 10 showing a portion indicated by II in FIG. As shown in FIG. 1, the bush 10 includes an inner cylinder 20, an outer cylinder 30 that is coaxially disposed at a distance from the outer periphery 21 of the inner cylinder 20, a rubber-like elastic body, and the inner cylinder 20. An anti-vibration base 40 interposed between the outer cylinder 30 and the outer cylinder 30 is provided.

内筒20は、鉄鋼材料やアルミニウム合金等の剛性材料によりパイプ状に形成される部材である。内筒20は、ボルト等の軸状部材(図示せず)が挿通され、軸状部材が相手部材(図示せず)に固定されることにより相手部材に取り付けられる。内筒20は、外周21の軸方向中央に突起部22が設けられている。突起部22は、内筒20と一体に形成されており、周方向に亘って径方向外方へ向かって膨出される。突起部22は、内筒20の軸心Oと平行となるように形成された円筒状の頂面23と、軸方向の外側へ向かうにつれて外径が次第に小さくなるように形成された傾斜面24とを備えている。傾斜面24は、軸方向の外側へ向かうにつれて約40°の勾配で頂面23に対して下降傾斜している。   The inner cylinder 20 is a member formed in a pipe shape from a rigid material such as a steel material or an aluminum alloy. The inner cylinder 20 is attached to a mating member by inserting a shaft-shaped member (not shown) such as a bolt and fixing the shaft-shaped member to the mating member (not shown). The inner cylinder 20 is provided with a protrusion 22 at the center in the axial direction of the outer periphery 21. The protrusion 22 is formed integrally with the inner cylinder 20 and bulges outward in the radial direction over the circumferential direction. The protrusion 22 has a cylindrical top surface 23 formed so as to be parallel to the axis O of the inner cylinder 20 and an inclined surface 24 formed so that the outer diameter gradually decreases toward the outer side in the axial direction. And. The inclined surface 24 is inclined downward with respect to the top surface 23 with a gradient of about 40 ° toward the outer side in the axial direction.

外筒30は、鉄鋼材料やアルミニウム合金等の塑性変形可能な剛性材料により厚さが略一定の円筒状に形成される部材である。外筒30は、相手部材(図示せず)に圧入されることにより相手部材に取り付けられる。外筒30は、内筒20よりも少し短い長さに形成され、突起部22(頂面23)の外径よりも所定寸法大きい内径をもち、内筒20の径方向外側に距離を隔てて同軸状に配置される。外筒30は、軸方向の両端をそれぞれ径方向内方へ約40°屈曲させることにより2つの屈曲部31が形成される。   The outer cylinder 30 is a member formed in a cylindrical shape having a substantially constant thickness by a plastically deformable rigid material such as a steel material or an aluminum alloy. The outer cylinder 30 is attached to a mating member by being press-fitted into the mating member (not shown). The outer cylinder 30 is formed to be slightly shorter than the inner cylinder 20, has an inner diameter that is larger by a predetermined dimension than the outer diameter of the protrusion 22 (top surface 23), and is spaced apart from the inner cylinder 20 in the radial direction. It is arranged coaxially. The outer cylinder 30 is formed with two bent portions 31 by bending both ends in the axial direction about 40 degrees radially inward.

2つの屈曲部31は、外筒30の軸方向の両端の所定箇所を起点32として塑性変形した部位であり、各起点32から軸方向の外側へ向かうにつれて内径が次第に小さくなるように縮径される。2つの屈曲部31は、軸心Oを含む断面(軸方向断面)において、2つの起点32が、突起部22の頂面23と傾斜面24との境界よりも軸方向の外側にそれぞれ位置する。これにより、屈曲部31を有する外筒30は、内筒20の外周21、突起部22の頂面23及び傾斜面24に内周面が沿う形状に形成される。   The two bent portions 31 are plastically deformed starting from predetermined locations at both axial ends of the outer cylinder 30 as starting points 32, and are reduced in diameter so that the inner diameter gradually decreases from the starting point 32 toward the outer side in the axial direction. The In the cross section including the axis O (the cross section in the axial direction), the two bent portions 31 have two starting points 32 positioned outside in the axial direction from the boundary between the top surface 23 and the inclined surface 24 of the protrusion 22. . As a result, the outer cylinder 30 having the bent portion 31 is formed in a shape in which the inner peripheral surface follows the outer periphery 21 of the inner cylinder 20, the top surface 23 of the protrusion 22, and the inclined surface 24.

防振基体40は、内筒20と外筒30との間に介設されると共にゴム状弾性体から構成される略円筒状の部材であり、本実施の形態ではゴム材料の加硫成形により形成される。防振基体40は、内筒20の外周21、突起部22の頂面23及び傾斜面24に内周面が加硫接着されると共に、外筒30の内周面に外周面が加硫接着される。これにより、防振基体40は内筒20及び外筒30を一体的に連結する。防振基体40は、周方向に1周する環状のすぐり41が、軸方向端面にそれぞれ形成される。   The anti-vibration base body 40 is a substantially cylindrical member that is interposed between the inner cylinder 20 and the outer cylinder 30 and is formed of a rubber-like elastic body. In this embodiment, the vibration-proof base body 40 is formed by vulcanization molding of a rubber material. It is formed. The anti-vibration base 40 has an inner peripheral surface vulcanized and bonded to the outer periphery 21 of the inner cylinder 20, the top surface 23 and the inclined surface 24 of the protrusion 22, and the outer peripheral surface is vulcanized and bonded to the inner peripheral surface of the outer cylinder 30. Is done. Thereby, the vibration isolating base 40 integrally connects the inner cylinder 20 and the outer cylinder 30. The antivibration base body 40 is formed with an annular curb 41 that makes one round in the circumferential direction on the end face in the axial direction.

図2に示すように2つのすぐり41は、軸心Oを含む断面において、外筒30の屈曲部31の起点32よりも軸方向の内側に底部44が到達する深さに形成される。その結果、すぐり41によって防振基体40の径方向および軸方向の軟らかいばね特性を確保できる。   As shown in FIG. 2, the two corners 41 are formed in such a depth that the bottom 44 reaches the inner side in the axial direction from the starting point 32 of the bent portion 31 of the outer cylinder 30 in the cross section including the axis O. As a result, the spring 41 can ensure the soft spring characteristics in the radial direction and the axial direction of the vibration-proof base 40.

図1に戻って説明する。防振基体40にすぐり41が設けられることによって、内筒20の外周21及び突起部22の傾斜面24に、防振基体40と一体成形された厚さの薄い円筒状の内筒膜部42が形成される。内筒膜部42は、軸方向の外側の端面が、軸心Oを含む断面において、外筒30に形成された屈曲部31の軸方向の端面よりも軸方向の外側に位置する。   Returning to FIG. By providing the anti-vibration base 40 with the curb 41, the thin cylindrical inner cylinder film part 42 integrally formed with the anti-vibration base 40 is formed on the outer periphery 21 of the inner cylinder 20 and the inclined surface 24 of the protrusion 22. Is formed. The inner cylindrical membrane portion 42 has an axially outer end surface located outside the axial end surface of the bent portion 31 formed in the outer tube 30 in the axial direction in a cross section including the axis O.

また、防振基体40にすぐり41が設けられることによって、外筒30(屈曲部31)の内周面に、防振基体40と一体成形された厚さの薄い円筒状の外筒膜部43が形成される。外筒膜部43は、軸方向の外側の端面が、外筒30の端面から所定距離だけ軸方向の内側にずれたところに位置する。具体的には、外筒膜部43の軸方向の外側の端面が、軸心Oを含む断面において、内筒20に設けられた突起部22の傾斜面24の軸方向の中間付近に位置する。   Further, by providing the anti-vibration base body 40 with the curb 41, the thin cylindrical outer cylinder film portion 43 integrally formed with the anti-vibration base body 40 is formed on the inner peripheral surface of the outer cylinder 30 (bent portion 31). Is formed. The outer cylinder film part 43 is located at a position where the outer end face in the axial direction is shifted inward in the axial direction by a predetermined distance from the end face of the outer cylinder 30. Specifically, the outer end surface in the axial direction of the outer cylindrical membrane portion 43 is located in the vicinity of the middle in the axial direction of the inclined surface 24 of the protrusion 22 provided on the inner cylinder 20 in the cross section including the axis O. .

