JP2016011249A - Production method of optical fiber preform - Google Patents

Production method of optical fiber preform Download PDF

Info

Publication number
JP2016011249A
JP2016011249A JP2015056800A JP2015056800A JP2016011249A JP 2016011249 A JP2016011249 A JP 2016011249A JP 2015056800 A JP2015056800 A JP 2015056800A JP 2015056800 A JP2015056800 A JP 2015056800A JP 2016011249 A JP2016011249 A JP 2016011249A
Authority
JP
Japan
Prior art keywords
rod
mold
optical fiber
molding
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015056800A
Other languages
Japanese (ja)
Other versions
JP6567303B2 (en
Inventor
成人 松本
Shigeto Matsumoto
成人 松本
荒井 慎一
Shinichi Arai
慎一 荒井
八木 健
Takeshi Yagi
健 八木
相曽 景一
Keiichi Aiso
景一 相曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2015056800A priority Critical patent/JP6567303B2/en
Publication of JP2016011249A publication Critical patent/JP2016011249A/en
Application granted granted Critical
Publication of JP6567303B2 publication Critical patent/JP6567303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an optical fiber preform which can suppress deformation and breakage of a rod-like member arranged in an outer part of a molding die by using the hydrostatic molding method.SOLUTION: A production method of an optical fiber preform includes a first step of putting rod-like members at positions, excluding the center of the cross section of a molding die vertical in the longitudinal direction, along the direction perpendicular to the cross section in the molding die of a specified shape, a step of filling the molding die with a powder material containing silica and a step of applying a hydrostatic pressure to the molding die, and the rod-like member is movable toward the center of the cross section of the molding die by a specified distance during application of the hydrostatic pressure.

Description

本発明は、光ファイバ母材の製造方法に関する。   The present invention relates to a method for manufacturing an optical fiber preform.

マルチコアファイバ母材の製造方法として、ドリル法やスタック&ドロー法等が知られている。ドリル法は、棒状の元材にドリルで空孔を形成し、この空孔にコア用ガラスロッドを挿入する方法である。スタック&ドロー法は、複数のコア用ガラスロッド及びクラッド用ガラスロッドをクラッド用ガラス管内部に挿入し、加熱延伸してこれらを一体化する方法である。   As a manufacturing method of a multi-core fiber preform, a drill method, a stack & draw method, and the like are known. The drill method is a method in which holes are formed in a rod-shaped base material with a drill, and a core glass rod is inserted into the holes. The stack and draw method is a method in which a plurality of core glass rods and clad glass rods are inserted into a clad glass tube, and heated and stretched to integrate them.

しかしながら、ドリル法では、棒状の元材にドリルで空孔を形成するため、加工費が高く、高コストとなってしまう問題がある。また、スタック&ドロー法では、コア用ガラスロッド及びクラッド用ガラスロッドをクラッド用ガラス管内部に挿入して加熱延伸するため、コアの位置精度が低下してしまう問題がある。   However, in the drill method, since holes are formed in the rod-shaped base material by a drill, there is a problem that the processing cost is high and the cost is high. Further, in the stack and draw method, since the core glass rod and the clad glass rod are inserted into the clad glass tube and heated and stretched, there is a problem that the position accuracy of the core is lowered.

また、光ファイバ母材の製造法として、例えば特許文献1乃至6に示されたように、静水圧成形法が案出されている。   As a method for manufacturing an optical fiber preform, for example, as shown in Patent Documents 1 to 6, a hydrostatic pressure forming method has been devised.

静水圧成形法は、伸縮性を有する成形型内にコア用の棒状ガラス材を設置し、その周囲にガラス粉末を充填した後に成形型に外部から静水圧を印加し、棒状ガラス材の外周に多孔質ガラス体を圧縮形成する方法である。   In the isostatic pressing method, a rod-shaped glass material for a core is installed in a mold having elasticity, and after filling glass powder around the core, hydrostatic pressure is applied to the mold from the outside, and the outer periphery of the rod-shaped glass material is applied. This is a method of compression-forming a porous glass body.

静水圧成形法は、高い成形精度及び信頼性を実現でき、同時にその製造コストも低いため量産性に優れている。また、成形型を変更することにより容易に所望の多孔質ガラス体形状に形成することができるため、設計の自由度が高いという利点がある。   The hydrostatic pressure molding method can achieve high molding accuracy and reliability, and at the same time has low production cost, and is excellent in mass productivity. Moreover, since it can form in a desired porous glass body shape easily by changing a shaping | molding die, there exists an advantage that the freedom degree of design is high.

特開平5−58656号公報JP-A-5-58656 特開平5−254872号公報Japanese Patent Laid-Open No. 5-254872 特開平5−254857号公報JP-A-5-254857 特開平5−229839号公報Japanese Patent Laid-Open No. 5-229839 特開平6−51139号公報Japanese Patent Laid-Open No. 6-51139 特開平9−71431号公報JP-A-9-71431

しかしながら、静水圧形成法を適用してマルチコアファイバを製造すると、成形型内の中心以外に設置された棒状ガラス材に変形や破損が発生することがあることが判明した。これは、成形型が静水圧の加圧によって弾性変形する結果、成形型内に配置された棒状ガラス材に、成形型の中心方向へ応力が印加されるためである。   However, it has been found that when a multi-core fiber is manufactured by applying the hydrostatic pressure forming method, deformation or breakage may occur in a rod-shaped glass material installed outside the center in the mold. This is because, as a result of the mold being elastically deformed by the application of hydrostatic pressure, stress is applied to the rod-shaped glass material disposed in the mold in the center direction of the mold.

本発明は、このような課題に鑑みてなされたものであり、静水圧成形法を用いた光ファイバ母材の製造方法において、成形型内に配置された棒状部材の変形及び破損を抑制可能な光ファイバ母材の製造方法を提供することにある。   The present invention has been made in view of such problems, and in a method of manufacturing an optical fiber preform using an isostatic pressing method, it is possible to suppress deformation and breakage of a rod-shaped member arranged in a mold. The object is to provide a method of manufacturing an optical fiber preform.

上記目的を達成するために、本発明の一態様による光ファイバ母材を製造するための方法は、所定の形状を有する成形型の中に、成形型の長手方向に垂直な断面の中心を除く位置に、断面と垂直な方向に沿って棒状部材を設置する第1のステップと、成形型の中にシリカを含む粉末材料を充填する第2のステップと、成形型に静水圧を印加する第3のステップと、を含み、棒状部材は、静水圧の印加中に、成形型の断面の中心に向かって所定の距離だけ移動可能であることを特徴とする。   In order to achieve the above object, a method for manufacturing an optical fiber preform according to an aspect of the present invention removes the center of a cross section perpendicular to the longitudinal direction of a mold in a mold having a predetermined shape. A first step of installing a rod-shaped member at a position along a direction perpendicular to the cross section; a second step of filling a powder material containing silica into the mold; and a hydrostatic pressure applied to the mold. The rod-shaped member can be moved by a predetermined distance toward the center of the cross section of the mold during application of the hydrostatic pressure.

また、上記目的を達成するために、本発明の一態様による光ファイバ母材を製造するための装置は、成形用筒と、上蓋体と、下蓋体と、を具備する装置であって、上蓋体及び下蓋体は、成形用筒の中に棒状部材の上端と下端を設置するための溝を備え、溝が、成形用筒の長手方向に垂直な断面の径方向に、棒状部材の外径に所定の距離を加えた長さを有することを特徴とする。   In order to achieve the above object, an apparatus for manufacturing an optical fiber preform according to an aspect of the present invention is an apparatus including a forming cylinder, an upper lid body, and a lower lid body. The upper lid body and the lower lid body are provided with grooves for installing the upper and lower ends of the rod-shaped member in the molding cylinder, and the grooves are arranged in the radial direction of the cross section perpendicular to the longitudinal direction of the molding cylinder. It has a length obtained by adding a predetermined distance to the outer diameter.

本発明によれば、静水圧成形法を用いた光ファイバ母材の製造方法において、成形型内に配置された棒状部材の変形及び破損を抑制できるという効果を奏する。   According to the present invention, in the method for manufacturing an optical fiber preform using the hydrostatic pressure molding method, there is an effect that deformation and breakage of the rod-shaped member arranged in the mold can be suppressed.

本発明の実施形態に係るマルチコアファイバ母材の横断面図である。It is a cross-sectional view of a multi-core fiber preform according to an embodiment of the present invention. 本発明の実施形態に係る成形型の中心部に配置される(a)中心部材及び(b)成形型の外側部に配置される外側部材の模式図である。It is a schematic diagram of (a) center member arrange | positioned at the center part of the shaping | molding die concerning embodiment of this invention, and (b) the outer member arrange | positioned at the outer side part of a shaping | molding die. 本発明の第一実施形態に係る成形型の構造を示す模式図である。It is a schematic diagram which shows the structure of the shaping | molding die which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る成形用上蓋体の(a)横断面構造及び(b)縦断面構造を示す模式図である。It is a schematic diagram which shows (a) cross-sectional structure and (b) longitudinal cross-sectional structure of the upper lid body for shaping | molding which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る成形用下蓋体の(a)横断面構造及び(b)縦断面構造を示す模式図である。It is a schematic diagram which shows (a) cross-sectional structure and (b) longitudinal cross-sectional structure of the molding lower cover body which concerns on 1st embodiment of this invention. 本発明の実施形態に係る光ファイバコア母材の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the optical fiber core preform which concerns on embodiment of this invention. 本発明の実施形態に係る成形型の成形用下蓋体への中心部材の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the center member to the lower cover body for shaping | molding of the shaping | molding die which concerns on embodiment of this invention. 本発明の実施形態に係る成形型の成形用下蓋体への外側部材の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the outer member to the lower cover body for shaping | molding of the shaping | molding die which concerns on embodiment of this invention. 本発明の第一実施形態に係る成形型の成形用下蓋体への外側部材の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the outer member to the lower cover body for shaping | molding of the shaping | molding die which concerns on 1st embodiment of this invention. 本発明の実施形態に係る成形型の成形用筒の中への造粒粉体の充填を示す模式図である。It is a schematic diagram which shows filling of the granulated powder in the cylinder for shaping | molding of the shaping | molding die concerning embodiment of this invention. 本発明の実施形態に係る成形用上蓋体の成形型の上部への嵌合を示す模式図である。It is a schematic diagram which shows fitting to the upper part of the shaping | molding die of the upper cover body for shaping | molding which concerns on embodiment of this invention. 本発明の実施形態に係る静水圧成形装置を用いての、中心部材、外側部材、及び造粒粉体を含む成形型への静水圧の印加を示す模式図である。It is a schematic diagram which shows the application of the hydrostatic pressure to the shaping | molding die containing a center member, an outer side member, and granulated powder using the hydrostatic pressure shaping | molding apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る静水圧成形装置による静水圧の印加中における、中心部材、外側部材、及び造粒粉体を含む成形型の状態を示す模式図である。It is a schematic diagram which shows the state of the shaping | molding die containing a center member, an outer side member, and granulated powder in the application of the isostatic pressure by the isostatic pressing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る静水圧成形装置によって成形された成形体を示す模式図である。It is a schematic diagram which shows the molded object shape | molded by the isostatic pressing apparatus which concerns on embodiment of this invention. 本発明の第二実施形態に係る成形型の構造を示す模式図である。It is a schematic diagram which shows the structure of the shaping | molding die concerning 2nd embodiment of this invention. 本発明の第二実施形態に係る成形用上蓋体の(a)横断面構造及び(b)縦断面構造を示す模式図である。It is a schematic diagram which shows (a) cross-sectional structure and (b) longitudinal cross-sectional structure of the top lid body for shaping | molding which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る成形用下蓋体の(a)横断面構造及び(b)縦断面構造を示す模式図である。It is a schematic diagram which shows (a) cross-sectional structure and (b) longitudinal cross-sectional structure of the lower lid body for shaping | molding which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る別のガラス成形母体の横断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of another glass forming mother body which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る別の成形用上蓋体及び成形用下蓋体の横断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of another upper cover body for shaping | molding which concerns on 2nd embodiment of this invention, and a lower cover body for shaping | molding. 本発明の一実施例における外径の測定結果のグラフを示す図である。It is a figure which shows the graph of the measurement result of the outer diameter in one Example of this invention. 本発明の一実施例におけるコアロッド間距離の測定結果のグラフを示す図である。It is a figure which shows the graph of the measurement result of the distance between core rods in one Example of this invention. 本発明の第三実施形態に係る光ファイバ母材の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the optical fiber preform which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係る光ファイバ母材の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the optical fiber preform which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る成形体の横断面図である。It is a cross-sectional view of the molded object which concerns on 4th embodiment of this invention. 本発明の第五実施形態に係る中心部材及び外側部材の側面図及び横断面図である。It is the side view and cross-sectional view of the center member and outer member which concern on 5th embodiment of this invention. 本発明の第五実施形態に係る光ファイバのコア間距離を測定した結果のグラフを示す図である。It is a figure which shows the graph of the result of having measured the distance between cores of the optical fiber which concerns on 5th embodiment of this invention. 本発明の第六実施形態に係る成形体の縦断面図及び横断面図である。It is the longitudinal cross-sectional view and cross-sectional view of the molded object which concern on 6th embodiment of this invention. 本発明の第六実施形態に係る成形体の横断面図である。It is a cross-sectional view of the molded object which concerns on 6th embodiment of this invention. 本発明の第七実施形態に係る成形体の横断面図である。It is a cross-sectional view of the molded object which concerns on 7th embodiment of this invention.

以下、図面を参照して、本発明の実施の形態を説明するが、本発明は本実施形態に限定されるものではない。なお、以下で説明する図面で、同機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.

[第一実施形態]
以下に本発明の第一実施形態として、光ファイバ母材であるマルチコアファイバ母材を製造する例について説明する。
[First embodiment]
Hereinafter, an example of manufacturing a multi-core fiber preform that is an optical fiber preform will be described as a first embodiment of the present invention.

このマルチコアファイバ母材10は、図1に示すように、マルチコアファイバ母材10の中心軸に設けられた中心コア部1aと、この中心コア部1aの外周に設けられた複数(図1では8本)の外周コア部1bと、これらのコア部1a及び1bの外周に形成されたクラッド部3とを備えている。クラッド部3は、例えば屈折率調整用のドーパントが添加されていない純石英ガラスなどで構成されている。中心コア部1a及び外周コア部1bは、それぞれコア11と、コア11の外周に設けられたクラッド13とを備える。   As shown in FIG. 1, the multi-core fiber preform 10 includes a central core portion 1a provided on the central axis of the multi-core fiber preform 10 and a plurality (8 in FIG. 1) provided on the outer periphery of the central core portion 1a. The outer peripheral core portion 1b and the clad portion 3 formed on the outer periphery of the core portions 1a and 1b. The clad part 3 is made of, for example, pure quartz glass to which a dopant for adjusting the refractive index is not added. Each of the central core portion 1a and the outer peripheral core portion 1b includes a core 11 and a clad 13 provided on the outer periphery of the core 11.

次に、本発明の第一実施形態に係るマルチコアファイバ母材10の製造方法、及びマルチコアファイバの製造方法について説明する。   Next, the manufacturing method of the multi-core fiber preform 10 and the manufacturing method of the multi-core fiber according to the first embodiment of the present invention will be described.

