JP2016017014A - Powder having high thermal conductivity, high electrical insulation and low thermal expansion, heat radiation structure manufactured from the same, and method of manufacturing the powder - Google Patents

Powder having high thermal conductivity, high electrical insulation and low thermal expansion, heat radiation structure manufactured from the same, and method of manufacturing the powder Download PDF

Info

Publication number
JP2016017014A
JP2016017014A JP2014141070A JP2014141070A JP2016017014A JP 2016017014 A JP2016017014 A JP 2016017014A JP 2014141070 A JP2014141070 A JP 2014141070A JP 2014141070 A JP2014141070 A JP 2014141070A JP 2016017014 A JP2016017014 A JP 2016017014A
Authority
JP
Japan
Prior art keywords
powder
heat
aln
inorganic particles
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014141070A
Other languages
Japanese (ja)
Other versions
JP5695780B1 (en
Inventor
錫勤 高
Shakukin Ko
錫勤 高
元日古 林
Motohiko Hayashi
元日古 林
浩之 梶
Hiroyuki Kaji
浩之 梶
中原 真
Makoto Nakahara
真 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL MATERIALS Inc
Original Assignee
GL MATERIALS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL MATERIALS Inc filed Critical GL MATERIALS Inc
Priority to JP2014141070A priority Critical patent/JP5695780B1/en
Application granted granted Critical
Publication of JP5695780B1 publication Critical patent/JP5695780B1/en
Publication of JP2016017014A publication Critical patent/JP2016017014A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder from which a heat radiation structure of a semiconductor device can be manufactured at low cost, the powder having high thermal conductivity, high electrical insulation and low thermal expansion; a method of manufacturing the powder; and a heat radiation structure manufactured from the powder, such as a heat sink, a heat spreader a print circuit board, a heat radiation sheet, an encapsulation material or the like.SOLUTION: There is provided a method for manufacturing a powder coated with AlN or SiN11, which is generated by depositing nanoparticles of Al or Si on inorganic particles 12, while stirring them, by a physical vapor deposition method, and heat-treating them under nitrogen atmosphere, and manufacturing various heat radiation structures using the powder. In the powder coated with AlN or SiN11, the inorganic particles 12 are AlO, Mg(OH), MgO, MgCO, CaCOand SiOhaving an average particle diameter of 0.1 to 100 μm, and the nanoparticles 11 having an average particle diameter of 0.1 to 100 nm are deposited with a thickness of 0.1 to 100 μm on the inorganic particles 12 and then heat-treated for 3 to 6 hours at 400 to 600°C under nitrogen atmosphere.SELECTED DRAWING: Figure 2

Description

本発明は、放熱構造体に適した高熱伝導性・電気絶縁性・低熱膨張性放熱材料に関する。更に、詳しくは、半導体デバイスを構成する、ヒートシンク、ヒートスプレッダー、プリント回路基板、放熱シート、及び、封止材等の放熱構造体に利用することができる、高熱伝導性・電気絶縁性・低熱膨張性の粉末、及び、それを用いた放熱構造体、並びに、その粉末の製造方法に関する。   The present invention relates to a heat dissipation material with high thermal conductivity, electrical insulation, and low thermal expansion suitable for a heat dissipation structure. More specifically, it can be used for heat dissipation structures such as heat sinks, heat spreaders, printed circuit boards, heat dissipation sheets, and sealing materials that constitute semiconductor devices, and has high thermal conductivity, electrical insulation, and low thermal expansion. The present invention relates to a conductive powder, a heat dissipation structure using the same, and a method for producing the powder.

トランジスタ、集積回路、抵抗、コンデンサ等の半導体素子は、現在も、更なる高機能化・高集積化が求められており、半導体素子の発熱量が、膨大の一途を辿っている。この熱は、半導体素子が組み込まれた半導体デバイスの誤動作や寿命低下、応力の発生による破壊等に繋がる。そのため、例えば、各種電力制御に使用されるインバータのパワーモジュールでは、制御電力の増大及び高集積化により発熱量が急増しており、優れた放熱性及びSiチップとの熱膨張係数のマッチングが求められている。また、各種表示・照明機器に使用されているLEDでも、その発熱密度が高く、半導体レーザー自体が熱に弱いため、パワーモジュール同様、優れた放熱性及びGaAsやGaN等の化合物半導体との熱膨張係数のマッチングが求められている。更に、このような熱は、半導体素子を組み込んだ半導体デバイスそのものの特性劣化の要因となるばかりか、それを組み込んだ電子機器全体の動作不良、発火、破壊等様々な悪影響を及ぼすこともある。従って、性能、安全性、信頼性を確保するため、従来にも増して放熱対策が不可欠となっており、現在の電子機器設計における熱設計は、電気設計に匹敵する程重要な役割を担っている。   Semiconductor elements such as transistors, integrated circuits, resistors, and capacitors are still required to have higher functions and higher integration, and the amount of heat generated by the semiconductor elements is enormous. This heat leads to a malfunction or a decrease in life of a semiconductor device in which a semiconductor element is incorporated, destruction due to generation of stress, and the like. For this reason, for example, in inverter power modules used for various power control, the amount of heat generated has increased rapidly due to increased control power and higher integration, and excellent heat dissipation and matching of the thermal expansion coefficient with the Si chip are required. It has been. Also, LEDs used in various display / lighting devices have high heat generation density, and the semiconductor laser itself is vulnerable to heat. Therefore, as with power modules, it has excellent heat dissipation and thermal expansion with compound semiconductors such as GaAs and GaN. Coefficient matching is required. Furthermore, such heat not only causes deterioration of the characteristics of the semiconductor device itself incorporating the semiconductor element, but may also have various adverse effects such as malfunction, ignition, and destruction of the entire electronic device incorporating it. Therefore, in order to ensure performance, safety, and reliability, heat dissipation measures are indispensable than ever, and thermal design in current electronic equipment design plays an important role that is comparable to electrical design. Yes.

一般に、熱は、伝導、対流、輻射の3つの方法で伝わるが、例えば、図1に示した典型的な半導体デバイスにおいては、主として、(1)半導体6の外部端子から半田ボール8を介してビルドアップ基板9に、パッケージ外部端子から半田ボール8を介してマザーボードに、そして、半導体6から封止材7に伝導する経路1、(2)ビルドアップ基板9側面、マザーボード10側面、及び、封止材7から空気に伝導され、対流によって放熱する経路2、(3)パッケージ表面の上部から空気に輻射する経路3、がある。一般に、パッケージの表面積よりも圧倒的に大きな表面積を持つプリント回路基板(ビルドアップ基板9、マザーボード10)からの放熱が、半導体デバイスから発生する熱の放熱に大きく寄与している。一方、パッケージ表面からの放熱は、全体の1割程度にしか満たない。更に、輻射による放熱はほとんど無視できる程度である。もちろん、鏡面のアルミニウムの場合にはほとんどない熱輻射が、黒色アルマイト処理すると大きく向上するように、熱輻射率を高める塗料や絶縁材料等の開発も進められているが、実用化レベルの放熱効果が得られていない。図1では、パッケージ表面からの放熱を促進する、熱伝導性に優れたヒートスプレッダー4が接着剤5を介して設けられた例を示してある。   In general, heat is transferred in three ways: conduction, convection, and radiation. For example, in the typical semiconductor device shown in FIG. 1, mainly (1) from the external terminal of the semiconductor 6 via the solder ball 8 A path 1 that conducts from the package external terminal to the motherboard via the solder balls 8 to the build-up board 9, and from the semiconductor 6 to the sealing material 7, (2) side face of the build-up board 9, side face of the mother board 10, and sealing There are a path 2 that is conducted from the stopper 7 to the air and dissipates heat by convection, and (3) a path 3 that radiates air from the top of the package surface. In general, heat radiation from a printed circuit board (build-up board 9, motherboard 10) having a surface area that is much larger than the surface area of the package greatly contributes to heat radiation generated from the semiconductor device. On the other hand, heat dissipation from the package surface is less than about 10% of the total. Furthermore, heat dissipation due to radiation is almost negligible. Of course, the development of paints and insulating materials that increase the heat radiation rate is also progressing so that the heat radiation that is almost impossible in the case of mirror-finished aluminum is greatly improved by the black alumite treatment. Is not obtained. FIG. 1 shows an example in which a heat spreader 4 that promotes heat radiation from the package surface and has excellent thermal conductivity is provided via an adhesive 5.