次に図3を参照してブッシュ10の製造方法について説明する。図3は外筒30が縮径される前の成形体50の軸方向断面図である。ブッシュ10は、成形体50の外筒30の縮径加工により製造される。成形体50は、成形型(図示せず)に内筒20及び外筒30を配置して、ゴム材料を加硫成形することにより製造される。成形体50は、すぐり41が、開口部から軸方向の内側の底部44へ向かうにつれて径方向の幅(内筒膜部42と外筒膜部43との径方向の距離)が小さくなるように形成される。   Next, a method for manufacturing the bush 10 will be described with reference to FIG. FIG. 3 is an axial sectional view of the molded body 50 before the outer cylinder 30 is reduced in diameter. The bush 10 is manufactured by reducing the diameter of the outer cylinder 30 of the molded body 50. The molded body 50 is manufactured by placing the inner cylinder 20 and the outer cylinder 30 in a mold (not shown) and vulcanizing and molding a rubber material. In the molded body 50, the radial width (the radial distance between the inner cylindrical membrane portion 42 and the outer cylindrical membrane portion 43) decreases as the straight 41 moves from the opening toward the inner bottom 44 in the axial direction. It is formed.

成形型(図示せず)から成形体50を脱型した後、成形体50の外筒30の内径が小さくなるように、軸方向に亘って外筒30を縮径加工しつつ、軸方向の両端を径方向内方へ屈曲させて屈曲部31を形成する。屈曲部31は、内径の最小値D1(図2参照)が、突起部22の外径の最大値D2よりも小さくなるように形成される。これによりブッシュ10が製造される。外筒30が軸方向に亘って縮径加工されることにより、ブッシュ10は防振基体40に径方向の予圧縮が付与される。これにより、防振基体40の径方向のばね定数を適宜設定できる。   After removing the molded body 50 from the molding die (not shown), the outer cylinder 30 is reduced in diameter in the axial direction so that the inner diameter of the outer cylinder 30 of the molded body 50 is reduced. The bent portions 31 are formed by bending both ends radially inward. The bent portion 31 is formed such that the minimum value D1 of the inner diameter (see FIG. 2) is smaller than the maximum value D2 of the outer diameter of the protrusion 22. Thereby, the bush 10 is manufactured. When the outer cylinder 30 is reduced in diameter in the axial direction, the bush 10 is imparted with radial pre-compression to the vibration-proof base 40. Thereby, the spring constant in the radial direction of the vibration isolation base 40 can be set as appropriate.

ここで、すぐり41は、軸心Oを含む断面において、2つの屈曲部31の各起点32よりも軸方向の内側に底部44がそれぞれ位置するので、屈曲部31により防振基体40へ予圧縮が付与されないようにできる。その結果、屈曲部31が防振基体40の特性に影響を与えることを防ぎつつ、防振基体40の径方向のばね定数を適宜設定できる。   Here, in the cross section including the axial center O, the curb 41 is pre-compressed to the anti-vibration base body 40 by the bent portion 31 because the bottom portion 44 is positioned inward in the axial direction from the starting points 32 of the two bent portions 31. Can be prevented from being granted. As a result, it is possible to appropriately set the radial spring constant of the vibration isolating base 40 while preventing the bent portion 31 from affecting the characteristics of the vibration isolating base 40.

このブッシュ10は、振動側の部材(図示せず)に内筒20が取り付けられると共に、車体(図示せず)に外筒30が取り付けられる。その結果、車体と振動側の部材とがブッシュ10によって防振連結される。車両の走行時などにブッシュ10に振動が入力されると、防振基体40が弾性変形することにより振動が吸収され、振動伝達が防止される。ブッシュ10は、軸心Oを含む断面において、外筒30の屈曲部31の起点32よりも軸方向の内側に底部44が到達する深さに形成されているので、すぐり41によって防振基体40の径方向の軟らかいばね特性を確保できる。また、防振基体40の軸方向の変形はせん断変形が主となるので、軸方向の軟らかいばね特性を確保できる。   The bush 10 has an inner cylinder 20 attached to a vibration side member (not shown) and an outer cylinder 30 attached to a vehicle body (not shown). As a result, the vehicle body and the vibration-side member are vibration-proof connected by the bush 10. When vibration is input to the bush 10 when the vehicle is traveling, the vibration isolating base 40 is elastically deformed to absorb vibration and prevent vibration transmission. The bush 10 is formed in such a depth that the bottom 44 reaches the inner side in the axial direction from the starting point 32 of the bent portion 31 of the outer cylinder 30 in the cross section including the axial center O. The soft spring characteristics in the radial direction can be secured. Further, since the axial deformation of the vibration isolator base 40 is mainly shear deformation, a soft spring characteristic in the axial direction can be ensured.

また、内筒膜部42及び外筒膜部43は、いずれも厚さの薄い膜状に形成されているので、外筒膜部43と内筒膜部42との径方向の距離(すぐり41の大きさ)を確保できる。内筒20と外筒30とがこじり方向に相対変位するときに、内筒膜部42及び外筒膜部43が互いに干渉することを防止できるので、内筒20と外筒30とのこじり方向の相対変位量を確保できる。このとき、防振基体40の変形はせん断変形が主となるので、こじり方向の軟らかいばね特性を確保できる。   Further, since both the inner cylindrical membrane portion 42 and the outer cylindrical membrane portion 43 are formed in a thin film shape, the radial distance between the outer cylindrical membrane portion 43 and the inner cylindrical membrane portion 42 (the straight 41). Can be secured. Since the inner cylinder film part 42 and the outer cylinder film part 43 can be prevented from interfering with each other when the inner cylinder 20 and the outer cylinder 30 are relatively displaced in the twisting direction, the twisting direction of the inner cylinder 20 and the outer cylinder 30 can be prevented. The relative displacement amount can be secured. At this time, since the deformation of the anti-vibration base body 40 is mainly shear deformation, a soft spring characteristic in the twisting direction can be secured.

ここで、ブッシュ10に軸方向の大きな振動が入力されると、内筒20と外筒30とが軸方向に相対変位する。内筒20から外筒30へ向かって突き出た突起部22は剛性材料で形成されており、その表面(傾斜面24)に厚さの薄いゴム状弾性体製の内筒膜部42が形成されているので、内筒膜部42及び突起部22の軸方向のヤング率は、防振基体40の軸方向のヤング率より大きい値となる。突起部22は、軸心Oを含む断面において、2つの屈曲部31の軸方向の内側に設けられるので、ヤング率の大きい突起部22及び屈曲部31の干渉によって、ブッシュ10に軸方向の大きな振動が入力されたときの防振基体40の過大な変位を規制できる。その結果、防振基体40の特性を確保しつつ、過大な振動が入力されたときの防振基体40の軸方向の変位を規制して耐久性を向上できる。   Here, when a large axial vibration is input to the bush 10, the inner cylinder 20 and the outer cylinder 30 are relatively displaced in the axial direction. The protrusion 22 protruding from the inner cylinder 20 toward the outer cylinder 30 is formed of a rigid material, and an inner cylinder film portion 42 made of a thin rubber-like elastic body is formed on the surface (the inclined surface 24). Therefore, the Young's modulus in the axial direction of the inner cylindrical membrane portion 42 and the protrusion 22 is larger than the Young's modulus in the axial direction of the vibration-isolating base 40. Since the protrusion 22 is provided on the inner side in the axial direction of the two bent portions 31 in the cross section including the axis O, the bush 10 has a large axial direction due to the interference between the protrusion 22 and the bent portion 31 having a large Young's modulus. Excessive displacement of the anti-vibration base body 40 when vibration is input can be restricted. As a result, it is possible to improve the durability by restricting the axial displacement of the anti-vibration base 40 when excessive vibration is input while securing the characteristics of the anti-vibration base 40.