図2は本発明の実施形態に係る成形型に配置する棒状部材の断面図、図2(a)は、成形型の中心部に配置される棒状部材である中心部材1a、図2(b)は、成形型の中心部に対して外側に配置される棒状部材である外側部材1bの断面図である。中心部材1aは、たとえば石英からなる光ファイバ用のコアロッドと、コアロッドの上下にそれぞれ接続される、上部ダミー棒15及び下部ダミー棒17とを有する。上部ダミー棒15及び下部ダミー棒17は、例えば石英からなり、それぞれ外径d15及びd17を有する。コアロッドは、コア11と、コア11を取り囲むクラッド13とを有し、一方向に延在する円柱形状をしている。コア11は、例えばゲルマニウムなどがドープされた屈折率の高い石英系ガラスあるいはゲルマニウムとフッ素などの複数のドーパントによって形成される所望の屈折率分布を有する石英系ガラスによって構成されている。クラッド13は、中心部材1aの一部を構成する石英系ガラスであり、例えば屈折率調整用のドーパントが添加されていない純石英ガラスなどで構成されている。
なお、コアロッドは、VAD(Vapor phase Axial Deposition)法、OVD(Outside Vapor Deposition)法、MCVD(Modified Chemical Vapor Deposition)法などの周知の方法を用いて製造できる。
2 is a cross-sectional view of a rod-shaped member disposed in a mold according to an embodiment of the present invention, and FIG. 2A is a central member 1a that is a rod-shaped member disposed at the center of the mold, FIG. These are sectional drawings of the outside member 1b which is a rod-shaped member arrange | positioned outside with respect to the center part of a shaping | molding die. The central member 1a has an optical fiber core rod made of, for example, quartz, and an upper dummy rod 15 and a lower dummy rod 17 connected to the upper and lower sides of the core rod, respectively. Upper dummy rod 15 and the lower dummy rod 17 is made of, for example, quartz has a respective outer diameter d 15 and d 17. The core rod has a core 11 and a clad 13 surrounding the core 11, and has a cylindrical shape extending in one direction. The core 11 is made of, for example, quartz glass having a high refractive index doped with germanium or the like, or quartz glass having a desired refractive index distribution formed by a plurality of dopants such as germanium and fluorine. The clad 13 is a quartz glass that constitutes a part of the central member 1a, and is made of, for example, pure quartz glass to which a dopant for adjusting the refractive index is not added.
The core rod can be manufactured using a known method such as VAD (Vapor Phase Axial Deposition), OVD (Outside Vapor Deposition), or MCVD (Modified Chemical Vapor Deposition).

外側部材1bは、たとえば石英からなる光ファイバ用のコアロッドであり、コア11と、クラッド13とから構成される。クラッド13は外径d13を有する。コア11は、例えばゲルマニウムなどがドープされた屈折率の高い石英系ガラスあるいはゲルマニウムとフッ素などの複数のドーパントによって形成される所望の屈折率分布を有する石英系ガラスによって構成されている。クラッド13は、中心部材1aの一部を構成する石英系ガラスであり、例えば屈折率調整用のドーパントが添加されていない純石英ガラスなどで構成されている。
なお、本実施形態では、中心部材1a、外側部材1bとして、コア11及びクラッド13を有するコアロッドを用いるが、これには限定されず、たとえばコア11または、クラッド13のみからなるものや、コア位置を識別するためのマーカーの役割を有するもの等を用いてもよい。また、中心部材1a並びに外側部材1bのコア11は、全て等しいもの、あるいは全てあるいは一部が異なるものを用いてもよい。
The outer member 1 b is an optical fiber core rod made of, for example, quartz, and includes a core 11 and a clad 13. Cladding 13 has an outer diameter d 13. The core 11 is made of, for example, quartz glass having a high refractive index doped with germanium or the like, or quartz glass having a desired refractive index distribution formed by a plurality of dopants such as germanium and fluorine. The clad 13 is a quartz glass that constitutes a part of the central member 1a, and is made of, for example, pure quartz glass to which a dopant for adjusting the refractive index is not added.
In this embodiment, a core rod having a core 11 and a clad 13 is used as the center member 1a and the outer member 1b. However, the present invention is not limited to this. Those having the role of a marker for identifying the mark may be used. Further, the cores 11 of the central member 1a and the outer member 1b may be all the same, or all or some of the cores may be different.

クラッド13の外径d13は、例えば、5mm程度とすることができる。また、中心部材1a及び外側部材1bに用いるコアロッドの長さは、例えば、500mm程度とすることができる。尚、クラッド13の外径d13と中心部材1a及び外側部材1bに用いるコアロッドの長さは、作製するマルチコアファイバの構造と母材寸法によって任意に設計することが可能であり、これらの数値に限定するものではない。また代替形態として、中心部材1a及び外側部材1bを、金属、カーボン、又はセラミックスからも構成することができる。 Outer diameter d 13 of the cladding 13, for example, it may be about 5 mm. Moreover, the length of the core rod used for the center member 1a and the outer member 1b can be about 500 mm, for example. The length of the core rod for use in the outer diameter d 13 and central member 1a and the outer member 1b of the cladding 13, may be designed arbitrarily depending on the structure and the base material dimensions of the multi-core fiber to be manufactured to these numerical values It is not limited. As an alternative, the center member 1a and the outer member 1b can be made of metal, carbon, or ceramics.

図3(a)は、本発明の第一実施形態に係る成形型2の構造を示す斜視図、図3(b)は、成形型2の構造を示す正面図である。成形型2は、成形用筒21、成形用上蓋体23、及び成形用下蓋体25から構成される。成形用筒21は、弾性及び収縮性を有する材料からなり、例えば、クロロプレンゴムなどの合成ゴム材料やポリウレタンなどの合成樹脂材料などを用いることができる。また、成形用上蓋体23及び成形用下蓋体25は、金属又は金属と同程度の剛性を有するゴムや合成樹脂などの材料からなり、例えば、ステンレスなどを用いることができる。なお、本実施形態では例示的に成形型2を円筒状の構造としているが、本発明は円筒形状に限定されない。静水圧成形法においては、成形型の形状を変更することにより容易に製造する成形体の形状を変化させることができる。例えば、断面が長方形となる形状を成形したい場合、同形状に即した成形型を準備することで本発明を適用することができる。また、成形型2の寸法は、例えば、内径45mm程度、及び長さ500mm程度とすることができる。尚、成形型の寸法は、マルチコアファイバ母材の寸法によって任意に設計することが可能であり、これらの数値に限定するものではない。   FIG. 3A is a perspective view showing the structure of the mold 2 according to the first embodiment of the present invention, and FIG. 3B is a front view showing the structure of the mold 2. The molding die 2 includes a molding cylinder 21, a molding upper lid body 23, and a molding lower lid body 25. The molding cylinder 21 is made of a material having elasticity and shrinkage. For example, a synthetic rubber material such as chloroprene rubber or a synthetic resin material such as polyurethane can be used. Moreover, the molding upper lid body 23 and the molding lower lid body 25 are made of metal or a material such as rubber or synthetic resin having the same degree of rigidity as that of metal, and for example, stainless steel can be used. In this embodiment, the mold 2 is illustratively a cylindrical structure, but the present invention is not limited to a cylindrical shape. In the isostatic pressing method, the shape of the molded body to be easily manufactured can be changed by changing the shape of the mold. For example, when it is desired to form a shape having a rectangular cross section, the present invention can be applied by preparing a mold that conforms to the shape. Moreover, the dimension of the shaping | molding die 2 can be about 45 mm in internal diameter and about 500 mm in length, for example. The dimensions of the mold can be arbitrarily designed according to the dimensions of the multi-core fiber preform, and are not limited to these numerical values.

図4(a)は、本発明の第一実施形態に係る成形用上蓋体23のA−A線における横断面構造、図4(b)は、成形用上蓋体23のB−B線における縦断面構造を示す模式図である。同図に示すように、成形用上蓋体23は、中心に中心部材1aの上部ダミー棒15を嵌め込むための中心溝233と、中心部材1aの外側に外側部材1bを配置するための外側溝235を有する。中心溝233は、断面が円形であり、内径d233を有する。外側溝235は、成形用上蓋体の中心を中心とする円環状に設けられ、溝幅w235を有する。 4A is a cross-sectional structure taken along the line AA of the molding upper lid body 23 according to the first embodiment of the present invention, and FIG. 4B is a longitudinal section taken along the line BB of the molding upper lid body 23. It is a schematic diagram which shows a surface structure. As shown in the figure, the molding upper lid 23 has a center groove 233 for fitting the upper dummy rod 15 of the center member 1a at the center, and an outer groove for disposing the outer member 1b outside the center member 1a. 235. The central groove 233 is circular in cross section and has an inner diameter d233 . The outer groove 235 is provided in an annular shape centering on the center of the molding upper lid, and has a groove width w 235 .

図5(a)は、本発明の第一実施形態に係る成形用下蓋体25のC−C線における横断面構造、図5(b)は、B−B線における縦断面構造を示す模式図である。同図に示すように、成形用下蓋体25は、中心に中心部材1aの下部ダミー棒17を嵌め込むための中心溝253と、中心部材1aの外側に外側部材1bを配置するための外側溝255を有する。中心溝253は、断面が円形であり、内径d253を有する。外側溝255は成形用上蓋体の中心を中心とする円環状に設けられ、溝幅w255を有する。 Fig.5 (a) is a cross-sectional structure in CC line of the lower lid body 25 for shaping | molding which concerns on 1st embodiment of this invention, FIG.5 (b) is a schematic which shows the longitudinal cross-sectional structure in BB line. FIG. As shown in the figure, the molding lower lid 25 has a center groove 253 for fitting the lower dummy rod 17 of the center member 1a at the center and an outer member 1b for disposing the outer member 1b outside the center member 1a. It has a side groove 255. The central groove 253 is circular in cross section and has an inner diameter d253 . The outer groove 255 is provided in an annular shape centering on the center of the molding upper lid, and has a groove width w 255 .

中心部材1aの上部ダミー棒15は、成形用上蓋体23の中心部にある中心溝233に嵌め込まれる。また、中心部材1aの下部ダミー棒17は、成形用下蓋体25の中心部にある中心溝253に嵌め込まれる。従って、上部ダミー棒15の外径d15は、中心溝233の内径d233よりもわずかに小さく、下部ダミー棒17の外径d17は、中心溝253の内径d253よりもわずかに小さい。したがって、上部ダミー棒15、下部ダミー棒17をそれぞれ中心溝233、中心溝253に嵌め込むことで、中心部材1aは、成形用上蓋体23、成形用下蓋体25に固定される。なお、中心部材1aを固定しつつ位置ずれを生じさせないためには、ダミー棒と中心溝のクリアランスは0mm〜成形型2の内径×0.01mmであることが好ましい。 The upper dummy bar 15 of the center member 1 a is fitted into the center groove 233 at the center of the molding upper lid body 23. Further, the lower dummy rod 17 of the center member 1 a is fitted into the center groove 253 in the center portion of the molding lower lid body 25. Therefore, the outside diameter d 15 of the upper dummy rod 15 is slightly smaller than the inner diameter d 233 of the central channel 233, the outside diameter d 17 of the lower dummy rod 17 is slightly smaller than the inner diameter d 253 of the central groove 253. Therefore, the center member 1a is fixed to the molding upper lid body 23 and the molding lower lid body 25 by fitting the upper dummy bar 15 and the lower dummy bar 17 into the central groove 233 and the central groove 253, respectively. In order to prevent a positional shift while fixing the central member 1a, the clearance between the dummy bar and the central groove is preferably 0 mm to the inner diameter of the mold 2 × 0.01 mm.

次に、本発明による光ファイバ母材の製造工程について図6及び図7A乃至図7Gを参照しながら説明する。   Next, the manufacturing process of the optical fiber preform according to the present invention will be described with reference to FIGS. 6 and 7A to 7G.

図6は、本発明による光ファイバ母材の製造工程を示すフローチャートである。   FIG. 6 is a flowchart showing the manufacturing process of the optical fiber preform according to the present invention.

先ず、ステップS301において、図7Aに示すように、成形型2の成形用下蓋体25に中心部材1aを配置する。具体的には、中心部材1aの下部ダミー棒17を成形用下蓋体25の中心部にある中心溝253に嵌め込む。   First, in step S301, as shown in FIG. 7A, the central member 1a is placed on the molding lower lid body 25 of the molding die 2. Specifically, the lower dummy rod 17 of the center member 1 a is fitted into the center groove 253 at the center of the molding lower lid body 25.

次いで、ステップS303において、図7Bに示すように、成形型2の成形用下蓋体25に外側部材1bを配置する。具体的には、外側部材1bの下端を、成形用下蓋体25の外側溝255の初期位置に配置する。なお、図7Cに示すように、外側溝255には、外側部材1bを1以上の任意の数(ここでは8)配置する。
このとき、外側部材1bは、たとえば、中心部材1aとの距離が等距離であり、かつ隣接する外側部材1b同士の距離が等距離となるように配置する。また、このとき中心部材1aと外側部材1bの距離は、後述する焼結工程での体積収縮を考慮して決定されていることが好ましい。
Next, in step S303, as shown in FIG. 7B, the outer member 1b is disposed on the molding lower lid body 25 of the molding die 2. Specifically, the lower end of the outer member 1 b is disposed at the initial position of the outer groove 255 of the molding lower lid body 25. As shown in FIG. 7C, in the outer groove 255, the outer member 1b is arranged in an arbitrary number of 1 or more (here, 8).
At this time, the outer member 1b is disposed, for example, such that the distance from the central member 1a is equal and the distance between adjacent outer members 1b is equal. At this time, the distance between the center member 1a and the outer member 1b is preferably determined in consideration of volume shrinkage in a sintering process described later.

このように、外側溝255を成形用下蓋体25の中心部を中心とする円環状に設けた場合は、図7Cに示すように、外側部材1bを任意の複数本配置することができる。すなわち、外側溝255に沿って所望の数の外側部材1bを所望の位置に配置することができる。従って、同一の成形型2を使用して異なる設計の光ファイバを作製することが可能となる。   As described above, when the outer groove 255 is provided in an annular shape centering on the center portion of the molding lower lid body 25, an arbitrary plurality of outer members 1b can be disposed as shown in FIG. 7C. That is, a desired number of outer members 1b can be disposed at desired positions along the outer grooves 255. Therefore, it is possible to produce optical fibers with different designs using the same mold 2.

ここで、初期位置とは、外側部材1bの下端が静水圧の印加前に配置されるべき外側溝255における位置であり、たとえば、外側部材1bの下端側面と外側溝255の外側側面とが接する位置である。このように外側部材1bを初期位置に配置すると、外側溝255の内側側面と外側部材1bとの間には空隙が生じる。この空隙によって、静水圧の印加時に外側部材1bは成形型2の中心方向へ移動することが可能となる。   Here, the initial position is a position in the outer groove 255 where the lower end of the outer member 1b should be disposed before application of hydrostatic pressure. For example, the lower end side surface of the outer member 1b and the outer side surface of the outer groove 255 are in contact with each other. Position. Thus, when the outer member 1b is arranged at the initial position, a gap is generated between the inner side surface of the outer groove 255 and the outer member 1b. This gap allows the outer member 1b to move toward the center of the mold 2 when applying hydrostatic pressure.

次いで、ステップS305において、図7Dに示すように、成形型2の成形用筒21の中に粉末材料である造粒粉体41を充填する。このとき、粉末充填密度の均一性の観点から成形型2を電磁振動式等の篩分器に載せ、成形型2に振動を加えながら造粒粉体41を充填することが望ましい。   Next, in step S305, as shown in FIG. 7D, the granulated powder 41, which is a powder material, is filled into the molding cylinder 21 of the molding die 2. At this time, from the viewpoint of uniformity of the powder filling density, it is desirable to place the molding die 2 on an electromagnetic vibration type sieving device and to fill the granulated powder 41 while applying vibration to the molding die 2.

造粒粉体41は、多孔質ガラス体を成形するための材料であり、主に石英系のガラス粉末の一次粒子(以下、単にガラス粉末)から構成される。このガラス粉末としては、たとえば、高純度であり、通常0.01μmから100μm程度の粒径を有するものが使用される。ガラス粉末の粒径が小さいほど焼結時の物質移動距離が小さくなる点では有利であるが、塩素ガスを含んだ雰囲気での加熱処理(脱水・精製)を行う際に、ガラス粉末の粒径があまりにも小さいと塩素ガスが多孔質母材の内部に拡散できないため、加熱処理の効果が十分に得られないおそれがある。そのため、ガラス粉末は、塩素ガスが多孔質母材の内部まで拡散が可能な気孔径を形成可能な程度に大きい粒径を有することが望ましい。したがって、ガラス粉末の粒径は、脱水・精製工程での塩素ガスの拡散、成形体強度などの観点から、好ましくは8μmから12μmである。また、ガラス粉末にバインダー、可塑剤等の成形助剤を調合または添加してもよい。バインダーとしてはポリビニルアルコール(PVA)など、可塑剤としてはグリセリンなどを用いることができる。   The granulated powder 41 is a material for forming a porous glass body, and is mainly composed of primary particles of quartz glass powder (hereinafter simply referred to as glass powder). As this glass powder, for example, one having a high purity and usually having a particle size of about 0.01 μm to 100 μm is used. Although the smaller the particle size of the glass powder, the smaller the mass transfer distance during sintering, it is advantageous. However, when performing heat treatment (dehydration / purification) in an atmosphere containing chlorine gas, the particle size of the glass powder Is too small, chlorine gas cannot diffuse into the porous base material, and thus there is a possibility that the effect of the heat treatment cannot be obtained sufficiently. Therefore, it is desirable that the glass powder has a particle size that is large enough to form a pore size that allows chlorine gas to diffuse into the porous base material. Therefore, the particle size of the glass powder is preferably 8 μm to 12 μm from the viewpoint of diffusion of chlorine gas in the dehydration / purification process, strength of the molded body, and the like. Moreover, you may mix or add shaping | molding adjuvants, such as a binder and a plasticizer, to glass powder. As the binder, polyvinyl alcohol (PVA) can be used, and as the plasticizer, glycerin or the like can be used.

