JP2016015612A - Receiver and distortion compensation method - Google Patents

Receiver and distortion compensation method Download PDF

Info

Publication number
JP2016015612A
JP2016015612A JP2014136540A JP2014136540A JP2016015612A JP 2016015612 A JP2016015612 A JP 2016015612A JP 2014136540 A JP2014136540 A JP 2014136540A JP 2014136540 A JP2014136540 A JP 2014136540A JP 2016015612 A JP2016015612 A JP 2016015612A
Authority
JP
Japan
Prior art keywords
unit
signal
compensation
distortion compensation
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014136540A
Other languages
Japanese (ja)
Inventor
陽一 片貝
Yoichi Katagai
陽一 片貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2014136540A priority Critical patent/JP2016015612A/en
Publication of JP2016015612A publication Critical patent/JP2016015612A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To increase a suppression effect on deterioration of communication characteristics.SOLUTION: A receiver comprises: a distortion compensation unit 11 which subjects a signal to distortion compensation and outputs the signal which has been subjected to distortion compensation when receiving the signal from a transmitter 20; a hard determination unit 12 which subjects an output signal of the distortion compensation unit 11 to hard determination and outputs a signal corresponding to the results of the hard determination; an error detection unit 13 which detects an error between the output signal of the distortion compensation unit 11 and an output signal 12 of the hard determination unit; a compensation coefficient recording unit 15 which records the compensation coefficient used by the distortion compensation unit 11 for distortion compensation; and a compensation coefficient calculation unit 14 which calculates a compensation coefficient on the basis of the error detected by the error detection unit 13, and updates the compensation coefficient recorded in the compensation coefficient recording unit 15 to the calculated compensation coefficient. The distortion compensation unit 11 performs distortion compensation using a received signal, the received signals received past the received signal, and the compensation coefficients recorded in the compensation coefficient recording unit 15.

Description

本発明は、受信機および歪み補償方法に関する。   The present invention relates to a receiver and a distortion compensation method.

無線通信に用いられる送信機は一般に、増幅器などの非線形デバイスを備えている。非線形デバイスには入出力関係が非線形であるという特性があり、非線形デバイスの出力信号には、この特性に起因する非線形歪みが含まれることがある。このような歪みを含む信号が送信されると、無線通信の通信特性の劣化を招く原因となる。
特許文献1(特許第4019912号公報)には、送信機から送信されてきた信号を受信する受信機において、受信信号に含まれる非線形歪みを推定して補償する技術が開示されている。この技術によれば、送信機の非線形デバイスで生じた非線形歪みを受信機において補償することで、通信特性の劣化を抑制することができる。
A transmitter used for wireless communication generally includes a nonlinear device such as an amplifier. Non-linear devices have a characteristic that the input / output relationship is non-linear, and the output signal of the non-linear device may include non-linear distortion due to this characteristic. When a signal including such distortion is transmitted, it causes deterioration of communication characteristics of wireless communication.
Patent Document 1 (Japanese Patent No. 4019912) discloses a technique for estimating and compensating for nonlinear distortion included in a received signal in a receiver that receives a signal transmitted from a transmitter. According to this technique, it is possible to suppress deterioration of communication characteristics by compensating in a receiver for nonlinear distortion generated in a nonlinear device of a transmitter.

特許第4019912号公報Japanese Patent No. 4019912

非線形デバイスで生じる歪みには、非線形歪みの他に、メモリ効果に起因する歪みがある。メモリ効果とは、ある時刻の入力信号に対する非線形デバイスの出力信号が、過去の入力信号の影響を受ける現象である。特許文献1に開示されている技術においては、メモリ効果に起因する歪みの補償については考慮されておらず、通信特性の劣化を抑制することができないことがある。
本発明の目的は、通信特性の劣化の抑制効果を高めることができる受信機および歪み補償方法を提供することにある。
In addition to non-linear distortion, distortion caused by the memory device includes distortion due to the memory effect. The memory effect is a phenomenon in which an output signal of a nonlinear device with respect to an input signal at a certain time is affected by past input signals. In the technique disclosed in Patent Document 1, compensation for distortion due to the memory effect is not taken into consideration, and deterioration of communication characteristics may not be suppressed.
An object of the present invention is to provide a receiver and a distortion compensation method that can enhance the effect of suppressing deterioration of communication characteristics.

上記目的を達成するために本発明の受信機は、
送信機から信号を受信すると、該受信信号に対する歪み補償を行い、該歪み補償後の信号を出力する歪み補償部と、
前記歪み補償部の出力信号に対する硬判定を行ない、該硬判定の結果に応じた信号を出力する硬判定部と、
前記歪み補償部の出力信号と前記硬判定部の出力信号との誤差を検出する誤差検出部と、
前記歪み補償部が歪み補償を行なうための補償係数を記録する補償係数記録部と、
前記誤差検出部が検出した誤差に基づいて前記補償係数を算出し、前記補償係数記録部に記録されている補償係数を前記算出した補償係数に更新する補償係数算出部と、を有し、
前記歪み補償部は、前記受信信号と該受信信号よりも過去に受信した過去の受信信号と前記補償係数記録部に記録されている補償係数とを用いて歪み補償を行なう。
In order to achieve the above object, the receiver of the present invention provides:
When a signal is received from the transmitter, distortion compensation is performed on the received signal, and a distortion compensation unit that outputs the signal after the distortion compensation;
A hard decision unit that performs a hard decision on the output signal of the distortion compensation unit and outputs a signal according to the result of the hard decision;
An error detection unit for detecting an error between the output signal of the distortion compensation unit and the output signal of the hard decision unit;
A compensation coefficient recording section for recording a compensation coefficient for the distortion compensation section to perform distortion compensation;
A compensation coefficient calculation unit that calculates the compensation coefficient based on the error detected by the error detection unit and updates the compensation coefficient recorded in the compensation coefficient recording unit to the calculated compensation coefficient;
The distortion compensator performs distortion compensation using the received signal, a past received signal received in the past from the received signal, and a compensation coefficient recorded in the compensation coefficient recording unit.

上記目的を達成するための本発明の歪み補償方法は、
送信機から送信されてきた信号を受信する受信機における歪み補償方法であって、
前記送信機から信号を受信すると、該受信信号に対する歪み補償を行い、
前記歪み補償後の信号に対する硬判定を行ない、
前記歪み補償後の信号と前記硬判定の結果に応じた信号との誤差を検出し、
前記歪み補償を行なうための補償係数を記録し、
前記検出した誤差に基づいて、前記歪み補償を行なうための補償係数を算出し、前記記録している補償係数を前記算出した補償係数に更新し、
前記受信信号と該受信信号よりも過去に受信した過去の受信信号と記録している補償係数とに基づいて前記歪み補償を行う。
In order to achieve the above object, the distortion compensation method of the present invention provides:
A distortion compensation method in a receiver for receiving a signal transmitted from a transmitter,
When receiving a signal from the transmitter, perform distortion compensation for the received signal,
Make a hard decision on the signal after distortion compensation,
Detecting an error between the signal after the distortion compensation and the signal according to the result of the hard decision;
Record a compensation coefficient for performing the distortion compensation,
Based on the detected error, calculate a compensation coefficient for performing the distortion compensation, update the recorded compensation coefficient to the calculated compensation coefficient,
The distortion compensation is performed based on the received signal, a past received signal received earlier than the received signal, and a recorded compensation coefficient.

本発明によれば、通信特性の劣化の抑制効果を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the suppression effect of deterioration of a communication characteristic can be improved.