また、屈曲部31の内周面に形成された外筒膜部43の端面が、屈曲部31の軸方向の内側にずれているので、屈曲部31の軸方向の端部に外筒膜部43が省略されている分だけ、屈曲部31の軸方向の端部と内筒膜部42との軸方向の距離を大きくできる。そのため、屈曲部31と突起部22とが互いに干渉するまでの軸方向の相対変位量を大きくできる。その結果、屈曲部31と突起部22とが互いに干渉するまでは、防振基体40による軸方向の線形領域を広く確保できる。一方、屈曲部31と突起部22とが互いに干渉すると、ばねが急激に硬くなる非線形の特性が得られ、屈曲部31と突起部22との相対変位が規制される。なお、屈曲部31と突起部22とが互いに干渉するときに、屈曲部31と突起部22との間にゴム状弾性体製の内筒膜部42が介在するので、衝撃を緩衝することができ、異音の発生を抑制できる。   In addition, since the end surface of the outer cylindrical membrane portion 43 formed on the inner peripheral surface of the bent portion 31 is displaced inward in the axial direction of the bent portion 31, the outer cylindrical membrane portion is disposed at the axial end portion of the bent portion 31. The distance in the axial direction between the end portion in the axial direction of the bent portion 31 and the inner cylindrical membrane portion 42 can be increased by the amount that 43 is omitted. Therefore, the amount of relative displacement in the axial direction until the bent portion 31 and the protruding portion 22 interfere with each other can be increased. As a result, a wide linear region in the axial direction can be secured by the anti-vibration base body 40 until the bent portion 31 and the protruding portion 22 interfere with each other. On the other hand, when the bent portion 31 and the protruding portion 22 interfere with each other, a non-linear characteristic in which the spring stiffens rapidly is obtained, and the relative displacement between the bent portion 31 and the protruding portion 22 is restricted. When the bent portion 31 and the protruding portion 22 interfere with each other, the inner cylindrical membrane portion 42 made of a rubber-like elastic body is interposed between the bent portion 31 and the protruding portion 22, so that the shock can be buffered. And the generation of abnormal noise can be suppressed.

また、屈曲部31は、内径の最小値D1が、突起部22の外径の最大値D2よりも小さく設定されているので、突起部22と屈曲部31との間に径方向の重なり代(D2−D1)を確保できる。その重なり代によって、ブッシュ10に軸方向の大きな振動が入力されたときに突起部22と屈曲部31とを対面させることができるので、防振基体40の過大な変位の規制効果を向上できる。さらに、重なり代があるので、防振基体40に剥がれや破断が生じても、内筒20が外筒30から抜けてそれらが完全に分離してしまうことを防止できる。   Further, since the minimum value D1 of the inner diameter of the bent portion 31 is set to be smaller than the maximum value D2 of the outer diameter of the protruding portion 22, the radial overlap between the protruding portion 22 and the bent portion 31 ( D2-D1) can be secured. Due to the overlapping margin, the projection 22 and the bent portion 31 can face each other when a large axial vibration is input to the bush 10, so that the effect of restricting the excessive displacement of the vibration-isolating base 40 can be improved. Furthermore, since there is an overlap margin, even if the vibration isolation base 40 is peeled off or broken, it is possible to prevent the inner cylinder 20 from coming off from the outer cylinder 30 and completely separating them.

次に図4から図6を参照して第2実施の形態について説明する。第1実施の形態では、屈曲部31と突起部22とが干渉するときに、ばねが急激に硬くなる非線形の特性が得られる場合について説明した。これに対し第2実施の形態では、屈曲部31と突起部22とが干渉するときに、柔らかいばね特性が得られるブッシュ60について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図4は第2実施の形態におけるブッシュ60の軸方向断面図であり、図5は図4のVで示す部分を拡大して示すブッシュ60の拡大断面図であり、図6は外筒30が縮径される前の成形体70の軸方向断面図である。   Next, a second embodiment will be described with reference to FIGS. In 1st Embodiment, when the bending part 31 and the projection part 22 interfered, the case where the nonlinear characteristic which a spring stiffens rapidly was acquired was demonstrated. On the other hand, in 2nd Embodiment, when the bending part 31 and the projection part 22 interfere, the bush 60 from which a soft spring characteristic is acquired is demonstrated. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. 4 is an axial cross-sectional view of the bush 60 in the second embodiment, FIG. 5 is an enlarged cross-sectional view of the bush 60 showing a portion indicated by V in FIG. 4, and FIG. It is an axial sectional view of the molded body 70 before being reduced in diameter.

図4に示すようにブッシュ60は、内筒20と、内筒20の外周に距離を隔てて同軸状に配置される外筒30と、ゴム状弾性体から構成されると共に内筒20と外筒30との間に介設される防振基体40とを備えている。防振基体40は軸方向端面にすぐり41が形成される。すぐり41によって、内筒20の外周21及び突起部22の傾斜面24に内筒膜部42が形成され、外筒30の屈曲部31の内周面に外筒膜部61が形成されている。外筒膜部61は、防振基体40と一体成形された厚さの薄い円筒状の部位であり、軸方向の外側の端面が、外筒30の端面(面取りの境界部分)とほぼ同じ位置に形成されている。   As shown in FIG. 4, the bush 60 includes an inner cylinder 20, an outer cylinder 30 that is coaxially disposed on the outer periphery of the inner cylinder 20 at a distance, and a rubber-like elastic body. An anti-vibration base 40 interposed between the cylinder 30 and the cylinder 30 is provided. The anti-vibration base body 40 is formed with a curb 41 on the axial end face. By the curb 41, the inner cylinder film part 42 is formed on the outer periphery 21 of the inner cylinder 20 and the inclined surface 24 of the protrusion 22, and the outer cylinder film part 61 is formed on the inner peripheral surface of the bent part 31 of the outer cylinder 30. . The outer cylinder film part 61 is a thin cylindrical part integrally formed with the vibration isolating base 40, and the end face on the outer side in the axial direction is substantially the same position as the end face of the outer cylinder 30 (the chamfered boundary part). Is formed.

ここで、図6を参照してブッシュ60の製造方法について説明する。ブッシュ60は、成形体70の外筒30の縮径加工により製造される。成形体70は、内筒20及び外筒30を成形型(図示せず)に配置して、ゴム材料を加硫成形することにより製造される。外筒膜部61は、外筒30の軸方向の両端の内周面に防振基体40と一体に成形される。外筒膜部61は、外筒30の端面(面取りの境界部分)に成形型の一部を突き当て、外筒30の内周面にキャビティを形成し、このキャビティにゴム材料を注入することで成形される。外筒30の端面(面取りの境界部分)に成形型の一部を突き当ててキャビティを形成するので、外筒30に寸法ばらつきがあったとしても、外筒30の内周面と成形型(図示せず)との間に隙間を生じ難くできる。その結果、外筒30の寸法ばらつきによって生じる隙間からゴム材料が漏れて成形型に汚れが付着する不具合を生じ難くできる。   Here, the manufacturing method of the bush 60 is demonstrated with reference to FIG. The bush 60 is manufactured by reducing the diameter of the outer cylinder 30 of the molded body 70. The molded body 70 is manufactured by placing the inner cylinder 20 and the outer cylinder 30 in a mold (not shown) and vulcanizing and molding a rubber material. The outer cylinder film portion 61 is formed integrally with the vibration isolation base 40 on the inner peripheral surfaces of both ends of the outer cylinder 30 in the axial direction. The outer cylinder film portion 61 is formed by abutting a part of the molding die against the end surface (the chamfered boundary portion) of the outer cylinder 30, forming a cavity on the inner peripheral surface of the outer cylinder 30, and injecting a rubber material into the cavity. Molded with. Since the cavity is formed by abutting a part of the molding die against the end surface (the chamfered boundary portion) of the outer cylinder 30, even if there is a dimensional variation in the outer cylinder 30, the inner peripheral surface of the outer cylinder 30 and the molding die ( It is possible to make it difficult to create a gap with the not shown. As a result, it is difficult to cause a problem that the rubber material leaks from the gap caused by the dimensional variation of the outer cylinder 30 and the dirt adheres to the mold.