ガラス粉末、バインダー、及び可塑剤の比は、成型性の観点から100:1〜10:0〜5であることが好ましく、例えば100:3:1程度とすることができる。次に、ガラス粉末に溶剤を加えて攪拌し、ガラス粉末を泥漿状にする。ここで溶剤としては、環境への影響を考慮すると水系が好ましく、純度の観点から純水が好ましい。次に、作製した泥漿状ガラスを噴霧乾燥させることにより、複数の一次粒子が集合した造粒粉(二次粒子)が形成され、50μmから150μmの粒径を有する造粒粉体41を生成することができる。なお、造粒粉体41の粒径を50μmから150μmとすることで成形型充填時の流動性が高くなり,一次粒子の特長を生かしたまま充填が容易になるという利点がある。   The ratio of the glass powder, the binder, and the plasticizer is preferably 100: 1 to 10: 0 to 5 from the viewpoint of moldability, and can be, for example, about 100: 3: 1. Next, a solvent is added to the glass powder and stirred to make the glass powder into a mud. As the solvent, an aqueous system is preferable in consideration of the influence on the environment, and pure water is preferable from the viewpoint of purity. Next, the produced slurry-like glass is spray-dried to form a granulated powder (secondary particles) in which a plurality of primary particles are aggregated, and a granulated powder 41 having a particle size of 50 μm to 150 μm is generated. be able to. In addition, when the particle size of the granulated powder 41 is 50 μm to 150 μm, there is an advantage that the fluidity at the time of filling the mold is increased and the filling is facilitated while taking advantage of the primary particles.

次いで、ステップS307において、図7Eに示すように、成形型2を密閉するために成形用上蓋体23を成形型2の上部に嵌合する。具体的には、中心部材1aの上部ダミー棒15を成形用上蓋体23の中心部にある中心溝233に嵌め込むと同時に、外側部材1bの上端を、成形用上蓋体23の外側部にある外側溝235の初期位置に設置する。   Next, in step S307, as shown in FIG. 7E, the molding upper lid body 23 is fitted to the upper part of the molding die 2 in order to seal the molding die 2. Specifically, the upper dummy rod 15 of the center member 1a is fitted into the center groove 233 at the center of the molding upper lid 23, and at the same time, the upper end of the outer member 1b is at the outer portion of the molding upper lid 23. It is installed at the initial position of the outer groove 235.

ここでの初期位置とは、ステップS303と同様に、外側部材1bの上端が静水圧の印加前に配置されるべき外側溝235における位置であり、たとえば、外側部材1bの上端側面と外側溝235の外側側面とが接する位置である。このように外側部材1bが初期位置に配置されたとき、外側溝235のもう一方の側面である内側側面と外側部材1bとの間には空隙が生じる。この空隙によって、静水圧の印加時に外側部材1bは成形型2の中心方向へ移動することが可能となる。   The initial position here is a position in the outer groove 235 where the upper end of the outer member 1b should be arranged before application of the hydrostatic pressure, as in step S303, for example, the upper end side surface and the outer groove 235 of the outer member 1b. It is the position where the outer side surface of the contact. When the outer member 1b is thus arranged at the initial position, a gap is generated between the inner side surface, which is the other side surface of the outer groove 235, and the outer member 1b. This gap allows the outer member 1b to move toward the center of the mold 2 when applying hydrostatic pressure.

なお、中心部材1aは、上下端がそれぞれ成形用上蓋体23、成形用下蓋体25に固定された状態で静水圧が印加される。しかしながら、静水圧成形法によれば、成形型2内に印加される圧力は一定の大きさで成形型2の中心方向に印加される。このため、成形型2の中心に配置される中心部材1aにかかる、破損や変形の原因となる圧力、例えば、中心部材1aを外径方向の一方へ撓ませる様な圧力は小さい。   The central member 1a is applied with hydrostatic pressure in a state where the upper and lower ends are fixed to the molding upper lid body 23 and the molding lower lid body 25, respectively. However, according to the hydrostatic pressure molding method, the pressure applied in the mold 2 is applied to the center of the mold 2 with a constant magnitude. For this reason, the pressure which causes the breakage and the deformation applied to the center member 1a arranged at the center of the mold 2 is small, for example, the pressure which bends the center member 1a to one side in the outer diameter direction.

次いで、ステップS309において、図7Fに示すように、静水圧成形(CIP)装置43を用いて、中心部材1a、外側部材1b、及び造粒粉体41を含む成形型2に静水圧を印加する。具体的には、成形型2が設置されたCIP装置43に圧力媒体45を導入し、CIP装置43内の圧力を所定の圧力、例えば98Mpa程度(20MPa〜294MPa)まで上昇させる。この状態を所定の時間、例えば1分間程度(0.5分〜10分)保持する。このようにして、中心部材1a及び外側部材1bの外周にシリカ成形体を形成することができる。なお、圧力媒体45として一般的には腐食防止剤を添加した水や潤滑油などが使用されるが、これ以外の液体を代用してもよい。   Next, in step S309, as shown in FIG. 7F, hydrostatic pressure is applied to the mold 2 including the center member 1a, the outer member 1b, and the granulated powder 41 using a hydrostatic pressure molding (CIP) device 43. . Specifically, the pressure medium 45 is introduced into the CIP device 43 in which the molding die 2 is installed, and the pressure in the CIP device 43 is increased to a predetermined pressure, for example, about 98 MPa (20 MPa to 294 MPa). This state is maintained for a predetermined time, for example, about 1 minute (0.5 to 10 minutes). In this manner, a silica molded body can be formed on the outer periphery of the center member 1a and the outer member 1b. In general, water or lubricating oil to which a corrosion inhibitor is added is used as the pressure medium 45, but other liquids may be used instead.

ステップS309において成形型2に静水圧が印加されると、図7Gに示すように、弾性材料からなる成形用筒21は、静水圧によって成形型2の中心方向に向かって変形する。
外側部材1bを完全に固定してしまうと、この成形用筒21の変形に起因して、外側部材1bが成形型2の中心方向へ撓んでしまう事象が生じ、外側部材1bの変形や破損することがある。
When a hydrostatic pressure is applied to the mold 2 in step S309, the molding cylinder 21 made of an elastic material is deformed toward the center of the mold 2 by the hydrostatic pressure, as shown in FIG. 7G.
If the outer member 1b is completely fixed, an event that the outer member 1b bends toward the center of the mold 2 due to the deformation of the molding cylinder 21 occurs, and the outer member 1b is deformed or damaged. Sometimes.

しかしながら、成形型2においては、成形用上蓋体23の外側溝235の内側側面と外側部材1bとの間、および成形用下蓋体25の外側溝255の内側側面と外側部材1bとの間には空隙があり、この空隙によって、静水圧の印加時に外側部材1bは成形型2の中心方向へ移動することができる。したがって、外側部材1bに成形型2の中心方向へ撓ませるような圧力が印加されることを抑制できる。   However, in the molding die 2, between the inner side surface of the outer groove 235 of the molding upper lid body 23 and the outer member 1b, and between the inner side surface of the outer groove 255 of the molding lower lid body 25 and the outer member 1b. Has a gap, and the outer member 1b can move toward the center of the mold 2 when a hydrostatic pressure is applied. Therefore, it can suppress that the pressure which makes it bend in the center direction of the shaping | molding die 2 is applied to the outer member 1b.

次いで、ステップS311において、CIP装置43内の圧力を徐々に減圧して成形型2をCIP装置43から取り出し、さらに成形型2から図7Hに示すような成形体を取り出した後に、該成形体を乾燥雰囲気中に所定の温度、例えば500℃程度(400℃〜800℃)にて所定の時間、例えば5時間程度(1時間〜10時間)晒すことで水分及びバインダーを除去及び脱脂する。最後に、ステップ313において、脱水、精製、及び焼結工程を行う。その結果、成形体は図1に示すマルチコアファイバ母材10となる。具体的には、成形体の中心部材1aはマルチコアファイバ母材10の中心コア部1aに対応し、成形体の外側部材1bはマルチコアファイバ母材10の外周コア部1bに対応し、成形体の造粒粉体41はマルチコアファイバ母材10のクラッド部3に対応する。このようにして製造されたマルチコアファイバ母材10(光ファイバ母材)に対して線引き工程を実施することで、光ファイバを作製する。   Next, in step S311, the pressure in the CIP device 43 is gradually reduced to take out the molding die 2 from the CIP device 43, and after taking out the molding as shown in FIG. 7H from the molding die 2, the molding is removed. Moisture and binder are removed and degreased by exposure to a predetermined temperature, for example, about 500 ° C. (400 ° C. to 800 ° C.) in a dry atmosphere for a predetermined time, for example, about 5 hours (1 hour to 10 hours). Finally, in step 313, dehydration, purification, and sintering processes are performed. As a result, the molded body becomes the multi-core fiber preform 10 shown in FIG. Specifically, the central member 1a of the molded body corresponds to the central core portion 1a of the multi-core fiber preform 10, and the outer member 1b of the molded body corresponds to the outer peripheral core portion 1b of the multi-core fiber preform 10. The granulated powder 41 corresponds to the clad portion 3 of the multi-core fiber preform 10. An optical fiber is manufactured by performing a drawing process on the multi-core fiber preform 10 (optical fiber preform) manufactured in this way.

以下、成形用上蓋体23の外側溝235の内側側面と外側部材1bとの間、および成形用下蓋体25の外側溝255の内側側面と外側部材1bとの間の空隙の大きさの好ましい範囲について、さらに詳細に説明する。   Hereinafter, the size of the gap between the inner side surface of the outer groove 235 of the upper lid body 23 for molding and the outer member 1b and the size of the gap between the inner side surface of the outer groove 255 of the lower lid body 25 for molding and the outer member 1b is preferable. The range will be described in more detail.

外側部材1bを、初期位置である外側部材1bの上下端側面と成形用上蓋体23の外側溝235、成形用下蓋体25の外側溝255の外側側面とが接する位置に配置した場合、成形用上蓋体23の外側溝235の内側側面と外側部材1bとの間、および成形用下蓋体25の外側溝255の内側側面と外側部材1bとの間には、空隙が生じる。
このとき、図7B〜図7Eに記載しているように、外側溝235、外側溝255の内側側面と外側部材1bとの距離を距離αとする。すなわち、成形用上蓋体23の外側溝235の溝幅w235及び成形用下蓋体25の外側溝255の溝幅w255は、外側部材1b内のクラッド13の外径d13よりも距離αだけ大きい。換言すると、外側溝235及び外側溝255は、成形型2の断面中心方向(すなわち、成形型2の長手方向に垂直な断面の径方向)に、外側部材1bの外径d13(外側部材1bが円柱状でない場合には該断面中心方向に沿った長さ)に距離αを加えた長さを有する。
When the outer member 1b is disposed at a position where the upper and lower end side surfaces of the outer member 1b as the initial position are in contact with the outer groove 235 of the molding upper lid body 23 and the outer side surface of the outer groove 255 of the molding lower lid body 25. A gap is generated between the inner side surface of the outer groove 235 of the upper lid body 23 and the outer member 1b, and between the inner side surface of the outer groove 255 of the molding lower lid body 25 and the outer member 1b.
At this time, as described in FIG. 7B to FIG. 7E, the distance between the inner side surface of the outer groove 235 and the outer groove 255 and the outer member 1b is a distance α. That is, the groove width w 235 of the outer groove 235 of the molding upper lid body 23 and the groove width w 255 of the outer groove 255 of the molding lower lid body 25 are a distance α greater than the outer diameter d 13 of the cladding 13 in the outer member 1b. Only big. In other words, the outer groove 235 and the outer groove 255 are arranged so that the outer diameter d 13 (outer member 1b) of the outer member 1b extends in the center direction of the cross section of the mold 2 (that is, the radial direction of the cross section perpendicular to the longitudinal direction of the mold 2). When is not cylindrical, it has a length obtained by adding a distance α to the length along the center of the cross section.

距離αは、静水圧の印加に伴い外側部材1bが中心方向に移動し得る最大距離と略同一の値、又は当該最大距離よりも大きい値であることが好ましい。
これにより、外側部材1bが成形型2の初期位置に配置されると、外側部材1bは、静水圧の印加中に最大で距離αまで成形型2の中心方向へ移動することができる。
The distance α is preferably substantially the same value as the maximum distance that the outer member 1b can move in the central direction along with the application of hydrostatic pressure, or a value that is larger than the maximum distance.
Thereby, when the outer member 1b is disposed at the initial position of the mold 2, the outer member 1b can move in the center direction of the mold 2 up to a distance α during application of the hydrostatic pressure.

例えば、距離αは、静水圧の印加中の成形用筒21の中心軸方向への成形用筒21の変形量の最大値以上の大きさであることが好ましい。しかしながら、実際には成形用筒21の変形量と空隙距離αは必ずしも等価ではない。これは、外側部材1bの初期位置が成形用筒21の中心に近いほど、一般的な条件下では外側部材1bの移動量が小さくなるためである。したがって、距離αは、外側部材1bの初期位置を考慮の上で、成形用筒21の変形量よりも短い距離に設計できる。
具体的な距離αは、例えば、成形型2の弾性変形量や造粒粉体41(多孔質ガラス体を成形するために使用される材料)の特性に基づき、事前実験やシミュレーションによって求められる。
For example, the distance α is preferably greater than or equal to the maximum value of the deformation amount of the molding cylinder 21 in the direction of the central axis of the molding cylinder 21 during application of hydrostatic pressure. However, in practice, the deformation amount of the molding cylinder 21 and the gap distance α are not necessarily equivalent. This is because, as the initial position of the outer member 1b is closer to the center of the molding cylinder 21, the amount of movement of the outer member 1b becomes smaller under general conditions. Therefore, the distance α can be designed to be shorter than the deformation amount of the molding cylinder 21 in consideration of the initial position of the outer member 1b.
The specific distance α is obtained by preliminary experiments or simulations based on, for example, the elastic deformation amount of the mold 2 and the characteristics of the granulated powder 41 (material used for molding the porous glass body).

空隙の大きさを距離αとすることで、外側部材1bは、静水圧の印加中においても、中心方向に向かって距離α以下の距離を移動することができる。これにより、成形用筒21が静水圧により変形した場合においても、印加された圧力によって外側部材1bが撓むことを抑制でき、静水圧成形法による外側部材1bの破損や変形を回避することができる。これにより、外側部材1bの変形や破損を生じさせることなく、光ファイバを作製することができる。   By setting the size of the gap to the distance α, the outer member 1b can move a distance α or less toward the center direction even during application of hydrostatic pressure. Thereby, even when the forming cylinder 21 is deformed by the hydrostatic pressure, the outer member 1b can be prevented from being bent by the applied pressure, and the outer member 1b can be prevented from being damaged or deformed by the hydrostatic pressure molding method. it can. Thereby, an optical fiber can be produced without causing deformation or breakage of the outer member 1b.

なお、静水圧の印加により想定される外側部材1bの移動距離が距離α未満の場合は、外側部材1bの側面と外側溝255の外側側面とは必ずしも接する必要は無い。即ち、想定される移動距離を担保できる所望の位置を、外側部材1bの初期位置とすることができる。   In addition, when the moving distance of the outer member 1b assumed by application of hydrostatic pressure is less than the distance α, the side surface of the outer member 1b and the outer side surface of the outer groove 255 are not necessarily in contact with each other. That is, a desired position that can secure the assumed moving distance can be set as the initial position of the outer member 1b.

