JP2016015295A - Heat-resistant insulation wire, and electrodeposition liquid used for formation of insulating layer of the same - Google Patents

Heat-resistant insulation wire, and electrodeposition liquid used for formation of insulating layer of the same Download PDF

Info

Publication number
JP2016015295A
JP2016015295A JP2014138113A JP2014138113A JP2016015295A JP 2016015295 A JP2016015295 A JP 2016015295A JP 2014138113 A JP2014138113 A JP 2014138113A JP 2014138113 A JP2014138113 A JP 2014138113A JP 2016015295 A JP2016015295 A JP 2016015295A
Authority
JP
Japan
Prior art keywords
insulating layer
heat
particles
resistant
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014138113A
Other languages
Japanese (ja)
Other versions
JP2016015295A5 (en
JP6001014B2 (en
Inventor
慎太郎 飯田
Shintaro Iida
慎太郎 飯田
礼子 泉
Reiko Izumi
礼子 泉
桜井 英章
Hideaki Sakurai
英章 桜井
研 林井
Ken HAYASHII
研 林井
桂子 芦田
Keiko Ashida
桂子 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2014138113A priority Critical patent/JP6001014B2/en
Publication of JP2016015295A publication Critical patent/JP2016015295A/en
Publication of JP2016015295A5 publication Critical patent/JP2016015295A5/ja
Application granted granted Critical
Publication of JP6001014B2 publication Critical patent/JP6001014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant insulation wire having remarkably excellent heat resistance in a surface layer part of an insulating layer; and an electrodeposition liquid for forming the insulating layer.SOLUTION: An insulation wire has a heat-resistant insulating layer. Heat-resistant particles are contained in the insulating layer. The heat-resistant particles are densely arranged in a surface layer part of the insulating layer: For example, the amount of the heat-resistant particles contained in the part up to 0.5 μm from the surface of the insulating layer is two times or more of the amount of the heat-resistant particles contained in the central part of the insulating layer. An electrodeposition liquid for formation of the insulating layer is obtained by dispersing heat-resistant particles in a suspension having resin particles dispersed therein, and has a viscosity of 100 cP or less and a turbidity of 1 mg/L or more.

Description

本発明は、耐熱性の絶縁層を有する絶縁電線と該絶縁層を形成する電着液に関する。 The present invention relates to an insulated wire having a heat-resistant insulating layer and an electrodeposition liquid for forming the insulating layer.

絶縁電線はマグネットコイルなどに広く用いられている。絶縁電線の絶縁層を形成する方法として浸漬法と電着法が知られている。浸漬法は絶縁電線の心材になる導電性の線材を樹脂ワニス等の塗料に浸漬して引き上げ、乾燥させて線材表面に絶縁被覆を形成する方法である。電着法は上記線材を樹脂ワニス等の塗料成分を含む電着液に入れ、該線材を陽極あるいは陰極にして通電し、該線材表面に塗料成分を電着させた後に焼付処理して絶縁層を形成する方法である(特許文献1、特許文献2参照)。
浸漬法は平角電線の角部に塗料が付着し難く、角部の層厚が平坦部の層厚に比べて薄くなるという欠点がある。一方、電着法では平角電線の角部にも塗料が十分に電着するので角部にも平坦部と同じもしくはそれ以上の絶縁層を形成できる利点がある。
Insulated wires are widely used for magnet coils and the like. An immersion method and an electrodeposition method are known as methods for forming an insulating layer of an insulated wire. The dipping method is a method of forming an insulating coating on the surface of a wire by dipping a conductive wire used as a core material of an insulated wire in a paint such as a resin varnish, lifting it, and drying it. In the electrodeposition method, the wire is placed in an electrodeposition liquid containing a paint component such as a resin varnish, the electrode is energized with the wire as an anode or a cathode, and the paint component is electrodeposited on the surface of the wire, followed by baking treatment to form an insulating layer. (Refer to Patent Document 1 and Patent Document 2).
The dipping method has a drawback in that the paint hardly adheres to the corners of the flat electric wire, and the layer thickness of the corners becomes thinner than the layer thickness of the flat part. On the other hand, the electrodeposition method has an advantage that an insulating layer equal to or more than the flat portion can be formed at the corner portion because the coating is sufficiently electrodeposited at the corner portion of the flat electric wire.

近年、広範な用途に対応するために耐電圧強度や耐熱性に優れた絶縁電線が求められており、絶縁層の耐熱性を高める手段として、絶縁層の樹脂中に金属酸化物微粒子やシリカ微粒子を含有させるエナメル線用塗料が知られている(特許文献3)。 In recent years, there has been a demand for insulated wires having excellent withstand voltage strength and heat resistance in order to support a wide range of applications, and as a means to increase the heat resistance of the insulating layer, metal oxide fine particles and silica fine particles are contained in the resin of the insulating layer. A coating material for enameled wire containing bismuth is known (Patent Document 3).

しかし、特許文献3に記載されている塗料は浸漬法用であり、開示されている塗料の液組成や液状態のものでは電着法に用いることができない。浸漬法では所望の層厚に達するため何度も浸漬と乾燥を繰り返す必要があり、例えば、実用に供される程度の層厚35μmの被覆を形成するために7回浸漬を繰り返している。このため生産性が低い。さらに浸漬法は平角線材では角部の層厚が平坦部に比べて薄くなる欠点を解消できない。また樹脂や酸化物微粒子の溶媒・分散媒として有機溶剤を使用しているため環境負荷が大きい。 However, the paint described in Patent Document 3 is for the dipping method, and cannot be used for the electrodeposition method with the liquid composition or liquid state of the disclosed paint. In the dipping method, it is necessary to repeat dipping and drying many times in order to reach a desired layer thickness. For example, dipping is repeated seven times in order to form a coating having a layer thickness of 35 μm that is practically used. For this reason, productivity is low. Further, the dipping method cannot solve the disadvantage that the layer thickness of the corner portion becomes thinner than that of the flat portion in the flat wire. In addition, since an organic solvent is used as a solvent / dispersion medium for resin and oxide fine particles, the environmental load is large.

さらに浸漬法では、絶縁層にシリカ微粒子を含有させる場合、シリカ微粒子を含む塗料に浸漬を繰り返すので各層ごとにシリカ微粒子が含まれることになり、絶縁層全体にシリカ微粒子が分散された状態になる。しかし、高温下で最も熱に曝されるのは絶縁層表面であるため、絶縁層表面付近のシリカ微粒子が少ないと絶縁層表面が損傷を受けやすくなる。 Further, in the immersion method, when silica fine particles are contained in the insulating layer, since the immersion is repeated in the paint containing the silica fine particles, the silica fine particles are included in each layer, and the silica fine particles are dispersed throughout the insulating layer. . However, since the surface of the insulating layer is most exposed to heat at a high temperature, the surface of the insulating layer is likely to be damaged if there are few silica particles near the surface of the insulating layer.

特開昭62−037396号公報JP 62-037396 A 特開平03−241609号公報Japanese Patent Laid-Open No. 03-241609 特開2001−307557号公報JP 2001-307557 A

本発明は、従来の浸漬法による絶縁電線およびその製造方法における上記問題を解決したものであり、絶縁層表面付近の耐熱性が格段に優れた耐熱性絶縁電線と該絶縁層を形成する電着液を提供する。 The present invention solves the above-mentioned problems in the conventional insulated wire by the dipping method and the method for producing the same, and has a heat-resistant insulated wire with excellent heat resistance in the vicinity of the surface of the insulating layer and electrodeposition for forming the insulating layer. Provide liquid.