図4に戻って説明する。内筒膜部42は、突起部22の傾斜面24の軸方向および径方向の外側へ向かって突出する複数の凸部62が一体に成形されている。複数の凸部62は、軸心Oに対して放射状に突出し、凸部62の各々は軸心Oに沿って延びる突条状に形成されている。図5に示すように凸部62は、軸方向断面が、軸方向の外側へ向かって直線状に延びる外辺63と、外辺63の軸方向外側の端部に連成されると共に、軸方向の外側へ向かうにつれて径方向の内側へ向けて下降傾斜する斜辺64とを備える略三角形状に形成されている。凸部62の外辺63と斜辺64とが交わる部位は、屈曲部31の径方向内方かつ軸方向内方に位置する。軸心Oを含む断面において、凸部62は外辺63と斜辺64との交角が鈍角とされる。   Returning to FIG. The inner cylindrical membrane portion 42 is integrally formed with a plurality of convex portions 62 that protrude outward in the axial direction and the radial direction of the inclined surface 24 of the protruding portion 22. The plurality of convex portions 62 project radially with respect to the axis O, and each of the convex portions 62 is formed in a protruding shape extending along the axis O. As shown in FIG. 5, the convex portion 62 has an axial cross section that is coupled to an outer side 63 that extends linearly toward the outer side in the axial direction, and an end portion on the outer side in the axial direction of the outer side 63. It forms in the substantially triangular shape provided with the hypotenuse 64 which inclines downward toward the inner side of radial direction as it goes to the outer side of a direction. The part where the outer side 63 and the oblique side 64 of the convex part 62 intersect is located radially inward and axially inward of the bent part 31. In the cross section including the axis O, the convex portion 62 has an obtuse angle between the outer side 63 and the oblique side 64.

内筒膜部42は、凸部62を挟んで周方向に凹部65(図4参照)が複数設けられている。凹部65は、ゴム膜が省略されることで内筒20の外周21が露出する部位であり、斜辺64(図5参照)と内筒膜部42とが交わる部位と周方向に隣接する位置に設けられている。凹部65は、軸心Oに沿って筋状に延びるように形成されており、軸心Oを含む断面において、内筒膜部42は、軸方向外方へ向かって凹部65へ近づくにつれて膜厚が薄くなるように形成されている。   The inner cylindrical membrane portion 42 is provided with a plurality of concave portions 65 (see FIG. 4) in the circumferential direction with the convex portion 62 interposed therebetween. The recess 65 is a part where the outer periphery 21 of the inner cylinder 20 is exposed by omitting the rubber film, and is located at a position adjacent to the part where the hypotenuse 64 (see FIG. 5) and the inner cylinder film part 42 intersect in the circumferential direction. Is provided. The recess 65 is formed so as to extend in a streak pattern along the axis O, and in the cross section including the axis O, the inner cylindrical membrane portion 42 has a film thickness as it approaches the recess 65 outward in the axial direction. Is formed to be thin.

このブッシュ60に軸方向の大きな振動が入力されると、内筒20と外筒30とが軸方向に相対変位し、屈曲部31の内周面に形成された外筒膜部61と凸部62とが当接する。凸部62は周方向の厚さが薄く、変形し易いので、凸部62が変形することで静ばね特性を緩やかに上昇させることができる。内筒20と外筒30とが軸方向にさらに大きく相対変位すると、防振基体40よりもヤング率の大きい突起部22及び屈曲部31により、それ以上の内筒20と外筒30との変位が規制される。よって、ブッシュ60によれば、凸部62が荷重を受けて変形するときの柔らかいばね特性と、凸部62が変形した後の突起部22及び屈曲部31による変位規制とを両立できる。   When a large axial vibration is input to the bush 60, the inner cylinder 20 and the outer cylinder 30 are relatively displaced in the axial direction, and the outer cylinder film part 61 and the convex part formed on the inner peripheral surface of the bent part 31. 62 abuts. Since the convex portion 62 is thin in the circumferential direction and easily deformed, the static spring characteristics can be gradually increased by the deformation of the convex portion 62. When the inner cylinder 20 and the outer cylinder 30 are further relatively displaced in the axial direction, the further displacement between the inner cylinder 20 and the outer cylinder 30 is caused by the protruding portion 22 and the bent portion 31 having a Young's modulus larger than that of the vibration-proof base 40. Is regulated. Therefore, according to the bush 60, it is possible to achieve both a soft spring characteristic when the convex portion 62 is deformed by receiving a load and displacement control by the protruding portion 22 and the bent portion 31 after the convex portion 62 is deformed.

なお、凸部62は突起部22の傾斜面24を利用して形成されており、軸心Oを含む断面において、外辺63と斜辺64との交角が鈍角とされるので、外辺63と斜辺64との交角が鋭角に形成される場合と比較して、凸部62のゴムボリュームを大きくできる。その結果、凸部62の耐久性を確保できる。   In addition, the convex part 62 is formed using the inclined surface 24 of the projection part 22, and in the cross section including the axis O, the intersection angle of the outer side 63 and the oblique side 64 is an obtuse angle. Compared to the case where the intersection angle with the oblique side 64 is formed at an acute angle, the rubber volume of the convex portion 62 can be increased. As a result, the durability of the convex portion 62 can be ensured.

また、内筒膜部42は、軸心Oを含む断面において、軸方向外方へ向かい凹部65へ近づくにつれて膜厚が薄くなるように形成されているので、内筒膜部42を一定の膜厚にする場合と比較して、凸部62のゴムボリュームを大きくすることで、凸部62の軸方向および径方向のばね特性の高ばね化を抑制できる。さらに、周方向に並んで形成される複数の凹部65を挟んで凸部62が形成されるので、凹部65を有しない場合と比較して、凸部62のゴムボリュームを大きくすることで、凸部62の軸方向および径方向のばね特性の高ばね化を抑制できる。その結果、防振基体40のばね特性に凸部62が影響を与えることを抑制することができ、防振基体40の径方向および軸方向の軟らかいばね特性を確保できる。   In addition, since the inner cylindrical membrane portion 42 is formed so that the film thickness decreases in the cross section including the axis O toward the outer side in the axial direction and closer to the concave portion 65, the inner cylindrical membrane portion 42 is formed into a certain film. By increasing the rubber volume of the convex portion 62 as compared with the case where the thickness is increased, an increase in the spring characteristics of the convex portion 62 in the axial direction and the radial direction can be suppressed. Furthermore, since the convex portion 62 is formed across the plurality of concave portions 65 formed side by side in the circumferential direction, by increasing the rubber volume of the convex portion 62 as compared with the case where the concave portion 65 is not provided, the convex portion 62 is formed. Increase in the spring characteristics of the axial direction and the radial direction of the portion 62 can be suppressed. As a result, it can suppress that the convex part 62 influences the spring characteristic of the vibration isolator base 40, and can ensure the soft spring characteristic of the radial direction of the vibration isolator base 40, and an axial direction.

次に図7を参照して第3実施の形態について説明する。第1及び第2実施の形態では、突起部22が内筒20と一体成形される場合について説明した。これに対し第3実施の形態では、リング状の突起部92が内筒90に取り付けられる場合について説明する。図7は第3実施の形態におけるブッシュ80の軸方向断面図である。図7に示すようにブッシュ80は、内筒90と、内筒90の外周91に距離を隔てて同軸状に配置される外筒100と、ゴム状弾性体から構成されると共に内筒90と外筒100との間に介設される防振基体110とを備えている。   Next, a third embodiment will be described with reference to FIG. In 1st and 2nd embodiment, the case where the projection part 22 was integrally molded with the inner cylinder 20 was demonstrated. In contrast, in the third embodiment, a case where the ring-shaped protrusion 92 is attached to the inner cylinder 90 will be described. FIG. 7 is an axial sectional view of the bush 80 according to the third embodiment. As shown in FIG. 7, the bush 80 includes an inner cylinder 90, an outer cylinder 100 that is coaxially disposed at a distance from an outer periphery 91 of the inner cylinder 90, a rubber-like elastic body, and the inner cylinder 90. An anti-vibration base 110 is provided between the outer cylinder 100 and the outer cylinder 100.