このような3つの放熱経路は、いずれにしても、最終的には空気への対流熱伝達によるため、ファン等の強制冷却装置を設けたり、空気との接触表面積を増加させる放熱フィンを有するヒートシンクを設けることが有効であるが、電子機器の大型化、コストアップ等の要因となり、あらゆる電子デバイスに適用することができる訳ではない。また、半導体チップの設計、半導体パッケージの構造や寸法、半導体実装回路基板の構造や密度等、半導体デバイスの設計も重要であるが、放熱効果が十分とは言えない。従って、現在も、空気に熱を放出するまでに至る経路の熱伝導を高める工夫が、放熱に最も効果的で、放熱対策の主流となっており、熱伝導性に優れ、熱膨張性の低い素材自体の開発を中心に進められている。これは、半導体デバイスを構成する素材自体の熱伝導性を向上させ、熱膨張性を抑制しなければ、本質的に、熱応力等の機械的影響を解消し、効果的に熱が空気中に放熱されることはないためである。(非特許文献1)   In any case, these three heat dissipation paths are ultimately due to convective heat transfer to the air, so that a forced cooling device such as a fan is provided, or a heat sink having heat dissipation fins that increase the contact surface area with the air. However, it is not a factor that can be applied to all electronic devices because of the increase in size and cost of electronic equipment. In addition, the design of the semiconductor device such as the design of the semiconductor chip, the structure and dimensions of the semiconductor package, and the structure and density of the semiconductor mounting circuit board is also important, but the heat dissipation effect is not sufficient. Therefore, even now, the idea to increase the heat conduction in the path leading to the release of heat into the air is the most effective for heat dissipation, has become the mainstream of heat dissipation measures, has excellent thermal conductivity and low thermal expansion The development is centered on the material itself. This improves the thermal conductivity of the material itself that constitutes the semiconductor device and essentially eliminates mechanical effects such as thermal stress unless the thermal expansibility is suppressed. This is because no heat is dissipated. (Non-Patent Document 1)

熱伝導を高める部品であるヒートシンクやヒートスプレッダー等の放熱板は、熱膨張係数が高い、従来の銅(Cu)やアルミニウム(Al)では対応できなくなってきている。熱伝導率だけではなく、半導体に合わせた熱膨張係数、或いは、車載用途に代表される使用環境に応じた機械強度等の観点から、タングステン(W)やモリブデン(Mo)等の金属、Cu−WやCu−Mo等の合金、窒化アルミニウム(AlN)等のセラミックス、Al−炭化ケイ素(SiC)やSi−SiC等のセラミックス/金属複合系、及び、ダイヤモンド等から選択され実用化されている。しかし、いずれも高価であり、金属系では電気絶縁性に乏しいという問題がある。(非特許文献2)   Heat sinks such as heat sinks and heat spreaders, which are components that enhance heat conduction, have become incompatible with conventional copper (Cu) and aluminum (Al), which have a high coefficient of thermal expansion. From the viewpoint of not only the thermal conductivity but also the thermal expansion coefficient tailored to the semiconductor or the mechanical strength according to the use environment typified by in-vehicle applications, metals such as tungsten (W) and molybdenum (Mo), Cu- Alloys such as W and Cu—Mo, ceramics such as aluminum nitride (AlN), ceramics / metal composite systems such as Al—silicon carbide (SiC) and Si—SiC, diamond, and the like have been put into practical use. However, both are expensive, and there is a problem that metal insulation is poor in electrical insulation. (Non-Patent Document 2)

放熱に対する寄与度が高いプリント回路基板は、金属基板、セラミック基板、及び、有機基板があるが、特性、加工性、コスト等全てを満足するものはない。(非特許文献3)   Printed circuit boards having a high contribution to heat dissipation include metal substrates, ceramic substrates, and organic substrates, but none of them satisfy all of the characteristics, workability, cost, and the like. (Non Patent Literature 3)

金属基板は、回路形成する銅箔等と銅板やアルミニウム板とを絶縁層を介して張り合わせたものであるが、その絶縁層が、高分子化合物が主成分であるため、熱伝導性が悪く、熱膨張係数が大きいという問題点がある。この問題は、液晶性を有する骨格構造を高分子化合物に導入し、それを配向させて熱伝導性を高める方法や、従来の酸化アルミニウム(Al)、窒化ホウ素(BN)、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、シリカ(SiO)等の低熱伝導性フィラーを、AlN粒子等の高熱伝導性フィラーに置き換えることによって解決する方法が検討されており、この両者を併用することによって、上記課題を解決し得る可能性がある。しかし、液晶高分子を配向させる生産設備や生産プロセスが複雑であり、AlN粒子を用いるため、非常に高価になるという問題がある。 The metal substrate is formed by bonding a copper foil or the like to form a circuit with a copper plate or an aluminum plate via an insulating layer, but since the insulating layer is mainly composed of a polymer compound, the thermal conductivity is poor, There is a problem that the thermal expansion coefficient is large. This problem is caused by introducing a skeleton structure having liquid crystal properties into a polymer compound and orienting it to enhance the thermal conductivity, or by conventional aluminum oxide (Al 2 O 3 ), boron nitride (BN), magnesium oxide. (MgO), magnesium hydroxide (Mg (OH) 2 ), low thermal conductive fillers such as silica (SiO 2 ) are replaced with high thermal conductive fillers such as AlN particles, and a method for solving this has been studied. There is a possibility that the above problem can be solved by using both. However, the production equipment and production process for aligning the liquid crystal polymer are complicated, and since AlN particles are used, there is a problem that it is very expensive.

セラミック基板については、銅と同程度の熱伝導率を有し、銅等の金属より半導体に近い熱膨張係数であるAlNを銅板やアルミニウム板に直接或いは活性金属層を介して積層した銅張りセラミック基板やアルミニウム張りセラミック基板が、特性上の課題を解決しており、半導体デバイスの性能向上に貢献している(非特許文献4及び5)。更に、焼結法の改良により、熱伝導性の弊害となっていた不純物酸素及び粒界相が少ない窒化ケイ素(Si)が得られ、AlNよりも熱伝導率及び機械的強度に優れたSiを用いた銅張り基板も開発された(非特許文献6)。しかし、AlN粒子やSi粒子という高価な材料を用いる上、セラミックスの加工性が悪く、材料費及び加工費が極めて高くなるという問題がある。 For ceramic substrates, copper-clad ceramics with AlN, which has a thermal conductivity similar to that of copper and has a thermal expansion coefficient closer to that of semiconductors than metals such as copper, are laminated directly or via an active metal layer on a copper plate or aluminum plate. A substrate or an aluminum-clad ceramic substrate solves the problem in characteristics and contributes to the improvement of the performance of the semiconductor device (Non-patent Documents 4 and 5). Furthermore, by improving the sintering method, it is possible to obtain silicon nitride (Si 3 N 4 ) having less impurity oxygen and grain boundary phase, which has been an adverse effect on thermal conductivity, and has better thermal conductivity and mechanical strength than AlN. A copper-clad substrate using Si 3 N 4 has also been developed (Non-patent Document 6). However, in addition to using expensive materials such as AlN particles and Si 3 N 4 particles, there is a problem that the workability of ceramics is poor and the material cost and processing cost are extremely high.

有機基板は、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂等をガラスクロス等の補強材に含浸した複合材料を、或いは、そのままフィルムを、回路を形成する銅箔等に、直接或いは接着剤層を介して張り合わせたものであり、加工性に優れ、安価である。しかし、上記金属基板の絶縁層と同様に、熱伝導性が悪く、熱膨張係数が大きいという問題があり、基本的には、上記金属基板の絶縁層と同様の対策が考えられている。従って、上記金属基板同様、プロセスや価格の問題が発生する。   The organic substrate is a composite material obtained by impregnating a reinforcing material such as a glass cloth with a phenol resin, a polyester resin, an epoxy resin, a polyimide resin, a fluororesin, or a film as it is, directly on a copper foil or the like forming a circuit, or It is bonded together via an adhesive layer, has excellent processability and is inexpensive. However, like the insulating layer of the metal substrate, there is a problem that the thermal conductivity is poor and the coefficient of thermal expansion is large, and basically the same measures as the insulating layer of the metal substrate are considered. Therefore, like the metal substrate, there are problems in process and price.

その他、半導体素子で発生した熱を、ヒートシンクやヒートスプレッダーに効率的に伝導する放熱シートや封止材も、基本的には、上記金属基板や有機基板の絶縁層と同様、高分子化合物とフィラーからなり、全く同様の課題に対する解決策がとられ、同様の問題が生じる。   In addition, heat dissipation sheets and encapsulants that efficiently conduct heat generated in semiconductor elements to heat sinks and heat spreaders are basically similar to the insulating layers of metal substrates and organic substrates as described above. A solution to the exact same problem is taken and a similar problem arises.