本発明は以下の構成を有する耐熱性絶縁電線とその電着液に関する。
〔1〕耐熱性絶縁層を有する絶縁電線であって、該絶縁層中に耐熱性粒子を含有し、該耐熱性粒子が上記絶縁層の表面層厚部分に密集していることを特徴とする耐熱性絶縁電線。
〔2〕上記絶縁層の表面から0.5μmの層厚部分に耐熱性粒子が密集している上記[1]に記載する耐熱性絶縁電線。
〔3〕上記絶縁層の表面から0.5μmの層厚部分に含まれる耐熱性粒子の量が、該絶縁層の中央部分に含まれる耐熱性粒子の量の2倍以上である上記[1]または上記[2]に記載する耐熱性絶縁電線。
〔4〕請求項1に記載する上記絶縁層の形成に用いる電着液であって、樹脂粒子が分散した懸濁液に耐熱性粒子を分散させてなり、粘度100cP以下であって濁度1mg/L以上であることを特徴とする絶縁層形成用電着液。
〔5〕上記樹脂粒子の含有量が1〜30質量%であって、該樹脂粒子100質量部に対して上記耐熱性粒子が1〜100質量部含有されている上記[4]に記載する絶縁層形成用電着液。
〔6〕上記樹脂粒子の平均粒子径が1μm以下であり、上記耐熱性粒子の平均粒子径が500nm以下である上記[4]または上記[5]に記載する絶縁層形成用電着液。
〔7〕上記絶縁層の耐軟化温度上昇率が1.2以上の絶縁層を形成する上記[4]〜上記[6]の何れかに記載する絶縁層形成用電着液。
〔8〕上記樹脂粒子がアクリル樹脂、ポリエステルイミド樹脂、ポリイミド樹脂、またはポリアミドイミド樹脂である上記[5]〜上記[7]の何れかに記載する絶縁層形成用電着液。
〔9〕上記耐熱性粒子が金属酸化物微粒子またはシリカ微粒子の少なくとも一種である上記[5]〜上記[8]の何れかに記載する絶縁層形成用電着液。
The present invention relates to a heat-resistant insulated wire having the following configuration and an electrodeposition solution thereof.
[1] An insulated wire having a heat-resistant insulating layer, wherein the insulating layer contains heat-resistant particles, and the heat-resistant particles are densely packed in the surface layer thickness portion of the insulating layer. Heat resistant insulated wire.
[2] The heat-resistant insulated wire according to [1], wherein heat-resistant particles are concentrated in a layer thickness portion of 0.5 μm from the surface of the insulating layer.
[3] The above [1], wherein the amount of heat-resistant particles contained in a layer thickness portion of 0.5 μm from the surface of the insulating layer is at least twice the amount of heat-resistant particles contained in the central portion of the insulating layer. Or the heat resistant insulated wire as described in said [2].
[4] An electrodeposition liquid used for forming the insulating layer according to claim 1, wherein heat-resistant particles are dispersed in a suspension in which resin particles are dispersed, and has a viscosity of 100 cP or less and a turbidity of 1 mg. An electrodeposition liquid for forming an insulating layer, characterized by being not less than / L.
[5] The insulation according to [4], wherein the content of the resin particles is 1 to 30% by mass, and the heat-resistant particles are contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the resin particles. Electrodeposition liquid for layer formation.
[6] The insulating layer forming electrodeposition liquid as described in [4] or [5] above, wherein the resin particles have an average particle diameter of 1 μm or less and the heat-resistant particles have an average particle diameter of 500 nm or less.
[7] The electrodeposition liquid for forming an insulating layer according to any one of [4] to [6] above, wherein an insulating layer having a softening temperature increase rate of 1.2 or more is formed.
[8] The electrodeposition liquid for forming an insulating layer according to any one of [5] to [7] above, wherein the resin particles are an acrylic resin, a polyesterimide resin, a polyimide resin, or a polyamideimide resin.
[9] The electrodeposition liquid for forming an insulating layer according to any one of [5] to [8] above, wherein the heat-resistant particles are at least one of metal oxide fine particles and silica fine particles.

〔具体的な説明〕
本発明の耐熱性絶縁電線は、耐熱性絶縁層を有する絶縁電線であって、該絶縁層中に耐熱性粒子を含有し、該耐熱粒子が上記絶縁層の表面層厚部分に密集していることを特徴とする絶縁電線である。
[Specific description]
The heat-resistant insulated wire of the present invention is an insulated wire having a heat-resistant insulating layer, containing heat-resistant particles in the insulating layer, and the heat-resistant particles are densely packed in the surface layer thickness portion of the insulating layer. It is an insulated wire characterized by this.

本発明の耐熱性絶縁電線において、上記絶縁層の表面層厚部分とは、該絶縁電線の導電性線材の表面と該絶縁層表面を結んだ垂線上で該絶縁層表面からの距離が0.5μmまでの層厚部分である。なお、一般に絶縁層全体の層厚は概ね2〜50μmであり、通常は3〜30μmである。 In the heat-resistant insulated wire of the present invention, the surface layer thickness portion of the insulating layer is a distance from the surface of the insulating layer on a perpendicular line connecting the surface of the conductive wire of the insulated wire and the surface of the insulating layer. The layer thickness is up to 5 μm. In general, the thickness of the entire insulating layer is approximately 2 to 50 μm, and usually 3 to 30 μm.

本発明の耐熱性絶縁電線は、好ましくは、上記絶縁層の表面から0.5μmの層厚部分に含まれる耐熱性粒子の量が、該絶縁層の中央部分に含まれる耐熱性粒子の量の2倍以上である。該絶縁層の中央部分とは、導電性線材の表面と該絶縁層表面を結んだ垂線上で、該絶縁層全体の層厚Lに対して該絶縁層表面から1/3・Lの位置から2/3・Lの位置までの範囲である。 In the heat-resistant insulated wire of the present invention, preferably, the amount of the heat-resistant particles contained in the layer thickness portion of 0.5 μm from the surface of the insulating layer is the amount of the heat-resistant particles contained in the central portion of the insulating layer. 2 times or more. The central portion of the insulating layer is a vertical line connecting the surface of the conductive wire and the surface of the insulating layer, from the position of 1/3 · L from the surface of the insulating layer with respect to the layer thickness L of the entire insulating layer. It is a range up to a position of 2/3 · L.

本発明の耐熱性絶縁電線の一例を図1に示す。図1は本発明に係る耐熱性絶縁電線の部分断面図である。導電性線材10、図示する例では銅線10を覆う耐熱樹脂製の絶縁層20に耐熱性粒子が含まれている。図中、絶縁層20の内部の白い斑点が耐熱性粒子30である。図示する例の耐熱性粒子30はシリカ微粒子である。図示するように、絶縁層20の表面から0.5μmの層厚部分に白い斑点が密集しており、この部分に耐熱性粒子30が偏在していることが分かる。 An example of the heat-resistant insulated wire of the present invention is shown in FIG. FIG. 1 is a partial sectional view of a heat-resistant insulated wire according to the present invention. The conductive wire 10, in the illustrated example, includes a heat-resistant particle in an insulating layer 20 made of a heat-resistant resin that covers the copper wire 10. In the figure, the white spots inside the insulating layer 20 are the heat-resistant particles 30. The heat-resistant particles 30 in the illustrated example are silica fine particles. As shown in the figure, white spots are concentrated in the 0.5 μm thick portion from the surface of the insulating layer 20, and it can be seen that the heat-resistant particles 30 are unevenly distributed in this portion.

図1に示す断面部分に含まれる元素ついて、エネルギー分散型X線分光分析(以下、EDS分析と云う)による元素分析の結果を図2および図3に示す。 図2は銅線10の表面と該絶縁層20の表面を結んだ垂線上において該絶縁層表面からの距離が0.25μmの位置のEDS分析結果のチャートである。 図3は銅線10の表面と該絶縁層20の表面を結んだ垂線上において該絶縁層表面からの距離が該絶縁層全体の層厚の1/2の位置のEDS分析結果のチャートである。 FIG. 2 and FIG. 3 show the results of elemental analysis by energy dispersive X-ray spectroscopic analysis (hereinafter referred to as EDS analysis) for the elements contained in the cross-sectional portion shown in FIG. FIG. 2 is a chart of an EDS analysis result at a position where the distance from the surface of the insulating layer is 0.25 μm on the vertical line connecting the surface of the copper wire 10 and the surface of the insulating layer 20. FIG. 3 is a chart of the EDS analysis result when the distance from the surface of the insulating layer is a half of the thickness of the entire insulating layer on the vertical line connecting the surface of the copper wire 10 and the surface of the insulating layer 20. .