本発明の第1の実施形態に係る受信機の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the receiver which concerns on the 1st Embodiment of this invention. 非線形デバイスで生じる歪みについて説明するための図である。It is a figure for demonstrating the distortion which arises in a nonlinear device. 受信リニアライザ技術について説明するための図である。It is a figure for demonstrating a receiving linearizer technique. 関連する受信機の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of a related receiver. 図4に示す歪み補償部の構成を示す図である。It is a figure which shows the structure of the distortion compensation part shown in FIG. 図1に示す歪み補償部の構成を示す図である。It is a figure which shows the structure of the distortion compensation part shown in FIG. 本発明の第2の実施形態に係る受信機の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the receiver which concerns on the 2nd Embodiment of this invention.

以下に、本発明を実施するための形態について図面を参照して説明する。
本発明は主に、例えば、無線基地局や、無線を介して複数の無線基地局間を接続する固定無線伝送装置などの通信装置に搭載され、送信機からの信号を受信する受信機および受信機における歪み補償方法に関する。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated with reference to drawings.
The present invention is mainly mounted on a communication device such as a wireless base station or a fixed wireless transmission device that connects a plurality of wireless base stations via wireless, and receives and receives a signal from a transmitter. The present invention relates to a distortion compensation method in a machine.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る受信機10の要部構成を示す図である。なお、図1においては、送信機20の要部構成も示している。まず、送信機20の構成について説明する。
図1に示す送信機20は、変調部21と、非線形デバイス22とを有する。
変調部21は、入力された信号に対して、QPSK(Quadrature Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)などの変調を行ない、変調後の信号を非線形デバイス22に出力する。
非線形デバイス22は、例えば、増幅器などであり、変調部21の出力信号に対して所定の処理(例えば、増幅)を行なって出力する。非線形デバイス22の出力信号は、送信機20のアンテナを介して送信される。
(First embodiment)
FIG. 1 is a diagram illustrating a main configuration of a receiver 10 according to the first embodiment of the present invention. In FIG. 1, the configuration of the main part of the transmitter 20 is also shown. First, the configuration of the transmitter 20 will be described.
The transmitter 20 illustrated in FIG. 1 includes a modulation unit 21 and a nonlinear device 22.
The modulation unit 21 performs modulation such as QPSK (Quadrature Phase Shift Keying) and QAM (Quadrature Amplitude Modulation) on the input signal, and outputs the modulated signal to the nonlinear device 22.
The nonlinear device 22 is an amplifier, for example, and performs a predetermined process (for example, amplification) on the output signal of the modulation unit 21 and outputs the result. The output signal of the nonlinear device 22 is transmitted via the antenna of the transmitter 20.

次に、受信機10の構成について説明する。
図1に示す受信機10は、歪み補償部11と、硬判定部12と、誤差検出部13と、補償係数算出部14と、補償係数記録部15とを有する。
歪み補償部11は、送信機20から無線送信されてきた信号が受信機10のアンテナを介して受信されると、受信信号に含まれる、送信機20で生じた歪みを補償するための歪み補償を行う。そして、歪み補償部11は、歪み補償後の信号を硬判定部12および誤差検出部13に出力する。受信機10において、受信信号に含まれる非線形デバイス22で生じる歪みを補償する技術は、受信リニアライザ技術と称される。
硬判定部12は、歪み補償部11の出力信号に対して硬判定を行ない、硬判定の結果に応じた信号を、受信機10の外部(例えば、受信機10が搭載される通信装置の信号処理部)および誤差検出部13に出力する。
誤差検出部13は、歪み補償部11の出力信号と硬判定部12の出力信号との誤差を検出し、検出結果を補償係数算出部14に出力する。
補償係数算出部14は、誤差検出部13の検出結果に基づき、歪み補償部11が歪み補償を行なうための補償係数を算出し、算出した歪み補償係数を補償係数記録部15に出力する。
補償係数記録部15は、歪み補償部11が歪み補償を行なうための補償係数を記録する。補償係数算出部14から補償係数が出力されると、補償係数記録部15に記録されている補償係数は、補償係数算出部14から出力された補償係数に更新される。補償係数記録部15に記録された補償係数は、歪み補償部11が歪み補償を行なう際に参照される。
Next, the configuration of the receiver 10 will be described.
The receiver 10 shown in FIG. 1 includes a distortion compensation unit 11, a hard decision unit 12, an error detection unit 13, a compensation coefficient calculation unit 14, and a compensation coefficient recording unit 15.
When a signal wirelessly transmitted from the transmitter 20 is received via the antenna of the receiver 10, the distortion compensation unit 11 performs distortion compensation for compensating for distortion generated in the transmitter 20 included in the received signal. I do. Then, the distortion compensation unit 11 outputs the signal after distortion compensation to the hard decision unit 12 and the error detection unit 13. In the receiver 10, a technique for compensating for distortion generated in the nonlinear device 22 included in the received signal is referred to as a reception linearizer technique.
The hard decision unit 12 performs a hard decision on the output signal of the distortion compensation unit 11 and outputs a signal corresponding to the result of the hard decision to the outside of the receiver 10 (for example, a signal of a communication device in which the receiver 10 is mounted). Output to the processing unit) and the error detection unit 13.
The error detection unit 13 detects an error between the output signal of the distortion compensation unit 11 and the output signal of the hard decision unit 12 and outputs the detection result to the compensation coefficient calculation unit 14.
The compensation coefficient calculation unit 14 calculates a compensation coefficient for the distortion compensation unit 11 to perform distortion compensation based on the detection result of the error detection unit 13, and outputs the calculated distortion compensation coefficient to the compensation coefficient recording unit 15.
The compensation coefficient recording unit 15 records a compensation coefficient for the distortion compensation unit 11 to perform distortion compensation. When the compensation coefficient is output from the compensation coefficient calculation unit 14, the compensation coefficient recorded in the compensation coefficient recording unit 15 is updated to the compensation coefficient output from the compensation coefficient calculation unit 14. The compensation coefficient recorded in the compensation coefficient recording unit 15 is referred to when the distortion compensation unit 11 performs distortion compensation.

次に、非線形デバイス22で生じる歪みおよび受信リニアライザ技術について説明する。以下では、図2に示すように、非線形デバイス22の入力信号をx(t)とし、出力信号をy(t)とする。この場合、入力信号を行列で表すと、X={x(0),x(1),・・・x(t)}となり、出力信号を行列で表すと、Y={y(0),y(1),・・・y(t)}となる。また、非線形デバイス22の歪み特性をAとすると、出力信号Y=A・Xとなる。
上述したように、受信リニアライザ技術とは、受信機10において、受信信号に含まれる非線形デバイス22で生じる歪みを補償する技術である。具体的には、図3に示すように、受信機に設けられた受信リニアライザ(歪み補償部)にて、受信信号に特性Bを与えることで、非線形デバイス22の歪み特性Aに起因して生じる歪みを補償し、元の信号を得る技術である。
図3を式で表すと、Y=B・A・Xとなる。この式より、歪み特性Aの逆特性を受信信号に与えることで、非線形デバイス22で生じる歪みを補償することができることが分かる。
Next, distortion generated in the nonlinear device 22 and reception linearizer technology will be described. In the following, as shown in FIG. 2, the input signal of the nonlinear device 22 is x (t) and the output signal is y (t). In this case, when the input signal is represented by a matrix, X = {x (0), x (1),... X (t)}, and when the output signal is represented by a matrix, Y = {y (0), y (1),... y (t)}. When the distortion characteristic of the nonlinear device 22 is A, the output signal Y = A · X.
As described above, the reception linearizer technique is a technique for compensating for distortion occurring in the nonlinear device 22 included in the received signal in the receiver 10. Specifically, as shown in FIG. 3, the reception linearizer (distortion compensation unit) provided in the receiver gives a characteristic B to the received signal, which is caused by the distortion characteristic A of the nonlinear device 22. This technique compensates for distortion and obtains the original signal.
When FIG. 3 is expressed by an equation, Y = B · A · X. From this equation, it can be seen that the distortion generated in the nonlinear device 22 can be compensated by giving the reception signal the inverse characteristic of the distortion characteristic A.