以上、半導体デバイスの発熱の問題を全て解決する素材は、見出されていない。しかし、AlN粒子やSi粒子は、焼結体として、ヒートシンク、ヒートスプレッダー、プリント回路基板に活用することができる。また、フィラーとしても、プリント回路基板、放熱シート、封止材に活用できるため、従来は、熱伝導性フィラーとして用いられていた酸化アルミニウム(Al)、窒化ホウ素(BN)、水酸化マグネシウム(Mg(OH))、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、炭酸カルシウム(CaCO)、シリカ(SiO)等では実現できない熱伝導性を実現することができる素材として注目を浴びている(特許文献1)。そのため、1,500℃以上の高温下で長時間処理が必要なAl還元窒化法にしても、還元窒化法より少ないエネルギー消費であるが、強制粉砕工程が必要な直接窒化法にしても、様々な改良が行われている(特許文献2、3、4、及び、5)。また、従来は、2,000℃近い温度で数十〜数百時間焼結して成型されていたが、ミリ波を使用した温和な条件の焼結方法も提案されている(特許文献6)。しかし、上記粒子の製造の場合、1,000±400℃程度の高温が必要とされ、上記焼結体の製造の場合、1,500℃以上の温度が数時間必要とされ、過酷な製造条件に変わりなく、製造価格の問題をとても改善できるものではない。 As described above, no material that solves all the problems of heat generation of semiconductor devices has been found. However, AlN particles and Si 3 N 4 particles can be used as a sintered body in heat sinks, heat spreaders, and printed circuit boards. Moreover, since it can utilize also as a filler for a printed circuit board, a heat dissipation sheet, and a sealing material, conventionally, aluminum oxide (Al 2 O 3 ), boron nitride (BN), and hydroxide used as heat conductive fillers are used. As a material that can realize thermal conductivity that cannot be achieved with magnesium (Mg (OH) 2 ), magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ), silica (SiO 2 ), etc. (Patent Document 1). Therefore, even if the Al 2 O 3 reduction nitriding method requires a long time treatment at a high temperature of 1,500 ° C. or higher, it consumes less energy than the reduction nitriding method, but the direct nitriding method requires a forced pulverization step. Various improvements have also been made (Patent Documents 2, 3, 4, and 5). Conventionally, it was molded by sintering at a temperature close to 2,000 ° C. for several tens to several hundred hours, but a mild sintering method using millimeter waves has also been proposed (Patent Document 6). . However, in the case of the production of the particles, a high temperature of about 1,000 ± 400 ° C. is required, and in the case of the production of the sintered body, a temperature of 1,500 ° C. or more is required for several hours, However, the problem of manufacturing price cannot be improved very much.

一方、電気絶縁性に優れたAlN膜を、化学気相蒸着(CVD)法により、熱膨張係数は低いが電気絶縁性に乏しいタングステンやモリブデン等に被覆する方法も提案されている(特許文献7)。しかし、1,000℃近い成膜条件に加え、1,000℃を超える熱処理条件が必要であり、上記粒子同様、製造価格を克服することは困難な状況にある。   On the other hand, a method has also been proposed in which an AlN film excellent in electrical insulation is coated with tungsten or molybdenum having a low thermal expansion coefficient but poor electrical insulation by chemical vapor deposition (CVD) (Patent Document 7). ). However, in addition to film forming conditions close to 1,000 ° C., heat treatment conditions exceeding 1,000 ° C. are necessary, and it is difficult to overcome the manufacturing price as in the case of the above particles.

特開2009−286668号公報JP 2009-286668 A 国際公開2012/077551号公報International Publication No. 2012/077551 国際公開2013/146894号公報International Publication No. 2013/146894 特開2008−007357号公報JP 2008-007357 A 国際公開2013/146713号公報International Publication No. 2013/146713 特開2003−321275号公報JP 2003-321275 A 特開2011−225909号公報JP 2011-225909 A 特開2012−057198号公報JP2012-057198A 国際公開第2012/150804号公報International Publication No. 2012/150804

(社)ハイブリッドマイクロエレクトロニクス協会編,「エレクトロニクス実装技術基礎講座,第6巻,設計・信頼性評価技術」,1995年1月.(Company) Hybrid Microelectronics Association, "Electronics Packaging Technology Basic Course, Volume 6, Design / Reliability Evaluation Technology", January 1995. (社)ハイブリッドマイクロエレクトロニクス協会編,「エレクトロニクス実装技術基礎講座,第2巻,実装基板」,1995年1月.(Company) Hybrid Microelectronics Association, "Electronic Packaging Technology Basic Course, Volume 2, Mounting Board", January 1995. 馬場大三他,パナソニック電工技報,「高放熱性基板材料の技術動向」,Vol.59,No.1,p.17.Daizo Baba et al., Panasonic Electric Works Technical Report, “Technological Trends of High Heat Dissipation Substrate Materials”, Vol. 59, no. 1, p. 17. セラミックスアーカイブズ,「半導体デバイス用窒化アルミニウム基板」,セラミックス41(2006)No.12,p.1044.Ceramics Archives, “Aluminum Nitride Substrate for Semiconductor Devices”, Ceramics 41 (2006) No. 12, p. 1044. 後藤育壮他,「パワーモジュール用AlN基板一体型純Alベースの接合鋳造における指向性凝固制御」,溶接学会論文集,第30巻,第4号,p.345(2012).Goto Ikuo et al., "Directional solidification control in AlN substrate-integrated pure Al base joint casting for power modules", Journal of the Japan Welding Society, Vol. 30, No. 4, p. 345 (2012). 平尾喜代司他,「高い熱伝導率をもつ窒化ケイ素セラミックス」,産総研TODAY,2012−02,p.16.Hirao Kiyoji et al., “Silicon nitride ceramics with high thermal conductivity”, AIST TODAY, 2012-02, p. 16. W.Ensinger et al.,「Surface treatment of aluminum oxide and tungusten carbide powders by ion beam sputter deposition」,Surface and Coatings Technology,163−164(2003)p.281−285.W. Ensinger et al. , "Surface treatment of aluminum oxide and tungusten carbide powders by ion beam sputter deposition", Surface and Coatings Technology, 163-164. 281-285. 多賀康訓,「薄膜プロセス技術の研究」,総合工学,第22巻(2010)53−64.Yasunori Taga, “Research on Thin Film Process Technology”, Integrated Engineering, Vol. 22 (2010) 53-64. 豊田信行他,「ナノテクノロジーの動向と展望」,東芝レビュー,vol.57,No.1(2002)p.2−8.Nobuyuki Toyoda et al., “Trends and Prospects of Nanotechnology”, Toshiba Review, vol. 57, no. 1 (2002) p. 2-8.

上記課題を鑑み、本発明は、半導体デバイスの放熱構造体を安価に製造することが可能な、高熱伝導性、高電気絶縁性、及び、低熱膨張性を兼ね備えたAlNやSiで被覆された粉末を提供すると共に、上記粉末を用いたヒートシンク、ヒートスプレッダー、プリント回路基板、放熱シート、及び、封止材等の放熱構造体を提供することを目的とする。並びに、本発明は、放熱構造体に適した上記粉末の製造方法を提供することを目的としている。 In view of the above problems, the present invention is capable of manufacturing a heat dissipation structure for a semiconductor device at a low cost, and is coated with AlN or Si 3 N 4 having high thermal conductivity, high electrical insulation, and low thermal expansion. An object of the present invention is to provide a heat dissipation structure such as a heat sink, a heat spreader, a printed circuit board, a heat dissipation sheet, and a sealing material using the powder. In addition, an object of the present invention is to provide a method for producing the above powder suitable for a heat dissipation structure.

本発明は、Al又はSiのナノ粒子を無機粒子表面上に堆積した後、窒素(N)雰囲気下で熱処理することによって生成する、AlN又はSiで被覆された粉末を、半導体デバイスを構成する放熱構造体、例えば、ヒートシンク、ヒートスプレッダー、プリント回路基板、放熱シート、及び、封止材等に適用した結果、優れた熱伝導性と高い電気絶縁性に加え、熱膨張性の低い放熱構造体になることを見出すと共に、特に、撹拌されている無機粒子上に、物理蒸着(PVD)法によってAl又はSiのナノ粒子を堆積した後、N雰囲気下で熱処理することによって生成するAlN又はSiで被覆された粉末が、上記半導体デバイスを構成する放熱構造体の素材として優れていることを見出し、本発明の完成に至った。すなわち、本発明は、高熱伝導性、高電気絶縁性、及び、低熱膨張性を兼ね備えたAlN又はSiで被覆された粉末、及び、それを用いた半導体デバイスに適した放熱構造体を提供するものである。並びに、本発明は、その粉末の製造方法を提供するものである。 The present invention relates to an AlN or Si 3 N 4 coated powder produced by depositing Al or Si nanoparticles on the surface of an inorganic particle and then heat-treating in a nitrogen (N 2 ) atmosphere. As a result of being applied to heat dissipation structures, such as heat sinks, heat spreaders, printed circuit boards, heat dissipation sheets, and sealing materials, it has low thermal expansion in addition to excellent thermal conductivity and high electrical insulation It is found that it becomes a heat dissipation structure, and in particular, it is produced by depositing Al or Si nanoparticles on agitated inorganic particles by physical vapor deposition (PVD) method and then heat-treating them under N 2 atmosphere. It has been found that powder coated with AlN or Si 3 N 4 is excellent as a material for a heat dissipation structure constituting the semiconductor device, and the present invention has been completed. That is, the present invention provides a powder coated with AlN or Si 3 N 4 having high thermal conductivity, high electrical insulation, and low thermal expansion, and a heat dissipation structure suitable for a semiconductor device using the same. It is to provide. The present invention also provides a method for producing the powder.