内筒90は、鉄鋼材料やアルミニウム合金等の剛性材料によりパイプ状に形成される部材である。内筒90は、外周91の軸方向の両側の2箇所に2つの突起部92が設けられている。突起部92は、鉄鋼材料やアルミニウム合金等の剛性材料によりリング状に形成される部材であり、軸方向に互いに離間して内筒90の外周91の2箇所に嵌められている。   The inner cylinder 90 is a member formed in a pipe shape from a rigid material such as a steel material or an aluminum alloy. The inner cylinder 90 is provided with two protrusions 92 at two locations on both sides of the outer periphery 91 in the axial direction. The protrusions 92 are members formed in a ring shape from a rigid material such as a steel material or an aluminum alloy, and are spaced from each other in the axial direction and are fitted at two locations on the outer periphery 91 of the inner cylinder 90.

外筒100は、鉄鋼材料やアルミニウム合金等の塑性変形可能な剛性材料により厚さが略一定の円筒状に形成される部材である。外筒100は、内筒90よりも少し短い長さに形成され、突起部92の外径よりも所定寸法大きい内径をもち、内筒90の径方向外側に距離を隔てて同軸状に配置される。外筒100は、軸方向の両端をそれぞれ径方向内方へ屈曲させることにより2つの屈曲部101が形成される。   The outer cylinder 100 is a member formed in a cylindrical shape having a substantially constant thickness by a plastically deformable rigid material such as a steel material or an aluminum alloy. The outer cylinder 100 is formed to have a length slightly shorter than the inner cylinder 90, has an inner diameter larger than the outer diameter of the protrusion 92 by a predetermined dimension, and is arranged coaxially at a distance on the radially outer side of the inner cylinder 90. The The outer cylinder 100 is formed with two bent portions 101 by bending both axial ends inward in the radial direction.

2つの屈曲部101は、外筒100の軸方向の両端の所定箇所を起点102として塑性変形した部位であり、各起点102から軸方向の外側へ向かうにつれて内径が次第に小さくなる。2つの屈曲部101は、軸心Oを含む断面において、内径が最小となる部分(屈曲部101の軸方向端部)が、突起部92の外径が最大となる部分よりも軸方向の外側にそれぞれ位置する。なお、突起部92の外径の最大値は、屈曲部101の内径の最小値と同一に設定されている。   The two bent portions 101 are portions that are plastically deformed starting from predetermined locations on both ends of the outer cylinder 100 in the axial direction, and the inner diameter gradually decreases from each starting point 102 toward the outside in the axial direction. In the two bent portions 101, in the cross section including the axis O, the portion having the smallest inner diameter (the end portion in the axial direction of the bent portion 101) is outside in the axial direction than the portion having the largest outer diameter of the protruding portion 92. Located in each. Note that the maximum value of the outer diameter of the protrusion 92 is set to be the same as the minimum value of the inner diameter of the bent portion 101.

防振基体110は、内筒90と外筒100との間に介設されると共にゴム状弾性体から構成される略円筒状の部材であり、内筒90の外周91及び突起部92に内周面が加硫接着されると共に、外筒100の内周面に外周面が加硫接着される。これにより、防振基体110は内筒90及び外筒100を一体的に連結する。防振基体110は、周方向に1周する環状のすぐり111が、軸方向端面にそれぞれ形成される。2つのすぐり111は、軸心Oを含む断面において、外筒100の屈曲部101の起点102よりも軸方向の内側に底部144が到達する深さに形成されている。その結果、すぐり111によって防振基体110の径方向および軸方向の軟らかいばね特性を確保できる。   The anti-vibration base 110 is a substantially cylindrical member interposed between the inner cylinder 90 and the outer cylinder 100 and made of a rubber-like elastic body. The peripheral surface is vulcanized and bonded, and the outer peripheral surface is vulcanized and bonded to the inner peripheral surface of the outer cylinder 100. As a result, the vibration isolation base 110 integrally connects the inner cylinder 90 and the outer cylinder 100. The anti-vibration base 110 is formed with annular curls 111 that make one round in the circumferential direction on the end faces in the axial direction. In the cross section including the axis O, the two corners 111 are formed to a depth at which the bottom 144 reaches the inner side in the axial direction from the starting point 102 of the bent portion 101 of the outer cylinder 100. As a result, the spring 111 can secure the soft spring characteristics in the radial direction and the axial direction of the vibration-proof base 110.

防振基体110にすぐり111が設けられることによって、内筒90の外周91及び突起部92に、防振基体110と一体成形された厚さの薄い円筒状の内筒膜部112が形成される。外筒100(屈曲部101)は、内周面に、防振基体110と一体成形された厚さの薄い円筒状の外筒膜部113が形成される。   As the vibration isolator base 110 is provided with the straight 111, a thin cylindrical inner cylinder film portion 112 integrally formed with the vibration isolator base 110 is formed on the outer periphery 91 and the protrusion 92 of the inner cylinder 90. . The outer cylinder 100 (bent part 101) is formed with a thin cylindrical outer cylinder film part 113 integrally formed with the vibration isolation base 110 on the inner peripheral surface.

このブッシュ80を製造するには、まず、屈曲部101が形成されていない円筒状の外筒100に、防振基体110を介して内筒90を連結する。次に、外筒100の内径が小さくなるように軸方向に亘って外筒100を縮径加工しつつ、軸方向の両端を径方向内方へ屈曲させて屈曲部101を形成する。これによりブッシュ80が製造される。   In order to manufacture the bush 80, first, the inner cylinder 90 is connected to the cylindrical outer cylinder 100 in which the bent portion 101 is not formed via the vibration isolation base 110. Next, while bending the outer cylinder 100 in the axial direction so that the inner diameter of the outer cylinder 100 is reduced, both ends in the axial direction are bent radially inward to form the bent portion 101. Thereby, the bush 80 is manufactured.

このブッシュ80によれば、第1実施の形態におけるブッシュ10と同様の作用・効果を実現できる。また、突起部92は、軸方向に互いに離間して内筒90の外周91の2箇所に嵌められているので、第1実施の形態におけるブッシュ10の突起部22と比較して体積を小さくできる。突起部92間(2つの突起部92の軸方向内側)にはゴム状弾性体(防振基体110)が充填されるが、ゴム状弾性体の比重を突起部22の比重より小さく設定することにより、突起部92の体積を小さくできる分だけブッシュ80を軽量化できる。   According to this bush 80, the same operation and effect as the bush 10 in the first embodiment can be realized. Further, since the protrusions 92 are spaced apart from each other in the axial direction and are fitted at two locations on the outer periphery 91 of the inner cylinder 90, the volume can be reduced as compared with the protrusions 22 of the bush 10 in the first embodiment. . A rubber-like elastic body (anti-vibration base 110) is filled between the protrusions 92 (the inner side in the axial direction of the two protrusions 92), but the specific gravity of the rubber-like elastic body is set smaller than the specific gravity of the protrusions 22. Thus, the bush 80 can be reduced in weight by the amount that can reduce the volume of the protrusion 92.

次に図8を参照して第4実施の形態について説明する。第1実施の形態から第3実施の形態では、防振基体40,110や内筒膜部42,112(ゴム状弾性体)で突起部22,92が覆われる場合について説明した。即ち、第1実施の形態から第3実施の形態では、防振基体40が成形される前に、内筒20,90に突起部22,92が設けられる。これに対し第4実施の形態では、防振基体130が成形された後に内筒90に突起部140が設けられる場合について説明する。なお、第3実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図8は第4実施の形態におけるブッシュ120の軸方向断面図である。   Next, a fourth embodiment will be described with reference to FIG. In the first to third embodiments, the case where the protrusions 22 and 92 are covered with the vibration isolation bases 40 and 110 and the inner cylindrical film portions 42 and 112 (rubber-like elastic bodies) has been described. That is, in the first to third embodiments, the protrusions 22 and 92 are provided on the inner cylinders 20 and 90 before the vibration isolation base 40 is formed. In contrast, in the fourth embodiment, a case will be described in which the protrusion 140 is provided on the inner cylinder 90 after the vibration-proof base 130 is formed. In addition, about the part same as the part demonstrated in 3rd Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 8 is a sectional view in the axial direction of the bush 120 in the fourth embodiment.