次に、非線形デバイス22で生じる歪みについてより詳細に説明する。
メモリ効果に起因する歪みを考慮せず、非線形デバイス22の入出力関係が非線形であるという特性に起因する非線形歪みだけを考慮した場合、時刻t0における非線形デバイス22の歪み特性は、以下の式(1)で表される。

Figure 2016015612
Next, distortion generated in the nonlinear device 22 will be described in more detail.
When only the non-linear distortion caused by the characteristic that the input / output relationship of the non-linear device 22 is non-linear without considering the distortion caused by the memory effect, the distortion characteristic of the non-linear device 22 at time t 0 is expressed by the following equation: It is represented by (1).
Figure 2016015612

一方、メモリ効果も考慮した場合、非線形デバイス22の歪み特性は、以下の式(2)で表される。

Figure 2016015612
式(1),(2)において、kは非線形デバイス22の非線形歪みを近似(モデル化)する多項式の次数である。式(1),(2)では、非線形デバイス22の非線形歪みを近似する多項式として、メモリ多項式モデルを採用している。また、式(2)において、mは時間的なパラメータである。 On the other hand, when the memory effect is also taken into consideration, the distortion characteristics of the nonlinear device 22 are expressed by the following formula (2).
Figure 2016015612
In equations (1) and (2), k is the degree of a polynomial that approximates (models) the nonlinear distortion of the nonlinear device 22. In equations (1) and (2), a memory polynomial model is adopted as a polynomial that approximates the nonlinear distortion of the nonlinear device 22. In Expression (2), m is a temporal parameter.

式(2)を時間について拡張(時刻t0〜tNに拡張)し、行列で表すと以下の式(3)となる。

Figure 2016015612
式(3)から、ある時刻(例えば、時刻t0)における非線形デバイス22の出力信号(y(t0))は、その時刻よりも過去(時刻t-1〜時刻t-M+1)の非線形デバイス22の入力信号の影響を受けることが分かる。したがって、ある時刻における受信機10の受信信号は、その時刻よりも過去に受信された受信信号の影響を受けることになる。 Expression (2) is expanded with respect to time (expanded to times t 0 to t N ), and expressed as a matrix, the following expression (3) is obtained.
Figure 2016015612
From the equation (3), the output signal (y (t 0 )) of the nonlinear device 22 at a certain time (for example, time t 0 ) is past (time t −1 to time t −M + 1 ) than that time. It can be seen that the input signal of the nonlinear device 22 is affected. Therefore, the reception signal of the receiver 10 at a certain time is affected by the reception signal received in the past from that time.

次に、受信機10の動作について説明する。
まず、比較のために、メモリ効果を考慮しない受信機(関連する受信機)の動作について説明する。図4は、関連する受信機30の要部構成を示すブロック図である。
受信機30の要部構成は、受信機10の要部構成と同様である。そのため、図4においては、受信機30の各構成要素には、受信機10の対応する構成要素の参照番号の後ろに“A”を付した参照番号を付し、重複する説明については省略する。
なお、以下では、図4に示すように、非線形デバイス22の入力信号をx(t)とし、出力信号をy(t)とする。また、歪み補償部11Aへの入力信号をy’(t)とし、硬判定部12Aの出力信号をx’(t)とする。また、y’(t)=y(t−d),x’(t)=x(t−d)が成り立つものとする。dは、送信機から受信機への信号遅延である。また、非線形デバイス22の歪み特性(非線形歪みの歪み特性)をakとし、歪み補償部11Aが歪み補償を行なうための補償係数をckとする。
Next, the operation of the receiver 10 will be described.
First, for comparison, an operation of a receiver (related receiver) that does not consider the memory effect will be described. FIG. 4 is a block diagram illustrating a main configuration of the related receiver 30.
The main configuration of the receiver 30 is the same as the main configuration of the receiver 10. Therefore, in FIG. 4, each constituent element of the receiver 30 is given a reference number with “A” after the reference number of the corresponding constituent element of the receiver 10, and redundant description is omitted. .
In the following, as shown in FIG. 4, the input signal of the nonlinear device 22 is x (t) and the output signal is y (t). Further, an input signal to the distortion compensator 11A is y ′ (t), and an output signal of the hard decision unit 12A is x ′ (t). It is also assumed that y ′ (t) = y (t−d) and x ′ (t) = x (t−d) hold. d is the signal delay from the transmitter to the receiver. Further, the distortion characteristic of the nonlinear device 22 (distortion characteristic of the nonlinear distortion) is a k, and the compensation coefficient for the distortion compensation unit 11A to perform distortion compensation is c k .

非線形デバイス22の非線形歪みだけを考慮した場合、非線形デバイス22の出力信号y(t)は、以下の式(4)で表される。

Figure 2016015612
誤差検出部13Aは、硬判定部12Aの出力信号(x’(t))と歪み補償部11Aの出力信号(Ck*y’(t))との誤差を検出する。
補償係数算出部14Aは、誤差検出部13Aの検出結果に基づき、以下の式(5)を満たす補償係数ckを、例えば、LMS(Least Squares Method)を用いて算出する。
Figure 2016015612
補償係数算出部14Aが算出した補償係数ckを用いて歪み補償を行なうことで、非線形デバイス22の歪み特性の逆特性を受信信号y’(t)に与えることができる。その結果、受信信号y’(t)に含まれる非線形歪みを補償することができる。 When only the nonlinear distortion of the nonlinear device 22 is considered, the output signal y (t) of the nonlinear device 22 is expressed by the following equation (4).
Figure 2016015612
The error detector 13A detects an error between the output signal (x ′ (t)) of the hard decision unit 12A and the output signal (C k * y ′ (t)) of the distortion compensator 11A.
The compensation coefficient calculation unit 14A calculates a compensation coefficient ck satisfying the following equation (5) based on the detection result of the error detection unit 13A using, for example, LMS (Least Squares Method).
Figure 2016015612
By performing distortion compensation using the compensation coefficient ck calculated by the compensation coefficient calculation unit 14A, the inverse characteristic of the distortion characteristic of the nonlinear device 22 can be given to the received signal y ′ (t). As a result, nonlinear distortion included in the received signal y ′ (t) can be compensated.

