JP7097115B2 - Manufacturing method of glass sintered body - Google Patents

Manufacturing method of glass sintered body Download PDF

Info

Publication number
JP7097115B2
JP7097115B2 JP2021125951A JP2021125951A JP7097115B2 JP 7097115 B2 JP7097115 B2 JP 7097115B2 JP 2021125951 A JP2021125951 A JP 2021125951A JP 2021125951 A JP2021125951 A JP 2021125951A JP 7097115 B2 JP7097115 B2 JP 7097115B2
Authority
JP
Japan
Prior art keywords
sintered body
glass sintered
holes
hole
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021125951A
Other languages
Japanese (ja)
Other versions
JP2022027734A (en
Inventor
勝博 岩崎
秋月 朴
利光 稲垣
祐輔 木下
安生 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohoku Kogyo Co Ltd
Original Assignee
Kohoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohoku Kogyo Co Ltd filed Critical Kohoku Kogyo Co Ltd
Publication of JP2022027734A publication Critical patent/JP2022027734A/en
Application granted granted Critical
Publication of JP7097115B2 publication Critical patent/JP7097115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/02Methods or machines specially adapted for the production of tubular articles by casting into moulds
    • B28B21/04Methods or machines specially adapted for the production of tubular articles by casting into moulds by simple casting, the material being neither positively compacted nor forcibly fed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

本発明は、貫通孔を有するガラス焼結体の製造方法に関し、特に光ファイバプリフォームとしてのガラス焼結体の製造方法に関する。 The present invention relates to a method for producing a glass sintered body having through holes, and more particularly to a method for producing a glass sintered body as an optical fiber preform.

光ファイバは、屈折率の高いコアと、その周りを取り囲む、屈折率の低いクラッド層とから構成される。光ファイバのコア及びクラッド層はいずれも石英ガラス(シリカガラス)、フッ化物ガラス等の非金属無機物質を主な材料とする。従来一般的な通信用光ファイバは、信号伝送路となるコアが1個のシングルモードファイバであったところ、光通信システムにおける伝送容量の増大に伴い、1個の光ファイバ内に複数のコアを有するマルチコアファイバが開発されている。 An optical fiber is composed of a core having a high refractive index and a clad layer having a low refractive index surrounding the core. The core and clad layer of the optical fiber are mainly made of non-metal inorganic substances such as quartz glass (silica glass) and fluoride glass. Conventionally, a general optical fiber for communication is a single-mode fiber having one core as a signal transmission path, but as the transmission capacity in an optical communication system increases, a plurality of cores are provided in one optical fiber. Multi-core fiber with has been developed.

光ファイバは、光ファイバプリフォーム(光ファイバ母材)を紡糸(線引き)することにより製造される。プリフォームの一般的な製造方法として孔開法がある。孔開法は、石英棒にドリルを用いて孔を開け、そこにコアロッドを挿入した後、紡糸する方法である。孔開法は、大形のプリフォームに高い寸法精度の孔を開けることが難しく、特にマルチコアファイバの場合は手間がかかる。 An optical fiber is manufactured by spinning (drawing) an optical fiber preform (optical fiber base material). There is a perforation method as a general method for producing a preform. The hole opening method is a method in which a hole is made in a quartz rod using a drill, a core rod is inserted into the hole, and then spinning is performed. The hole-drilling method makes it difficult to make holes with high dimensional accuracy in a large preform, and it is troublesome especially in the case of a multi-core fiber.

これに対して、スラリーキャスト(スラリーキャスティング)法と呼ばれる方法がある(特許文献1)。スラリーキャスト法では、石英ガラス粉体、溶媒、分散剤、硬化性樹脂を含むガラス原料溶液に硬化剤を混合してスラリーとし、このスラリーを、コア用の金属ロッドが配置された成形型に注入して硬化させる。硬化後、脱型し、金属ロッドを離脱させる。金属ロッドの離脱により形成された孔にコアロッドを挿入し、乾燥、脱脂、焼結することにより成形体に含まれる溶媒及び硬化性樹脂を更に除去してプリフォームを製造する。この方法では、成形型に配置する金属ロッドの形状、サイズ、位置を適切に設定することで、高い寸法精度のコアをクラッド層内に有する光ファイバプリフォームを得ることができる。 On the other hand, there is a method called a slurry casting (slurry casting) method (Patent Document 1). In the slurry casting method, a curing agent is mixed with a glass raw material solution containing quartz glass powder, a solvent, a dispersant, and a curable resin to form a slurry, and this slurry is injected into a molding die in which a metal rod for a core is arranged. And cure. After curing, it is demolded and the metal rod is detached. The core rod is inserted into the hole formed by the detachment of the metal rod, and dried, degreased, and sintered to further remove the solvent and the curable resin contained in the molded product to produce a preform. In this method, by appropriately setting the shape, size, and position of the metal rod to be placed in the molding die, it is possible to obtain an optical fiber preform having a core with high dimensional accuracy in the clad layer.