図8に示すようにブッシュ120は、内筒90と、内筒90の径方向外側に距離を隔てて同軸状に配置される外筒100と、ゴム状弾性体から構成されると共に内筒90と外筒100との間に介設される防振基体130とを備えている。防振基体130は、内筒90と外筒100との間に介設されると共にゴム状弾性体から構成される略円筒状の部材であり、内筒90の外周91に内周面が加硫接着されると共に、外筒100の内周面に外周面が加硫接着される。防振基体130は、周方向に1周する環状のすぐり131が、軸方向端面にそれぞれ形成される。   As shown in FIG. 8, the bush 120 is composed of an inner cylinder 90, an outer cylinder 100 that is coaxially arranged at a distance on the outer side in the radial direction of the inner cylinder 90, and a rubber-like elastic body, and the inner cylinder 90. And an antivibration base 130 interposed between the outer cylinder 100 and the outer cylinder 100. The anti-vibration base 130 is a substantially cylindrical member that is interposed between the inner cylinder 90 and the outer cylinder 100 and made of a rubber-like elastic body, and an inner peripheral surface is added to the outer periphery 91 of the inner cylinder 90. At the same time, the outer peripheral surface is vulcanized and bonded to the inner peripheral surface of the outer cylinder 100. The anti-vibration base 130 is formed with an annular curb 131 that makes one round in the circumferential direction on the end face in the axial direction.

2つのすぐり131は、軸心Oを含む断面において、外筒100の屈曲部101の起点102よりも軸方向の内側に底部133が到達する深さに形成されている。その結果、すぐり111によって防振基体130の径方向および軸方向の軟らかいばね特性を確保できる。防振基体130にすぐり131が設けられることによって、外筒110(屈曲部101)の内周面に、防振基体130と一体成形された厚さの薄い円筒状の外筒膜部132が形成される。   In the cross section including the axis O, the two corners 131 are formed to a depth at which the bottom 133 reaches the inner side in the axial direction from the starting point 102 of the bent portion 101 of the outer cylinder 100. As a result, the spring 111 can secure the soft spring characteristics in the radial direction and the axial direction of the vibration-proof base 130. By providing the edge 131 on the vibration isolation base 130, a thin cylindrical outer cylinder film portion 132 formed integrally with the vibration isolation base 130 is formed on the inner peripheral surface of the outer cylinder 110 (bent portion 101). Is done.

内筒90は、外周91の軸方向の両側の2箇所に2つの突起部140が設けられている。突起部140は、ゴム状弾性体によりリング状に形成される部材であり、防振基体130の軸方向の両側の2箇所に配置されている。2つの突起部140は、内筒90の外周91の2箇所に嵌められており、内筒90の外周91に内周面が接着されている。突起部140は、軸方向のヤング率が、防振基体130の軸方向のヤング率よりも大きい値に設定されており、径方向のヤング率が、防振基体130の径方向のヤング率よりも大きい値に設定されている。   The inner cylinder 90 is provided with two protrusions 140 at two locations on both sides of the outer periphery 91 in the axial direction. The protrusions 140 are members formed in a ring shape by a rubber-like elastic body, and are disposed at two locations on both sides in the axial direction of the vibration isolation base 130. The two protrusions 140 are fitted at two locations on the outer periphery 91 of the inner cylinder 90, and the inner peripheral surface is bonded to the outer periphery 91 of the inner cylinder 90. The protrusion 140 is set such that the Young's modulus in the axial direction is larger than the Young's modulus in the axial direction of the vibration isolation base 130, and the Young's modulus in the radial direction is greater than the Young's modulus in the radial direction of the vibration isolation base 130. Is also set to a large value.

2つの屈曲部101は、軸心Oを含む断面において、内径が最小となる部分(屈曲部101の軸方向端部)が、突起部92の外径が最大となる部分よりも軸方向の外側にそれぞれ位置する。突起部140は、外径の最大値が、屈曲部101の内径の最小値より大きく設定されている。また、突起部140は、屈曲部101及び外筒膜部132の内周面と外周面が離隔されるように外形が設定されて、突起部140の径方向の内側に配置される。   In the two bent portions 101, in the cross section including the axis O, the portion having the smallest inner diameter (the end portion in the axial direction of the bent portion 101) is outside in the axial direction than the portion having the largest outer diameter of the protruding portion 92. Located in each. The protrusion 140 is set such that the maximum outer diameter is larger than the minimum inner diameter of the bent portion 101. In addition, the outer shape of the protruding portion 140 is set so that the inner peripheral surface and the outer peripheral surface of the bent portion 101 and the outer tubular membrane portion 132 are separated from each other, and the protruding portion 140 is disposed on the inner side in the radial direction of the protruding portion 140.

このブッシュ120を製造するには、まず、屈曲部101が形成されていない円筒状の外筒100に、防振基体130を介して内筒90を連結する。次に、内筒90の防振基体130の軸方向の両側の位置に突起部140を設け、次いで、外筒100の内径が小さくなるように軸方向に亘って外筒100を縮径加工しつつ、軸方向の両端を径方向内方へ屈曲させて屈曲部101を形成する。これによりブッシュ120が製造される。   In order to manufacture the bush 120, first, the inner cylinder 90 is connected to the cylindrical outer cylinder 100 in which the bent portion 101 is not formed via the vibration isolation base 130. Next, protrusions 140 are provided at positions on both sides in the axial direction of the vibration isolation base 130 of the inner cylinder 90, and then the outer cylinder 100 is reduced in diameter along the axial direction so that the inner diameter of the outer cylinder 100 is reduced. Meanwhile, the bent portion 101 is formed by bending both ends in the axial direction radially inward. Thereby, the bush 120 is manufactured.

このブッシュ120によれば、第1実施の形態におけるブッシュ10と同様の作用・効果を実現できる。また、突起部140は、2つの屈曲部101の軸方向の内側(すぐり131の内側)に配置されるので、ブッシュ120に軸方向の大きな振動が入力されると、内筒90と外筒100とが軸方向に相対変位し、屈曲部101の内周面に形成された外筒膜部132と突起部140とが当接する。突起部140は、軸方向のヤング率が、防振基体130の軸方向のヤング率よりも大きい値に設定されているので、内筒90と外筒100との軸方向の相対変位が規制される。その結果、防振基体130の特性を確保しつつ軸方向の変位を規制して耐久性を向上できる。   According to this bush 120, the same operation and effect as the bush 10 in the first embodiment can be realized. Further, since the protruding portion 140 is disposed inside the two bent portions 101 in the axial direction (inside the straight 131), when a large axial vibration is input to the bush 120, the inner cylinder 90 and the outer cylinder 100 are disposed. Are relatively displaced in the axial direction, and the outer tubular membrane portion 132 formed on the inner peripheral surface of the bent portion 101 and the protruding portion 140 come into contact with each other. Since the protrusion 140 is set such that the Young's modulus in the axial direction is larger than the Young's modulus in the axial direction of the vibration isolation base 130, the relative displacement in the axial direction between the inner cylinder 90 and the outer cylinder 100 is restricted. The As a result, it is possible to improve durability by restricting axial displacement while ensuring the characteristics of the vibration-proof base 130.

また、ブッシュ120に径方向の大きな振動が入力されると、内筒90と外筒100とが径方向に相対変位し、屈曲部101の内周面に形成された外筒膜部132と突起部140とが当接する。突起部140は、径方向のヤング率が、防振基体130の径方向のヤング率よりも大きい値に設定されているので、内筒90と外筒100との径方向の相対変位が規制される。その結果、防振基体130の特性を確保しつつ径方向の変位を規制して耐久性を向上できる。   Further, when a large radial vibration is input to the bush 120, the inner cylinder 90 and the outer cylinder 100 are relatively displaced in the radial direction, and the outer cylinder film portion 132 and the protrusion formed on the inner peripheral surface of the bent portion 101 are projected. The part 140 contacts. Since the protrusion 140 is set to have a radial Young's modulus larger than the radial Young's modulus of the vibration isolation base 130, the relative displacement in the radial direction between the inner cylinder 90 and the outer cylinder 100 is restricted. The As a result, it is possible to improve the durability by restricting the radial displacement while ensuring the characteristics of the anti-vibration base 130.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値や形状(例えば各構成の寸法、形状、屈曲部31,101の角度等)は一例であり、他の数値や形状を採用することは当然可能である。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the numerical values and shapes (for example, the dimensions and shapes of the components, the angles of the bent portions 31 and 101, etc.) given in the above embodiment are merely examples, and other numerical values and shapes can naturally be adopted.