図5は、歪み補償部11Aの構成を示す図である。なお、図5においては、K=4であるとする。この場合、補償係数算出部14Aは、4つの補償係数c0,c1,c2,c3を算出する。また、図5においては、時刻t0の状態を示している。
図5に示す歪み補償部11Aは、絶対値回路(ABS)201と、乗算器202〜208と、加算器209とを有する。
受信信号y’(t)は、ABS201および乗算器202,203に入力される。また、乗算器202,204,206,208にはそれぞれ、補償係数C0,C1,C2,C3が入力される。
ABS201は、受信信号y’(t0)の絶対値を求め、求めた絶対値を乗算器203,205,207に出力する。
乗算器202は、受信信号y’(t0)と補償係数C0とを乗算し、乗算結果(C0y’(t0))を加算器209に出力する。
乗算器203は、受信信号y’(t0)とABS201の出力(|y’(t0)|)とを乗算し、乗算結果(y’(t0)|y’(t0)|)を乗算器204,205に出力する。
乗算器204は、乗算器203の出力(y’(t0)|y’(t0)|)と補償係数C1とを乗算し、乗算結果(C1y’(t0)|y’(t0)|)を加算器209に出力する。
乗算器205は、ABS201の出力(|y’(t0)|)と乗算器203の出力(y’(t0)|y’(t0)|)とを乗算し、乗算結果(y’(t0)|y’(t0)|2)を乗算器206,207に出力する。
乗算器206は、乗算器205の出力(y’(t0)|y’(t0)|2)と補償係数C2とを乗算し、乗算結果(C2y’(t0)|y’(t0)|2)を加算器209に出力する。
乗算器207は、ABS201の出力(|y’(t0)|)と乗算器205の出力(y’(t0)|y’(t0)|2)とを乗算し、乗算結果(y’(t0)|y’(t0)|3)を乗算器208に出力する。
乗算器208は、乗算器207の出力(y’(t0)|y’(t0)|3)と補償係数C3とを乗算し、乗算結果(C3y’(t0)|y’(t0)|3)を加算器209に出力する。
加算器209は、乗算器202の出力(c0y’(t0))と、乗算器204の出力(c1y(t0)’|y’(t0)|)と、乗算器206の出力(c2y’(t0)|y’(t0)|2)と、乗算器208の出力(c3y’(t0)|y’(t0)|3)とを加算(Σck*y’(t0))する。そして、加算器209は、加算結果を硬判定部12Aに出力する。
FIG. 5 is a diagram illustrating a configuration of the distortion compensator 11A. In FIG. 5, it is assumed that K = 4. In this case, the compensation coefficient calculation unit 14A calculates four compensation coefficients c 0 , c 1 , c 2 , and c 3 . FIG. 5 shows a state at time t 0 .
The distortion compensation unit 11A illustrated in FIG. 5 includes an absolute value circuit (ABS) 201, multipliers 202 to 208, and an adder 209.
Received signal y ′ (t) is input to ABS 201 and multipliers 202 and 203. Further, compensation coefficients C 0 , C 1 , C 2 , and C 3 are input to the multipliers 202, 204, 206, and 208, respectively.
The ABS 201 obtains the absolute value of the received signal y ′ (t 0 ) and outputs the obtained absolute value to the multipliers 203, 205, and 207.
Multiplier 202 multiplies reception signal y ′ (t 0 ) by compensation coefficient C 0 and outputs the multiplication result (C 0 y ′ (t 0 )) to adder 209.
The multiplier 203 multiplies the received signal y ′ (t 0 ) by the output (| y ′ (t 0 ) |) of the ABS 201 and multiplies the result (y ′ (t 0 ) | y ′ (t 0 ) |). Is output to the multipliers 204 and 205.
The multiplier 204 multiplies the output (y ′ (t 0 ) | y ′ (t 0 ) |) of the multiplier 203 by the compensation coefficient C 1, and the multiplication result (C 1 y ′ (t 0 ) | y ′). (T 0 ) |) is output to the adder 209.
The multiplier 205 multiplies the output of the ABS 201 (| y ′ (t 0 ) |) and the output of the multiplier 203 (y ′ (t 0 ) | y ′ (t 0 ) |), and the multiplication result (y ′ (T 0 ) | y ′ (t 0 ) | 2 ) is output to the multipliers 206 and 207.
The multiplier 206 multiplies the output (y ′ (t 0 ) | y ′ (t 0 ) | 2 ) of the multiplier 205 by the compensation coefficient C 2, and the multiplication result (C 2 y ′ (t 0 ) | y '(T 0 ) | 2 ) is output to the adder 209.
The multiplier 207 multiplies the output of the ABS 201 (| y ′ (t 0 ) |) and the output of the multiplier 205 (y ′ (t 0 ) | y ′ (t 0 ) | 2 ), and the multiplication result (y '(T 0 ) | y' (t 0 ) | 3 ) is output to the multiplier 208.
The multiplier 208 multiplies the output (y ′ (t 0 ) | y ′ (t 0 ) | 3 ) of the multiplier 207 by the compensation coefficient C 3, and the multiplication result (C 3 y ′ (t 0 ) | y '(T 0 ) | 3 ) is output to the adder 209.
The adder 209 includes an output from the multiplier 202 (c 0 y ′ (t 0 )), an output from the multiplier 204 (c 1 y (t 0 ) ′ | y ′ (t 0 ) |), and a multiplier 206. Output (c 2 y ′ (t 0 ) | y ′ (t 0 ) | 2 ) and the output of multiplier 208 (c 3 y ′ (t 0 ) | y ′ (t 0 ) | 3 ) (Σc k * y ′ (t 0 )). Then, the adder 209 outputs the addition result to the hard decision unit 12A.

上述したように、メモリ効果に起因して、ある時刻における非線形デバイス22の出力信号は、その時刻よりも過去の非線形デバイス22の入力信号の影響を受ける。受信機30においては、過去の非線形デバイス22への入力を考慮した歪み補償が行われていないため、メモリ効果に起因する歪みを補償することができない。   As described above, due to the memory effect, the output signal of the non-linear device 22 at a certain time is affected by the input signal of the non-linear device 22 past that time. In the receiver 30, distortion due to the memory effect cannot be compensated because distortion compensation considering the past input to the nonlinear device 22 is not performed.

次に、受信機10の動作について説明する。なお、以下では、図1に示すように、非線形デバイス22の歪み特性は、メモリ効果に起因する歪みも含めたamkであるとする。また、歪み補償部11が歪み補償を行なうための補償係数をcmkとする。
メモリ効果に起因する歪みも考慮した場合、非線形デバイス22の出力信号y’(t)は、以下の式(6)で表される。

Figure 2016015612
誤差検出部13は、硬判定部12の出力信号(x’(t))と歪み補償部11の出力信号(Cmk*y’(t))との誤差を検出する。 Next, the operation of the receiver 10 will be described. In the following, as shown in FIG. 1, it is assumed that the distortion characteristic of the nonlinear device 22 is a mk including distortion caused by the memory effect. Further, a compensation coefficient for the distortion compensation unit 11 to perform distortion compensation is assumed to be cmk .
In consideration of distortion caused by the memory effect, the output signal y ′ (t) of the nonlinear device 22 is expressed by the following equation (6).
Figure 2016015612
The error detector 13 detects an error between the output signal (x ′ (t)) of the hard decision unit 12 and the output signal (C mk * y ′ (t)) of the distortion compensator 11.

補償係数算出部14は、誤差検出部13の検出結果に基づき、受信信号y’(t)に、非線形デバイス22の歪み特性amkの逆特性が歪み補償部11で与えられるように、補償係数cmkを算出し、算出した補償係数cmkを補償係数記録部15に記録させる。なお、補償係数算出部14は、例えば、LMSを用いて、補償係数Cmkを算出する。歪み補償部11は、補償係数記録部15に記録されている補償係数Cmkを用いて歪み補償を行なう。 Based on the detection result of the error detection unit 13, the compensation coefficient calculation unit 14 makes the compensation coefficient so that the inverse characteristic of the distortion characteristic a mk of the nonlinear device 22 is given to the received signal y ′ (t) by the distortion compensation unit 11. c mk is calculated, and the calculated compensation coefficient c mk is recorded in the compensation coefficient recording unit 15. The compensation coefficient calculation unit 14 calculates the compensation coefficient C mk using, for example, LMS. The distortion compensation unit 11 performs distortion compensation using the compensation coefficient C mk recorded in the compensation coefficient recording unit 15.