炭素の強度ピーク(図中C)に対するケイ素の強度ピーク(図中Si)の比(Si/C)は、分析5回の平均値で、図2ではSi/C=20/80であるが、図3ではSi/C=5/95であり、図2に示す該絶縁層の表面層厚部分に含まれるシリカ微粒子量が、図3に示す該絶縁層中央部分に含まれるシリカ微粒子量の約4倍である。 The ratio (Si / C) of the intensity peak of silicon (Si in the figure) to the intensity peak of carbon (C in the figure) is an average of 5 analyzes, and in FIG. 2, Si / C = 20/80, In FIG. 3, Si / C = 5/95, and the amount of silica fine particles contained in the surface layer thickness portion of the insulating layer shown in FIG. 2 is about the amount of silica fine particles contained in the central portion of the insulating layer shown in FIG. 4 times.

本発明の耐熱性絶縁電線は、絶縁層に含まれる耐熱性粒子が該絶縁層の表面層厚部分に密集しており、例えば図示する例では、該絶縁層の表面層厚部分に含まれるシリカ微粒子量は該絶縁層中央部分に含まれるシリカ微粒子量の約4倍であるので、高温下で最も熱に曝される表面層厚部分の耐熱性が高い。このため絶縁層全体に含まれる耐熱性粒子の量が少なくても優れた耐熱性を得ることができる。 In the heat-resistant insulated wire of the present invention, the heat-resistant particles contained in the insulating layer are densely packed in the surface layer thickness portion of the insulating layer. For example, in the illustrated example, the silica contained in the surface layer thickness portion of the insulating layer Since the amount of fine particles is about four times the amount of silica fine particles contained in the central portion of the insulating layer, the heat resistance of the surface layer thickness portion that is most exposed to heat at high temperatures is high. For this reason, even if there is little quantity of the heat resistant particle contained in the whole insulating layer, the outstanding heat resistance can be obtained.

本発明の耐熱性絶縁電線において、上記絶縁層はアクリル樹脂、ポリエステルイミド樹脂、またはポリイミド樹脂などによって形成されており、該絶縁層に含まれる上記耐熱性粒子は金属酸化物微粒子またはシリカ微粒子などである。該金属酸化物は例えばアルミナ、ジルコニアなどである。 In the heat resistant insulated wire of the present invention, the insulating layer is formed of an acrylic resin, a polyesterimide resin, or a polyimide resin, and the heat resistant particles contained in the insulating layer are metal oxide fine particles or silica fine particles. is there. Examples of the metal oxide include alumina and zirconia.

本発明に係る耐熱性絶縁電線の上記絶縁層は、本発明の電着液によって形成することができる。本発明の電着液は樹脂粒子および耐熱性粒子が分散した懸濁液である。本発明の電着液は樹脂粒子が分散した懸濁液に耐熱性粒子を分散させた懸濁液を混合して得ることができる。樹脂粒子懸濁液の分散媒は電着法に用いる液であればよく、水、水-N,Nジメチルホルムアミド、水-Nメチルピロリドン、水-ジメチルスルホキシドなどの水-非プロトン性極性溶媒の混合液などが用いられる。耐熱性粒子懸濁液の分散煤は樹脂粒子懸濁液と相溶性のよい分散媒が用いられる。 The said insulating layer of the heat resistant insulated wire which concerns on this invention can be formed with the electrodeposition liquid of this invention. The electrodeposition liquid of the present invention is a suspension in which resin particles and heat-resistant particles are dispersed. The electrodeposition liquid of the present invention can be obtained by mixing a suspension in which heat-resistant particles are dispersed in a suspension in which resin particles are dispersed. The dispersion medium of the resin particle suspension may be a liquid used in the electrodeposition method, and is a water-aprotic polar solvent such as water, water-N, N dimethylformamide, water-N methylpyrrolidone, water-dimethyl sulfoxide. A mixed solution or the like is used. A dispersion medium having a good compatibility with the resin particle suspension is used for the dispersion of the heat-resistant particle suspension.

本発明の電着液は、樹脂粒子および耐熱性粒子が分散している濁度1mg/L以上、好ましくは濁度10〜600mg/Lの懸濁液である。電着液の濁度が濁度1mg/L未満では液中の樹脂粒子および耐熱性粒子の分散状態が不十分であり、また樹脂粒子や耐熱性粒子の量が不十分であるので十分な厚さの絶縁層を形成することが難しい。本発明の電着液は濁度1mg/L以上であるので液中の樹脂粒子および耐熱性粒子の分散状態が良好であり、十分な量の樹脂粒子および耐熱性粒子を含むので良好な耐熱性を有する絶縁層を形成することができる。 The electrodeposition liquid of the present invention is a suspension having a turbidity of 1 mg / L or more, preferably 10 to 600 mg / L, in which resin particles and heat-resistant particles are dispersed. If the turbidity of the electrodeposition liquid is less than 1 mg / L, the dispersion state of the resin particles and heat-resistant particles in the liquid is insufficient, and the amount of resin particles and heat-resistant particles is insufficient. It is difficult to form an insulating layer. Since the electrodeposition liquid of the present invention has a turbidity of 1 mg / L or more, the dispersion state of the resin particles and heat-resistant particles in the liquid is good, and since it contains a sufficient amount of resin particles and heat-resistant particles, it has good heat resistance. An insulating layer can be formed.

電着法では、電着液に浸漬した導電性線材に通電し、液中の樹脂粒子および耐熱性粒子を該線材表面に電気的に移動させて電着させることによって絶縁層を形成するが、液が固化しないように、電着液は低粘度であることが求められる。電着液の粘度が高すぎると液が固化してしまい成膜に使用することができない。本発明の電着液の粘度は100cP以下であり、粘度0.5〜90cPが好ましい。本発明の電着液は粘度が100cP以下であるので、液が固化することなく良好な絶縁層を形成することができる。 In the electrodeposition method, the conductive wire immersed in the electrodeposition liquid is energized, and the resin particles and heat-resistant particles in the liquid are electrically moved to the surface of the wire to form an insulating layer. The electrodeposition solution is required to have a low viscosity so that the solution does not solidify. If the viscosity of the electrodeposition liquid is too high, the liquid is solidified and cannot be used for film formation. The viscosity of the electrodeposition liquid of the present invention is 100 cP or less, and a viscosity of 0.5 to 90 cP is preferable. Since the electrodeposition liquid of the present invention has a viscosity of 100 cP or less, a good insulating layer can be formed without the liquid solidifying.

一方、浸漬法では絶縁層を形成する塗料が用いられる。この塗料は絶縁電線の導電性線材の表面に塗布されたときに、塗料が流れ落ちないように粘度の高い液が用いられる。一般に浸漬法で用いる被覆形成用塗料の粘度は1000cP以上である。また、浸漬法の被覆形成用塗料の樹脂成分は塗料中に溶解しており、液中に樹脂粒子が分散した懸濁液ではないので、該塗料の濁度は一般に0.01mg/L未満の光透過性の液である。 On the other hand, in the dipping method, a paint for forming an insulating layer is used. When this paint is applied to the surface of the conductive wire of the insulated wire, a highly viscous liquid is used so that the paint does not flow down. In general, the viscosity of the coating forming paint used in the dipping method is 1000 cP or more. In addition, since the resin component of the coating composition for dipping is dissolved in the paint and is not a suspension in which resin particles are dispersed in the liquid, the turbidity of the paint is generally less than 0.01 mg / L. It is a light transmissive liquid.