[第二実施形態]
以下に本発明の第二実施形態として、光ファイバ母材であるマルチコアファイバ母材を製造する例について説明する。
[Second Embodiment]
An example of producing a multi-core fiber preform that is an optical fiber preform will be described below as a second embodiment of the present invention.

本発明の第二実施形態は、成形用上蓋体及び成形用下蓋体の外側溝の形状を除き、本発明の第一実施形態と同様である。従って、ここでは重複する説明は省略する。   The second embodiment of the present invention is the same as the first embodiment of the present invention except for the shapes of the outer grooves of the upper lid body for molding and the lower lid body for molding. Therefore, the overlapping description is omitted here.

図8(a)は、本発明の実施形態に係る成形型5の構造を示す斜視図、図8(b)は、成形型5の構造を示す正面図である。成形型5は、成形用筒51、成形用上蓋体53、及び成形用下蓋体55から構成される。成形用上蓋体53及び成形用下蓋体55は、アルミなどの金属又は金属と同程度の剛性を有するゴムや合成樹脂などの材料からなる。なお、本実施形態では例示的に成形型5を円筒状の構造としているが、本発明は円筒形状に限定されない。上述のように、静水圧成形法においては、成形型の形状を変更することにより容易に成形体の形状を変化させることができる。例えば、断面が長方形となる形状を成形したい場合、同形状に即した成形型を準備することで本発明を適用することができる。また、成形型5の寸法は、内径45mm程度と長さ500mm程度とすることができる。尚、成形型の寸法は、マルチコアファイバ母材の寸法によって任意に設計することが可能であり、これらの数値に限定するものではない。   FIG. 8A is a perspective view showing the structure of the mold 5 according to the embodiment of the present invention, and FIG. 8B is a front view showing the structure of the mold 5. The molding die 5 includes a molding cylinder 51, a molding upper lid body 53, and a molding lower lid body 55. The molding upper lid body 53 and the molding lower lid body 55 are made of a metal such as aluminum or a material such as rubber or synthetic resin having the same degree of rigidity as the metal. In the present embodiment, the mold 5 is illustratively a cylindrical structure, but the present invention is not limited to a cylindrical shape. As described above, in the isostatic pressing method, the shape of the molded body can be easily changed by changing the shape of the mold. For example, when it is desired to form a shape having a rectangular cross section, the present invention can be applied by preparing a mold that conforms to the shape. The dimensions of the mold 5 can be about 45 mm in inner diameter and about 500 mm in length. The dimensions of the mold can be arbitrarily designed according to the dimensions of the multi-core fiber preform, and are not limited to these numerical values.

図9(a)は、本発明の第二実施形態に係る成形用上蓋体53のD−D線における横断面構造、図9(b)は、E−E線における縦断面構造を示す模式図である。同図に示すように、成形用上蓋体53は、中心に中心部材1aの上部ダミー棒15を嵌め込むための中心溝533と、中心部材1aの外側に外側部材1bを配置するための複数(ここでは8)の外側溝535を有する。中心溝533は断面が円形であり、内径d533を有する。外側溝535の各々は、成形型5の径方向の長さがw535であり、成形型5の外側の周方向の幅がl535であり、その断面は、成形型5の径方向の両端部が半円形であり、円周方向の幅が一定の長円形である。 FIG. 9A is a schematic cross-sectional structure taken along the line D-D of the molding upper lid 53 according to the second embodiment of the present invention, and FIG. 9B is a schematic view showing a vertical cross-sectional structure taken along the line EE. It is. As shown in the figure, the molding upper lid 53 has a center groove 533 for fitting the upper dummy rod 15 of the center member 1a at the center, and a plurality of (outside members 1b for arranging the outer member 1b outside the center member 1a). Here, the outer groove 535 of 8) is provided. The central groove 533 is circular in cross section and has an inner diameter d 533 . Each of the outer grooves 535 has a length 535 in the radial direction of the mold 5, a width in the circumferential direction of the outer side of the mold 5 is l 535 , and the cross section thereof is at both ends in the radial direction of the mold 5. The part is semicircular and is an oval having a constant width in the circumferential direction.

図10(a)は、本発明の第二実施形態に係る成形用下蓋体55のF−F線における横断面構造であり、図10(b)E−E線における縦断面構造を示す模式図である。同図に示すように、成形用下蓋体55は、中心に中心部材1aの下部ダミー棒17を嵌め込むための中心溝553と、中心部材1aの外側に外側部材1bを配置するための外側溝555を有する。中心溝553は断面が円形であり、内径d553を有する。外側溝555の各々は、成形型5の径方向の長さがw555であり、成形型5の周方向の幅がl555であり、その断面は、成形型5の径方向の両端部が半円形であり、円周方向の幅が一定の長円形である。
このとき、外側溝555は、たとえば、中心溝553との距離が等距離であり、かつ隣接する外側溝555同士の距離が等距離となるように配置されている。また、このとき中心溝553と外側溝555の距離は、後述する焼結工程での体積収縮を考慮して決定されていることが好ましい。
なお、ここでは外側溝535、555をそれぞれ複数設けた例を示しているが、外側溝535、555はそれぞれ1つずつでもよい。
Fig.10 (a) is a cross-sectional structure in the FF line of the shaping | molding lower cover body 55 which concerns on 2nd embodiment of this invention, and is a schematic which shows the longitudinal cross-sectional structure in FIG.10 (b) EE line FIG. As shown in the figure, the molding lower lid body 55 has a center groove 553 for fitting the lower dummy rod 17 of the center member 1a at the center and an outer member 1b for placing the outer member 1b outside the center member 1a. A side groove 555 is provided. The central groove 553 is circular in cross section and has an inner diameter d553 . Each of the outer grooves 555 has a length of the mold 5 in the radial direction of w 555 and a width of the mold 5 in the circumferential direction of 1 555. It is a semicircle and is an oval with a constant width in the circumferential direction.
At this time, the outer groove 555 is disposed so that, for example, the distance from the center groove 553 is equal, and the distance between adjacent outer grooves 555 is equal. At this time, the distance between the center groove 553 and the outer groove 555 is preferably determined in consideration of volume shrinkage in a sintering process described later.
Although an example in which a plurality of outer grooves 535 and 555 are provided is shown here, one outer groove 535 and 555 may be provided.

本発明の第一実施形態同様に、中心部材1aの上部ダミー棒15は、成形用上蓋体53の中心部にある中心溝533に嵌め込まれる。また、中心部材1aの下部ダミー棒17は、成形用下蓋体55の中心部にある中心溝553に嵌め込まれる。従って、上部ダミー棒15の外径d15は、中心溝533の内径d553よりもわずかに小さく、下部ダミー棒17の外径d17は、中心溝553の内径d553よりもわずかに小さい。したがって、上部ダミー棒15、下部ダミー棒17をそれぞれ中心溝533、中心溝553に嵌め込むことで、中心部材1aは、成形用上蓋体53、成形用下蓋体55に固定される。
なお、中心部材1aを固定しつつ位置ずれを生じさせないためには、ダミー棒と中心溝のクリアランスは0mm〜成形型5の内径×0.01mmであることが好ましい。
Similar to the first embodiment of the present invention, the upper dummy bar 15 of the center member 1 a is fitted into the center groove 533 in the center of the molding upper lid 53. Further, the lower dummy rod 17 of the center member 1 a is fitted into the center groove 553 in the center portion of the molding lower lid body 55. Therefore, the outside diameter d 15 of the upper dummy rod 15 is slightly smaller than the inner diameter d 553 of the central channel 533, the outside diameter d 17 of the lower dummy rod 17 is slightly smaller than the inner diameter d 553 of the central groove 553. Therefore, the center member 1a is fixed to the molding upper lid 53 and the molding lower lid 55 by fitting the upper dummy bar 15 and the lower dummy bar 17 into the central groove 533 and the central groove 553, respectively.
In order to prevent a positional shift while fixing the central member 1a, the clearance between the dummy rod and the central groove is preferably 0 mm to the inner diameter of the mold 5 × 0.01 mm.

なお、中心部材1aは、上下端がそれぞれ成形用上蓋体53、成形用下蓋体55に固定された状態で静水圧が印加される。しかしながら、静水圧成形法によれば、成形型5内に印加される圧力は一定の大きさで成形型5の中心方向に印加される。このため、成形型5の中心に配置される中心部材1aにかかる、破損や変形の原因となる圧力、例えば、中心部材1aを外径方向の一方へ撓ませる様な圧力は小さい。   The central member 1a is applied with hydrostatic pressure with the upper and lower ends fixed to the molding upper lid 53 and the molding lower lid 55, respectively. However, according to the isostatic pressing method, the pressure applied in the mold 5 is applied to the center of the mold 5 with a constant magnitude. For this reason, the pressure applied to the center member 1a disposed at the center of the mold 5 that causes damage or deformation, for example, the pressure that bends the center member 1a in one direction in the outer diameter direction is small.

この実施形態では、1つの外側溝535、555に、それぞれ1本の外側部材1bが嵌め込まれる。外側部材1bの上端は、成形用上蓋体53の外側部にある外側溝535に配置される。また、外側部材1bの下端は、成形用下蓋体55の外側部にある外側溝555に配置される。ここで、外側溝535の周方向の幅l555及び外側溝555の周方向の幅l555は、外側部材1bの外径d13よりもわずかに大きい。したがって、外側部材1bを外側溝535、外側溝555に嵌め込むことで、外側部材1bの成形型5の周方向への移動が規制される。
なお、外側部材1bを固定しつつ周方向の位置ずれを生じさせないためには、外側部材1bと外側溝周方向のクリアランスは0mm〜成形型5の内径×0.01mmであることが好ましい。
In this embodiment, one outer member 1b is fitted in each of the outer grooves 535 and 555. The upper end of the outer member 1 b is disposed in the outer groove 535 in the outer portion of the molding upper lid 53. Further, the lower end of the outer member 1 b is disposed in the outer groove 555 in the outer portion of the molding lower lid body 55. Here, the circumferential width l 555 of width l 555 and outer grooves 555 in the circumferential direction of the outer groove 535 is slightly larger than the outer diameter d 13 of the outer member 1b. Therefore, by fitting the outer member 1b into the outer groove 535 and the outer groove 555, the movement of the outer member 1b in the circumferential direction of the mold 5 is restricted.
In addition, in order not to cause a circumferential position shift while fixing the outer member 1b, it is preferable that a clearance in the circumferential direction of the outer member 1b and the outer groove is 0 mm to an inner diameter of the mold 5 × 0.01 mm.

一方、成形用上蓋体53の径方向の長さw535及び成形用下蓋体55の径方向の長さw555は、外側部材1bの外径d13よりも大きい。
したがって、成形用上蓋体53の外側溝535の内側側面と外側部材1bとの間、および成形用下蓋体55の外側溝555の内側側面と外側部材1bとの間には空隙が生じる。この空隙によって、静水圧の印加時に外側部材1bは成形型5の中心方向へ移動することができる。したがって、外側部材1bに成形型5の中心方向へ撓ませるような圧力が印加されることを抑制できる。
On the other hand, the radial length w 535 of the molding upper lid 53 and the radial length w 555 of the molding lower lid 55 are larger than the outer diameter d 13 of the outer member 1b.
Accordingly, a gap is generated between the inner side surface of the outer groove 535 of the molding upper lid 53 and the outer member 1b, and between the inner side surface of the outer groove 555 of the molding lower lid 55 and the outer member 1b. By this gap, the outer member 1b can move toward the center of the mold 5 when the hydrostatic pressure is applied. Therefore, it can suppress that the pressure which makes the outer side member 1b bend to the center direction of the shaping | molding die 5 is applied.

なお、第一の実施形態と同様に、外側溝535、外側溝555の内側側面と外側部材1bとの距離を距離αとすると、距離αは、静水圧の印加に伴い外側部材1bが中心方向に移動し得る最大距離と略同一の値、又は当該最大距離よりも大きい値であることが好ましい。
これにより、外側部材1bが成形型5の初期位置に配置されると、外側部材1bは、静水圧の印加中に最大で距離αまで成形型5の中心方向へ移動することができる。
As in the first embodiment, when the distance between the outer groove 535 and the inner side surface of the outer groove 555 and the outer member 1b is a distance α, the distance α is the center of the outer member 1b with the application of hydrostatic pressure. It is preferable that the value is substantially the same as the maximum distance that can be moved to or a value larger than the maximum distance.
As a result, when the outer member 1b is disposed at the initial position of the mold 5, the outer member 1b can move toward the center of the mold 5 up to a distance α during application of hydrostatic pressure.

例えば、距離αは、静水圧の印加中の成形用筒21の中心軸方向への成形用筒51の変形量の最大値以上の大きさであることが好ましい。しかしながら、実際には成形用筒51の変形量と空隙距離αは必ずしも等価ではない。これは、外側部材1bの初期位置が成形用筒51の中心に近いほど、一般的な条件下では外側部材1bの移動量が小さくなるためである。したがって、距離αは、外側部材1bの初期位置を考慮の上で、成形用筒51の変形量よりも短い距離に設計できる。
具体的な距離αは、例えば、成形型5の弾性変形量や多孔質ガラス体を成形するために使用される材料の特性に基づき、事前実験やシミュレーションによって求められる。
For example, the distance α is preferably greater than or equal to the maximum value of the deformation amount of the molding cylinder 51 in the direction of the central axis of the molding cylinder 21 during application of hydrostatic pressure. However, in practice, the deformation amount of the forming cylinder 51 and the gap distance α are not necessarily equivalent. This is because, as the initial position of the outer member 1b is closer to the center of the molding cylinder 51, the amount of movement of the outer member 1b becomes smaller under general conditions. Therefore, the distance α can be designed to be shorter than the deformation amount of the molding cylinder 51 in consideration of the initial position of the outer member 1b.
The specific distance α is obtained by preliminary experiments or simulations based on, for example, the elastic deformation amount of the mold 5 and the characteristics of the material used for molding the porous glass body.

空隙の大きさを距離αとすることで、外側部材1bは、静水圧の印加中においても、中心方向に向かって距離α以下の距離を移動することができる。これにより、成形用筒51が静水圧により変形した場合においても、印加された圧力によって外側部材1bが撓むことを抑制でき、静水圧成形法による外側部材1bの破損や変形を回避することができる。これにより、外側部材1bの変形や破損を生じさせることなく、光ファイバを作製することができる。
なお、静水圧の印加により想定される外側部材1bの移動距離が距離α未満の場合は、外側部材1bの側面と外側溝555の外側側面とは必ずしも接する必要は無い。即ち、想定される移動距離を担保できる所望の位置を、外側部材1bの初期位置とすることができる。
By setting the size of the gap to the distance α, the outer member 1b can move a distance α or less toward the center direction even during application of hydrostatic pressure. Thereby, even when the forming cylinder 51 is deformed by the hydrostatic pressure, the outer member 1b can be prevented from being bent by the applied pressure, and the outer member 1b can be prevented from being damaged or deformed by the hydrostatic pressure molding method. it can. Thereby, an optical fiber can be produced without causing deformation or breakage of the outer member 1b.
In addition, when the moving distance of the outer member 1b assumed by application of hydrostatic pressure is less than the distance α, the side surface of the outer member 1b and the outer side surface of the outer groove 555 are not necessarily in contact with each other. That is, a desired position that can secure the assumed moving distance can be set as the initial position of the outer member 1b.

また本実施形態において、距離αは、各外側溝535及び外側溝555毎に異なる大きさとすることができる。例えば、本実施形態においては、成形用上蓋体53及び成形用下蓋体55は、各々八つの外側溝535及び外側溝555を有する。これら八つの外側溝に設置された外側部材1bに印加される静水圧のベクトル量は、成形型5の形状及び外側部材1bの初期位置によって異なる。従って、成形型の形状及び外側部材1bの初期位置に基づいて、各々の外側溝の距離を、距離αからαまで(但し、nは外側溝の数。本実施形態においてはn=8)別個に設計することができる。 In the present embodiment, the distance α can be different for each outer groove 535 and outer groove 555. For example, in the present embodiment, the molding upper lid body 53 and the molding lower lid body 55 each have eight outer grooves 535 and outer grooves 555. The vector amount of the hydrostatic pressure applied to the outer member 1b installed in these eight outer grooves varies depending on the shape of the mold 5 and the initial position of the outer member 1b. Therefore, based on the shape of the mold and the initial position of the outer member 1b, the distance between the outer grooves is a distance α 1 to α n (where n is the number of outer grooves. In this embodiment, n = 8). ) Can be designed separately.