図6は、歪み補償部11の構成を示す図である。図6においては、M=K=4であるとする。この場合、補償係数算出部14は、補償係数C00〜C03,C10〜C13,C20〜C23,C30〜C33を算出する。なお、図6は、時刻t0の状態を示している。
図6に示す歪み補償部11は、複数の単位歪み補償回路110(110−0〜110−3)と、複数の遅延器120(120−1〜120−3)と、加算器130とを有する。
単位歪み補償回路110−0と単位歪み補償回路110−1とは、遅延器120−1を介して接続されている。単位歪み補償回路110−1と単位歪み補償回路110−2とは、遅延器120−2を介して接続されている。単位歪み補償回路110−2と単位歪み補償回路110−3とは、遅延器120−3を介して接続されている。
FIG. 6 is a diagram illustrating a configuration of the distortion compensation unit 11. In FIG. 6, it is assumed that M = K = 4. In this case, the compensation coefficient calculation unit 14 calculates compensation coefficients C 00 to C 03 , C 10 to C 13 , C 20 to C 23 , and C 30 to C 33 . FIG. 6 shows a state at time t 0 .
The distortion compensation unit 11 illustrated in FIG. 6 includes a plurality of unit distortion compensation circuits 110 (110-0 to 110-3), a plurality of delay devices 120 (120-1 to 120-3), and an adder 130. .
The unit distortion compensation circuit 110-0 and the unit distortion compensation circuit 110-1 are connected via a delay device 120-1. The unit distortion compensation circuit 110-1 and the unit distortion compensation circuit 110-2 are connected via a delay device 120-2. The unit distortion compensation circuit 110-2 and the unit distortion compensation circuit 110-3 are connected via a delay device 120-3.

単位歪み補償回路110−0は、ABS111と、乗算器112〜118と、加算器119とを有する。受信信号y’(t0)は、単位歪み補償回路110−0のABS111、乗算器112および遅延器120−1に入力される。
ABS111、乗算器112〜118、加算器119はそれぞれ、図5に示す歪み補償部11Aの、ABS201、乗算器202〜208、加算器209に対応している。そのため、図6においては、ABS111、乗算器112〜118、加算器119の接続関係(入出力関係)については説明を省略する。
ただし、単位歪み補償回路110−0においては、乗算器112,114,116,118にはそれぞれ、補償係数C00,C01,C02,C03が入力される。補償係数C00,C01,C02,C03は、補償係数算出部14が受信信号y’(t0)に対応して算出した補償係数である。
単位歪み補償回路110−0の加算器119の出力は、以下のようになる。

Figure 2016015612
The unit distortion compensation circuit 110-0 includes an ABS 111, multipliers 112 to 118, and an adder 119. The received signal y ′ (t 0 ) is input to the ABS 111, the multiplier 112, and the delay unit 120-1 of the unit distortion compensation circuit 110-0.
The ABS 111, the multipliers 112 to 118, and the adder 119 correspond to the ABS 201, the multipliers 202 to 208, and the adder 209 of the distortion compensation unit 11A shown in FIG. Therefore, in FIG. 6, the description of the connection relationship (input / output relationship) of the ABS 111, the multipliers 112 to 118, and the adder 119 is omitted.
However, in the unit distortion compensation circuit 110-0, the compensation coefficients C 00 , C 01 , C 02 , and C 03 are input to the multipliers 112, 114, 116, and 118, respectively. The compensation coefficients C 00 , C 01 , C 02 and C 03 are compensation coefficients calculated by the compensation coefficient calculation unit 14 corresponding to the received signal y ′ (t 0 ).
The output of the adder 119 of the unit distortion compensation circuit 110-0 is as follows.
Figure 2016015612

遅延器120−1は、受信信号y’(t0)を、送信機から受信機への信号遅延に相当する時間dだけ遅延させて単位歪み補償回路110−1および遅延器120−2に出力する。上述したように、図6においては、時刻t0の状態を示しているため、単位歪み補償回路110−1および遅延器120−2には、時刻t0よりも時間dだけ過去の時刻t-1における受信信号y’(t-1)が入力される。
単位歪み補償回路110−1の構成は、単位歪み補償回路110−0の構成と同様である。ただし、単位歪み補償回路110−1においては、乗算器112,114,116,118にはそれぞれ、補償係数算出部14が算出した、受信信号y’(t-1)に対応する補償係数C10,C11,C12,C13が入力される。したがって、単位歪み補償回路110−1の加算器119の出力は、以下のようになる。

Figure 2016015612
The delay device 120-1 delays the received signal y ′ (t 0 ) by a time d corresponding to the signal delay from the transmitter to the receiver, and outputs the delayed signal to the unit distortion compensation circuit 110-1 and the delay device 120-2. To do. As described above, since the state at time t 0 is shown in FIG. 6, the unit distortion compensation circuit 110-1 and the delay unit 120-2 have a time t past the time t 0 by the time d than time t 0. received signal y in 1 '(t -1) is input.
The configuration of the unit distortion compensation circuit 110-1 is the same as the configuration of the unit distortion compensation circuit 110-0. However, in the unit distortion compensation circuit 110-1, each of the multipliers 112, 114, 116, and 118 has a compensation coefficient C 10 corresponding to the received signal y ′ (t −1 ) calculated by the compensation coefficient calculation unit 14. , C 11 , C 12 , C 13 are input. Therefore, the output of the adder 119 of the unit distortion compensation circuit 110-1 is as follows.
Figure 2016015612

遅延器120−2は、遅延器120−1の出力信号を時間dだけ遅延させて単位歪み補償回路110−2および遅延器120−3に出力する。上述したように、図6においては、時刻t0の状態を示しているため、単位歪み補償回路110−2および遅延器120−3には、時刻t-1よりも時間dだけ過去の時刻t-2における受信信号y’(t-2)が入力される。
単位歪み補償回路110−2の構成は、単位歪み補償回路110−0の構成と同様である。ただし、単位歪み補償回路110−2においては、乗算器112,114,116,118にはそれぞれ、補償係数算出部14が算出した、受信信号y’(t-2)に対応する補償係数C20,C21,C22,C23が入力される。したがって、単位歪み補償回路110−2の加算器119の出力は、以下のようになる。

Figure 2016015612
Delay device 120-2 delays the output signal of delay device 120-1 by time d and outputs the delayed signal to unit distortion compensation circuit 110-2 and delay device 120-3. As described above, since the state at time t 0 is shown in FIG. 6, the unit distortion compensation circuit 110-2 and the delay device 120-3 have the time t past the time t −1 than the time t −1. the received signal y in -2 '(t -2) is input.
The configuration of the unit distortion compensation circuit 110-2 is the same as the configuration of the unit distortion compensation circuit 110-0. However, in the unit distortion compensation circuit 110-2, each of the multipliers 112, 114, 116, and 118 has a compensation coefficient C 20 corresponding to the received signal y ′ (t −2 ) calculated by the compensation coefficient calculation unit 14. , C 21 , C 22 , C 23 are input. Therefore, the output of the adder 119 of the unit distortion compensation circuit 110-2 is as follows.
Figure 2016015612