また、上記の各実施形態は、それぞれ、他の実施形態が有する構成の一部または複数部分を、その実施形態に追加し或いはその実施形態の構成の一部または複数部分と交換等することにより、その実施形態を変形して構成するようにしても良い。   In addition, in each of the above embodiments, a part or a plurality of parts of the configuration of the other embodiments are added to the embodiment or replaced with a part or a plurality of parts of the configuration of the embodiment. The embodiment may be modified and configured.

例えば、第3実施の形態で説明した突起部92を、第1実施の形態や第2実施の形態におけるブッシュ10,60の突起部22に代えて、ブッシュ10,60に設けることは可能である。また、ブッシュ10,60の内筒20を膨出させて突起部22を形成するのに代えて、内筒20とは別部材の突起部22を準備し、この突起部22を内筒20に取り付けるようにすることは当然可能である。   For example, the protrusions 92 described in the third embodiment can be provided on the bushes 10 and 60 in place of the protrusions 22 of the bushes 10 and 60 in the first and second embodiments. . Further, instead of expanding the inner cylinder 20 of the bushes 10, 60 to form the projection 22, a projection 22, which is a member different from the inner cylinder 20, is prepared, and the projection 22 is connected to the inner cylinder 20. Of course, it is possible to attach it.

上記各実施の形態では、ブッシュ10,60,80,120を自動車のサスペンション装置に設ける場合について説明したが、必ずしもこれに限られるのではなく、振動伝達を抑えつつ軸方向の相対変位を規制することが要求される各種用途に適用することは当然可能である。また、自動車向けの用途だけでなく、各種産業機械等に適用することは当然可能である。   In each of the above-described embodiments, the case where the bushes 10, 60, 80, 120 are provided in the automobile suspension device has been described. However, the present invention is not necessarily limited to this, and the relative displacement in the axial direction is restricted while suppressing vibration transmission. Of course, it is possible to apply to various uses. Moreover, it is naturally possible to apply not only for automobiles but also to various industrial machines.

上記各実施の形態では、防振基体40,110,130に形成されたすぐり41,111,131の底部44,114,133が、軸心Oを含む断面において、2つの屈曲部31,101の起点32,102よりも軸方向の内側に位置する場合について説明したが、必ずしもこれに限られるものではない。すぐり41,111,131の底部44,114,133を、軸心Oを含む断面において、2つの屈曲部31,101の起点32,102の軸方向の位置に設けることは当然可能である。この場合も、屈曲部31,101を形成するときに防振基体40,110,130へ予圧縮が付与されないようにできるからである。その結果、屈曲部31,101が防振基体40,110,130の特性に影響を与えることを防止できる。   In each of the above embodiments, the bottom portions 44, 114, 133 of the straightenings 41, 111, 131 formed on the anti-vibration bases 40, 110, 130 are the two bent portions 31, 101 in the cross section including the axis O. Although the case where it located in the axial direction inner side rather than the starting points 32 and 102 was demonstrated, it does not necessarily restrict to this. Of course, it is possible to provide the bottom portions 44, 114, and 133 of the curls 41, 111, and 131 at the positions in the axial direction of the starting points 32 and 102 of the two bent portions 31 and 101 in the cross section including the axis O. Also in this case, it is possible to prevent pre-compression from being applied to the vibration isolation bases 40, 110, and 130 when the bent portions 31 and 101 are formed. As a result, it is possible to prevent the bent portions 31 and 101 from affecting the characteristics of the vibration isolation bases 40, 110 and 130.

上記第3実施の形態では、リング状に形成された突起部92を内筒90に取り付ける場合について説明したが、必ずしもこれに限られるものではなく、金属製や合成樹脂製の線材を内筒90に巻き付けて突起部92とすることは当然可能である。   In the third embodiment, the case where the ring-shaped protrusion 92 is attached to the inner cylinder 90 has been described. However, the present invention is not necessarily limited to this, and a metal or synthetic resin wire is used for the inner cylinder 90. Of course, it is possible to form the protrusion 92 by winding it around the wire.

上記第4実施の形態では、ゴム状弾性体製の突起部140を備えるブッシュ120について説明したが、突起部140の材質はこれに限られるものではなく、他の材質の突起部を選択することは当然可能である。他の材質の突起部としては、防振基体130の軸方向のヤング率よりも軸方向のヤング率が大きい合成樹脂製や金属製の突起部が挙げられる。   In the fourth embodiment, the bush 120 including the rubber-like elastic protrusion 140 is described. However, the material of the protrusion 140 is not limited to this, and a protrusion of another material is selected. Is of course possible. Examples of the protrusions of other materials include synthetic resin or metal protrusions having a higher Young's modulus in the axial direction than the Young's modulus in the axial direction of the vibration-proof base 130.

上記第4実施の形態では、内筒90の外周91に突起部140が接着される場合について説明したが、必ずしもこれに限られるものではなく、他の手段を用いて突起部140を内筒90に固定することは当然可能である。他の手段としては、ボルト等の軸状部材(図示せず)を用いて内筒90を相手部材(図示せず)に固定する場合に、相手部材と突起部140との間に介設される円筒状の筒状部材が挙げられる。筒状部材の内径を、内筒90の外径より少し大きめに設定し、筒状部材の外径を、屈曲部101の内径の最小値より小さく設定する。筒状部材の長さは、突起部140の軸方向外側の端面と内筒90の端面との距離に設定する。これにより、内筒90を相手部材(図示せず)に固定する場合に、筒状部材に内筒90を挿入して、相手部材と突起部140との間に筒状部材を介設することができる。軸方向の外側へ向かって突起部140が移動することを筒状部材によって阻止できるので、接着しなくても突起部140を内筒90に固定できる。   In the fourth embodiment, the case where the protrusion 140 is bonded to the outer periphery 91 of the inner cylinder 90 has been described. However, the present invention is not necessarily limited thereto, and the protrusion 140 is attached to the inner cylinder 90 using other means. Of course, it is possible to fix to. As other means, when the inner cylinder 90 is fixed to a mating member (not shown) using a shaft-like member (not shown) such as a bolt, it is interposed between the mating member and the protrusion 140. A cylindrical member having a cylindrical shape. The inner diameter of the cylindrical member is set slightly larger than the outer diameter of the inner cylinder 90, and the outer diameter of the cylindrical member is set smaller than the minimum value of the inner diameter of the bent portion 101. The length of the cylindrical member is set to the distance between the axially outer end surface of the protrusion 140 and the end surface of the inner cylinder 90. Accordingly, when the inner cylinder 90 is fixed to a counterpart member (not shown), the inner cylinder 90 is inserted into the cylindrical member, and the cylindrical member is interposed between the counterpart member and the protruding portion 140. Can do. Since the cylindrical member can prevent the protrusion 140 from moving outward in the axial direction, the protrusion 140 can be fixed to the inner cylinder 90 without bonding.

また、内筒90の軸方向外方へ向けて突起部140を長く延ばし、その突起部140の軸方向の外側端面を相手部材(図示せず)で押さえることも可能である。この場合も、軸方向の外側へ向かって突起部140が移動することを阻止できるので、接着しなくても突起部140を内筒90に固定できる。   It is also possible to extend the protrusion 140 long toward the axially outward direction of the inner cylinder 90 and hold the outer end surface of the protrusion 140 in the axial direction with a mating member (not shown). Also in this case, since the protrusion 140 can be prevented from moving outward in the axial direction, the protrusion 140 can be fixed to the inner cylinder 90 without bonding.