更に、具体的には、本発明は、PVD槽に、その上部に設けられた蒸発源、その蒸発源下部に設けられた蒸発物質が堆積する母材を投入する撹拌槽、その攪拌槽内に設けられた蒸発物質が母材に均一に堆積するための攪拌機、を少なくとも設置し、母材として、無機粒子を攪拌層に投入し、AlやSiを蒸発源として、その無機粒子を撹拌しながら、その表面に粒子径1〜50nmのAlナノ粒子又はSiナノ粒子を所定の厚さとなるように堆積した後、N雰囲気下、400〜600℃、3〜6時間、熱処理することによって製造されることを特徴とする、高熱伝導性、高電気絶縁性、及び、低熱膨張性を兼ね備えたAlN又はSiで被覆された粉末、及び、その粉末を用いた半導体デバイスに適した放熱構造体を提供するものである。並びに、本発明は、AlN又はSiで被覆された粉末の上記製造方法を提供するものである。 More specifically, the present invention provides a PVD tank with an evaporation source provided in the upper part thereof, an agitation tank in which a base material on which an evaporated substance is provided provided in the lower part of the evaporation source is charged, and the stirring tank. At least a stirrer for uniformly depositing the provided evaporation substance on the base material is installed, and as the base material, inorganic particles are introduced into the stirring layer, while the inorganic particles are stirred using Al or Si as an evaporation source In addition, Al nanoparticles or Si nanoparticles having a particle diameter of 1 to 50 nm are deposited on the surface so as to have a predetermined thickness, and then heat-treated at 400 to 600 ° C. for 3 to 6 hours in an N 2 atmosphere. A powder coated with AlN or Si 3 N 4 having both high thermal conductivity, high electrical insulation, and low thermal expansion, and a heat dissipation structure suitable for a semiconductor device using the powder That provides the body is there. And, the present invention is to provide the method of producing a powder coated with AlN or Si 3 N 4.

上記無機粒子は、Alナノ粒子又はSiナノ粒子が堆積された後の熱処理に耐える材質であれば、特に限定されるものではないが、安価な、Al、Mg(OH)、MgO、MgCO、CaCO、SiO等を用いることが好ましい。 The inorganic particle is not particularly limited as long as it is a material that can withstand heat treatment after Al nanoparticles or Si nanoparticles are deposited, but is inexpensive, Al 2 O 3 , Mg (OH) 2 , MgO MgCO 3 , CaCO 3 , SiO 2 or the like is preferably used.

本発明は、粒子径1〜50nmのAlナノ粒子又はSiナノ粒子を用いるため、そのサイズの効果により、従来の処理条件よりも温和な条件で窒化することができる。しかも、安価な上記無機粒子に被覆されているため、従来の高価なAlN、SiN、炭化珪素(SiC)、BN等の粉末を用いるよりもはるかに安価となる。   Since the present invention uses Al nanoparticles or Si nanoparticles having a particle diameter of 1 to 50 nm, the size effect allows nitriding under milder conditions than conventional processing conditions. In addition, since the inorganic particles are covered with inexpensive inorganic particles, the cost is much lower than when using conventional powders such as AlN, SiN, silicon carbide (SiC), and BN.

そして、本発明の粉末は、従来の焼結条件よりもはるかに温和な条件で焼結できる上、その焼結体は、優れた熱伝導性と高い電気絶縁性に加え、熱膨張性の低いヒートシンク、ヒートスプレッダー、セラミックプリント回路基板等の成型体を安価に提供することができる。また、有機プリント回路基板、放熱シート、封止材、各種絶縁材・接着剤等のフィラーとして用いれば、熱伝導性に優れた有機放熱構造体を安価に提供することができる。   The powder of the present invention can be sintered under conditions that are much milder than conventional sintering conditions, and the sintered body has low thermal expansion in addition to excellent thermal conductivity and high electrical insulation. Molded bodies such as heat sinks, heat spreaders, and ceramic printed circuit boards can be provided at low cost. Moreover, if it uses as fillers, such as an organic printed circuit board, a thermal radiation sheet, a sealing material, various insulating materials, and an adhesive agent, the organic thermal radiation structure excellent in thermal conductivity can be provided at low cost.

このように、本発明の粉末が、安価な上、上記焼結体及び有機放熱構造体として優れた効果を発現するのは、図2(a)に示したように、安価な無機粒子のコア12が、AlNナノ粒子又はSiナノ粒子のシェル11で被覆されているコアーシェル構造を形成していることに起因しているものと推測される。まず、この構造に基づき、焼結体を成型する条件は、ナノ粒子効果により温和となる。更に、製造された焼結体は、図2(b)に示したように、熱伝導性、電気絶縁性、及び、熱膨張性に優れたAlN又はSiNからなる海11に、無機粒子が島12として存在する海−島構造を形成し、上記海の特性を強く発現する焼結体となる。また、本発明の紛末をフィラーとして使用した場合、図2(c)に示したように、シェル層11だけが接触すれば、AlN又はSiNの熱伝導性、電気絶縁性、及び、熱膨張性を発現するため、添加量が少なく、樹脂14の特徴を損なうことのない安価な有機放熱構造体が得られる。 As described above, the powder of the present invention is inexpensive and exhibits excellent effects as the sintered body and the organic heat dissipation structure, as shown in FIG. 12 is presumed to be due to the formation of a core-shell structure covered with the shell 11 of AlN nanoparticles or Si 3 N 4 nanoparticles. First, based on this structure, the conditions for molding the sintered body are mild due to the nanoparticle effect. Furthermore, as shown in FIG. 2 (b), the manufactured sintered body has inorganic particles in the sea 11 made of AlN or SiN having excellent thermal conductivity, electrical insulation, and thermal expansion. The sea-island structure existing as No. 12 is formed, and the sintered body exhibits the characteristics of the sea strongly. When the powder of the present invention is used as a filler, as shown in FIG. 2 (c), if only the shell layer 11 is in contact, the thermal conductivity, electrical insulation, and thermal expansion of AlN or SiN. Therefore, an inexpensive organic heat dissipation structure that does not impair the characteristics of the resin 14 can be obtained.

更に、本発明のPVD法を用いたナノ粒子の製造方法によれば、酸素をはじめとする不純物が極めて少なく、純度の高いAlN又はSiが生成され、熱伝導性の高いAlN又はSiで被覆された粉末が製造できるため、半導体デバイスに適した放熱構造体の製造に適した、高熱伝導性、高電気絶縁性、及び、低熱膨張性を兼ね備えたAlN又はSiで被覆された粉末を提供することができる。 Furthermore, according to the method for producing nanoparticles using the PVD method of the present invention, highly pure AlN or Si 3 N 4 is produced with very little impurities such as oxygen, and AlN or Si having high thermal conductivity. Since powder coated with 3 N 4 can be manufactured, AlN or Si 3 N 4 having high thermal conductivity, high electrical insulation, and low thermal expansion suitable for manufacturing a heat dissipation structure suitable for a semiconductor device A powder coated with can be provided.

FBGA(Fine Pitch Ball Grid Array)半導体パッケージ基板の放熱経路を示している断面図である。It is sectional drawing which shows the heat dissipation path | route of FBGA (Fine Pitch Ball Grid Array) semiconductor package board | substrates. (a)セラミックプリント回路基板に焼結体として用いた場合の、海−島構造と熱伝導経路の概念図である。(b)有機プリント回路基板の絶縁材料のフィラーとして用いた場合の、海−島構造と伝導経路の概念図である。(A) It is a conceptual diagram of a sea-island structure and a heat conduction path when used as a sintered body for a ceramic printed circuit board. (B) It is a conceptual diagram of a sea-island structure and a conduction path when used as a filler of an insulating material of an organic printed circuit board. Al又はSiナノ粒子を堆積した無機粒子を製造するPVD装置の概要図である。It is a schematic diagram of the PVD apparatus which manufactures the inorganic particle which deposited Al or Si nanoparticle.

本発明のAlN又はSiで被覆された粉末は、無機粒子に堆積された、粒子径1〜50nmのAlナノ粒子又はSiナノ粒子を、N雰囲気下、400〜600℃、3〜6時間、熱処理したものである。 The powder coated with AlN or Si 3 N 4 of the present invention is obtained by depositing Al nanoparticles or Si nanoparticles having a particle diameter of 1 to 50 nm deposited on inorganic particles at 400 to 600 ° C., 3 to 3 in an N 2 atmosphere. Heat-treated for 6 hours.

本発明において、上記無機粒子の平均粒子径は、0.05〜100μmであることが好ましいが、0.1〜50μmであることがより好ましく、1〜25μmであることがより更に好ましい。上記熱処理条件で分解や変質しないものであれば特に限定されるものではないが、これまでもプリント回路基板等各種複合材料のフィラーとして使用されてきた、Al、Mg(OH)、MgO、MgCO、CaCO、SiOが、安定した物性で、安価であるため好ましい。特に、Alが好ましく用いられる。形状は、丸みを帯びたものが好ましく、球状のものがより更に好ましい。また、平均粒子径は、1〜75μmであることが好ましく、1〜25μmであることがより好ましい。このような球状のAlとしては、昭和電工社製アルナビーズ(登録商標)や電気化学工業社製デンカ球状アルミナ等がある。 In the present invention, the average particle diameter of the inorganic particles is preferably 0.05 to 100 μm, more preferably 0.1 to 50 μm, and still more preferably 1 to 25 μm. It is not particularly limited as long as it does not decompose or change under the heat treatment conditions, but Al 2 O 3 , Mg (OH) 2 , which has been used as a filler for various composite materials such as printed circuit boards, MgO, MgCO 3 , CaCO 3 , and SiO 2 are preferable because they have stable physical properties and are inexpensive. In particular, Al 2 O 3 is preferably used. The shape is preferably rounded, and more preferably spherical. The average particle diameter is preferably 1 to 75 μm, and more preferably 1 to 25 μm. Examples of such spherical Al 2 O 3 include Aruna beads (registered trademark) manufactured by Showa Denko KK and Denka spherical alumina manufactured by Denki Kagaku Kogyo.