浸漬法では、具体的には、ポリウレタン樹脂、ポリエステル樹脂、ホルマール樹脂、ポリエステルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂を用いた塗料が用いられており、これらの塗料の粘度は1000cP以上、濁度0.01mg/L未満であり、本発明の絶縁層形成用の電着液とは、液の粘度および濁度が全く異なる。本発明の電着液は浸漬法で用いる絶縁層用塗料に比べて粘度が格段に低い。 Specifically, in the dipping method, paints using polyurethane resin, polyester resin, formal resin, polyesterimide resin, polyamideimide resin, polyimide resin are used, and the viscosity of these paints is 1000 cP or more and turbidity is 0. It is less than 0.01 mg / L, and the viscosity and turbidity of the liquid are completely different from the electrodeposition liquid for forming an insulating layer of the present invention. The electrodeposition liquid of the present invention has a markedly lower viscosity than the coating material for insulating layer used in the dipping method.

本発明の電着液に含まれる樹脂粒子の種類はアクリル樹脂、ポリエステルイミド樹脂、またはポリイミド樹脂などである。また、上記樹脂粒子の平均粒子径は1μm以下が好ましく、10〜100nmがより好ましい。平均粒子径が1μm以下の樹脂粒子を用いれば樹脂粒子の分散安定性が向上する。本発明の電着液に含まれる樹脂粒子の含有量は1〜30質量%が好ましい。本発明の電着液は上記含有量の樹脂粒子を含むので十分な厚さの絶縁層を形成することができる。 The kind of the resin particle contained in the electrodeposition liquid of the present invention is an acrylic resin, a polyesterimide resin, a polyimide resin, or the like. The average particle size of the resin particles is preferably 1 μm or less, and more preferably 10 to 100 nm. If resin particles having an average particle diameter of 1 μm or less are used, the dispersion stability of the resin particles is improved. As for content of the resin particle contained in the electrodeposition liquid of this invention, 1-30 mass% is preferable. Since the electrodeposition liquid of the present invention contains the resin particles having the above content, an insulating layer having a sufficient thickness can be formed.

本発明の電着液には上記樹脂粒子と共に耐熱性粒子が分散している。該耐熱性粒子は金属酸化物微粒子またはシリカ微粒子である。金属酸化物は例えばアルミナ、ジルコニアなどである。該耐熱性粒子を上記樹脂粒子の懸濁液に均一に分散させるには、該懸濁液と相溶性のよい分散媒に予め耐熱性粒子を分散させ、この分散液を樹脂粒子の懸濁液に混合すればよい。 In the electrodeposition liquid of the present invention, heat-resistant particles are dispersed together with the resin particles. The heat-resistant particles are metal oxide fine particles or silica fine particles. Examples of the metal oxide include alumina and zirconia. In order to uniformly disperse the heat-resistant particles in the suspension of the resin particles, the heat-resistant particles are dispersed in advance in a dispersion medium having good compatibility with the suspension, and the dispersion is used as a suspension of the resin particles. To be mixed.

耐熱性粒子は500nm以下のコロイド粒子が好ましく、0.5〜400nmの粒子がより好ましい。上記粒子径のコロイド粒子は液中で沈降せずに分散するので、耐熱性粒子が均一に含まれる耐熱性被覆を形成することができる。 The heat resistant particles are preferably colloidal particles of 500 nm or less, more preferably 0.5 to 400 nm. Since the colloidal particles having the above particle diameter are dispersed without being settled in the liquid, a heat resistant coating in which the heat resistant particles are uniformly contained can be formed.

耐熱性粒子の含有量は上記樹脂粒子100質量部に対して1〜100質量部が好ましい。この含有量が1質量部未満では絶縁層の耐熱性が不十分になり、100質量部を超えると絶縁層の可撓性が低下する。本発明の電着液は上記含有量の耐熱性粒子を含むので十分な耐熱性および可撓性を有する絶縁層を形成することができる。 The content of the heat-resistant particles is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the resin particles. When the content is less than 1 part by mass, the heat resistance of the insulating layer becomes insufficient, and when it exceeds 100 parts by mass, the flexibility of the insulating layer is lowered. Since the electrodeposition liquid of the present invention contains the above-mentioned heat-resistant particles, an insulating layer having sufficient heat resistance and flexibility can be formed.

本発明の電着液を用い、該電着液に浸漬した導電性線材に通電して絶縁層を形成するときの通電条件は一般の電着液を用いた場合と変わらない。例えば、直流電圧5〜100V、電着時間0.1〜30秒、電着液温度5〜40℃で電着を行うことができる。 The energization conditions for forming the insulating layer by energizing the conductive wire immersed in the electrodeposition liquid using the electrodeposition liquid of the present invention are the same as in the case of using a general electrodeposition liquid. For example, electrodeposition can be performed at a DC voltage of 5 to 100 V, an electrodeposition time of 0.1 to 30 seconds, and an electrodeposition liquid temperature of 5 to 40 ° C.

電着後に焼き入れを行う。焼き入れ条件も一般の電着液を用いた場合と変わらない。例えば、焼付け炉に入れ、200〜600℃で、2〜120秒間加熱し、焼付け処理すればよい。 Quenching after electrodeposition. The quenching conditions are the same as when using a general electrodeposition solution. For example, it may be put into a baking furnace, heated at 200 to 600 ° C. for 2 to 120 seconds, and then subjected to baking treatment.

本発明の電着液を用いることによって、表面層厚部分に耐熱性粒子が密集した絶縁層を形成することができる。 By using the electrodeposition liquid of the present invention, an insulating layer in which heat-resistant particles are densely formed on the surface layer thickness portion can be formed.

本発明の耐熱性絶縁電線は、絶縁層の表面部分に耐熱性粒子が密集しているので、高温下で最も熱に曝される絶縁層の表面部分の耐熱性が高い。このため絶縁層全体に含まれる耐熱性粒子の量が少なくても優れた耐熱性を得ることができる。 In the heat-resistant insulated wire of the present invention, since the heat-resistant particles are concentrated on the surface portion of the insulating layer, the heat resistance of the surface portion of the insulating layer that is most exposed to heat at high temperature is high. For this reason, even if there is little quantity of the heat resistant particle contained in the whole insulating layer, the outstanding heat resistance can be obtained.

本発明の電着液は、表面部分に耐熱性粒子が密集した絶縁層を形成することができる。従って、耐軟化温度の高い絶縁被覆電線を得ることができる。具体的には、例えば、絶縁層の耐軟化温度/絶縁層樹脂の耐軟化温度の式によって表される耐軟化温度上昇率が1.2以上、好ましくは1.3〜1.5の耐熱性の絶縁被覆を形成することができる。 The electrodeposition liquid of the present invention can form an insulating layer having heat-resistant particles densely on the surface portion. Therefore, it is possible to obtain an insulation coated electric wire having a high softening temperature. Specifically, for example, the rate of increase in the softening temperature represented by the formula of the softening temperature of the insulating layer / the softening temperature of the insulating layer resin is 1.2 or more, preferably 1.3 to 1.5. Insulating coatings can be formed.

また、本発明の電着液は電着法に用いられるので、所望の層厚を一回の電着処理によって得ることができる。平角電線の角部にも均一に絶縁被覆を形成することができる。さらに、電着液の分散媒として水を用いることができるので、環境に対する負荷が小さい。 In addition, since the electrodeposition liquid of the present invention is used in an electrodeposition method, a desired layer thickness can be obtained by a single electrodeposition process. An insulating coating can be uniformly formed on the corner of the flat electric wire. Furthermore, since water can be used as a dispersion medium for the electrodeposition liquid, the load on the environment is small.