10,60,80,120 ブッシュ
20,90 内筒
21,91 外周
22,92,140 突起部
30,100 外筒
31,101 屈曲部
32,102 起点
40,110,130 防振基体
41,111,131 すぐり
44,114,133 底部
62 凸部
D1 内径の最小値
D2 外径の最大値
O 軸心
10, 60, 80, 120 Bush 20, 90 Inner cylinder 21, 91 Outer periphery 22, 92, 140 Protruding part 30, 100 Outer cylinder 31, 101 Bent part 32, 102 Starting point 40, 110, 130 Anti-vibration base 41, 111, 131 Straight 44, 114, 133 Bottom 62 Convex D1 Minimum inner diameter D2 Maximum outer diameter O Axis

Claims (4)

内筒と、
前記内筒の径方向外側に距離を隔てて同軸状に配置される外筒と、
ゴム状弾性体から構成されると共に前記外筒と前記内筒との間に介設されてそれらを一体的に連結する防振基体とを備え、
前記外筒は、軸方向両端が径方向内方へ屈曲する2つの屈曲部を備え、
前記防振基体は、軸方向端面にそれぞれ形成されると共に周方向に1周する環状のすぐりを備え、
前記すぐりは、軸心を含む断面において、前記2つの屈曲部の各起点よりも軸方向の内側または前記各起点の軸方向の位置に底部がそれぞれ位置し、
前記内筒は、外周に設けられると共に前記外筒へ向かって突き出す突起部を備え、
前記突起部は、軸方向のヤング率が、前記防振基体の軸方向のヤング率よりも大きい値に設定されると共に、前記軸心を含む断面において、前記2つの屈曲部の軸方向の内側に設けられることを特徴とするブッシュ。
An inner cylinder,
An outer cylinder disposed coaxially with a distance to the outside in the radial direction of the inner cylinder;
Comprising a rubber-like elastic body and an antivibration base that is interposed between the outer cylinder and the inner cylinder and integrally connects them;
The outer cylinder includes two bent portions whose axial ends are bent radially inward,
The anti-vibration base is provided with an annular curl that is formed on the end face in the axial direction and makes one round in the circumferential direction,
In the cross section including the axial center, the curb has a bottom portion located at an inner side in the axial direction from the starting points of the two bent portions or at an axial position of the starting points, respectively.
The inner cylinder includes a protrusion provided on the outer periphery and protruding toward the outer cylinder,
The protrusion has an axial Young's modulus set to a value larger than an axial Young's modulus of the vibration-proof base, and an axially inner side of the two bent portions in a cross section including the axial center. Bush characterized by being provided in.
前記防振基体は、前記外筒の縮径により前記外筒と前記内筒との間で径方向の予圧縮が付与されていることを特徴とする請求項1記載のブッシュ。   2. The bush according to claim 1, wherein the anti-vibration base is provided with a radial pre-compression between the outer cylinder and the inner cylinder by a diameter reduction of the outer cylinder. 前記屈曲部は、内径の最小値が、前記突起部の外径の最大値よりも小さく設定されていることを特徴とする請求項1又は2に記載のブッシュ。   The bush according to claim 1, wherein the bent portion has a minimum inner diameter set smaller than a maximum outer diameter of the protrusion. 前記突起部は、ゴム状弾性体から構成されると共に、軸方向の外側に位置する前記屈曲部へ向けて突出する凸部を備えていることを特徴とする請求項1から3のいずれかに記載のブッシュ。   The said protrusion part is provided with the convex part which protrudes toward the said bending part located in the outer side of an axial direction while being comprised from a rubber-like elastic body. The bush described.
JP2014138270A 2014-07-04 2014-07-04 bush Active JP6359361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014138270A JP6359361B2 (en) 2014-07-04 2014-07-04 bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014138270A JP6359361B2 (en) 2014-07-04 2014-07-04 bush

Publications (2)

Publication Number Publication Date
JP2016017523A true JP2016017523A (en) 2016-02-01
JP6359361B2 JP6359361B2 (en) 2018-07-18

Family

ID=55232909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138270A Active JP6359361B2 (en) 2014-07-04 2014-07-04 bush

Country Status (1)

Country Link
JP (1) JP6359361B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180068066A (en) * 2016-12-13 2018-06-21 현대자동차주식회사 Suspension bush
JP2019190572A (en) * 2018-04-25 2019-10-31 倉敷化工株式会社 Anti-vibration device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312029U (en) * 1989-06-14 1991-02-07
JPH0571480U (en) * 1992-03-02 1993-09-28 東海ゴム工業株式会社 Sliding bush
JPH09203428A (en) * 1996-01-25 1997-08-05 Toyoda Gosei Co Ltd Manufacture of suspension bushing
JP2002161943A (en) * 2000-11-27 2002-06-07 Tokai Rubber Ind Ltd Bushing
JP2003226126A (en) * 2002-02-06 2003-08-12 Tokai Rubber Ind Ltd Suspension mechanism for automobile
JP2005016696A (en) * 2003-06-30 2005-01-20 Hokushin Ind Inc Bush
US20060290040A1 (en) * 2005-06-23 2006-12-28 Zf Friedrichshafen Ag Bush bearing with a radial and/or an axial limit stop and method for producing an axial limit stop in a bush bearing
JP2009168244A (en) * 2008-01-15 2009-07-30 Nok Corp Bush

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312029U (en) * 1989-06-14 1991-02-07
JPH0571480U (en) * 1992-03-02 1993-09-28 東海ゴム工業株式会社 Sliding bush
JPH09203428A (en) * 1996-01-25 1997-08-05 Toyoda Gosei Co Ltd Manufacture of suspension bushing
JP2002161943A (en) * 2000-11-27 2002-06-07 Tokai Rubber Ind Ltd Bushing
JP2003226126A (en) * 2002-02-06 2003-08-12 Tokai Rubber Ind Ltd Suspension mechanism for automobile
JP2005016696A (en) * 2003-06-30 2005-01-20 Hokushin Ind Inc Bush
US20060290040A1 (en) * 2005-06-23 2006-12-28 Zf Friedrichshafen Ag Bush bearing with a radial and/or an axial limit stop and method for producing an axial limit stop in a bush bearing
JP2009168244A (en) * 2008-01-15 2009-07-30 Nok Corp Bush

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180068066A (en) * 2016-12-13 2018-06-21 현대자동차주식회사 Suspension bush
KR102417408B1 (en) * 2016-12-13 2022-07-06 현대자동차주식회사 Suspension bush
JP2019190572A (en) * 2018-04-25 2019-10-31 倉敷化工株式会社 Anti-vibration device
JP7009300B2 (en) 2018-04-25 2022-01-25 倉敷化工株式会社 Anti-vibration device

Also Published As

Publication number Publication date
JP6359361B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6343535B2 (en) Cylindrical vibration isolator
JP6532367B2 (en) Tubular vibration control with bracket
JP2008223920A (en) Vibration control bush and vibration control bush assembly
JP6740087B2 (en) Anti-vibration device
JP2012211604A (en) Vibration-isolating device
JP6359361B2 (en) bush
JP2010060022A (en) Vibration damping bushing
JP5137751B2 (en) Vibration isolator
JP6257389B2 (en) Cylindrical vibration isolator and manufacturing method thereof
JP6872316B2 (en) Dynamic damper for propeller shaft
US10760642B2 (en) Liquid-filled vibration isolator
JP3932025B2 (en) Anti-vibration bush
JP6811597B2 (en) Anti-vibration bush
JP6009845B2 (en) Anti-vibration bushing manufacturing method
JP5951468B2 (en) Anti-vibration bush
JP2017219055A (en) Gear Damper
JP6297389B2 (en) Vibration isolator
JP6974989B2 (en) Manufacturing method of anti-vibration device
JP7009300B2 (en) Anti-vibration device
JP6502177B2 (en) Vibration control device
CN111356859A (en) Buffer brake
JP7165091B2 (en) anti-vibration bush
JP5925649B2 (en) Anti-vibration bush and manufacturing method thereof
JP7329372B2 (en) dynamic damper
JP6534608B2 (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180620

R150 Certificate of patent or registration of utility model

Ref document number: 6359361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250