上記無機粒子に堆積させるAlナノ粒子又はSiナノ粒子は、気相法、液相法、その他、どのような方法で作製したものも用いることができる。しかし、無機粒子に対し、所定量のナノ粒子を、無機粒子表面に固着させ、不純物を少なくするためには、一般的なPVD装置において、AlやSiを蒸発源として、その無機粒子を撹拌しながら、PVD法により無機粒子表面にAl粒子又はSi粒子を堆積させることが好ましい。上記ナノ粒子の粒子径は、1〜50nmであることが好ましいが、1〜25nmであることがより好ましく、1〜10nmであることがより更に好ましい。また、上記ナノ粒子の堆積量は、上記無機粒子の粒子径に対応し、それぞれ、0.05〜100μm、0.1〜50μm、1〜25μmであることが好ましい。   As Al nanoparticles or Si nanoparticles to be deposited on the inorganic particles, a vapor phase method, a liquid phase method, or any other method can be used. However, in order to fix a predetermined amount of nanoparticles to the inorganic particle surface and reduce impurities with respect to the inorganic particle, the inorganic particle is agitated using Al or Si as an evaporation source in a general PVD apparatus. However, it is preferable to deposit Al particles or Si particles on the surface of the inorganic particles by the PVD method. The particle diameter of the nanoparticles is preferably 1 to 50 nm, more preferably 1 to 25 nm, and still more preferably 1 to 10 nm. The amount of the nanoparticles deposited corresponds to the particle diameter of the inorganic particles, and is preferably 0.05 to 100 μm, 0.1 to 50 μm, and 1 to 25 μm, respectively.

本発明の具体的な製造方法は、図3に示したように、PVD槽15内の上部に設けられた蒸発源16、蒸発源下部に設けられた蒸発物質が堆積する母材を投入する撹拌槽17、攪拌槽内に設けられた蒸発物質が母材に均一に堆積するための攪拌機18を少なくとも設置し、母材を撹拌しながら、蒸発源16の金属を蒸発させることによって、金属ナノ粒子が母材表面上に堆積される。PVD法としては、真空蒸着法、イオンビーム蒸着法、イオンプレーティング法、及び、各種スパッタリング法を用いることができ、例えば、非特許文献7、特許文献8及び9等の方法が開示されている。このようにして作製された金属ナノ粒子が担持された粒子は、金属ナノ粒子の表面酸化により、引き続き行う窒化が妨げられるため、不活性ガスで置換された容器に保存されることが好ましい。   As shown in FIG. 3, the specific manufacturing method of the present invention is an agitation in which an evaporation source 16 provided in the upper part of the PVD tank 15 and a base material on which the evaporated substance provided in the lower part of the evaporation source is deposited. By installing at least a stirrer 18 for uniformly depositing the evaporation substance provided in the tank 17 and the stirring tank on the base material, and evaporating the metal of the evaporation source 16 while stirring the base material, metal nanoparticles are obtained. Is deposited on the surface of the base material. As the PVD method, a vacuum deposition method, an ion beam deposition method, an ion plating method, and various sputtering methods can be used. For example, methods such as Non-Patent Document 7, Patent Documents 8 and 9 are disclosed. . The particles carrying the metal nanoparticles thus produced are preferably stored in a container substituted with an inert gas because the subsequent nitridation is hindered by the surface oxidation of the metal nanoparticles.

上記製造方法において、ナノ粒子が母材上に生成する機構は定かではないが、次のように推測している。一般的な蒸着やスパッタリング等の成膜機構は、Volmer−Weber(VW)成長、Frank−van der Merwe(FM)成長、Stranski−Krastanov(SK)成長の3様式があると言われている(非特許文献8)。中でも、VW成長様式、つまり、成長の初期段階から三次元的な島状の核が形成され,それらが蒸着量の増加とともに成長して合体しやがて連続的な膜となる「島状成長(Island Growth)様式」に着目すると、物理蒸着物質と基板に関する表面エネルギー、温度等様々なパラメーターによって成膜機構に差が生じるが、成膜初期において、VW成長となる条件を見出し、上記母材を撹拌しながら物理蒸着を行えば、常に新しい堆積面が蒸着物質に対して向けられるため、3次元の海−島構造、すなわち、ナノ粒子が次々に生成していくものと考えられる。   In the above manufacturing method, the mechanism by which the nanoparticles are generated on the base material is not clear, but is estimated as follows. It is said that there are three types of film deposition mechanisms such as general vapor deposition and sputtering, Volmer-Weber (VW) growth, Frank-van der Merwe (FM) growth, and Stranski-Krastanov (SK) growth (non-). Patent Document 8). Among them, the VW growth mode, that is, three-dimensional island-like nuclei are formed from the initial stage of growth, and they grow together with an increase in the amount of deposition, and eventually merge into a continuous film. Focusing on the “Growth” style, there are differences in the film formation mechanism depending on various parameters such as surface energy and temperature related to the physical vapor deposition material and the substrate, but the conditions for VW growth are found in the initial stage of film formation, and the base material is stirred. However, if physical vapor deposition is performed, a new deposition surface is always directed to the vapor deposition material, and it is considered that a three-dimensional sea-island structure, that is, nanoparticles are generated one after another.

そして、Alナノ粒子又はSiナノ粒子で被覆された無機粒子の粉末は、種々検討した結果、従来技術では到達し得なかった温和な熱処理条件で窒化されることを見出した。すなわち、N雰囲気中、400〜600℃、3〜6時間、より好ましくは、100〜200KPa以上の圧力のN雰囲気中に、450〜550℃、4〜5時間保持することによって窒化される。これは、上記ナノ粒子は、体積に比べて表面積が極めて大きいため、力学的、熱的、或いは、触媒的性質に変化がもたらされたものと考えられる(非特許文献9)。 As a result of various studies, it has been found that the powder of inorganic particles coated with Al nanoparticles or Si nanoparticles is nitrided under mild heat treatment conditions that could not be achieved by the prior art. That is, in an N 2 atmosphere, 400 to 600 ° C., 3 to 6 hours, more preferably, in the N 2 atmosphere at a pressure above 100~200KPa, is nitrided by 450 to 550 ° C., held for 4-5 hours . This is presumably because the nanoparticle has a very large surface area compared to its volume, and therefore changes in mechanical, thermal, or catalytic properties (Non-Patent Document 9).

このようにして製造されたAlN又はSiで被覆された粉末は、高熱伝導性、電気絶縁性、低熱膨張性素材として、焼結原料やフィラー等幅広く用いることができる。 The powder coated with AlN or Si 3 N 4 thus produced can be widely used as a raw material for sintering, filler, etc. as a material having high thermal conductivity, electrical insulation and low thermal expansion.

まず焼結原料として、半導体デバイスを構成する放熱構造体、例えば、ヒートシンク、ヒートスプレッダー、プリント回路基板に適した焼結体を作製する場合、一般的な焼結方法でも、十分温和な条件で焼結できる。焼結助剤としては、希土類元素の酸化物、炭化物、及び、ハロゲン化物(例えばフッ化物)や、酸化チタニウム、酸化ジルコニウム、酸化リチウム、酸化ホウ素、酸化カルシウム等を単独或いは二種以上選択して使用される。焼結方法としては、主として、操作性に優れ、複雑な形状に適応できる常圧焼結法、焼結助剤の添加量を削減でき、緻密な構造の焼結体が得られる加圧焼結法を用いることができる。特に、加圧焼結法としては、雰囲気のガス圧(0.2〜10MPa)を高め、原料粉末の分解を抑制したガス圧焼結、成形と焼結とを同時に行うホットプレス(〜50MPa)が好ましく用いられる。このような焼結は、一般的に、いずれの方法でも2,000℃前後の温度が必要とされるが、本発明の紛体を用いると500℃以上低い温度で焼結可能である。更に、得られた焼結体を、熱間静水圧加圧(HIP)処理することで更に強度を向上させることができる。HIP処理は、通常、不活性ガス雰囲気下、圧力30〜300MPa、焼結温度2100〜2200℃の範囲で行われる。その他、超高温プラズマ熱を利用した無加圧焼結である熱プラズマ焼結法、火花放電エネルギーを利用し、加圧下で焼結を行う放電プラズマ焼結法等、急速昇温でき、短時間焼結が可能な方法も用いることができる。   First, when producing a sintered body suitable for a heat dissipation structure constituting a semiconductor device, for example, a heat sink, a heat spreader, and a printed circuit board, as a sintering raw material, even with a general sintering method, the sintering is performed under sufficiently mild conditions. I can conclude. As sintering aids, select rare earth oxides, carbides, halides (eg fluorides), titanium oxide, zirconium oxide, lithium oxide, boron oxide, calcium oxide, etc. alone or in combination. used. The sintering method is mainly an atmospheric pressure sintering method that is excellent in operability and adaptable to complex shapes, pressure sintering that can reduce the amount of sintering aid added, and obtain a compact sintered body Can be used. In particular, as a pressure sintering method, a hot press (up to 50 MPa) that simultaneously performs gas pressure sintering, molding and sintering by increasing the gas pressure (0.2 to 10 MPa) of the atmosphere and suppressing decomposition of the raw material powder. Is preferably used. Such sintering generally requires a temperature of about 2,000 ° C. in any method, but if the powder of the present invention is used, it can be sintered at a temperature lower by 500 ° C. or more. Furthermore, the strength can be further improved by subjecting the obtained sintered body to hot isostatic pressing (HIP). The HIP treatment is usually performed in an inert gas atmosphere at a pressure of 30 to 300 MPa and a sintering temperature of 2100 to 2200 ° C. In addition, the thermal plasma sintering method, which is pressureless sintering using ultra-high temperature plasma heat, and the discharge plasma sintering method, which uses spark discharge energy to sinter under pressure, can be rapidly heated, and can be done in a short time. A method capable of sintering can also be used.