遅延器120−3は、遅延器120−2の出力信号を時間dだけ遅延させて単位歪み補償回路110−3に出力する。上述したように、図6においては、時刻t0の状態を示しているため、単位歪み補償回路110−3には、時刻t-2よりも時間dだけ過去の時刻t-3における受信信号y’(t-3)が入力される。
単位歪み補償回路110−3は、遅延器120−2の出力信号(受信信号y’(t-3))と補償係数算出部14が算出した、受信信号y’(t-3)に対応する補償係数補償係数c30〜C33とを乗算し、乗算結果を加算器130に出力する。
単位歪み補償回路110−3の構成は、単位歪み補償回路110−0の構成と同様である。ただし、単位歪み補償回路110−3においては、乗算器112,114,116,118にはそれぞれ、補償係数算出部14が算出した、受信信号y’(t-3)に対応する補償係数C30,C31,C32,C33が入力される。したがって、単位歪み補償回路110−3の加算器119の出力は、以下のようになる。

Figure 2016015612
The delay device 120-3 delays the output signal of the delay device 120-2 by time d and outputs the delayed signal to the unit distortion compensation circuit 110-3. As described above, since the state at time t 0 is shown in FIG. 6, the unit distortion compensation circuit 110-3 receives the received signal y at time t −3 that is past time t −3 from time t −2. '(T -3 ) is input.
Unit distortion compensation circuit 110-3, the output signal (reception signal y delayer 120-2 '(t -3)) and the compensation coefficient calculation unit 14 has calculated, the received signal y' corresponding to (t -3) Compensation coefficient The compensation coefficients c 30 to C 33 are multiplied, and the multiplication result is output to the adder 130.
The configuration of the unit distortion compensation circuit 110-3 is the same as that of the unit distortion compensation circuit 110-0. However, in the unit distortion compensation circuit 110-3, each of the multipliers 112, 114, 116, and 118 has a compensation coefficient C 30 corresponding to the received signal y ′ (t −3 ) calculated by the compensation coefficient calculation unit 14. , C 31 , C 32 , C 33 are input. Therefore, the output of the adder 119 of the unit distortion compensation circuit 110-3 is as follows.
Figure 2016015612

加算器130は、単位歪み補償回路110−0〜110−3の出力を加算し、加算結果を硬判定部12に出力する。加算器130の出力は、以下の式(7)のようになる。

Figure 2016015612
The adder 130 adds the outputs of the unit distortion compensation circuits 110-0 to 110-3 and outputs the addition result to the hard decision unit 12. The output of the adder 130 is expressed by the following equation (7).
Figure 2016015612

式(7)から分かるように、受信機10においては、ある時刻における受信信号だけでなく、その受信信号よりも過去に受信された受信信号も用いて歪み補償が行われている。そのため、メモリ効果に起因する歪みも補償することができる。   As can be seen from equation (7), the receiver 10 performs distortion compensation using not only a received signal at a certain time but also a received signal received in the past from the received signal. For this reason, distortion caused by the memory effect can also be compensated.

なお、補償係数算出部14は、送信機20と受信機10との通信に求められる通信特性や通信路の状態に応じて、M,Kの値を変化させてもよい。例えば、補償係数算出部14は、送信機20と受信機10との通信に、高い通信特性が求められる場合や、通信路の状態が悪い場合には、M,Kを大きい値に設定してもよい。また、補償係数算出部14は、QPSKなどの通信路の状態劣化の影響を受けにくい変調方式が選択されている場合には、M,Kを小さい値に設定してもよい。また、補償係数算出部14は、非線形歪みに起因する信号の劣化が小さく、補償係数の値が小さい場合には、M,Kを小さい値に設定してもよい。
Mの値を変更することで、歪み補償に用いる、過去の受信信号の受信期間が変化する。そのため、Mの値を小さくすると、動作させる単位歪み補償回路110の数が減るので、受信機10の消費電力の低減を図ることができる。また、M,Kの値を小さくすることで、補償係数算出部14で算出する補償係数の数が減るので、処理負荷が減り、消費電力の低減を図ることができる。したがって、M,Kの値を適応的に変更することで、通信特性の劣化を防ぎつつ、受信機10の消費電力の低減を図ることができる。
The compensation coefficient calculation unit 14 may change the values of M and K in accordance with communication characteristics required for communication between the transmitter 20 and the receiver 10 and the state of the communication path. For example, the compensation coefficient calculation unit 14 sets M and K to large values when high communication characteristics are required for communication between the transmitter 20 and the receiver 10 or when the communication path is in a poor state. Also good. In addition, the compensation coefficient calculation unit 14 may set M and K to small values when a modulation method that is not easily affected by the state deterioration of the communication channel such as QPSK is selected. Further, the compensation coefficient calculation unit 14 may set M and K to small values when the signal deterioration due to nonlinear distortion is small and the compensation coefficient value is small.
By changing the value of M, the reception period of the past received signal used for distortion compensation changes. Therefore, if the value of M is reduced, the number of unit distortion compensation circuits 110 to be operated is reduced, so that the power consumption of the receiver 10 can be reduced. Also, by reducing the values of M and K, the number of compensation coefficients calculated by the compensation coefficient calculation unit 14 is reduced, so that the processing load is reduced and the power consumption can be reduced. Therefore, adaptively changing the values of M and K can reduce the power consumption of the receiver 10 while preventing the deterioration of the communication characteristics.

このように、本実施形態の受信機10は、送信機20からの受信信号に対して歪み補償を行い、歪み補償後の信号を出力する歪み補償部11と、歪み補償部11の出力信号に対する硬判定を行ない、硬判定の結果に応じた信号を出力する硬判定部12とを有する。また、受信機10は、補償係数を記録する補償係数記録部15と、歪み補償部11の出力信号と硬判定部12の出力信号との誤差を検出する誤差検出部13と、誤差検出部13が検出した誤差に基づいて補償係数を算出し、補償係数記録部15に記録されている補償係数を算出した補償係数に更新する補償係数算出部14とを有する。
歪み補償部11は、受信信号とその受信信号よりも過去に受信した過去の受信信号と補償係数記録部15に記録されている補償係数とを用いて歪み補償を行なう。
As described above, the receiver 10 of the present embodiment performs distortion compensation on the received signal from the transmitter 20 and outputs a distortion-compensated signal, and the output signal of the distortion compensation unit 11. A hard decision unit 12 that performs a hard decision and outputs a signal corresponding to the result of the hard decision. The receiver 10 also includes a compensation coefficient recording unit 15 that records the compensation coefficient, an error detection unit 13 that detects an error between the output signal of the distortion compensation unit 11 and the output signal of the hard decision unit 12, and the error detection unit 13 A compensation coefficient calculation unit 14 that calculates a compensation coefficient based on the detected error and updates the compensation coefficient recorded in the compensation coefficient recording unit 15 to the calculated compensation coefficient.
The distortion compensator 11 performs distortion compensation using the received signal, a past received signal received earlier than the received signal, and the compensation coefficient recorded in the compensation coefficient recording unit 15.

現在の受信信号だけでなく、過去の受信信号も考慮した歪み補償を行なうことで、非線形歪みだけでなく、メモリ効果に起因する歪みも補償することができるので、通信特性の劣化の抑制効果を高めることができる。   Distortion compensation that takes into account not only the current received signal but also past received signals can compensate not only for nonlinear distortion but also for distortion caused by the memory effect. Can be increased.