本発明の第二実施形態の外側溝535及び外側溝555は、成形型5の外周形状に亘って溝が形成されておらず、代替として所定の幅l535及び幅l555を有する複数の溝が形成されている。 The outer groove 535 and the outer groove 555 of the second embodiment of the present invention are not formed over the outer peripheral shape of the mold 5, and alternatively, a plurality of grooves having predetermined widths l 535 and l 555. Is formed.

この様に外側溝を構成することで、外側部材1bが静水圧の印加によって成形型5の周方向へ移動することを抑制できる。従って、外側部材1bの位置合わせが容易となり、位置精度も向上する。第二実施形態に示す外側溝の構成は、特に静水圧が等方的に印加されない場合、例えば、成形型が円筒状で無い場合等において特に有効である。   By configuring the outer groove in this way, it is possible to suppress the outer member 1b from moving in the circumferential direction of the mold 5 due to application of hydrostatic pressure. Therefore, the positioning of the outer member 1b is facilitated, and the positional accuracy is improved. The configuration of the outer groove shown in the second embodiment is particularly effective when the hydrostatic pressure is not applied isotropically, for example, when the mold is not cylindrical.

一例として、図11に示すような略長方形の断面形状を有するマルチコアファイバ母材9を形成する場合、成形型の断面形状が円形でないため、複数の外側部材1bのそれぞれに印加される静水圧は、各々異なるベクトル量を有する。しかしながら、図12に示す様な、成形型7の中心方向への各々異なる値を有する空隙距離α乃至αを備えた外側溝701乃至708を成形用上蓋体及び成形用下蓋体に設けることで、円筒状の成形型同様に、外側部材1bの破損や変形を抑制することができる。 As an example, when the multi-core fiber preform 9 having a substantially rectangular cross-sectional shape as shown in FIG. 11 is formed, the cross-sectional shape of the mold is not circular, and the hydrostatic pressure applied to each of the plurality of outer members 1b is , Each having a different vector quantity. However, as shown in FIG. 12, outer grooves 701 to 708 having gap distances α 1 to α 8 each having different values in the center direction of the mold 7 are provided in the upper lid body for molding and the lower lid body for molding. Thus, the outer member 1b can be prevented from being damaged or deformed in the same manner as the cylindrical mold.

本発明の光ファイバ母材の製造方法によれば、コアロッド等の棒状部材の変形及び破損を抑制し、静水圧成形法によって高精度且つ低コストで光ファイバ母材を製造することができる。
なお、本発明の実施形態として、光ファイバ母材であるマルチコアファイバ母材を製造する例について説明したが、本発明はこれに限定されない。たとえば、成形型の断面中心を除く位置に、1本の棒状部材を設置し、偏心コアファイバを製造する場合にも適用可能である。
According to the method for manufacturing an optical fiber preform of the present invention, deformation and breakage of a rod-shaped member such as a core rod can be suppressed, and an optical fiber preform can be manufactured with high accuracy and low cost by a hydrostatic pressure molding method.
In addition, although the example which manufactures the multi-core fiber base material which is an optical fiber base material was demonstrated as embodiment of this invention, this invention is not limited to this. For example, the present invention can also be applied to a case where an eccentric core fiber is manufactured by installing one rod-like member at a position excluding the center of the cross section of the mold.

[実施例]
第一実施形態の光ファイバ母材の製造方法を用いて、マルチコアファイバ母材(成形体)を製造した。なお、第一実施形態では外側部材1bの数が8本である例が示されているが、本実施例では外側部材1bの数を6本とした。中心部材1aおよび外側部材1bとして外径5mm、長さ250mmのコアロッドを用い、図7Hに示すような成形体を形成した。そして、得られた成形体の直交する二方向(X,Y)について外径の測定を行い、さらに外径の平均および外径非円率を求めた。外径非円率は、(X方向の外径)/(Y方向の外径)によって定義される。
[Example]
A multi-core fiber preform (molded body) was produced using the method for producing an optical fiber preform of the first embodiment. In the first embodiment, an example in which the number of the outer members 1b is eight is shown, but in this example, the number of the outer members 1b is six. Using a core rod having an outer diameter of 5 mm and a length of 250 mm as the center member 1a and the outer member 1b, a molded body as shown in FIG. 7H was formed. And the outer diameter was measured about two orthogonal directions (X, Y) of the obtained molded object, and the average of the outer diameter and the outer diameter non-circularity were obtained. The outer diameter non-circularity is defined by (outer diameter in X direction) / (outer diameter in Y direction).

この測定結果を図13ならびに表1に示す。図13の横軸は成形体の長さ方向の位置を表し、左の縦軸は外径を表し、右の縦軸は外径非円率を表す。表1は、外径の測定結果から、全長又は両端部を除いた30mm〜230mmの範囲内について、それぞれ平均値、最大値、最小値を算出したものである。   The measurement results are shown in FIG. The horizontal axis in FIG. 13 represents the position in the length direction of the molded body, the left vertical axis represents the outer diameter, and the right vertical axis represents the outer diameter non-circularity. Table 1 shows the average value, the maximum value, and the minimum value, respectively, in the range of 30 mm to 230 mm excluding the full length or both ends from the measurement result of the outer diameter.

Figure 2016011249
Figure 2016011249

図13に示すように、両端部を除いた30〜230mmの範囲(長さ200mm)においては、母材外径の精度(外径非円率)は1%程度となっている。この部分をマルチコアファイバ母材の有効部とし、該マルチコアファイバ母材から線引きを行ってマルチコアファイバを製造する場合に、マルチコアファイバの外径を180μmとすると、期待できる光ファイバ長は約5kmとなる。また、マルチコアファイバ母材の外径変動から推定されるマルチコアファイバの外径変動は、外径180μmに対して±1μm程度となり、十分な精度が得られる。   As shown in FIG. 13, in the range of 30 to 230 mm (length: 200 mm) excluding both ends, the accuracy of the outer diameter of the base material (outer diameter non-circularity) is about 1%. When this portion is used as an effective portion of the multi-core fiber preform and a multi-core fiber is manufactured by drawing from the multi-core fiber preform, assuming that the outer diameter of the multi-core fiber is 180 μm, the expected optical fiber length is about 5 km. . Moreover, the outer diameter fluctuation of the multi-core fiber estimated from the outer diameter fluctuation of the multi-core fiber preform is about ± 1 μm with respect to the outer diameter of 180 μm, and sufficient accuracy can be obtained.

さらに、製造された成形体からコアロッドを抜き取り、コアロッドが抜き取られた該成形体を三箇所で輪切りにして、コアロッドがあった穴からコア位置を測定した。コア位置として、断面写真の画像上で、中心コア(中心部材1a)があった穴の中心を基準に、外周コア(外側部材1b)があった穴の中心との距離を測定した。この距離(コアロッド間距離)を、各断面において、6本の外周コアについてそれぞれ測定した。なお、三箇所の輪切り位置について、成形体の一方端から順に断面A、B、Cとして測定を行い、さらに断面Bでは断面Bに対向する断面B’においても測定を行った。すなわち、成形体の輪切りを行うと各位置で向かい合う2つの断面が生じるが、断面A、Cについては該2つの断面の一方を、断面B、B’については該2つの断面の両方を測定した。この測定結果を図14に示す。図14の横軸は輪切りの各断面を表し、縦軸は中心コアの中心と外周コアの中心との距離(コアロッド間距離)を表す。   Furthermore, the core rod was extracted from the manufactured molded body, the molded body from which the core rod was extracted was cut into three rings, and the core position was measured from the hole where the core rod was located. As the core position, the distance from the center of the hole with the outer core (outer member 1b) was measured on the cross-sectional image based on the center of the hole with the central core (center member 1a). This distance (distance between core rods) was measured for each of the six outer peripheral cores in each cross section. In addition, about the ring cutting position of three places, it measured as cross-section A, B, C in order from the one end of a molded object, and also measured in cross-section B 'facing the cross-section B in cross-section B. That is, when the molded product is cut into rounds, two cross-sections facing each other are generated at each position, and one of the two cross-sections is measured for the cross-sections A and C, and both of the two cross-sections are measured for the cross-sections B and B ′. . The measurement results are shown in FIG. The horizontal axis in FIG. 14 represents each cross section of the ring cut, and the vertical axis represents the distance between the center of the central core and the center of the outer core (distance between core rods).

図14に示す測定結果からコアロッド間距離のバラツキ(コアロッドの設定位置に対する実際位置のズレを外径で割った量)を算出したところ、断面Aでは±1.3%、断面Bでは±0.7%、断面B’では±1.1%、断面Cでは±0.7%であった。   When the variation in the distance between the core rods (the amount obtained by dividing the deviation of the actual position with respect to the set position of the core rod by the outer diameter) was calculated from the measurement results shown in FIG. 7%, ± 1.1% in section B ′, and ± 0.7% in section C.

向かい合う断面Bと断面B’の間でのバラツキの差から±0.4%程の測定誤差を含むため、最悪値として2.6%程度の変動が生じている可能性があるが、これはマルチコアファイバで求められる精度の範囲内である。   Since a measurement error of about ± 0.4% is included due to the difference between the cross-sections B and B ′ facing each other, a fluctuation of about 2.6% may occur as the worst value. This is within the accuracy range required for multi-core fibers.

マルチコアファイバのコア間隔を50μmとした場合、バラツキが±0.7%である断面Bであれば、コア位置ズレは±0.4μm以下となり良好な結果が得られている。   When the core interval of the multi-core fiber is 50 μm, if the section B has a variation of ± 0.7%, the core position deviation is ± 0.4 μm or less, and good results are obtained.

[第三実施形態]
上述の第一、第二実施形態では、成形型の蓋に棒状部材を移動可能とする溝が設けられているため、該棒状部材は加圧中に成形型の断面中心方向へ移動可能である。それに対して、本実施形態では、成形型の蓋ではなく造粒粉体によって棒状部材を拘束することによって、該棒状部材を加圧中に成形型の断面中心方向へ移動可能とする。そのため、本実施形態においても、第一、第二実施形態と同様に加圧による棒状部材の変形又は破損を抑制する効果を奏することができる。
[Third embodiment]
In the first and second embodiments described above, since the groove for enabling the rod-shaped member to move is provided in the lid of the mold, the rod-shaped member can move toward the center of the cross section of the mold during pressurization. . On the other hand, in the present embodiment, the rod-shaped member is restrained by the granulated powder instead of the lid of the mold, thereby enabling the rod-shaped member to move toward the center of the cross section of the mold during pressing. Therefore, also in this embodiment, the effect which suppresses the deformation | transformation or damage of the rod-shaped member by pressurization similarly to 1st and 2nd embodiment can be show | played.

図15は、本実施形態に係る光ファイバ母材の製造方法の前半部分を示す模式図である。本実施形態では、上部固定治具61及び下部固定治具63を用いて棒状部材である中心部材1a及び外側部材1bの配置が行われる。上部固定治具61及び下部固定治具63は、金属、合成ゴム、合成樹脂などの材料からなり、例えば、アルミを用いることができる。本実施形態では例示的に上部固定治具61及び下部固定治具63を円筒状の構造としているが、これに限定されず、任意の形状でよい。上部固定治具61及び下部固定治具63の寸法は、製造対象のマルチコアファイバ母材の寸法によって任意に設計することが可能である。   FIG. 15 is a schematic diagram showing the first half of the optical fiber preform manufacturing method according to the present embodiment. In the present embodiment, the center member 1a and the outer member 1b, which are rod-shaped members, are arranged using the upper fixing jig 61 and the lower fixing jig 63. The upper fixing jig 61 and the lower fixing jig 63 are made of a material such as metal, synthetic rubber, or synthetic resin, and for example, aluminum can be used. In the present embodiment, the upper fixing jig 61 and the lower fixing jig 63 are exemplified as cylindrical structures, but the present invention is not limited to this and may have any shape. The dimensions of the upper fixing jig 61 and the lower fixing jig 63 can be arbitrarily designed according to the dimensions of the multi-core fiber preform to be manufactured.

下部固定治具63は、中心部材1a及び外側部材1bを嵌め込むための溝(貫通孔でもよい)を有する。上部固定治具61は、中心部材1a及び外側部材1bを嵌め込むための溝(貫通孔でもよい)を有する。上部固定治具61及び下部固定治具63が有する溝は、中心部材1a、外側部材1bの初期位置に対応する位置に設けられる。さらに、上部固定治具61は、造粒粉体41が通過可能な多数の貫通孔を有する。   The lower fixing jig 63 has a groove (may be a through hole) for fitting the center member 1a and the outer member 1b. The upper fixing jig 61 has a groove (may be a through hole) for fitting the center member 1a and the outer member 1b. The grooves of the upper fixing jig 61 and the lower fixing jig 63 are provided at positions corresponding to the initial positions of the center member 1a and the outer member 1b. Furthermore, the upper fixing jig 61 has a large number of through holes through which the granulated powder 41 can pass.

先ず、図15(a)に示すように、下部固定治具63と上部固定治具61と間に中心部材1a、外側部材1b(本実施形態では6本)及び成形用筒71を配置する。具体的には、中心部材1aの上部ダミー棒15及び各外側部材1bの一方端を上部固定治具61及び下部固定治具63に設けられた溝(又は貫通孔)に嵌め込むとともに、成形用筒71を中心部材1a及び外側部材1bを取り囲むように上部固定治具61と下部固定治具63との間に配置する。なお、後の工程で成形体の上下は反転されるため、この段階では中心部材1a、外側部材1b及び成形用筒71は上下逆に配置されている。   First, as shown in FIG. 15A, a central member 1a, outer members 1b (six in this embodiment), and a forming cylinder 71 are arranged between a lower fixing jig 63 and an upper fixing jig 61. Specifically, the upper dummy rod 15 of the central member 1a and one end of each outer member 1b are fitted into grooves (or through holes) provided in the upper fixing jig 61 and the lower fixing jig 63, and for molding. The cylinder 71 is disposed between the upper fixing jig 61 and the lower fixing jig 63 so as to surround the center member 1a and the outer member 1b. In addition, since the upper and lower sides of the molded body are inverted in a later process, the central member 1a, the outer member 1b, and the molding cylinder 71 are disposed upside down at this stage.

次いで、図15(b)に示すように、上部固定治具61に設けられた貫通孔(不図示)を通して、上部固定治具61、下部固定治具63及び成形用筒71に取り囲まれる空間内に造粒粉体41を充填する。造粒粉体41を充填する際には、中心部材1a、外側部材1bが浮き上がらないように上方から抑えながら、上部固定治具61、下部固定治具63及び成形用筒71に振動を加える。   Next, as shown in FIG. 15 (b), through a through hole (not shown) provided in the upper fixing jig 61, the space surrounded by the upper fixing jig 61, the lower fixing jig 63 and the molding cylinder 71. Is filled with the granulated powder 41. When the granulated powder 41 is filled, vibration is applied to the upper fixing jig 61, the lower fixing jig 63, and the forming cylinder 71 while suppressing the center member 1a and the outer member 1b from above so as not to float.

造粒粉体41の充填が完了した後、図15(c)に示すように、上部固定治具61を取り外す。   After the filling of the granulated powder 41 is completed, the upper fixing jig 61 is removed as shown in FIG.