実施例1において形成した絶縁電線の部分断面写真。The partial cross section photograph of the insulated wire formed in Example 1. FIG. 図1の銅線10の表面と該絶縁層20の表面を結んだ垂線上において該絶縁層表面からの距離が0.25μmの位置のEDS分析チャート。2 is an EDS analysis chart at a position where a distance from the surface of the insulating layer is 0.25 μm on a perpendicular line connecting the surface of the copper wire 10 and the surface of the insulating layer 20 in FIG. 1. 図1の銅線10の表面と該絶縁層20の表面を結んだ垂線上において該絶縁層表面からの距離が該絶縁層全体の層厚の1/2の位置のEDS分析チャート。2 is an EDS analysis chart in which the distance from the surface of the insulating layer is a half of the thickness of the entire insulating layer on a perpendicular line connecting the surface of the copper wire 10 and the surface of the insulating layer 20 in FIG.

本発明の実施例を比較例と共に以下に示す。
〔実施例1〜実施例13〕
平均粒子径50nmのアクリル樹脂粒子を水に分散した樹脂粒子濃度20質量%の水懸濁液に、平均粒子径10nmまたは平均粒子径360nmのシリカ粒子を水に分散したシリカ粒子濃度30質量%および水70質量%のシリカゾルを混合して水分散型電着液を調製した。該電着液中の樹脂粒子100質量部に対するシリカ粒子の質量部を表1に示す。該電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表1に示す。
なお、樹脂粒子濃度は表1の値になるように該電着液の水量を調整した。アクリル樹脂粒子およびシリカ粒子の平均粒子径はHORIBA社の動的光散乱式粒径分布測定装置(LB550)によって測定した。また、電着液の濁度は東京光電社の積分球式濁度計(ANA−148)で測定した。電着液の粘度はJIS(Z8803:2011−6)に従って細管粘度計により測定した。
この電着液を25℃の電着槽に入れ、電着槽にφ0.1mmの銅線を線速15m/minで通過させ、銅線を陽極とし、電着槽を陰極として通電し、銅線表面にアクリル樹脂とシリカ粒子を電着塗装した。電着後にDMFによるミスト処理を行い、これを焼付炉に通過させて加熱温度300℃、加熱時間10秒で焼付処理を行い、厚さ10μmの絶縁層を形成した。この絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を表1に示した。
なお、可撓性はJIS(C3005:2000−4.20.1)に従って自己径巻付後、光学顕微鏡で絶縁層の剥離の有無を調べ、剥離なしを○印、剥離ありを×印で示した。耐軟化温度はJIS(C3216−6:2011−4)に従って測定した。耐軟化温度上昇率は耐軟化温度/絶縁層樹脂の耐軟化温度の式によって求めた。絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は段落〔0013〕に記載したSi/C比率の測定方法と同様にして測定した。
Examples of the present invention are shown below together with comparative examples.
[Examples 1 to 13]
In an aqueous suspension having a resin particle concentration of 20% by mass in which acrylic resin particles having an average particle size of 50 nm are dispersed in water, a silica particle concentration of 30% by mass in which silica particles having an average particle size of 10 nm or an average particle size of 360 nm are dispersed in water and A water-dispersed electrodeposition solution was prepared by mixing 70% by mass of silica sol. Table 1 shows the parts by mass of the silica particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid. Table 1 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles.
The amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 1. The average particle diameters of the acrylic resin particles and the silica particles were measured by a dynamic light scattering particle size distribution analyzer (LB550) manufactured by HORIBA. Moreover, the turbidity of the electrodeposition liquid was measured with an integrating sphere turbidimeter (ANA-148) manufactured by Tokyo Kogyo. The viscosity of the electrodeposition liquid was measured with a capillary viscometer according to JIS (Z8803: 2011-6).
This electrodeposition solution is put into an electrodeposition bath at 25 ° C., a φ0.1 mm copper wire is passed through the electrodeposition bath at a wire speed of 15 m / min, the copper wire is used as an anode, and the electrodeposition bath is used as a cathode. Acrylic resin and silica particles were electrodeposited on the wire surface. After electrodeposition, a mist treatment with DMF was performed, and this was passed through a baking furnace, and a baking treatment was performed at a heating temperature of 300 ° C. for a heating time of 10 seconds to form an insulating layer having a thickness of 10 μm. Table 1 shows the flexibility, softening temperature, softening temperature increase rate, and ratio of the heat-resistant particle amount in the insulating layer surface layer thickness portion to the heat-resistant particle amount in the central portion of the insulating layer.
In addition, after the self-winding in accordance with JIS (C3005: 2000-4.20.1), the flexibility is checked with an optical microscope for the presence or absence of peeling of the insulating layer. It was. The softening temperature was measured according to JIS (C3216-6: 2011-4). The rate of increase in softening temperature was determined by the formula of softening temperature / softening temperature of insulating layer resin. The ratio of the heat-resistant particle amount in the insulating layer surface layer thickness portion to the heat-resistant particle amount in the central portion of the insulating layer was measured in the same manner as the Si / C ratio measurement method described in paragraph [0013].

〔実施例14〜実施例23〕
平均粒子径100nmのジルコニア粒子を水に分散したジルコニア粒子濃度30質量%および水70質量%のジルコニアゾル、または平均粒子径50nmのアルミナ粒子を水に分散したアルミナ粒子濃度30質量%および水70質量%のアルミナゾルを用いた以外は実施例1〜実施例13と同様にして水分散型電着液を調製した。該電着液中の樹脂粒子100質量部に対するジルコニア粒子またはアルミナ粒子の質量部を表2に示す。該電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表2に示す。なお、樹脂粒子濃度は表2の値になるように該電着液の水量を調整した。アクリル樹脂粒子およびシリカ粒子の平均粒子径、電着液の濁度および粘度は実施例1〜実施例13と同様にして測定した。
この電着液を用い、実施例1〜実施例13と同様にして、厚さ10μmの絶縁層を形成した。この絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を表2に示した。可撓性、耐軟化温度、耐軟化温度上昇率は実施例1〜実施例13と同様にして測定した。絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は段落〔0013〕に記載したSi/C比率の測定方法において、実施例14〜実施例18はSiをZrに置き換え、実施例19〜実施例23はSiをAlに置き換えて同様に測定した。
[Examples 14 to 23]
Zirconia sol having a zirconia particle concentration of 30% by mass and water of 70% by mass in which zirconia particles having an average particle size of 100 nm are dispersed in water, or an alumina particle concentration of 30% by mass and 70% by mass in which alumina particles having an average particle size of 50 nm are dispersed in water. A water-dispersed electrodeposition solution was prepared in the same manner as in Examples 1 to 13, except that% alumina sol was used. Table 2 shows the parts by mass of the zirconia particles or the alumina particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid. Table 2 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles. The amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 2. The average particle diameter of the acrylic resin particles and silica particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13.
Using this electrodeposition solution, an insulating layer having a thickness of 10 μm was formed in the same manner as in Examples 1 to 13. Table 2 shows the flexibility, softening temperature, softening temperature increase rate, and ratio of the heat-resistant particle amount in the insulating layer surface layer thickness portion to the heat-resistant particle amount in the central portion of the insulating layer. The flexibility, softening temperature, and softening temperature increase rate were measured in the same manner as in Examples 1 to 13. The ratio of the heat-resistant particle amount in the insulating layer surface layer thickness portion to the heat-resistant particle amount in the central portion of the insulating layer is the Si / C ratio measurement method described in paragraph [0013]. Substituting Zr, Examples 19 to 23 were similarly measured by replacing Si with Al.