(第2の実施形態)
図7は、本発明の第2の実施形態に係る受信機10Aの構成を示すブロック図である。
本実施形態の受信機10Aは、第1の実施形態の受信機10と比較して、硬判定部12と誤差検出部13との間に、ナイキストフィルタ16が追加されている点が異なる。
ナイキストフィルタ16は、硬判定部12の出力信号x’(t)の帯域を制限した信号z’(t)を誤差検出部13に出力する。
図7に示すように、送信機20には、変調部21と非線形デバイス22との間にナイキストフィルタ23が設けられることがある。この場合、非線形デバイス22の入力信号(ナイキストフィルタ23の出力信号)をz(t)とすると、非線形デバイス22の出力信号y(t)は、以下のようになる。

Figure 2016015612
すなわち、ナイキストフィルタ23は、変調部21の出力信号x(t)の帯域を制限して、非線形デバイス22に出力する。
送信機20がナイキストフィルタ23を有する場合、ナイキストフィルタ23と同等の特性を有するナイキストフィルタ16を設け、硬判定部12の出力の帯域を制限して誤差検出部13に入力することで、精度の高い歪み補償が可能となる。 (Second Embodiment)
FIG. 7 is a block diagram showing a configuration of a receiver 10A according to the second embodiment of the present invention.
The receiver 10 </ b> A of the present embodiment is different from the receiver 10 of the first embodiment in that a Nyquist filter 16 is added between the hard decision unit 12 and the error detection unit 13.
The Nyquist filter 16 outputs a signal z ′ (t) obtained by limiting the band of the output signal x ′ (t) of the hard decision unit 12 to the error detection unit 13.
As illustrated in FIG. 7, the transmitter 20 may be provided with a Nyquist filter 23 between the modulation unit 21 and the nonlinear device 22. In this case, if the input signal of the nonlinear device 22 (the output signal of the Nyquist filter 23) is z (t), the output signal y (t) of the nonlinear device 22 is as follows.
Figure 2016015612
That is, the Nyquist filter 23 limits the band of the output signal x (t) of the modulation unit 21 and outputs it to the nonlinear device 22.
When the transmitter 20 includes the Nyquist filter 23, the Nyquist filter 16 having the same characteristics as the Nyquist filter 23 is provided, and the bandwidth of the output of the hard decision unit 12 is limited and input to the error detection unit 13, thereby improving accuracy. High distortion compensation is possible.

このように、本実施形態の受信機10Aは、硬判定部12と誤差検出部13との間にナイキストフィルタ16を有する。
そのため、送信機20における非線形デバイス22への入力信号の帯域制限に合わせて、誤差検出部13への入力の帯域を制限し、より精度の高い補償が可能となる。
As described above, the receiver 10 </ b> A of the present embodiment includes the Nyquist filter 16 between the hard decision unit 12 and the error detection unit 13.
Therefore, the bandwidth of the input to the error detection unit 13 is limited in accordance with the bandwidth limitation of the input signal to the nonlinear device 22 in the transmitter 20, and more accurate compensation is possible.

10,10A 受信機
11 歪み補償部
12 硬判定部
13 誤差検出部
14 補償係数算出部
15 補償係数記録部
16,23 ナイキストフィルタ
110 単位歪み補償回路
111 絶対値回路
112〜118 乗算器
119,130 加算器
120 遅延器
20 送信機
21 変調部
22 非線形デバイス
DESCRIPTION OF SYMBOLS 10,10A Receiver 11 Distortion compensation part 12 Hard decision part 13 Error detection part 14 Compensation coefficient calculation part 15 Compensation coefficient recording part 16,23 Nyquist filter 110 Unit distortion compensation circuit 111 Absolute value circuit 112-118 Multiplier 119,130 Addition Unit 120 delay unit 20 transmitter 21 modulation unit 22 nonlinear device

Claims (10)