図16は、本実施形態に係る光ファイバ母材の製造方法の後半部分を示す模式図である。図16(a)に示すように、上部固定治具61が取り外された後に、成形用筒71の上側に成形用下蓋体75を取り付け、成形用下蓋体75及び成形用筒71に取り囲まれる空間内に造粒粉体41をさらに充填する。成形用下蓋体75の中央の一部は取り外し可能に構成されており、該一部を取り外してから造粒粉体41を充填し、その後に該一部を再び取り付ける。成形用下蓋体75の造粒粉体41側には、成形用下蓋体75の厚みが周辺部から中央部に向かって漸減するように傾斜がついたテーパ部が設けられる。成形用下蓋体75は、図5に示す成形用下蓋体25と同様の中心溝253を有するが、外側溝255を有さない。すなわち、成形用筒71の上側に成形用下蓋体75が取り付けられた状態において、中心部材1aは成形用下蓋体75の中心溝253に嵌め込まれるが、外側部材1bは成形用下蓋体75に支持されない。   FIG. 16 is a schematic diagram showing the latter half of the method for manufacturing an optical fiber preform according to this embodiment. As shown in FIG. 16A, after the upper fixing jig 61 is removed, a molding lower lid body 75 is attached to the upper side of the molding cylinder 71 and is surrounded by the molding lower lid body 75 and the molding cylinder 71. The granulated powder 41 is further filled in the space to be stored. A part of the center of the molding lower lid body 75 is configured to be removable. After the part is removed, the granulated powder 41 is filled, and then the part is attached again. On the granulated powder 41 side of the molding lower lid body 75, a tapered portion having an inclination is provided so that the thickness of the molding lower lid body 75 gradually decreases from the peripheral portion toward the central portion. The molding lower lid 75 has a central groove 253 similar to the molding lower lid 25 shown in FIG. 5, but does not have an outer groove 255. That is, in the state where the molding lower lid body 75 is attached to the upper side of the molding cylinder 71, the center member 1a is fitted into the center groove 253 of the molding lower lid body 75, but the outer member 1b is the molding lower lid body. 75 is not supported.

次いで、図16(b)に示すように、下部固定治具63、中心部材1a、外側部材1b、成形用筒71、造粒粉体41及び成形用下蓋体75を、一体的に上下反転させる。その結果、下部固定治具63が上側に位置し、成形用下蓋体75が下側に位置する。そして、下部固定治具63を取り外す。   Next, as shown in FIG. 16B, the lower fixing jig 63, the central member 1a, the outer member 1b, the molding cylinder 71, the granulated powder 41, and the molding lower lid 75 are integrally turned upside down. Let As a result, the lower fixing jig 63 is positioned on the upper side, and the molding lower lid body 75 is positioned on the lower side. Then, the lower fixing jig 63 is removed.

次いで、図16(c)に示すように、下部固定治具63が取り外された後に、成形用筒71の上側に成形用上蓋体73を取り付け、成形用上蓋体73及び成形用筒71に取り囲まれる空間内に造粒粉体41をさらに充填する。成形用上蓋体73の中央の一部は取り外し可能に構成されており、該一部を取り外してから造粒粉体41を充填し、その後に該一部を再び取り付ける。成形用上蓋体73の造粒粉体41側には、成形用上蓋体73の厚みが周辺部から中央部に向かって漸減するように傾斜がついたテーパ部が設けられる。成形用上蓋体73は、図4に示す成形用上蓋体23と同様の中心溝233を有するが、外側溝235を有さない。すなわち、成形用筒71の上側に成形用上蓋体73が取り付けられた状態において、中心部材1aは成形用上蓋体73の中心溝233に嵌め込まれるが、外側部材1bは成形用上蓋体73に支持されない。   Next, as shown in FIG. 16 (c), after the lower fixing jig 63 is removed, a molding upper lid body 73 is attached to the upper side of the molding cylinder 71 and is surrounded by the molding upper lid body 73 and the molding cylinder 71. The granulated powder 41 is further filled in the space to be stored. A part of the center of the molding upper lid 73 is configured to be removable. After the part is removed, the granulated powder 41 is filled, and then the part is attached again. On the granulated powder 41 side of the molding upper lid 73, a tapered portion is provided with an inclination so that the thickness of the molding upper lid 73 gradually decreases from the peripheral portion toward the central portion. The molding upper lid 73 has a central groove 233 similar to the molding upper lid 23 shown in FIG. 4, but does not have an outer groove 235. That is, in the state where the molding upper lid body 73 is attached to the upper side of the molding cylinder 71, the center member 1a is fitted into the central groove 233 of the molding upper lid body 73, but the outer member 1b is supported by the molding upper lid body 73. Not.

その後、図7F〜7Hと同様に静水圧の印加、脱水、精製及び焼結工程を行うことによって、光ファイバ母材が得られる。   Then, an optical fiber preform | base_material is obtained by performing the application of a hydrostatic pressure, dehydration, refinement | purification, and a sintering process similarly to FIG.

図16(c)に示す状態において、外側部材1bは成形用上蓋体73及び成形用下蓋体75に支持されず、粉末材料である造粒粉体41によって初期位置(すなわち、静水圧の印加前に配置されるべき位置)に拘束される。造粒粉体41は流動性を有するため、造粒粉体41に拘束されている外側部材1bは、静水圧の印加が印加される際に移動可能である。そのため、本実施形態に係る光ファイバ母材の製造方法によれば、第一、第二実施形態と同様に加圧による棒状部材の変形又は破損を抑制する効果を奏することができる。   In the state shown in FIG. 16C, the outer member 1b is not supported by the molding upper lid body 73 and the molding lower lid body 75, and is applied by the granulated powder 41, which is a powder material, to the initial position (that is, the application of hydrostatic pressure). It is constrained to a position to be placed before. Since the granulated powder 41 has fluidity, the outer member 1b restrained by the granulated powder 41 is movable when an application of hydrostatic pressure is applied. Therefore, according to the method for manufacturing an optical fiber preform according to the present embodiment, an effect of suppressing deformation or breakage of the rod-shaped member due to pressurization can be achieved as in the first and second embodiments.

本実施形態に係る光ファイバ母材の製造工程を実験し、1ton/cmの静水圧の印加を1分間行ったところ、中心部材1a、外側部材1bのいずれにも変形及び破損は認められなかった。 When the manufacturing process of the optical fiber preform according to this embodiment was tested and a hydrostatic pressure of 1 ton / cm 2 was applied for 1 minute, neither deformation nor breakage was observed in either the central member 1a or the outer member 1b. It was.

[第四実施形態]
第三実施形態において、成形型(成形用筒71)の横断面形状は円形である。図17(a)は、成形型の横断面形状が円形である場合の焼結前後の成形体の横断面図である。図17(a)の焼結前の状態では、外側部材1bの存在しない領域の成形体の半径R1は、外側部材1bの存在する領域の成形体の半径R2に等しい。半径R1は成形体の横断面において該横断面の中心を通って外側部材1bを通らない部分の半径であり、半径R2は成形体の横断面において該横断面の中心を通って外側部材1bを通る部分の半径である。
[Fourth embodiment]
In 3rd embodiment, the cross-sectional shape of a shaping | molding die (molding cylinder 71) is circular. FIG. 17A is a cross-sectional view of the molded body before and after sintering when the cross-sectional shape of the mold is circular. In the state before sintering in FIG. 17A, the radius R1 of the molded body in the region where the outer member 1b does not exist is equal to the radius R2 of the molded body in the region where the outer member 1b exists. The radius R1 is the radius of the portion of the cross section of the molded body that does not pass through the center of the cross section and does not pass through the outer member 1b, and the radius R2 is the radius of the outer member 1b that passes through the center of the cross section of the molded body. This is the radius of the passing part.

成形体に対して焼結を行う際に、造粒粉体41は大きく収縮するのに比べて、コアロッドである外側部材1bはほとんど収縮しない。そのため成形体中において外側部材1bが存在する部分と、外側部材1bが存在しない部分とで体積の変化が異なる。その結果、焼結後の成形体(光ファイバ母材)の横断面形状は図17(a)の焼結後の状態のように、外側部材1bの存在する領域に6つの頂点が配置された略六角形状になる場合がある。さらに、外側部材1bに掛かる応力が不均一となるため、外側部材1bの横断面形状は円周方向に僅かに伸びて変形してしまう場合がある。   When the sintered body is sintered, the granulated powder 41 contracts greatly, whereas the outer member 1b, which is a core rod, hardly contracts. Therefore, the change in volume differs between the portion where the outer member 1b is present and the portion where the outer member 1b is not present in the molded body. As a result, as for the cross-sectional shape of the sintered compact (optical fiber preform), six vertices are arranged in the region where the outer member 1b exists as in the state after sintering in FIG. There are cases in which the shape is substantially hexagonal. Furthermore, since the stress applied to the outer member 1b becomes non-uniform, the cross-sectional shape of the outer member 1b may be slightly extended and deformed in the circumferential direction.

それに対して、本実施形態では焼結前の成形体の横断面形状を調整することによって、焼結後の成形体(光ファイバ母材)の横断面形状を略円形にすることができる。   On the other hand, in this embodiment, the cross-sectional shape of the molded body (optical fiber preform) after sintering can be made substantially circular by adjusting the cross-sectional shape of the molded body before sintering.

図17(b)は、本実施形態に係る焼結前後の成形体の横断面図である。図17(b)の焼結前の状態では、外側部材1bの存在しない領域の成形体の半径R1は、外側部材1bの存在する領域の成形体の半径R2よりも大きい(すなわち、R1>R2)。その結果、焼結前の成形体の横断面形状は図17(b)の焼結前の状態のように、外側部材1bの存在しない領域に6つの頂点が配置された略六角形状になる。   FIG. 17B is a cross-sectional view of the molded body before and after sintering according to the present embodiment. In the state before sintering in FIG. 17B, the radius R1 of the molded body in the region where the outer member 1b does not exist is larger than the radius R2 of the molded body in the region where the outer member 1b exists (that is, R1> R2). ). As a result, the cross-sectional shape of the green body before sintering becomes a substantially hexagonal shape in which six vertices are arranged in a region where the outer member 1b does not exist, as in the state before sintering in FIG.

このような構成を有する成形体を焼結すると、外側部材1bの存在しない領域の半径R1は、外側部材1bの存在する領域の半径R2よりも大きく減少する。その結果、焼結後の成形体の横断面形状は略円形となる。また、外側部材1bに掛かる応力が均一化されるため、外側部材1bの変形を抑制することができる。   When the molded body having such a configuration is sintered, the radius R1 of the region where the outer member 1b does not exist is greatly reduced than the radius R2 of the region where the outer member 1b exists. As a result, the cross-sectional shape of the sintered body after sintering is substantially circular. Moreover, since the stress applied to the outer member 1b is made uniform, deformation of the outer member 1b can be suppressed.

具体的な半径R1、R2の値(又は比率)は、外側部材1bの配置や造粒粉体41の密度等を考慮して適宜決定することができる。   Specific values (or ratios) of the radii R1 and R2 can be appropriately determined in consideration of the arrangement of the outer member 1b, the density of the granulated powder 41, and the like.

[第五実施形態]
第三実施形態において、図16(c)の後の静水圧の印加は成形体に成形型を装着した状態で行われる。そのため、成形用上蓋体73及び成形用下蓋体75の近傍における成形体の収縮量は、中央部における成形体の収縮量よりも小さい。その結果、加圧後の成形体において、図7Hに示すように、両端部は中央部よりも太くなる。例示的な加圧後の成形体において、中央部の外径は約41mmであり、両端部の外径は約44mmである。
[Fifth embodiment]
In the third embodiment, the application of the hydrostatic pressure after FIG. 16C is performed in a state in which a molding die is attached to the molded body. Therefore, the shrinkage amount of the molded body in the vicinity of the molding upper lid body 73 and the molding lower lid body 75 is smaller than the shrinkage amount of the molded body in the central portion. As a result, in the molded body after pressurization, as shown in FIG. 7H, both end portions are thicker than the central portion. In an exemplary molded body after pressurization, the outer diameter of the central portion is about 41 mm, and the outer diameter of both ends is about 44 mm.

このような成形体を焼結して光ファイバ母材にし、該光ファイバ母材を線引きして光ファイバを作製すると、該光ファイバの中心に位置する中心コアと該光ファイバの外周に位置する外周コアとの間の距離(以下、コア間距離という)は、中央部よりも両端部で小さくなる。これは、光ファイバの外径は略一定であるため、光ファイバ母材の状態で太い両端部は引き延ばされる割合が大きく、相対的に中心部材1aと外側部材1bとの間の距離が縮まるからである。コア間距離の許容範囲は規格で決まっているため、特に両端部においてコア間距離が許容範囲よりも小さい部分が増加すると、歩留まりが悪化する。   When such a molded body is sintered to form an optical fiber preform, and the optical fiber preform is drawn to produce an optical fiber, a central core located at the center of the optical fiber and an outer periphery of the optical fiber are located. The distance between the outer peripheral cores (hereinafter referred to as the inter-core distance) is smaller at both ends than at the center. This is because, since the outer diameter of the optical fiber is substantially constant, the thick end portions are large in the state of the optical fiber preform, and the distance between the center member 1a and the outer member 1b is relatively reduced. Because. Since the permissible range of the inter-core distance is determined by the standard, the yield deteriorates particularly when the portions where the inter-core distance is smaller than the permissible range increase at both ends.

それに対して、本実施形態では成形体中の外側部材1bの配置を調整することによって、該成形体から製造される光ファイバ中のコア間距離を改善することができる。   On the other hand, in this embodiment, by adjusting the arrangement of the outer member 1b in the molded body, the distance between the cores in the optical fiber manufactured from the molded body can be improved.

図18(a)は、本実施形態に係る中心部材1a及び外側部材1bの側面図である。図18(a)は焼結前の成形体内部の中心部材1a及び外側部材1bを示しており、視認性のため造粒粉体41は省略されている。本実施形態では、成形体を作製する際に、外側部材1bを中心部材1a(成形体の中心軸)に関してねじって、すなわち成形体の横断面の円周方向に傾斜させて配置する。具体的には、図15(a)の段階で、外側部材1bの上端部が、外側部材1bの下端部に対して、成形型の横断面の中心法線に関して相対的に20°回転して位置するように、上部固定治具61と下部固定治具63との間に外側部材1bを配置する。その結果、外側部材1bの長手方向は、中心部材1aの長手方向に対して傾斜する。また、上端部及び下端部において中心部材1aと外側部材1bとの間の距離を第三実施形態に比べて0.5%大きくした。なお、回転の方向及び角度は、実験やシミュレーションを行うことによって任意に設計してよい。   FIG. 18A is a side view of the center member 1a and the outer member 1b according to the present embodiment. FIG. 18A shows the central member 1a and the outer member 1b inside the molded body before sintering, and the granulated powder 41 is omitted for visibility. In the present embodiment, when the molded body is manufactured, the outer member 1b is twisted with respect to the central member 1a (the central axis of the molded body), that is, inclined to the circumferential direction of the cross section of the molded body. Specifically, at the stage of FIG. 15A, the upper end portion of the outer member 1b is rotated by 20 ° relative to the lower end portion of the outer member 1b with respect to the center normal of the cross section of the mold. The outer member 1b is disposed between the upper fixing jig 61 and the lower fixing jig 63 so as to be positioned. As a result, the longitudinal direction of the outer member 1b is inclined with respect to the longitudinal direction of the central member 1a. Further, the distance between the central member 1a and the outer member 1b at the upper end and the lower end is increased by 0.5% compared to the third embodiment. Note that the direction and angle of rotation may be arbitrarily designed by performing experiments and simulations.

図18(b)は図18(a)のG−G線で切断した断面図であり、図18(c)は図18(a)のH−H線で切断した断面図であり、図18(d)は図18(a)のJ−J線で切断した断面図である。図18(b)〜18(c)において、破線は造粒粉体41の外径を示す。図18(b)に示す上端部及び図18(d)に示す下端部において、中心部材1aと外側部材1bとの間の距離R3は同一であり、外側部材1bが中心部材1a(成形体の中心軸)に関して相対的に20°回転した状態にある。一方、図18(c)に示す中央部において、中心部材1aと外側部材1bとの間の距離R4は、上端部及び下端部における該距離R3よりも小さい(すなわち、R3>R4)。換言すると、外側部材1bを中心部材1aに関してねじって配置する場合に、上端部と下端部において中心部材1aと外側部材1bとの間の距離は同じだが、中央部において該距離は縮まる。   18B is a cross-sectional view taken along the line GG in FIG. 18A, and FIG. 18C is a cross-sectional view taken along the line H-H in FIG. (D) is sectional drawing cut | disconnected by the JJ line | wire of Fig.18 (a). 18 (b) to 18 (c), the broken line indicates the outer diameter of the granulated powder 41. In the upper end portion shown in FIG. 18 (b) and the lower end portion shown in FIG. 18 (d), the distance R3 between the center member 1a and the outer member 1b is the same, and the outer member 1b is the center member 1a (of the molded body). It is in a state of being rotated by 20 ° relative to the central axis). On the other hand, in the central portion shown in FIG. 18C, the distance R4 between the central member 1a and the outer member 1b is smaller than the distance R3 at the upper end portion and the lower end portion (that is, R3> R4). In other words, when the outer member 1b is twisted with respect to the center member 1a, the distance between the center member 1a and the outer member 1b is the same at the upper end and the lower end, but the distance is reduced at the center.