一方、本発明のAlN又はSiで被覆された粉末を、高分子化合物に分散した有機放熱構造体、例えば、有機プリント回路基板、放熱シート、封止材、各種絶縁材・接着剤等に使用する場合も、従来のフィラーと同様の方法で用いることができる。下記に代表的な製造方法を記載するが、用途、構成、性能等に応じて、様々な作製方法がとられるので、これに限定される訳ではない。 On the other hand, an organic heat dissipation structure in which powder coated with AlN or Si 3 N 4 of the present invention is dispersed in a polymer compound, for example, an organic printed circuit board, a heat dissipation sheet, a sealing material, various insulating materials / adhesives, etc. Also when used for, it can be used in the same manner as conventional fillers. Although typical production methods are described below, various production methods can be used depending on the application, configuration, performance, and the like, and the present invention is not limited thereto.

例えば、有機プリント回路基板の場合、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、シリコン樹脂等の放熱構造体の骨格をなす樹脂や分散剤等の少なくとも一種以上を含む溶液に、本発明の粉末を加え、ボールミル、サンドミル、ロールミル等の一般的方法で分散させて作製したマスターバッチと、上記フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂等を溶解させた溶液とを混合する。この混合液には、必要に応じて硬化触媒を含み、一液硬化タイプとすることもできるし、二液硬化タイプとすることもできる。この混合溶液をガラスクロス等の補強材に含浸して、直接回路を形成する銅箔等に貼り合わせ、乾燥硬化させることによって作製される。また、一旦乾燥硬化させた後、回路を形成する銅箔等に接着剤層を介して張り合わせて作製する場合もある。更に、ガラスクロス等の補強材を用いることなく、フィルム基材の有機プリント回路基板も作製できる。   For example, in the case of an organic printed circuit board, a solution containing at least one resin such as a phenol resin, a polyester resin, an epoxy resin, a polyimide resin, a fluororesin, a silicon resin, or the like that forms the skeleton of a heat dissipation structure or a dispersant is used. A masterbatch prepared by adding the powder of the invention and dispersing by a general method such as a ball mill, a sand mill, or a roll mill is mixed with a solution in which the phenol resin, polyester resin, epoxy resin, polyimide resin, or the like is dissolved. This mixed solution contains a curing catalyst as necessary, and can be a one-component curing type or a two-component curing type. This mixed solution is produced by impregnating a reinforcing material such as glass cloth, and directly adhering to a copper foil or the like forming a circuit, followed by drying and curing. In some cases, the film is once dried and cured, and then bonded to a copper foil or the like forming a circuit via an adhesive layer. Furthermore, a film-based organic printed circuit board can also be produced without using a reinforcing material such as glass cloth.

また、放熱シート、各種絶縁材・接着剤等の場合には、上記混合溶液をそのまま塗布乾燥することによって得られ、封止材は上記混合液をそのまま用いる。   Moreover, in the case of a heat-radiation sheet, various insulating materials, adhesives, etc., it is obtained by coating and drying the mixed solution as it is, and the sealing solution uses the mixed solution as it is.

用途に応じて、選択される樹脂、硬化方法等が異なり、作業性や環境適合性等に応じて、無溶剤系が選択される場合もある。   Depending on the application, the selected resin, curing method, and the like are different, and a solventless system may be selected depending on workability, environmental compatibility, and the like.

以下、具体的な実施例を挙げて、本発明をより具体的に説明するが、本発明の技術思想が実施例によって制限されるものではない。   Hereinafter, although a concrete example is given and the present invention is explained more concretely, the technical idea of the present invention is not restricted by the example.

まず、図3に示した真空蒸着槽15に内に備えられた撹拌槽17の中に、平均粒径約4μmの球状Al(アルナビーズCB−P05、昭和電工社製)を適量投入する。次いで、蒸着源16に真空蒸着用Alワイヤ(アルバックテクノ社製)を備え付ける。このAlワイヤは、純度99.0〜99.999%である。 First, an appropriate amount of spherical Al 2 O 3 (Arnabeads CB-P05, Showa Denko) having an average particle diameter of about 4 μm is charged into a stirring tank 17 provided in the vacuum deposition tank 15 shown in FIG. . Next, the deposition source 16 is provided with an Al wire for vacuum deposition (manufactured by ULVAC TECHNO). This Al wire has a purity of 99.0 to 99.999%.

次いで、上記真空蒸着槽の真空度が1×10−4〜1 torrになるように排気しながら、不活性ガス導入系21からArを真空蒸着槽15に導入する。真空度が安定したら、撹拌槽17のプロペラ18を1〜200rpmの回転速度で撹拌しながら、蒸着源16のシリコンを、固定された平面基板上において単位面積当たり1Å〜10μm/分の速度で蒸発、シャッター20を開け、Al表面に1〜10nmのAlナノ粒子を形成した。Alナノ粒子の厚さが1μに到達したところで、シャッター20を閉じる。生成されたAlナノ粒子が堆積したAl粉末は、酸化を防止するため、窒素置換された容器に保存された。 Next, Ar is introduced into the vacuum deposition tank 15 from the inert gas introduction system 21 while evacuating the vacuum deposition tank so that the degree of vacuum is 1 × 10 −4 to 1 torr. When the degree of vacuum is stable, the silicon of the vapor deposition source 16 is evaporated at a rate of 1 to 10 μm / min per unit area on a fixed flat substrate while stirring the propeller 18 of the stirring tank 17 at a rotational speed of 1 to 200 rpm. Then, the shutter 20 was opened, and Al nanoparticles of 1 to 10 nm were formed on the Al 2 O 3 surface. When the thickness of the Al nanoparticles reaches 1μ, the shutter 20 is closed. The Al 2 O 3 powder on which the generated Al nanoparticles were deposited was stored in a nitrogen-substituted container in order to prevent oxidation.

上記Alナノ粒子担持Al粉末は、110KPaのN雰囲気中、500℃、4時間、保持することによってほぼ完全に窒化し、AlNに被覆されたAl粉末を得ることができた。 The Al 2 O 3 powder supported on the Al nanoparticles can be nitrided almost completely by holding it at 110 ° C. in an N 2 atmosphere at 500 ° C. for 4 hours to obtain an Al 2 O 3 powder coated with AlN. It was.

このようにして作製されたAlN被覆Al粉末を用いて、ホットプレス炉(島津メクテム社製PHP)によりヒートスプレッダーを作製した。ホットプレス条件は、N雰囲気下、圧力5MPa、焼結温度1,500℃であった。このヒートスプレッダーは、200W/m・Kで、ほぼAlN担体と同等の熱導電性を示し、電気絶縁性であり、5.5ppm/KというSi半導体と近い熱膨張係数を有していた。 Using the AlN-coated Al 2 O 3 powder thus produced, a heat spreader was produced by a hot press furnace (PHP manufactured by Shimadzu Mektem). The hot press conditions were a pressure of 5 MPa and a sintering temperature of 1,500 ° C. in an N 2 atmosphere. This heat spreader was 200 W / m · K, showed thermal conductivity substantially equivalent to that of an AlN carrier, was electrically insulating, and had a thermal expansion coefficient close to that of a Si semiconductor of 5.5 ppm / K.

ビフェニル型エポキシ樹脂(YX7399、三菱化学社製)54重量部、フェノール樹脂(ミレックス(登録商標)RN−2830MB(ヘキサメチレンテトラミン含有)、三井化学社製)45重量部、シランカップリング剤(KBM403、信越化学社製)1重量部シランカップリング剤(KBM403、信越化学社製)1重量部、本発明のAlN被覆Al粉末800重量部、を配合し、攪拌機で均一に混合した後、95〜105℃に加熱された三本ロールで混練し、封止材に適したエポキシ樹脂系の基本組成物を調合した。これを、160℃で1時間加熱硬化させ、物性測定用シートを作製した。その結果、150W/m・Kで、AlN担体に近い熱導電性を示し、電気絶縁性であり、7ppm/KというSi半導体と近い熱膨張係数を有していた。 54 parts by weight of a biphenyl type epoxy resin (YX7399, manufactured by Mitsubishi Chemical Corporation), 45 parts by weight of a phenol resin (Millex (registered trademark) RN-2830MB (containing hexamethylenetetramine), manufactured by Mitsui Chemicals), a silane coupling agent (KBM403, (Shin-Etsu Chemical Co., Ltd.) 1 part by weight silane coupling agent (KBM403, Shin-Etsu Chemical Co., Ltd.) 1 part by weight, AlN-coated Al 2 O 3 powder 800 parts by weight of the present invention, and after mixing uniformly with a stirrer, The mixture was kneaded with three rolls heated to 95 to 105 ° C. to prepare an epoxy resin-based basic composition suitable for a sealing material. This was heat-cured at 160 ° C. for 1 hour to produce a physical property measurement sheet. As a result, it was 150 W / m · K, showed thermal conductivity close to that of an AlN carrier, was electrically insulating, and had a thermal expansion coefficient close to that of a Si semiconductor of 7 ppm / K.