送信機から信号を受信すると、該受信信号に対する歪み補償を行い、該歪み補償後の信号を出力する歪み補償部と、
前記歪み補償部の出力信号に対する硬判定を行ない、該硬判定の結果に応じた信号を出力する硬判定部と、
前記歪み補償部の出力信号と前記硬判定部の出力信号との誤差を検出する誤差検出部と、
前記歪み補償部が歪み補償を行なうための補償係数を記録する補償係数記録部と、
前記誤差検出部が検出した誤差に基づいて前記補償係数を算出し、前記補償係数記録部に記録されている補償係数を前記算出した補償係数に更新する補償係数算出部と、を有し、
前記歪み補償部は、前記受信信号と該受信信号よりも過去に受信した過去の受信信号と前記補償係数記録部に記録されている補償係数とを用いて歪み補償を行なうことを特徴とする受信機。
When a signal is received from the transmitter, distortion compensation is performed on the received signal, and a distortion compensation unit that outputs the signal after the distortion compensation;
A hard decision unit that performs a hard decision on the output signal of the distortion compensation unit and outputs a signal according to the result of the hard decision;
An error detection unit for detecting an error between the output signal of the distortion compensation unit and the output signal of the hard decision unit;
A compensation coefficient recording section for recording a compensation coefficient for the distortion compensation section to perform distortion compensation;
A compensation coefficient calculation unit that calculates the compensation coefficient based on the error detected by the error detection unit and updates the compensation coefficient recorded in the compensation coefficient recording unit to the calculated compensation coefficient;
The distortion compensator performs distortion compensation using the received signal, a past received signal received in the past from the received signal, and a compensation coefficient recorded in the compensation coefficient recording unit. Machine.
請求項1記載の受信機において、
前記補償係数算出部は、前記送信機が有する非線形デバイスで生じる歪みをモデル化した多項式を用いて前記補償係数を算出し、前記多項式の次数を、前記送信機と前記受信機との通信に求められる通信特性または前記送信機と前記受信機との間の通信路の状態に基づいて設定することを特徴とする受信機。
The receiver of claim 1, wherein
The compensation coefficient calculation unit calculates the compensation coefficient using a polynomial that models distortion generated in a nonlinear device included in the transmitter, and obtains the degree of the polynomial in communication between the transmitter and the receiver. The receiver is set based on a communication characteristic to be set or a state of a communication path between the transmitter and the receiver.
請求項1または2記載の受信機において、
前記補償係数算出部は、前記歪み補償に用いる前記過去の受信信号の受信期間を、前記送信機と前記受信機との通信に求められる通信特性または前記送信機と前記受信機との間の通信路の状態に基づいて設定することを特徴とする受信機。
The receiver according to claim 1 or 2,
The compensation coefficient calculation unit determines a reception period of the past received signal used for the distortion compensation, a communication characteristic required for communication between the transmitter and the receiver, or communication between the transmitter and the receiver. A receiver set based on a state of a road.
請求項1から3のいずれか1項に記載の受信機において、
前記歪み補償部は、
入力された信号と前記補償係数算出部が算出した補償係数とを乗算し、乗算結果を出力する複数の単位歪み補償回路と、
前記複数の単位歪み補償回路の出力を加算し、該加算後の信号を前記歪み補償後の信号として出力する加算器とを有し、
前記複数の単位歪み補償回路のうち、1つの単位歪み補償回路には前記受信信号が入力され、他の単位歪み補償回路にはそれぞれ、異なる遅延時間で前記受信信号が入力され、
前記補償係数算出部は、前記複数の単位歪み補償回路それぞれに入力される信号に対応する補償係数を算出することを特徴とする受信機。
The receiver according to any one of claims 1 to 3,
The distortion compensator is
A plurality of unit distortion compensation circuits for multiplying the input signal by the compensation coefficient calculated by the compensation coefficient calculator and outputting a multiplication result;
An adder for adding the outputs of the plurality of unit distortion compensation circuits and outputting the signal after the addition as a signal after the distortion compensation;
Of the plurality of unit distortion compensation circuits, the reception signal is input to one unit distortion compensation circuit, and the reception signal is input to each of the other unit distortion compensation circuits with different delay times.
The receiver, wherein the compensation coefficient calculation unit calculates a compensation coefficient corresponding to a signal input to each of the plurality of unit distortion compensation circuits.
請求項1から4のいずれか1項に記載の受信機において、
前記硬判定部と前記誤差検出部との間にナイキストフィルタが設けられ、
前記ナイキストフィルタは、前記硬判定部の出力信号の帯域を制限し、該帯域制限後の信号を前記誤差検出部に出力することを特徴とする受信機。
The receiver according to any one of claims 1 to 4,
A Nyquist filter is provided between the hard decision unit and the error detection unit,
The receiver, wherein the Nyquist filter limits a band of an output signal of the hard decision unit, and outputs the band-limited signal to the error detection unit.
送信機から送信されてきた信号を受信する受信機における歪み補償方法であって、
前記送信機から信号を受信すると、該受信信号に対する歪み補償を行い、
前記歪み補償後の信号に対する硬判定を行ない、
前記歪み補償後の信号と前記硬判定の結果に応じた信号との誤差を検出し、
前記歪み補償を行なうための補償係数を記録し、
前記検出した誤差に基づいて、前記歪み補償を行なうための補償係数を算出し、前記記録している補償係数を前記算出した補償係数に更新し、
前記受信信号と該受信信号よりも過去に受信した過去の受信信号と記録している補償係数とに基づいて前記歪み補償を行うことを特徴とする歪み補償方法。
A distortion compensation method in a receiver for receiving a signal transmitted from a transmitter,
When receiving a signal from the transmitter, perform distortion compensation for the received signal,
Make a hard decision on the signal after distortion compensation,
Detecting an error between the signal after the distortion compensation and the signal according to the result of the hard decision;
Record a compensation coefficient for performing the distortion compensation,
Based on the detected error, calculate a compensation coefficient for performing the distortion compensation, update the recorded compensation coefficient to the calculated compensation coefficient,
A distortion compensation method, wherein the distortion compensation is performed based on the received signal, a past received signal received earlier than the received signal, and a recorded compensation coefficient.
請求項6記載の歪み補償方法において、
前記送信機が有する非線形デバイスで生じる歪みをモデル化した多項式を用いて前記補償係数を算出し、前記多項式の次数を、前記送信機と前記受信機との通信に求められる通信特性または前記送信機と前記受信機との間の通信路の状態に基づいて設定することを特徴とする歪み補償方法。
The distortion compensation method according to claim 6, wherein
The compensation coefficient is calculated using a polynomial that models distortion generated in a nonlinear device included in the transmitter, and the degree of the polynomial is determined as communication characteristics required for communication between the transmitter and the receiver or the transmitter. A distortion compensation method is set based on a state of a communication path between the receiver and the receiver.
請求項6または7記載の歪み補償方法において、
前記歪み補償に用いる前記過去の受信信号の受信期間を、前記送信機と前記受信機との通信に求められる通信特性または前記送信機と前記受信機との間の通信路の状態に基づいて設定することを特徴とする歪み補償方法。
The distortion compensation method according to claim 6 or 7,
The reception period of the past received signal used for the distortion compensation is set based on communication characteristics required for communication between the transmitter and the receiver or a state of a communication path between the transmitter and the receiver. And a distortion compensation method.
請求項6から8のいずれか1項に記載の歪み補償方法において、
前記受信機には、
入力された信号と前記補償係数算出部が算出した補償係数とを乗算し、乗算結果を出力する複数の単位歪み補償回路と、
前記複数の単位歪み補償回路の出力を加算し、該加算後の信号を前記歪み補償後の信号として出力する加算器とが設けられ、
前記複数の単位歪み補償回路のうち、1つの単位歪み補償回路には前記受信信号を入力し、他の単位歪み補償回路にはそれぞれ、異なる遅延時間で前記受信信号を入力し、
前記複数の単位歪み補償回路それぞれに入力される信号に対応する補償係数を算出することを特徴とする歪み補償方法。
The distortion compensation method according to any one of claims 6 to 8,
The receiver includes
A plurality of unit distortion compensation circuits for multiplying the input signal by the compensation coefficient calculated by the compensation coefficient calculator and outputting a multiplication result;
An adder that adds the outputs of the plurality of unit distortion compensation circuits and outputs the signal after the addition as a signal after the distortion compensation;
Of the plurality of unit distortion compensation circuits, the reception signal is input to one unit distortion compensation circuit, and the reception signal is input to each of the other unit distortion compensation circuits with different delay times.
A distortion compensation method for calculating a compensation coefficient corresponding to a signal input to each of the plurality of unit distortion compensation circuits.
請求項6から9のいずれか1項に記載の歪み補償方法において、
前記硬判定の結果に応じた信号の帯域をナイキストフィルタにより制限し、該帯域制限後の信号と前記歪み補償後の信号との誤差を検出することを特徴とする歪み補償方法。
The distortion compensation method according to any one of claims 6 to 9,
A distortion compensation method, wherein a band of a signal corresponding to the result of the hard decision is limited by a Nyquist filter, and an error between the signal after the band limitation and the signal after the distortion compensation is detected.
JP2014136540A 2014-07-02 2014-07-02 Receiver and distortion compensation method Pending JP2016015612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014136540A JP2016015612A (en) 2014-07-02 2014-07-02 Receiver and distortion compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136540A JP2016015612A (en) 2014-07-02 2014-07-02 Receiver and distortion compensation method

Publications (1)

Publication Number Publication Date
JP2016015612A true JP2016015612A (en) 2016-01-28

Family

ID=55231505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136540A Pending JP2016015612A (en) 2014-07-02 2014-07-02 Receiver and distortion compensation method

Country Status (1)

Country Link
JP (1) JP2016015612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037735A (en) * 2016-08-29 2018-03-08 Nttエレクトロニクス株式会社 Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037735A (en) * 2016-08-29 2018-03-08 Nttエレクトロニクス株式会社 Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device

Similar Documents

Publication Publication Date Title
JP3707549B2 (en) Transmitter
JP6054739B2 (en) Distortion compensation apparatus and distortion compensation method
JP5751056B2 (en) Distortion compensation apparatus, transmitter, and distortion compensation method
JPWO2003103166A1 (en) Distortion compensation device
JP4619827B2 (en) Distortion compensation device
JP6256187B2 (en) Decision feedback equalizer
JP2010136123A (en) Distortion compensating apparatus
US9450544B2 (en) Pre-distortion method, associated apparatus and non-transitory machine readable medium
JP5707999B2 (en) Distortion compensation apparatus, transmitter, and distortion compensation method
JP5505082B2 (en) Receiver, linearizer, and distortion compensation method
US9178825B2 (en) Data processing method and apparatus
JP6340207B2 (en) Nonlinear distortion detector and distortion compensation power amplifier
US9438177B2 (en) Pre-distortion method and associated apparatus and non-transitory machine readable medium
JP2019201347A (en) Distortion compensation device and distortion compensation method
JP2009194432A (en) Amplifier circuit and wireless communication equipment including the same and computer program
JP2016015612A (en) Receiver and distortion compensation method
JP5387445B2 (en) Predistortion compensation circuit and memory effect distortion compensation method for power amplifier
JP2017147667A (en) Signal compensation system, signal compensation execution system, and signal compensation coefficient calculation method
JP5115976B2 (en) Predistorter
KR101105903B1 (en) Apparatus and method for digital predistortion using adaptive noise cancelation
KR101204964B1 (en) Predistortion apparatus and method for linearizing the local oscillator coupling effect and the power amplifier nonlinearity
JP7393741B2 (en) Distortion compensation device, distortion compensation method, computer program, and communication device
JP2014168114A (en) Distortion compensation device and distortion compensation method
KR102097521B1 (en) High-frequency amplifier and method of compensating distortion
JP2006148691A (en) Distortion compensation device