〔実施例24〜実施例30〕
平均粒子径200nmのポリエステルイミド樹脂粒子を水に分散した樹脂粒子濃度20質量%の水懸濁液に、平均粒子径10nmのシリカ粒子を水に分散したシリカ粒子濃度30質量%および水70質量%のシリカゾルを混合して水分散型電着液を調製した。該電着液中の樹脂粒子100質量部に対するシリカ粒子の質量部を表3に示す。電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表3に示す。なお、樹脂粒子濃度は表3の値になるように該電着液の水量を調整した。ポリエステルイミド樹脂粒子およびシリカ粒子の平均粒子径、該電着液の濁度および粘度は実施例1〜実施例13と同様にして測定した。
この電着液を用い、実施例1〜実施例13と同様にして、厚さ10μmの絶縁層を形成した。この絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を表3に示した。可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は実施例1〜実施例13と同様にして測定した。
[Examples 24 to 30]
Polyesterimide resin particles having an average particle diameter of 200 nm are dispersed in water in an aqueous suspension having a resin particle concentration of 20% by mass, silica particles having an average particle diameter of 10 nm in silica dispersed in water are 30% by mass and water is 70% by mass. A water-dispersed electrodeposition solution was prepared by mixing the silica sol. Table 3 shows parts by mass of the silica particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid. Table 3 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles. The amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 3. The average particle diameter of the polyesterimide resin particles and silica particles, and the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13.
Using this electrodeposition solution, an insulating layer having a thickness of 10 μm was formed in the same manner as in Examples 1 to 13. Table 3 shows the flexibility, the softening temperature, the softening temperature increase rate, and the ratio of the heat-resistant particle amount in the insulating layer surface layer thickness portion to the heat-resistant particle amount in the central portion of the insulating layer. The ratio of the heat resistant particle amount of the insulating layer surface layer thickness portion to the flexibility, softening temperature, softening temperature rise rate, and heat resistant particle amount of the central portion of the insulating layer is the same as in Examples 1 to 13. It was measured.

〔実施例31〜実施例35〕
平均粒子径400nmのポリイミド樹脂粒子を水に分散した樹脂粒子濃度20質量%の水懸濁液に、平均粒子径10nmのシリカ粒子を水に分散したシリカ粒子濃度30質量%および水70質量%のシリカゾルを混合して水分散型電着液を調製した。該電着液中の樹脂粒子100質量部に対するシリカ粒子の質量部を表3に示す。該電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表3に示す。なお、樹脂粒子濃度は表3の値になるように該電着液の水量を調整した。ポリイミド樹脂粒子およびシリカ粒子の平均粒子径、電着液の濁度および粘度は実施例1〜実施例13と同様にして測定した。
この電着液を用い、実施例1〜実施例13と同様にして、厚さ10μmの絶縁層を形成した。この絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を表3に示した。
なお、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は実施例1〜実施例13と同様にして測定した。
[Examples 31 to 35]
An aqueous suspension having a resin particle concentration of 20% by mass in which polyimide resin particles having an average particle size of 400 nm are dispersed in water, a silica particle having a concentration of 30% by mass in which silica particles having an average particle size of 10 nm are dispersed in water, and 70% by mass of water. Silica sol was mixed to prepare an aqueous dispersion type electrodeposition solution. Table 3 shows parts by mass of the silica particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid. Table 3 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles. The amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 3. The average particle diameter of the polyimide resin particles and silica particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13.
Using this electrodeposition solution, an insulating layer having a thickness of 10 μm was formed in the same manner as in Examples 1 to 13. Table 3 shows the flexibility, the softening temperature, the softening temperature increase rate, and the ratio of the heat-resistant particle amount in the insulating layer surface layer thickness portion to the heat-resistant particle amount in the central portion of the insulating layer.
In addition, the ratio of the heat resistant particle amount of the insulating layer surface layer thickness portion to the flexibility, the softening temperature, the softening temperature increase rate, and the heat resistant particle amount of the central portion of the insulating layer is the same as in Examples 1 to 13. And measured.

〔実施例36〜実施例40〕
平均粒子径300nmのポリアミドイミド樹脂粒子を水に分散した樹脂粒子濃度20質量%の水懸濁液に、平均粒子径10nmのシリカ粒子を水に分散したシリカ粒子濃度30質量%および水70質量%のシリカゾルを混合して水分散型電着液を調製した。該電着液中の樹脂粒子100質量部に対するシリカ粒子の質量部を表4に示す。該電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表4に示す。なお、樹脂粒子濃度は表4の値になるように該電着液の水量を調整した。ポリイミド樹脂粒子およびシリカ粒子の平均粒子径、電着液の濁度および粘度は実施例1〜実施例13と同様にして測定した。
この電着液を用い、実施例1〜実施例13と同様にして、厚さ10μmの絶縁層を形成した。この絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を表4に示した。
なお、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は実施例1〜実施例13と同様にして測定した。
[Examples 36 to 40]
An aqueous suspension having a resin particle concentration of 20% by mass in which polyamideimide resin particles having an average particle size of 300 nm are dispersed in water, a silica particle concentration of 30% by mass and 70% by mass of water having silica particles having an average particle size of 10 nm dispersed in water. A water-dispersed electrodeposition solution was prepared by mixing the silica sol. Table 4 shows parts by mass of the silica particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid. Table 4 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles. The amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 4. The average particle diameter of the polyimide resin particles and silica particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13.
Using this electrodeposition solution, an insulating layer having a thickness of 10 μm was formed in the same manner as in Examples 1 to 13. Table 4 shows the flexibility, softening temperature, softening temperature increase rate, and ratio of the heat-resistant particle amount in the insulating layer surface layer thickness portion to the heat-resistant particle amount in the central portion of the insulating layer.
In addition, the ratio of the heat resistant particle amount of the insulating layer surface layer thickness portion to the flexibility, the softening temperature, the softening temperature increase rate, and the heat resistant particle amount of the central portion of the insulating layer is the same as in Examples 1 to 13. And measured.

実施例1〜実施例40の電着液は、何れも電着液の濁度は30mg/L以上、粘度は100cP以下であり、形成された絶縁層の耐軟化温度は400℃以上であり、耐軟化温度上昇率は1.2以上であって、高い耐熱性を有している。また何れの樹脂種においても、耐熱性粒子の含有量に応じて耐軟化温度および耐軟化温度上昇率が高くなる。なお、実施例8はシリカ粒子の含有量が多いので可撓性試験において絶縁層の剥離が生じた。この結果から耐熱性粒子の量は樹脂粒子100質量部に対して1〜100質量部が好ましい。 In any of the electrodeposition liquids of Examples 1 to 40, the turbidity of the electrodeposition liquid is 30 mg / L or more, the viscosity is 100 cP or less, and the softening temperature of the formed insulating layer is 400 ° C. or more. The softening temperature rise rate is 1.2 or more and has high heat resistance. In any resin type, the softening temperature and the softening temperature increase rate are increased according to the content of the heat-resistant particles. In Example 8, since the content of the silica particles was large, peeling of the insulating layer occurred in the flexibility test. From this result, the amount of the heat-resistant particles is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the resin particles.

〔比較例1〜比較例4〕
平均粒子径50nmのアクリル樹脂粒子、または平均粒子径200nmのポリエステルイミド樹脂粒子、または平均粒子径400nmのポリイミド樹脂粒子、または平均粒子径300nmのポリアミドイミド樹脂粒子をおのおの水に分散した樹脂粒子濃度20質量%の水懸濁液を電着液として用いた。該電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表5に示す。なお、樹脂粒子濃度は表5の値になるように該電着液の水量を調整した。上記樹脂粒子の平均粒子径、電着液の濁度および粘度は実施例1〜実施例13と同様にして測定した。
この電着液を用い、実施例1〜実施例13と同様にして、厚さ10μmの絶縁層を形成した。この絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率を表5に示した。可撓性、耐軟化温度、耐軟化温度上昇率は実施例1〜実施例13と同様にして測定した。
比較例1〜比較例4は電着法によって絶縁層が形成されたが、耐熱性粒子を含まないので、耐軟化温度が上昇せず、耐軟化温度上昇率は何れも1である。
[Comparative Examples 1 to 4]
Resin particle concentration 20 in which acrylic resin particles having an average particle size of 50 nm, polyesterimide resin particles having an average particle size of 200 nm, polyimide resin particles having an average particle size of 400 nm, or polyamideimide resin particles having an average particle size of 300 nm are dispersed in water. A mass% aqueous suspension was used as the electrodeposition solution. Table 5 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles. The amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 5. The average particle diameter of the resin particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13.
Using this electrodeposition solution, an insulating layer having a thickness of 10 μm was formed in the same manner as in Examples 1 to 13. Table 5 shows the flexibility, softening temperature resistance, and softening temperature increase rate of this insulated wire. The flexibility, softening temperature, and softening temperature increase rate were measured in the same manner as in Examples 1 to 13.
In Comparative Examples 1 to 4, the insulating layer was formed by the electrodeposition method, but since it does not contain heat-resistant particles, the softening temperature does not increase and the softening temperature increase rate is 1.