1 熱伝導経路
2 熱対流経路
3 熱輻射経路
4 ヒートスプレッダー
5 接着剤
6 半導体チップ
7 封止材
8 半田ボール
9 ビルドアップ基板
10 マザーボード
11 AlN又はSi
12 無機粒子
13 銅又はアルミニウム板
14 合成樹脂
15 真空蒸着槽
16 蒸着源
17 撹拌槽
18 プロペラ
19 モーター
20 シャッター
21 ガス導入系
22 真空排気系
DESCRIPTION OF SYMBOLS 1 Thermal conduction path | route 2 Thermal convection path | route 3 Thermal radiation path | route 4 Heat spreader 5 Adhesive 6 Semiconductor chip 7 Sealing material 8 Solder ball 9 Build-up board 10 Mother board 11 AlN or Si 3 N 4
12 Inorganic particles 13 Copper or aluminum plate 14 Synthetic resin 15 Vacuum deposition tank 16 Deposition source 17 Stirring tank 18 Propeller 19 Motor 20 Shutter 21 Gas introduction system 22 Vacuum exhaust system

更に、具体的には、本発明は、PVD槽に、その上部に設けられた蒸発源、その蒸発源下部に設けられた蒸発物質が堆積する母材を投入する撹拌槽、その拌槽内に設けられた蒸発物質が母材に均一に堆積するための拌機、を少なくとも設置し、母材として、無機粒子を拌層に投入し、AlやSiを蒸発源として、その無機粒子を撹拌しながら、その表面に粒子径1〜50nmのAlナノ粒子又はSiナノ粒子を所定の厚さとなるように堆積した後、N雰囲気下、400〜600℃、3〜6時間、熱処理することによって製造されることを特徴とする、高熱伝導性、高電気絶縁性、及び、低熱膨張性を兼ね備えたAlN又はSiで被覆された粉末、及び、その粉末を用いた半導体デバイスに適した放熱構造体を提供するものである。並びに、本発明は、AlN又はSiで被覆された粉末の上記製造方法を提供するものである。 Further, specifically, the present invention is, in PVD chamber, the evaporation source provided thereon, stirred tank for introducing base material in which the evaporation source evaporating material provided in the lower is deposited, in that 拌槽at least placed agitator, for evaporating material provided is uniformly deposited on the base material, as a base material, was charged inorganic particles 拌層as evaporation sources of Al and Si, the inorganic particles The Al nanoparticles or Si nanoparticles having a particle diameter of 1 to 50 nm are deposited on the surface so as to have a predetermined thickness, and then heat-treated in an N 2 atmosphere at 400 to 600 ° C. for 3 to 6 hours. A powder coated with AlN or Si 3 N 4 having high thermal conductivity, high electrical insulation, and low thermal expansion, and a semiconductor device using the powder To provide a suitable heat dissipation structure is there. And, the present invention is to provide the method of producing a powder coated with AlN or Si 3 N 4.

本発明は、粒子径1〜50nmのAlナノ粒子又はSiナノ粒子を用いるため、そのサイズの効果により、従来の処理条件よりも温和な条件で窒化することができる。しかも、安価な上記無機粒子に被覆されているため、従来の高価なAlN、Si 、炭化珪素(SiC)、BN等の粉末を用いるよりもはるかに安価となる。 Since the present invention uses Al nanoparticles or Si nanoparticles having a particle diameter of 1 to 50 nm, the size effect allows nitriding under milder conditions than conventional processing conditions. In addition, since the inorganic particles are covered with inexpensive inorganic particles, the cost is much lower than when using conventional powders such as AlN, Si 3 N 4 , silicon carbide (SiC), and BN.

このように、本発明の粉末が、安価な上、上記焼結体及び有機放熱構造体として優れた効果を発現するのは、図2(a)に示したように、安価な無機粒子のコア12が、AlNナノ粒子又はSiナノ粒子のシェル11で被覆されているコアーシェル構造を形成していることに起因しているものと推測される。まず、この構造に基づき、焼結体を成型する条件は、ナノ粒子効果により温和となる。更に、製造された焼結体は、図2(b)に示したように、熱伝導性、電気絶縁性、及び、熱膨張性に優れたAlN又はSi からなる海11に、無機粒子が島12として存在する海−島構造を形成し、上記海の特性を強く発現する焼結体となる。また、本発明の紛末をフィラーとして使用した場合、図2(c)に示したように、シェル層11だけが接触すれば、AlN又はSi の熱伝導性、電気絶縁性、及び、熱膨張性を発現するため、添加量が少なく、樹脂14の特徴を損なうことのない安価な有機放熱構造体が得られる。 As described above, the powder of the present invention is inexpensive and exhibits excellent effects as the sintered body and the organic heat dissipation structure, as shown in FIG. 12 is presumed to be due to the formation of a core-shell structure covered with the shell 11 of AlN nanoparticles or Si 3 N 4 nanoparticles. First, based on this structure, the conditions for molding the sintered body are mild due to the nanoparticle effect. Further, as shown in FIG. 2B, the manufactured sintered body is inorganic in the sea 11 made of AlN or Si 3 N 4 excellent in thermal conductivity, electrical insulation, and thermal expansion. A sea-island structure in which particles exist as islands 12 is formed, and a sintered body that strongly expresses the characteristics of the sea is obtained. Further, when the powder of the present invention is used as a filler, as shown in FIG. 2 (c), if only the shell layer 11 is in contact, the thermal conductivity, electrical insulation, and electrical properties of AlN or Si 3 N 4 In addition, since it exhibits thermal expansibility, an inexpensive organic heat dissipation structure that does not impair the characteristics of the resin 14 can be obtained with a small amount of addition.

本発明の具体的な製造方法は、図3に示したように、PVD槽15内の上部に設けられた蒸発源16、蒸発源下部に設けられた蒸発物質が堆積する母材を投入する撹拌槽17、拌槽内に設けられた蒸発物質が母材に均一に堆積するための拌機18を少なくとも設置し、母材を撹拌しながら、蒸発源16の金属を蒸発させることによって、金属ナノ粒子が母材表面上に堆積される。PVD法としては、真空蒸着法、イオンビーム蒸着法、イオンプレーティング法、及び、各種スパッタリング法を用いることができ、例えば、非特許文献7、特許文献8及び9等の方法が開示されている。このようにして作製された金属ナノ粒子が担持された粒子は、金属ナノ粒子の表面酸化により、引き続き行う窒化が妨げられるため、不活性ガスで置換された容器に保存されることが好ましい。 As shown in FIG. 3, the specific manufacturing method of the present invention is an agitation in which an evaporation source 16 provided in the upper part of the PVD tank 15 and a base material on which the evaporated substance provided in the lower part of the evaporation source is deposited. bath 17, at least placed agitator 18 for evaporating material provided in 拌槽is uniformly deposited on the base material, while stirring the base material by evaporating the metal evaporation source 16, Metal nanoparticles are deposited on the matrix surface. As the PVD method, a vacuum deposition method, an ion beam deposition method, an ion plating method, and various sputtering methods can be used. For example, methods such as Non-Patent Document 7, Patent Documents 8 and 9 are disclosed. . The particles carrying the metal nanoparticles thus produced are preferably stored in a container substituted with an inert gas because the subsequent nitridation is hindered by the surface oxidation of the metal nanoparticles.

ビフェニル型エポキシ樹脂(YX7399、三菱化学社製)54重量部、フェノール樹脂(ミレックス(登録商標)RN−2830MB(ヘキサメチレンテトラミン含有)、三井化学社製)45重量部、シランカップリング剤(KBM403、信越化学社製)1重量部シランカップリング剤(KBM403、信越化学社製)1重量部、本発明のAlN被覆Al粉末800重量部、を配合し、拌機で均一に混合した後、95〜105℃に加熱された三本ロールで混練し、封止材に適したエポキシ樹脂系の基本組成物を調合した。これを、160℃で1時間加熱硬化させ、物性測定用シートを作製した。その結果、150W/m・Kで、AlN担体に近い熱導電性を示し、電気絶縁性であり、7ppm/KというSi半導体と近い熱膨張係数を有していた。 54 parts by weight of a biphenyl type epoxy resin (YX7399, manufactured by Mitsubishi Chemical Corporation), 45 parts by weight of a phenol resin (Millex (registered trademark) RN-2830MB (containing hexamethylenetetramine), manufactured by Mitsui Chemicals), a silane coupling agent (KBM403, Shin-Etsu chemical Co., Ltd.) 1 part by weight of silane coupling agent (KBM403, Shin-Etsu chemical Co., Ltd.) 1 part by weight, AlN coated Al 2 O 3 powder 800 parts by weight of the present invention, the blended and uniformly mixed in agitator Then, it knead | mixed with the three rolls heated at 95-105 degreeC, and prepared the epoxy resin type | system | group basic composition suitable for a sealing material. This was heat-cured at 160 ° C. for 1 hour to produce a physical property measurement sheet. As a result, it was 150 W / m · K, showed thermal conductivity close to that of an AlN carrier, was electrically insulating, and had a thermal expansion coefficient close to that of a Si semiconductor of 7 ppm / K.