図19は、光ファイバのコア間距離を見積もった結果のグラフを示す図である。具体的には、まず、全長250mmの成型体に対し両端部とその間を10mm間隔でX線CT撮影することにより成型体中のガラスロッド位置を測定する。次に該成形体を透明ガラス化し、外径180μmに線引きした場合のコア間隔を求める。なお、成型体断面内密度は1.45g/cmで一定であるものとした。また、図19の横軸は成型体の一方端から他方端に向かって等間隔で設定した測定位置であり、縦軸はコア間距離(μm)の見積もり値である。図19には、回転無しの場合(第三実施形態)に係る成形体から作製した光ファイバ及び20°回転の場合(本実施形態)に係る成形体から作製した光ファイバのコア間距離が示されている。 FIG. 19 is a graph showing a result of estimating the inter-core distance of the optical fiber. Specifically, first, the position of the glass rod in the molded body is measured by X-ray CT imaging of both ends and a space between the both ends of the molded body having a total length of 250 mm. Next, the molded body is made into transparent glass, and the core interval when the outer diameter is drawn to 180 μm is determined. The density in the cross section of the molded body was 1.45 g / cm 3 and was constant. Further, the horizontal axis in FIG. 19 is a measurement position set at equal intervals from one end of the molded body to the other end, and the vertical axis is an estimated value of the inter-core distance (μm). FIG. 19 shows the distance between the cores of the optical fiber manufactured from the molded body according to the case of no rotation (third embodiment) and the optical fiber manufactured from the molded body according to the case of 20 ° rotation (this embodiment). Has been.

例示的な規格において、コア間距離は50±0.5μmである。図19からわかるように、本実施形態に係る光ファイバでは、第三実施形態に係る光ファイバよりも規格内の範囲が大きい。すなわち、本実施形態に係る光ファイバでは特に両端部における規格外の範囲を低減することができる。具体的には、図19のグラフにおいては、本実施形態の歩留まりは第三実施形態に比べて3%向上する。   In the exemplary standard, the inter-core distance is 50 ± 0.5 μm. As can be seen from FIG. 19, the optical fiber according to the present embodiment has a larger range within the standard than the optical fiber according to the third embodiment. That is, in the optical fiber according to the present embodiment, it is possible to reduce the nonstandard range at both ends. Specifically, in the graph of FIG. 19, the yield of the present embodiment is improved by 3% compared to the third embodiment.

本実施形態は、第三実施形態に限られず、第一、第二実施形態のように上下の蓋によって外側部材1bを支持する場合にも適用可能である。この場合には、第一、第二実施形態における成形用上蓋体23、53と成形用下蓋体25、55とを相対的に回転させる(例えば20°)ことによって、図18(a)と同様に外側部材1bを中心部材1aに関してねじって配置することができ、同様の効果を実現することができる。   This embodiment is not limited to the third embodiment, and can also be applied to the case where the outer member 1b is supported by upper and lower lids as in the first and second embodiments. In this case, by rotating the upper lid bodies 23 and 53 for molding and the lower lid bodies 25 and 55 for molding in the first and second embodiments relatively (for example, 20 °), FIG. Similarly, the outer member 1b can be twisted with respect to the central member 1a, and the same effect can be realized.

本実施形態によれば、成形体中に外側部材1bを中心部材1aに関してねじって、すなわち成形体の横断面の円周方向に傾斜させて配置することによって、外側部材1bと中心部材1aとの間の距離を中央部よりも両端部で長くすることができる。その結果、該成形体から作製される光ファイバのコア間距離を改善することができ、光ファイバの歩留まりを向上させることができる。   According to the present embodiment, the outer member 1b and the central member 1a are arranged by twisting the outer member 1b with respect to the central member 1a in the molded body, that is, by tilting the outer member 1b in the circumferential direction of the cross section of the molded body. The distance between them can be made longer at both ends than at the center. As a result, the distance between the cores of the optical fiber manufactured from the molded body can be improved, and the yield of the optical fiber can be improved.

[第六実施形態]
第三実施形態において、成形体中では外側部材1bは粉末材料である造粒粉体41によって拘束される。粉末材料により拘束される外側部材1bは静水圧の印加前には位置ずれを起こしやすいため、特に多数の外側部材1bを含む光ファイバ母材を製造する場合に外側部材1bの位置の精度を維持することが難しい。
[Sixth embodiment]
In 3rd embodiment, the outer side member 1b is restrained by the granulated powder 41 which is a powder material in a molded object. Since the outer member 1b restrained by the powder material is likely to be displaced before application of hydrostatic pressure, the accuracy of the position of the outer member 1b is maintained particularly when an optical fiber preform including a large number of outer members 1b is manufactured. Difficult to do.

それに対して、本実施形態では複数回に分けて成形体を作製することによって、より多くの外側部材1bを含む光ファイバ母材を精度よく製造することができる。   On the other hand, in this embodiment, an optical fiber preform including a larger number of outer members 1b can be manufactured with high accuracy by producing a molded body in a plurality of times.

図20(a)は内側成形体81の縦断面図であり、図20(b)は内側成形体81及び外側成形体83の縦断面図である。図20(c)は図20(b)のK−K線で切断した断面図である。本実施形態では、まず内側成形体81を作製した後に、内側成形体81の外側に外側成形体83を作製し、内側成形体81及び外側成形体83を一体的な成形体として用いる。   20A is a longitudinal sectional view of the inner molded body 81, and FIG. 20B is a longitudinal sectional view of the inner molded body 81 and the outer molded body 83. FIG. FIG.20 (c) is sectional drawing cut | disconnected by the KK line | wire of FIG.20 (b). In the present embodiment, first, after forming the inner molded body 81, the outer molded body 83 is manufactured outside the inner molded body 81, and the inner molded body 81 and the outer molded body 83 are used as an integral molded body.

具体的には、まず図15(a)〜15(c)及び図16(a)〜16(c)の工程に従って各部材を配置した後、静水圧の印加を行うことによって、内側成形体81を作製する。図20(a)に示すように、内側成形体81中には、中心部材1aを中心とした円周上に6本の外側部材1bが等間隔に配置される。内側成形体81中の中心部材1a及び外側部材1bの数及び配置は、この構成に限定されず、任意に設計してよい。   Specifically, first, after each member is arranged according to the steps of FIGS. 15A to 15C and FIGS. 16A to 16C, the inner molded body 81 is applied by applying a hydrostatic pressure. Is made. As shown in FIG. 20A, in the inner molded body 81, six outer members 1b are arranged at equal intervals on a circumference centered on the central member 1a. The number and arrangement of the central member 1a and the outer member 1b in the inner molded body 81 are not limited to this configuration, and may be arbitrarily designed.

次いで、内側成形体81を中心部材1aの代わりに用いて、図15(a)〜15(c)及び図16(a)〜16(c)の工程に従って各部材を配置した後、静水圧の印加を行うことによって、内側成形体81の外側に外側成形体83を作製する。図20(b)、20(c)に示すように、外側成形体83中には、内側成形体81の外側において中心部材1aを中心とした円周上に12本の外側部材1bが等間隔に配置される。外側成形体83中の外側部材1bの数及び配置は、この構成に限定されず、任意に設計してよい。   Next, using the inner molded body 81 instead of the central member 1a, each member is arranged according to the steps of FIGS. 15 (a) to 15 (c) and FIGS. 16 (a) to 16 (c), and then the hydrostatic pressure is changed. By performing the application, the outer molded body 83 is produced outside the inner molded body 81. As shown in FIGS. 20 (b) and 20 (c), in the outer molded body 83, twelve outer members 1b are equally spaced on the circumference centered on the central member 1a outside the inner molded body 81. Placed in. The number and arrangement of the outer members 1b in the outer molded body 83 are not limited to this configuration, and may be arbitrarily designed.

内側成形体81の作製時及び外側成形体83の作製時に用いるため、大きさの異なる上部固定治具61、下部固定治具63、成形用上蓋体73、成形用下蓋体75及び成形用筒71の組が2組用意される。上部ダミー棒15及び下部ダミー棒17は、内側成形体81及び外側成形体83の2種類の成形型に対応するために2段階で太くなっている。   The upper fixing jig 61, the lower fixing jig 63, the molding upper lid 73, the molding lower lid 75, and the molding cylinder having different sizes are used for producing the inner molded body 81 and the outer molded body 83. Two sets of 71 are prepared. The upper dummy bar 15 and the lower dummy bar 17 are thickened in two stages so as to correspond to two types of molds, that is, the inner molded body 81 and the outer molded body 83.

本実施形態では成形体の作製を2回に分けて行っているが、3回以上に分けて行ってもよい。その場合には、大きさの異なる上部固定治具61、下部固定治具63、成形用上蓋体73、成形用下蓋体75及び成形用筒71の組を複数用意し、図15(a)〜15(c)及び図16(a)〜16(c)の工程及び静水圧の印加を繰り返して実行すればよい。   In the present embodiment, the molded body is manufactured twice, but may be divided into three or more times. In that case, a plurality of sets of upper fixing jig 61, lower fixing jig 63, upper molding body 73, lower molding body 75, and molding cylinder 71 having different sizes are prepared, as shown in FIG. The steps of ~ 15 (c) and FIGS. 16 (a) to 16 (c) and the application of hydrostatic pressure may be repeated.

本実施形態は、第三実施形態に限られず、第一、第二実施形態のように上下の蓋によって外側部材1bを支持する場合にも適用可能である。この場合には、大きさの異なる成形用筒21、51、成形用上蓋体23、53及び成形用下蓋体25、55の組を複数用意し、図7A〜7Hの工程を繰り返して実行すればよい。   This embodiment is not limited to the third embodiment, and can also be applied to the case where the outer member 1b is supported by upper and lower lids as in the first and second embodiments. In this case, a plurality of sets of molding cylinders 21 and 51, molding upper lid bodies 23 and 53, and molding lower lid bodies 25 and 55 having different sizes are prepared, and the steps of FIGS. That's fine.

本実施形態によれば、複数回に分けて棒状部材である外側部材1bの配置及び加圧を行うため、加圧前の粉末材料により拘束されている外側部材1bの数を減らすことができる。これにより、外側部材1bの位置ずれを低減し、多数の外側部材1b棒状部材を含む光ファイバ母材を精度よく製造することができる。   According to this embodiment, the arrangement and pressurization of the outer member 1b, which is a rod-shaped member, are performed in a plurality of times, so the number of outer members 1b restrained by the powder material before pressurization can be reduced. Thereby, the position shift of the outer member 1b can be reduced, and an optical fiber preform including a large number of rod members in the outer member 1b can be manufactured with high accuracy.

本実施形態を応用して、図21(a)、(b)に示すように碁盤目状(格子状)に中心部材1a及び外側部材1bを配置した透明ガラス体(光ファイバ母材)を作ることが可能である。図21(a)は静水圧の印加前の成形体の横断面図であり、図21(b)は静水圧の印加後の成形体の横断面図である。図21(a)、(b)の形態では、中心部材1aの代わりに、コアを有さない石英ガラスからなる棒状部材であるダミー部材1cが配置される。図21(a)の静水圧の印加前の成形体において、内側成形体81中にはダミー部材1cを中心とする矩形の各頂点上に4本の外側部材1bが配置され、外側成形体83中には内側成形体81の外側においてダミー部材1cを中心とする矩形の辺上に8本(各辺上に2本ずつ)の外側部材1bが配置され、更にその外側にダミー部材1cを中心とする矩形の各頂点上に4本の外側部材1bが配置される。このような構成の成形体に静水圧を印加した後に焼結することによって、図21(b)に示すような碁盤目状に配置された16本のコアを有する光ファイバ母材を製造することができる。なお、それぞれの成型体の形状及び成形前の成形型への棒状部材の配置は、静水圧加圧時の造粒粉体41の収縮及び焼結時の造粒粉体41の収縮を考慮して、焼結後に所望の配置が得られるように選定される。図21(a)に示すように、特に外側の矩形の頂点に位置する外側部材1bは、静水圧の印加及び焼結による移動距離が大きいため、静水圧の印加前には外側にずらして配置されることが望ましい。   By applying this embodiment, as shown in FIGS. 21A and 21B, a transparent glass body (optical fiber preform) is formed in which a central member 1a and an outer member 1b are arranged in a grid pattern (lattice shape). It is possible. FIG. 21A is a cross-sectional view of the molded body before application of hydrostatic pressure, and FIG. 21B is a cross-sectional view of the molded body after application of hydrostatic pressure. 21 (a) and 21 (b), a dummy member 1c, which is a rod-shaped member made of quartz glass having no core, is disposed instead of the center member 1a. In the molded body before application of the hydrostatic pressure in FIG. 21A, four outer members 1b are arranged on each vertex of a rectangle centering on the dummy member 1c in the inner molded body 81, and the outer molded body 83 is disposed. Inside, eight outer members 1b (two on each side) are arranged on a rectangular side centered on the dummy member 1c outside the inner molded body 81, and the dummy member 1c is further centered on the outer side. Four outer members 1b are arranged on each vertex of the rectangle. An optical fiber preform having 16 cores arranged in a grid pattern as shown in FIG. 21 (b) is manufactured by sintering after applying hydrostatic pressure to the molded body having such a configuration. Can do. The shape of each molded body and the arrangement of the rod-shaped member on the mold before molding take into account the shrinkage of the granulated powder 41 during hydrostatic pressure and the shrinkage of the granulated powder 41 during sintering. Thus, a desired arrangement is selected after sintering. As shown in FIG. 21 (a), the outer member 1b located particularly at the apex of the outer rectangle has a large moving distance due to the application and sintering of the hydrostatic pressure, so that it is shifted to the outside before the hydrostatic pressure is applied. It is desirable that

[第七実施形態]
光ファイバにおいて、コアとコアとの間に空孔を設けることによって、クロストークを低減できることが知られている。本実施形態では、成形体中に空孔を有する棒状部材を配置することによって、空孔を有する光ファイバの元となる光ファイバ母材を製造する。
[Seventh embodiment]
In an optical fiber, it is known that crosstalk can be reduced by providing a hole between cores. In the present embodiment, an optical fiber preform serving as a base of an optical fiber having holes is manufactured by disposing a rod-shaped member having holes in the molded body.

図22(a)は、本実施形態に係る成形体の横断面図である。本実施形態に係る成形体は、第一〜第六実施形態のうちいずれかの方法によって作製される。本実施形態では、中心部材1a及び外側部材1bに加えて、空孔部材1dを用いる。空孔部材1dは、一方向に延在するパイプ形状をしており、コア11の代わりに中心に長手方向に沿って延在する空孔を有する。空孔部材1は、例えば石英からなり、クラッド13と同一の材料で構成されてよい。空孔部材1中の空孔の径は、作製対象の光ファイバに応じて任意に設計してよい。   FIG. 22A is a cross-sectional view of a molded body according to this embodiment. The molded body according to the present embodiment is produced by any one of the first to sixth embodiments. In the present embodiment, a hole member 1d is used in addition to the center member 1a and the outer member 1b. The hole member 1 d has a pipe shape extending in one direction, and has a hole extending along the longitudinal direction at the center instead of the core 11. The hole member 1 is made of, for example, quartz and may be made of the same material as that of the clad 13. The diameter of the hole in the hole member 1 may be arbitrarily designed according to the optical fiber to be manufactured.

図22(a)に示す成形体の断面において、中心に中心部材1aが配置され、中心部材1aを中心とする第1の正六角形(破線で表示)の各頂点上に、6本の空孔部材1dが配置される。さらに、該第1の正六角形よりも大きい中心部材1aを中心とする第2の正六角形(破線で表示)の各頂点上に6本の空孔部材1dが配置されるとともに、該第2の正六角形の各辺の中点上に6本の外側部材1bが配置される。このような構成の成形体を焼結することによって、図22(b)に示すようなコア間に空孔を有する光ファイバ母材を製造することができる。   In the cross section of the molded body shown in FIG. 22 (a), a central member 1a is arranged at the center, and six holes are formed on each vertex of a first regular hexagon (indicated by a broken line) centered on the central member 1a. A member 1d is arranged. Furthermore, six hole members 1d are arranged on each vertex of a second regular hexagon (indicated by a broken line) centered on a central member 1a larger than the first regular hexagon, and the second Six outer members 1b are arranged on the midpoint of each side of the regular hexagon. By sintering the molded body having such a configuration, an optical fiber preform having holes between cores as shown in FIG. 22B can be manufactured.