〔比較例5〕
ポリエステルイミド樹脂が溶解した塗料を用い、この塗料を撹拌しながら、平均粒子径10nmのシリカ粒子をキシレンとブタノールの混合液に分散させたシリカゾルを上記塗料に混合し、塗料の樹脂分100質量部に対してシリカ粒子が20質量部になるように分散させた。
該電着液の濁度、粘度、液の状態、樹脂濃度を表5に示す。なお、樹脂粒子濃度は表5の値になるように該電着液のキシレンとブタノール量を調整した。電着液の濁度および粘度は実施例1〜実施例13と同様にして測定した。この電着液を用い、実施例1〜実施例13と同様にして絶縁層の形成を試みたが、電着液の濁度0.01mg/L未満および粘度1000cPを超えるので、電着によって絶縁層は形成されなかった。
[Comparative Example 5]
A silica sol in which silica particles having an average particle size of 10 nm are dispersed in a mixed solution of xylene and butanol is mixed with the above paint while stirring the paint, and the paint content is 100 parts by mass. The silica particles were dispersed so as to be 20 parts by mass.
Table 5 shows the turbidity, viscosity, liquid state, and resin concentration of the electrodeposition liquid. The xylene and butanol amounts of the electrodeposition solution were adjusted so that the resin particle concentration was the value shown in Table 5. The turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13. Using this electrodeposition solution, an insulating layer was formed in the same manner as in Examples 1 to 13. However, the turbidity of the electrodeposition solution was less than 0.01 mg / L and the viscosity exceeded 1000 cP. No layer was formed.

〔比較例6〕
平均粒子径200nmのポリエステルイミド樹脂粒子を水に分散した樹脂粒子濃度40質量%の水懸濁液に、平均粒子径10nmのシリカ粒子を水に分散したシリカ粒子濃度30質量%および水70質量%のシリカゾルを上記ポリエステルイミド樹脂100質量部に対してシリカ粒子1質量部になるように混合してなる電着液を用いた。該電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表5に示す。なお、樹脂粒子濃度は表5の値になるように該電着液の水量を調整した。上記樹脂粒子の平均粒子径、電着液の濁度および粘度は実施例1〜実施例13と同様にして測定した。この電着液を用い、実施例1〜実施例13と同様にして絶縁層の形成を試みたが、樹脂粒子濃度が高く電着液の粘度が高すぎるので液が固化し、電着できなかった。
[Comparative Example 6]
Polyesterimide resin particles having an average particle size of 200 nm are dispersed in water in an aqueous suspension having a resin particle concentration of 40% by mass. Silica particles having an average particle size of 10 nm in silica dispersed in water are 30% by mass and 70% by mass of water. An electrodeposition solution obtained by mixing 1 part by mass of silica particles with 100 parts by mass of the polyesterimide resin was used. Table 5 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles. The amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 5. The average particle diameter of the resin particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13. Using this electrodeposition solution, an attempt was made to form an insulating layer in the same manner as in Examples 1 to 13, but since the resin particle concentration was high and the viscosity of the electrodeposition solution was too high, the solution solidified and could not be electrodeposited. It was.

〔比較例7〕
トリス−ヒドロキシエチルイソシアヌレート変性ポリエステルイミドが溶解した塗料を用い、この塗料を撹拌しながら、平均粒子径10nmのシリカ粒子をキシレンとブタノールの混合液に分散させたシリカゾルを上記塗料に混合し、塗料の樹脂分100質量部に対してシリカ粒子が20質量部になるように分散させた。この塗料を用い、実施例1〜実施例13と同様にして電着法によって絶縁層の形成を試みたが、樹脂成分が溶解した液であるため電着法では絶縁層を形成することができなかった。
[Comparative Example 7]
Using a paint in which tris-hydroxyethyl isocyanurate-modified polyesterimide is dissolved, and stirring the paint, a silica sol in which silica particles having an average particle diameter of 10 nm are dispersed in a mixed solution of xylene and butanol is mixed with the paint. The silica particles were dispersed to 20 parts by mass with respect to 100 parts by mass of the resin content. Using this paint, an attempt was made to form an insulating layer by the electrodeposition method in the same manner as in Examples 1 to 13. However, since the resin component was dissolved, the insulating layer could be formed by the electrodeposition method. There wasn't.

10銅線
20絶縁層
30耐熱性粒子
10 copper wire 20 insulating layer 30 heat resistant particles

Claims (9)

耐熱性絶縁層を有する絶縁電線であって、該絶縁層中に耐熱性粒子を含有し、該耐熱性粒子が上記絶縁層の表面層厚部分に密集していることを特徴とする耐熱性絶縁電線。 An insulated wire having a heat-resistant insulating layer, comprising heat-resistant particles in the insulating layer, wherein the heat-resistant particles are concentrated in a surface layer thickness portion of the insulating layer. Electrical wire. 上記絶縁層の表面から0.5μmの層厚部分に耐熱性粒子が密集している請求項1に記載する耐熱性絶縁電線。 The heat-resistant insulated wire according to claim 1, wherein heat-resistant particles are concentrated in a layer thickness portion of 0.5 µm from the surface of the insulating layer. 上記絶縁層の表面から0.5μmの層厚部分に含まれる耐熱性粒子の量が、該絶縁層の中央部分に含まれる耐熱性粒子の量の2倍以上である請求項1または請求項2に記載する耐熱性絶縁電線。 The amount of heat-resistant particles contained in a layer thickness portion of 0.5 μm from the surface of the insulating layer is at least twice the amount of heat-resistant particles contained in the central portion of the insulating layer. Heat-resistant insulated wires described in 1. 請求項1に記載する上記絶縁層の形成に用いる電着液であって、樹脂粒子が分散した懸濁液に耐熱性粒子を分散させてなり、粘度100cP以下であって濁度1mg/L以上であることを特徴とする絶縁層形成用電着液。 An electrodeposition solution used for forming the insulating layer according to claim 1, wherein heat-resistant particles are dispersed in a suspension in which resin particles are dispersed, and has a viscosity of 100 cP or less and a turbidity of 1 mg / L or more. An electrodeposition solution for forming an insulating layer, characterized in that 上記樹脂粒子の含有量が1〜30質量%であって、該樹脂粒子100質量部に対して上記耐熱性粒子が1〜100質量部含有されている請求項4に記載する絶縁層形成用電着液。 5. The resin for forming an insulating layer according to claim 4, wherein the content of the resin particles is 1 to 30% by mass, and the heat-resistant particles are contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the resin particles. Liquid landing. 上記樹脂粒子の平均粒子径が1μm以下であり、上記耐熱性粒子の平均粒子径が500nm以下である請求項4または請求項5に記載する絶縁層形成用電着液。 The electrodeposition liquid for forming an insulating layer according to claim 4 or 5, wherein the resin particles have an average particle diameter of 1 µm or less and the heat-resistant particles have an average particle diameter of 500 nm or less. 上記絶縁層の耐軟化温度上昇率が1.2以上の絶縁層を形成する請求項4〜請求項6の何れかに記載する絶縁層形成用電着液。 The electrodeposition liquid for forming an insulating layer according to any one of claims 4 to 6, wherein an insulating layer having a softening temperature increase rate of 1.2 or more is formed. 上記樹脂粒子がアクリル樹脂、ポリエステルイミド樹脂、ポリイミド樹脂、またはポリアミドイミド樹脂である請求項5〜請求項7の何れかに記載する絶縁層形成用電着液。 The electrodeposition liquid for forming an insulating layer according to any one of claims 5 to 7, wherein the resin particles are an acrylic resin, a polyesterimide resin, a polyimide resin, or a polyamideimide resin. 上記耐熱性粒子が金属酸化物微粒子またはシリカ微粒子の少なくとも一種である請求項5〜請求項8の何れかに記載する絶縁層形成用電着液。





The electrodeposition liquid for forming an insulating layer according to any one of claims 5 to 8, wherein the heat-resistant particles are at least one of metal oxide fine particles and silica fine particles.