Claims (5)

Al又はSiのナノ粒子を無機粒子表面上に堆積した後、窒素雰囲気下で熱処理することを特徴とする、AlN又はSiNで被覆された粉末及びその粉末を用いた放熱構造体。   1. A powder coated with AlN or SiN and a heat dissipation structure using the powder, wherein Al or Si nanoparticles are deposited on the surface of inorganic particles and then heat-treated in a nitrogen atmosphere. 前記無機粒子が、平均粒子径0.1〜100μmのAl、Mg(OH)、MgO、MgCO、CaCO、SiOであり、前記ナノ粒子が、平均粒径0.1〜100nmで、前記無機粒子上に0.1〜100μmの厚さで堆積した後、窒素雰囲気下で熱処理することを特徴とする、請求項1に記載のAlN又はSiNで被覆された粉末及びその粉末を用いた放熱構造体。 The inorganic particles are Al 2 O 3 , Mg (OH) 2 , MgO, MgCO 3 , CaCO 3 , SiO 2 having an average particle diameter of 0.1 to 100 μm, and the nanoparticles have an average particle diameter of 0.1 to 100 μm. 2. The powder coated with AlN or SiN according to claim 1, wherein the powder is deposited at a thickness of 100 to 100 μm on the inorganic particles at a thickness of 0.1 to 100 μm and then heat-treated in a nitrogen atmosphere. Heat dissipation structure using 前記無機粒子が、平均粒子径1〜75μmの球状Alで、前記ナノ粒子が1〜75μmの厚さで堆積した後、窒素雰囲気下で熱処理することを特徴とする、請求項2に記載のAlN又はSiNで被覆された粉末及びその粉末を用いた放熱構造体。 The inorganic particles are spherical Al 2 O 3 having an average particle diameter of 1 to 75 μm, and after the nanoparticles are deposited with a thickness of 1 to 75 μm, heat treatment is performed in a nitrogen atmosphere. A powder coated with the described AlN or SiN and a heat dissipation structure using the powder. 前記熱処理が、窒素雰囲気下、400〜600℃、3〜6時間であることを特徴とする、請求項1〜3の一つに記載の、AlN又はSiNで被覆された粉末及びその粉末を用いた放熱構造体。   4. The powder coated with AlN or SiN and the powder according to claim 1, wherein the heat treatment is performed in a nitrogen atmosphere at 400 to 600 ° C. for 3 to 6 hours. Heat dissipation structure. 物理蒸着槽内の上部に設けられたAl又はSi蒸発源、前記蒸発源下部に設けられた前記蒸発物質が堆積する無機粒子を投入する撹拌槽、前記攪拌槽内に設けられた前記蒸発物質が前記無機粒子に均一に堆積するための攪拌機を少なくとも設置し、前記無機粒子を撹拌しながら、Al又はSi蒸発源を蒸発させることによって、Al又はSiナノ粒子が前記無機粒子表面上に堆積された後、窒素雰囲気下で熱処理することを特徴とする、AlN又はSiNで被覆された粉末の製造方法。   An Al or Si evaporation source provided in the upper part of the physical vapor deposition tank, an agitation tank into which the inorganic particles deposited on the evaporation substance provided in the lower part of the evaporation source are charged, and the evaporation substance provided in the stirring tank At least a stirrer for uniformly depositing the inorganic particles was installed, and the Al or Si nanoparticles were deposited on the surface of the inorganic particles by evaporating the Al or Si evaporation source while stirring the inorganic particles. A method for producing a powder coated with AlN or SiN, which is then heat-treated in a nitrogen atmosphere.
JP2014141070A 2014-07-09 2014-07-09 High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder Active JP5695780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141070A JP5695780B1 (en) 2014-07-09 2014-07-09 High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141070A JP5695780B1 (en) 2014-07-09 2014-07-09 High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder

Publications (2)

Publication Number Publication Date
JP5695780B1 JP5695780B1 (en) 2015-04-08
JP2016017014A true JP2016017014A (en) 2016-02-01

Family

ID=52836971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141070A Active JP5695780B1 (en) 2014-07-09 2014-07-09 High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder

Country Status (1)

Country Link
JP (1) JP5695780B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190108994A (en) * 2018-03-16 2019-09-25 창원대학교 산학협력단 method for manufacturing ceramics nano fused compositee heat-release film
WO2019189794A1 (en) * 2018-03-30 2019-10-03 日本発條株式会社 Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module
WO2020138335A1 (en) * 2018-12-27 2020-07-02 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202031763A (en) * 2019-01-25 2020-09-01 日商電化股份有限公司 Filler composition, silicone resin composition, and heat dissipation component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263542A (en) * 1993-03-11 1994-09-20 Sumitomo Metal Ind Ltd Low-temperature sinterable type aln substrate excellent in heat conductivity
JP2001031887A (en) * 1999-07-21 2001-02-06 Toyota Motor Corp Highly conductive powder and its production
JP2006031978A (en) * 2004-07-12 2006-02-02 Sony Corp Manufacturing method of catalyst and manufacturing method of fuel cell with catalyst
JP5008310B2 (en) * 2006-02-01 2012-08-22 株式会社アルバック Powder processing equipment
JP2009046741A (en) * 2007-08-22 2009-03-05 Ulvac Japan Ltd Method for forming fine-particle film
JP2009242899A (en) * 2008-03-31 2009-10-22 Toyota Industries Corp SiC/Al COMPOSITE SINTERED COMPACT AND PRODUCTION METHOD THEREOF
JP5602480B2 (en) * 2010-04-09 2014-10-08 新日鐵住金株式会社 Method for producing alumina particles provided with AlN modified layer
JP2013103955A (en) * 2011-11-10 2013-05-30 Bridgestone Corp Method of producing heat transfer sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190108994A (en) * 2018-03-16 2019-09-25 창원대학교 산학협력단 method for manufacturing ceramics nano fused compositee heat-release film
KR102049600B1 (en) 2018-03-16 2019-11-27 창원대학교 산학협력단 method for manufacturing ceramics nano fused compositee heat-release film
WO2019189794A1 (en) * 2018-03-30 2019-10-03 日本発條株式会社 Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module
JP6616555B1 (en) * 2018-03-30 2019-12-04 日本発條株式会社 Thermally conductive composite particles and manufacturing method thereof, insulating resin composition, insulating resin molded body, laminated board for circuit board, metal base circuit board, and power module
JP2020047928A (en) * 2018-03-30 2020-03-26 日本発條株式会社 Thermal conductive composite particles
WO2020138335A1 (en) * 2018-12-27 2020-07-02 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
JPWO2020138335A1 (en) * 2018-12-27 2021-11-11 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using it, and method for producing them.
JP7470051B2 (en) 2018-12-27 2024-04-17 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using the same, and method for producing the same

Also Published As

Publication number Publication date
JP5695780B1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP7207384B2 (en) Aggregated boron nitride particles, method for producing aggregated boron nitride particles, resin composition containing the aggregated boron nitride particles, molded article, and sheet
WO2018181606A1 (en) Heat-conducting member and heat-dissipating structure including said heat-conducting member
TWI838500B (en) Blocky boron nitride particles, heat conductive resin composition, and heat dissipation member
TW201927689A (en) Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
JP5695780B1 (en) High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder
TW201526724A (en) Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
JP7467980B2 (en) Boron nitride agglomerated powder, heat dissipation sheet, and method for manufacturing semiconductor device
JP7517323B2 (en) Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device
JP6256158B2 (en) Heat dissipation sheet and heat dissipation sheet manufacturing method, slurry for heat dissipation sheet, and power device device
JP6394115B2 (en) Resin composition, heat dissipation sheet made of resin composition, and power device device including heat dissipation sheet
JP2015195287A (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
WO2019112048A1 (en) Laminate and electronic device
CN109791918A (en) The radiator structure of circuit device
JP2018101766A (en) Heat dissipation plate
JP2018165344A (en) Boron nitride particle-containing sheet
JP5416367B2 (en) Heat dissipating solder resist composition and heat dissipating printed wiring board
JP2008010897A (en) Insulating sheet, and power module using same
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
KR101734831B1 (en) Manufacturing method of (002) preferentially oriented aluminium nitride powders having plate shape
JP6854980B1 (en) Heat dissipation member and heat sink
JP7486666B2 (en) Heat dissipation member and heat sink
JP4249371B2 (en) Metal base circuit board
JP2022151865A (en) Laminated structure and manufacturing method thereof
KR20200004192A (en) SiC SHEET, METHOD OF FABRICATION FOR THE SAME AND HIGH HEAT DISSIPATIVE POLYMER COMPOSITES COMPRISING THE SAME
JP2000223807A (en) Insulating substrate with high heat conductivity

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R150 Certificate of patent or registration of utility model

Ref document number: 5695780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250