図22(a)に示す形態では、成形型内に予め空孔部材1dを配置してから静水圧の印加を行うことによって成形体を作製する。一方、静水圧の印加後に成形体に空孔部材1dを埋め込むことも可能である。図22(c)は、図22(a)の成形体を作製する前段階の成形体の横断面図である。図22(c)では、空孔部材1dを配置する予定の位置に、棒状部材である仮部材1eが配置される。仮部材1eは、空孔部材1dと同一の径及び長さを有し、金属や石英などの任意の材料からなる。   In the form shown in FIG. 22 (a), a molded body is produced by applying a hydrostatic pressure after disposing a hole member 1d in advance in a mold. On the other hand, it is also possible to embed the hole member 1d in the molded body after application of hydrostatic pressure. FIG.22 (c) is a cross-sectional view of the molded object of the previous stage which produces the molded object of Fig.22 (a). In FIG.22 (c), the temporary member 1e which is a rod-shaped member is arrange | positioned in the position which arrange | positions the hole member 1d. The temporary member 1e has the same diameter and length as the hole member 1d and is made of any material such as metal or quartz.

図22(c)の成形体から仮部材1eを機械的な加工等によって除去し、仮部材1eのあった空間に空孔部材1dを挿入する。これにより、図22(a)と同一の構成を有する成形体を作製することができる。   The temporary member 1e is removed from the molded body of FIG. 22C by mechanical processing or the like, and the hole member 1d is inserted into the space where the temporary member 1e was present. Thereby, the molded object which has the same structure as Fig.22 (a) is producible.

なお、それぞれの成型体の形状及び成形前の成形型への棒状部材の配置は、静水圧加圧時の造粒粉体41の収縮及び焼結時の造粒粉体41の収縮を考慮して、焼結後の所望の配置が得られるように決定される。図22(a)、(c)に示すように、特に外側の正六角形の各辺上に位置する外側部材1bは、静水圧の印加及び焼結による移動距離が大きいため、静水圧の印加前には外側にずらして配置されることが望ましい。   The shape of each molded body and the arrangement of the rod-shaped member on the mold before molding take into account the shrinkage of the granulated powder 41 during hydrostatic pressure and the shrinkage of the granulated powder 41 during sintering. Thus, the desired arrangement after sintering is determined. As shown in FIGS. 22 (a) and 22 (c), the outer member 1b located on each side of the outer regular hexagon has a large moving distance due to the application and sintering of the hydrostatic pressure. In this case, it is desirable to displace them outward.

1a 中心部材
1b 外側部材
2、5、7 成形型
3 クラッド部
9、10 マルチコアファイバ母材
11 コア
13 クラッド
15 上部ダミー棒
17 下部ダミー棒
21、51、71 成形用筒
23、53、73 成形用上蓋体
25、55、75 成形用下蓋体
41 造粒粉体
43 静水圧成形(CIP)装置
45 圧力媒体
61 上部固定治具
63 下部固定治具
233、253 中心溝
235、255 外側溝
535、555 外側溝
701 外側溝
1a Center member
1b Outer member 2, 5, 7 Mold
3 Clad part 9, 10 Multi-core fiber preform
11 core
13 clad
15 Upper dummy stick
17 Lower dummy rod 21, 51, 71 Molding cylinder 23, 53, 73 Molding upper lid 25, 55, 75 Molding lower lid
41 Granulated powder
43 Hydrostatic pressing (CIP) equipment
45 Pressure medium
61 Upper fixing jig
63 Lower fixing jig 233, 253 Central groove 235, 255 Outer groove 535, 555 Outer groove 701 Outer groove

Claims (15)

所定の形状を有する成形型の中に、前記成形型の長手方向に垂直な断面の中心を除く位置に、前記断面と垂直な方向に沿って棒状部材を設置する第1のステップと、
前記成形型の中にシリカを含む粉末材料を充填する第2のステップと、
前記成形型に静水圧を印加する第3のステップと、
を含み、
前記棒状部材は、前記静水圧の印加中に、前記成形型の前記断面の中心に向かって所定の距離だけ移動可能である
光ファイバ母材の製造方法。
A first step of installing a rod-shaped member along a direction perpendicular to the cross section at a position excluding the center of the cross section perpendicular to the longitudinal direction of the mold in the mold having a predetermined shape;
A second step of filling the mold with a powder material comprising silica;
A third step of applying hydrostatic pressure to the mold;
Including
The method of manufacturing an optical fiber preform, wherein the rod-shaped member is movable by a predetermined distance toward the center of the cross section of the mold during application of the hydrostatic pressure.
前記成形型が上部及び下部に前記棒状部材を設置するための溝を備え、
前記溝が、前記断面の径方向に、前記棒状部材の外径に前記所定の距離を加えた長さを有する
請求項1に記載の光ファイバ母材の製造方法。
The mold includes a groove for installing the rod-like member in the upper and lower parts;
The method for manufacturing an optical fiber preform according to claim 1, wherein the groove has a length obtained by adding the predetermined distance to the outer diameter of the rod-shaped member in the radial direction of the cross section.
前記溝が、前記断面の中心を中心とし、所定の幅を有する円環状に形成される請求項2に記載の光ファイバ母材の製造方法。   The method for manufacturing an optical fiber preform according to claim 2, wherein the groove is formed in an annular shape having a predetermined width centered on the center of the cross section. 前記溝が、1本の前記棒状部材につき、1つ形成されている
請求項2に記載の光ファイバ母材の製造方法。
The method for manufacturing an optical fiber preform according to claim 2, wherein one groove is formed per one rod-shaped member.
前記所定の距離が、前記静水圧の印加中における前記成形型の変形量の最大値よりも大きい
請求項1乃至4のいずれか一項に記載の光ファイバ母材の製造方法。
The method for manufacturing an optical fiber preform according to any one of claims 1 to 4, wherein the predetermined distance is larger than a maximum value of a deformation amount of the mold during application of the hydrostatic pressure.
前記第3のステップでは、前記棒状部材が前記成形型に接触せず前記粉末材料によって拘束された状態で、前記成形型に前記静水圧が印加される
請求項1に記載の光ファイバ母材の製造方法。
2. The optical fiber preform according to claim 1, wherein in the third step, the hydrostatic pressure is applied to the mold in a state where the rod-shaped member is not in contact with the mold and is restrained by the powder material. Production method.
前記第1のステップにおいて治具を用いて前記棒状部材を設置し、前記第2のステップにおいて前記治具を除去することによって、前記棒状部材を前記成形型に接触せず前記粉末材料によって拘束された状態にする
請求項6に記載の光ファイバ母材の製造方法。
By installing the rod-shaped member using a jig in the first step and removing the jig in the second step, the rod-shaped member is restrained by the powder material without contacting the mold. The method of manufacturing an optical fiber preform according to claim 6, wherein
前記成形型の前記断面は、非円形である
請求項1乃至7のいずれか一項に記載の光ファイバ母材の製造方法。
The method for manufacturing an optical fiber preform according to any one of claims 1 to 7, wherein the cross section of the mold is non-circular.
前記成形型の前記断面において、前記断面の中心を通って前記棒状部材を通らない部分の半径は、前記断面の中心を通って前記棒状部材を通る部分の半径よりも大きい
請求項8に記載の光ファイバ母材の製造方法。
The radius of the part which does not pass the said rod-shaped member through the center of the said cross section in the said cross section of the said shaping | molding die is larger than the radius of the part which passes the said rod-shaped member through the center of the said cross section. Manufacturing method of optical fiber preform.
前記棒状部材は、前記棒状部材の上端部が、前記棒状部材の下端部に対して、前記成形型の前記断面の中心法線に関して相対的に回転された状態で配置される
請求項1乃至9のいずれか一項に記載の光ファイバ母材の製造方法。
The rod-shaped member is arranged in a state in which an upper end portion of the rod-shaped member is rotated relative to a lower end portion of the rod-shaped member with respect to a central normal line of the cross section of the mold. The manufacturing method of the optical fiber preform as described in any one of these.
前記第3のステップの後に前記成形型から成形体を取り出す第4のステップと
前記第4のステップの後に、前記成形型よりも大きい第2の成形型の中に前記成形体を配置する第5のステップと、
前記第5のステップの後に、前記成形型の代わりに前記第2の成形型を用いて前記第1のステップから前記第3のステップを実行する第6のステップと、
をさらに含む請求項1乃至10のいずれか一項に記載の光ファイバ母材の製造方法。
A fourth step of removing the molded body from the mold after the third step, and a fifth step of arranging the molded body in a second mold larger than the mold after the fourth step. And the steps
After the fifth step, a sixth step of executing the third step from the first step using the second mold instead of the mold;
The method for manufacturing an optical fiber preform according to any one of claims 1 to 10, further comprising:
前記棒状部材が、該棒状部材の長手方向に垂直な断面の中心と外層とで異なる屈折率を有する光ファイバ用のコアロッドである
請求項1乃至11のいずれか一項に記載の光ファイバ母材の製造方法。
The optical fiber preform according to any one of claims 1 to 11, wherein the rod-shaped member is a core rod for an optical fiber having different refractive indexes at the center of the cross section perpendicular to the longitudinal direction of the rod-shaped member and the outer layer. Manufacturing method.
前記棒状部材は長手方向に沿って延在する空孔を有する
請求項1乃至11のいずれか一項に記載の光ファイバ母材の製造方法。
The method of manufacturing an optical fiber preform according to any one of claims 1 to 11, wherein the rod-shaped member has a hole extending along a longitudinal direction.
前記第3のステップの後に、前記棒状部材を除去する第7のステップと、
前記第7のステップの後に、前記棒状部材が除去されてできた空間に、長手方向に沿って延在する空孔を有する第2の棒状部材を配置する第8のステップと、
をさらに含む請求項1乃至11のいずれか一項に記載の光ファイバ母材の製造方法。
A seventh step of removing the rod-shaped member after the third step;
After the seventh step, an eighth step of disposing a second rod-shaped member having a hole extending along the longitudinal direction in a space formed by removing the rod-shaped member;
The method for manufacturing an optical fiber preform according to any one of claims 1 to 11, further comprising:
成形用筒と、
上蓋体と、
下蓋体と、
を具備する装置であって、
前記上蓋体及び前記下蓋体は、前記成形用筒の中に棒状部材の上端と下端を設置するための溝を備え、
前記溝が、前記成形用筒の長手方向に垂直な断面の径方向に、前記棒状部材の外径に所定の距離を加えた長さを有する
光ファイバ母材の製造装置。
A molding cylinder;
An upper lid,
A lower lid,
A device comprising:
The upper lid body and the lower lid body are provided with grooves for installing the upper end and the lower end of a rod-shaped member in the molding cylinder,
An apparatus for manufacturing an optical fiber preform, wherein the groove has a length obtained by adding a predetermined distance to the outer diameter of the rod-shaped member in a radial direction of a cross section perpendicular to the longitudinal direction of the forming cylinder.
JP2015056800A 2014-03-28 2015-03-19 Optical fiber preform manufacturing method Active JP6567303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056800A JP6567303B2 (en) 2014-03-28 2015-03-19 Optical fiber preform manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014069619 2014-03-28
JP2014069619 2014-03-28
JP2014114103 2014-06-02
JP2014114103 2014-06-02
JP2015056800A JP6567303B2 (en) 2014-03-28 2015-03-19 Optical fiber preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2016011249A true JP2016011249A (en) 2016-01-21
JP6567303B2 JP6567303B2 (en) 2019-08-28

Family

ID=55228203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056800A Active JP6567303B2 (en) 2014-03-28 2015-03-19 Optical fiber preform manufacturing method

Country Status (1)

Country Link
JP (1) JP6567303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088445A (en) * 2015-11-10 2017-05-25 古河電気工業株式会社 Method for manufacturing optical fiber preform

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238768A (en) * 1992-02-26 1993-09-17 Furukawa Electric Co Ltd:The Method for molding constant polarization optical fiber base material
JPH0648757A (en) * 1992-07-27 1994-02-22 Furukawa Electric Co Ltd:The Production of preformed material for optical fiber
JPH0971431A (en) * 1995-09-07 1997-03-18 Furukawa Electric Co Ltd:The Production of silica glass-based multicore optical fiber
JPH0986947A (en) * 1995-09-20 1997-03-31 Shinetsu Quartz Prod Co Ltd Production of hollow silica glass base material for fiber
JP2011170062A (en) * 2010-02-18 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing the same, and optical fiber preform and method of manufacturing the same
JP2011197661A (en) * 2010-02-26 2011-10-06 Sumitomo Electric Ind Ltd Optical fiber cable
JP2013512851A (en) * 2009-12-03 2013-04-18 コーニング インコーポレイテッド Soot compression for optical fiber overcladding formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238768A (en) * 1992-02-26 1993-09-17 Furukawa Electric Co Ltd:The Method for molding constant polarization optical fiber base material
JPH0648757A (en) * 1992-07-27 1994-02-22 Furukawa Electric Co Ltd:The Production of preformed material for optical fiber
JPH0971431A (en) * 1995-09-07 1997-03-18 Furukawa Electric Co Ltd:The Production of silica glass-based multicore optical fiber
JPH0986947A (en) * 1995-09-20 1997-03-31 Shinetsu Quartz Prod Co Ltd Production of hollow silica glass base material for fiber
JP2013512851A (en) * 2009-12-03 2013-04-18 コーニング インコーポレイテッド Soot compression for optical fiber overcladding formation
JP2011170062A (en) * 2010-02-18 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing the same, and optical fiber preform and method of manufacturing the same
JP2011197661A (en) * 2010-02-26 2011-10-06 Sumitomo Electric Ind Ltd Optical fiber cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088445A (en) * 2015-11-10 2017-05-25 古河電気工業株式会社 Method for manufacturing optical fiber preform

Also Published As

Publication number Publication date
JP6567303B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6036386B2 (en) Multi-core optical fiber preform manufacturing method
JP6581877B2 (en) Multi-core fiber manufacturing method
JP6764346B2 (en) Optical fiber and preform forming method
JP6155380B2 (en) Optical fiber and manufacturing method thereof
JP6567303B2 (en) Optical fiber preform manufacturing method
JP5995298B1 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP5384679B2 (en) Method for manufacturing optical fiber preform and optical fiber preform
JP2013020075A (en) Method for manufacturing multi-core fiber
EP3129328B1 (en) Method for making soot preforms and glass optical fibers
JP2021155308A (en) Method for manufacturing multi-core fiber preform and method for manufacturing multi-core fiber
JP6690348B2 (en) Multicore optical fiber manufacturing method
WO2017170567A1 (en) Method for manufacturing optical fiber parent material, and method for manufacturing optical fiber
JP2020019680A (en) Method for manufacturing multicore fiber preform and method for manufacturing multicore fiber
EP2388628A2 (en) Optical fiber manufacturing method, optical fiber and optical fiber preform
JP6966311B2 (en) Manufacturing method of multi-core optical fiber base material and manufacturing method of multi-core optical fiber
JP5644692B2 (en) Optical fiber preform manufacturing method
JP6265961B2 (en) Optical fiber preform manufacturing method
JP7172088B2 (en) Optical fiber manufacturing method
JP7097115B2 (en) Manufacturing method of glass sintered body
JP7054254B2 (en) Manufacturing method of preform for optical fiber
JP2014031303A (en) Optical fiber base material manufacturing method and optical fiber
JP5492325B2 (en) Method for manufacturing optical fiber preform and optical fiber preform
JP2010195653A (en) Mold for forming element and method for forming molded product of element
EP4307022A1 (en) Multicore fiber, method for manufacturing multicore fiber, multicore fiber base material, and method for manufacturing multicore fiber base material
JP2010006679A (en) Method of producing quartz glass formed member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190731

R151 Written notification of patent or utility model registration

Ref document number: 6567303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350