JP2014138113A 2014-07-03 2014-07-03 Electrodeposition liquid used to form heat-resistant insulated wires and their insulation layers Active JP6001014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014138113A JP6001014B2 (en) 2014-07-03 2014-07-03 Electrodeposition liquid used to form heat-resistant insulated wires and their insulation layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014138113A JP6001014B2 (en) 2014-07-03 2014-07-03 Electrodeposition liquid used to form heat-resistant insulated wires and their insulation layers

Publications (3)

Publication Number Publication Date
JP2016015295A true JP2016015295A (en) 2016-01-28
JP2016015295A5 JP2016015295A5 (en) 2016-07-14
JP6001014B2 JP6001014B2 (en) 2016-10-05

Family

ID=55231341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138113A Active JP6001014B2 (en) 2014-07-03 2014-07-03 Electrodeposition liquid used to form heat-resistant insulated wires and their insulation layers

Country Status (1)

Country Link
JP (1) JP6001014B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186413A (en) * 2016-04-04 2017-10-12 三菱電線工業株式会社 Electrodeposition coating composition and method for manufacturing insulated wire using the same
WO2018151091A1 (en) * 2017-02-16 2018-08-23 三菱マテリアル株式会社 Electrodeposition solution and method for producing conductor with insulating film using same
WO2020059689A1 (en) * 2018-09-20 2020-03-26 住友精化株式会社 Electrodeposition coating material and insulating coating film
WO2020240822A1 (en) * 2019-05-31 2020-12-03 昭和電工マテリアルズ株式会社 Electrically-insulating resin composition and electrical insulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711417A (en) * 1980-06-25 1982-01-21 Fujikura Ltd Refractory insulated wire
JPS6237396A (en) * 1985-08-12 1987-02-18 Mitsubishi Cable Ind Ltd Production of body coated by electrodeposition
JPH03241609A (en) * 1990-02-20 1991-10-28 Mitsubishi Cable Ind Ltd Flat-type superthin film insulated wire
JP2001307557A (en) * 2000-02-16 2001-11-02 Hitachi Cable Ltd Coating material for partial discharge resistant enameled wire and partial discharge resistant enameled wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711417A (en) * 1980-06-25 1982-01-21 Fujikura Ltd Refractory insulated wire
JPS6237396A (en) * 1985-08-12 1987-02-18 Mitsubishi Cable Ind Ltd Production of body coated by electrodeposition
JPH03241609A (en) * 1990-02-20 1991-10-28 Mitsubishi Cable Ind Ltd Flat-type superthin film insulated wire
JP2001307557A (en) * 2000-02-16 2001-11-02 Hitachi Cable Ltd Coating material for partial discharge resistant enameled wire and partial discharge resistant enameled wire

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186413A (en) * 2016-04-04 2017-10-12 三菱電線工業株式会社 Electrodeposition coating composition and method for manufacturing insulated wire using the same
US11286576B2 (en) 2017-02-16 2022-03-29 Mitsubishi Materials Corporation Electrodeposition solution and method for producing conductor with insulating film using same
JP2018131562A (en) * 2017-02-16 2018-08-23 三菱マテリアル株式会社 Electrodeposition liquid and method for producing conductor with insulation film using the same
CN110234717A (en) * 2017-02-16 2019-09-13 三菱综合材料株式会社 Electrodeposit liquid and used the electrodeposit liquid the conductor with insulating coating manufacturing method
KR20190118559A (en) * 2017-02-16 2019-10-18 미쓰비시 마테리알 가부시키가이샤 Manufacturing method of the conductor with electrodeposition liquid and the insulating film using the same
WO2018151091A1 (en) * 2017-02-16 2018-08-23 三菱マテリアル株式会社 Electrodeposition solution and method for producing conductor with insulating film using same
KR102545341B1 (en) 2017-02-16 2023-06-19 미쓰비시 마테리알 가부시키가이샤 Electrodeposition liquid and method for producing a conductor with an insulating coating using the same
WO2020059689A1 (en) * 2018-09-20 2020-03-26 住友精化株式会社 Electrodeposition coating material and insulating coating film
CN112639039A (en) * 2018-09-20 2021-04-09 住友精化株式会社 Electrodeposition paint and insulating film
TWI795595B (en) * 2018-09-20 2023-03-11 日商住友精化股份有限公司 Electrodeposition paint and insulating film
JP7449867B2 (en) 2018-09-20 2024-03-14 住友精化株式会社 Electrodeposition paint and insulation coating
WO2020240822A1 (en) * 2019-05-31 2020-12-03 昭和電工マテリアルズ株式会社 Electrically-insulating resin composition and electrical insulator
JPWO2020240822A1 (en) * 2019-05-31 2020-12-03
JP7367759B2 (en) 2019-05-31 2023-10-24 株式会社レゾナック Electrical insulating resin composition and electrical insulator

Also Published As

Publication number Publication date
JP6001014B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6001014B2 (en) Electrodeposition liquid used to form heat-resistant insulated wires and their insulation layers
WO2017104032A1 (en) Heat-resistant insulated wire and electrodeposition liquid used to form insulating layer therefor
Hakimizad et al. The effect of pulse waveforms on surface morphology, composition and corrosion behavior of Al2O3 and Al2O3/TiO2 nano-composite PEO coatings on 7075 aluminum alloy
CN111357062B (en) Insulated conductor and method for manufacturing insulated conductor
TW201511036A (en) Thick print copper pastes for aluminum nitride substrates
JP6973576B2 (en) Electrodeposition liquid for forming water-dispersed insulating film
WO2014133898A1 (en) Coated overhead conductors and methods
US10192680B2 (en) Planar transformer components comprising electrophoretically deposited coating
JPH0332725A (en) Method for producing semi-permeable membrane on porous electrically conductive support through electrophoresis
JP2017155166A (en) Joining composition
EP3197612A1 (en) Electrodeposition mediums for formation of protective coatings electrochemically deposited on metal substrates
TW201723103A (en) Heat-resistant insulated electric wire and electrodeposition fluid for production thereof
JP2012241226A (en) Insulation-coated aluminum conductor, insulation coating, and method of producing insulation coating
CN101481833B (en) High temperature resistant conductive fibre and preparation thereof
US2956937A (en) Electrophoretic insulating coating
JP2002298674A (en) Manufacturing method of insulation wire and insulation wire
Phillips Electrolytically Formed Polyimide Films and Coatings: I. Electrodeposition from Colloidal Dispersions
JP2017059335A (en) Insulation film
JP6877657B1 (en) Manufacturing method of cage rotor and cage rotor
JP6769076B2 (en) Electrodeposition coating composition and method for manufacturing insulated wires using it
JP6760236B2 (en) Insulated wire manufacturing method and electrodeposition coating equipment used for it
JP6784159B2 (en) Manufacturing method of insulated wire and preparation method of replenishing paint used for it
US11549023B2 (en) Paint for high temperature and method of preparing the paint
JP2023032641A (en) Insulating aluminum alloy conductor and method for manufacturing the same
JPS63270774A (en) Heat-resistant anticorrosive coating composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160531

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160531

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6001014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350