特開2014-094884号公報Japanese Unexamined Patent Publication No. 2014-094884

スラリーキャスト法では、成形型から取り出された成形体が、ガラス焼結体であるプリフォームに至る過程で収縮し、寸法が変化する。成形体が大形の場合、寸法変化量の絶対値が大きくなるため、成形体に割れや変形が起きやすく、寸法精度を維持することが難しい。
なお、ここでは光通信用光ファイバのプリフォームについて説明したが、ファイバレーザ用やその他の光ファイバプリフォームをスラリーキャスト法により製造する場合も同様の問題がある。
In the slurry casting method, the molded body taken out from the molding die shrinks in the process of reaching the preform which is a glass sintered body, and the dimensions change. When the molded body is large, the absolute value of the dimensional change amount becomes large, so that the molded body is liable to crack or deform, and it is difficult to maintain the dimensional accuracy.
Although the preform of the optical fiber for optical communication has been described here, there is a similar problem when the preform for a fiber laser or other optical fiber is manufactured by the slurry casting method.

本発明が解決しようとする課題は、スラリーキャスト法によりガラス焼結体を製造する工程において得られる成形体やガラス焼結体に割れが発生しにくいようにすることである。 An object to be solved by the present invention is to prevent cracks from easily occurring in a molded body or a glass sintered body obtained in a process of manufacturing a glass sintered body by a slurry casting method.

上記課題を解決するためになされた本発明の第1の態様は、
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
貫通孔を有するガラス焼結体の中心軸と垂直な横断面上において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円のうち直径が最大となる最大仮想円が、14mm以上、58mm以下の直径を有するように、前記成形型の内径、前記孔形成用ロッドの直径が設定され、前記孔形成用ロッドが配置されているものである。
The first aspect of the present invention made to solve the above problems is
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
On the cross section perpendicular to the central axis of the glass sintered body having the through hole, the maximum virtual circle having the largest diameter among the virtual circles inscribed in the outer periphery of the glass sintered body and circumscribed in the through hole is The inner diameter of the molding die and the diameter of the hole forming rod are set so as to have a diameter of 14 mm or more and 58 mm or less, and the hole forming rod is arranged.

また、上記課題を解決するためになされた本発明の第2の態様は、
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
前記ガラス焼結体が複数の貫通孔を有しており、
前記ガラス焼結体の中心軸と垂直な横断面上の前記複数の貫通孔に囲まれた領域において、前記貫通孔の外周に外接する仮想円を第2仮想円と規定したとき、前記第2仮想円の直径が、14mm以上、58mm以下となるように、前記成形型の内径、前記孔形成用ロッドの直径が設定され、前記孔形成用ロッドが配置されているものである。
In addition, the second aspect of the present invention made to solve the above problems is
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
The glass sintered body has a plurality of through holes, and the glass sintered body has a plurality of through holes.
When the virtual circle circumscribing the outer periphery of the through hole is defined as the second virtual circle in the region surrounded by the plurality of through holes on the cross section perpendicular to the central axis of the glass sintered body, the second virtual circle is defined. The inner diameter of the molding die and the diameter of the hole-forming rod are set so that the diameter of the virtual circle is 14 mm or more and 58 mm or less, and the hole-forming rod is arranged.

さらにまた、上記課題を解決するためになされた本発明の第3の態様は、
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
ガラス焼結体が1個の貫通孔を有するとき、前記ガラス焼結体の中心軸と垂直な横断面上において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円のうち直径が最大となる仮想円の直径を2a、前記ガラス焼結体の外径を2R、前記貫通孔の数をn、前記貫通孔の直径を2r、前記貫通孔間の最近接部の間隔を2S、前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたときの前記硬化性樹脂の重量部をCとしたときに、以下の式(1)で定義されるBth値が73.5以下になるように各工程が行われるものである。
th={aC(R-nr)/(R+nr)}/1000 ・・・(1)
(ただし、R≧15、C≧7.5。a、R、r、Sは単位をmmで表したときの値である。)
Furthermore, the third aspect of the present invention made to solve the above problems is.
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
When the glass sintered body has one through hole, a virtual circle inscribed in the outer periphery of the glass sintered body and circumscribed in the through hole on a cross section perpendicular to the central axis of the glass sintered body. Of these, the diameter of the virtual circle with the largest diameter is 2a, the outer diameter of the glass sintered body is 2R, the number of through holes is n, the diameter of the through holes is 2r, and the closest contact portion between the through holes. Bth defined by the following formula (1) when the interval is 2S and the weight part of the curable resin is C when the amount of the quartz glass powder contained in the slurry is 100 parts by weight. Each step is performed so that the value is 73.5 or less.
B th = {aC 2 ( R2 - nr2) / (R + nr)} / 1000 ... (1)
(However, R ≧ 15, C ≧ 7.5. A, R, r, S are values when the unit is expressed in mm.)

また、上記課題を解決するためになされた本発明の第4の態様は、
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
ガラス焼結体が複数の貫通孔を有するとき、前記ガラス焼結体の中心軸と垂直な横断面において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円のうち直径が最大となる仮想円、及び、前記ガラス焼結体の中心軸と垂直な横断面上の前記複数の貫通孔に囲まれた領域において、前記貫通孔の外周に外接する仮想円のうち、直径が大きい仮想円の直径を2a、前記ガラス焼結体の外径を2R、前記貫通孔の数をn、前記貫通孔の直径を2r、前記貫通孔間の最近接部の間隔を2S、前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたときの前記硬化性樹脂の重量部をCとしたときに、以下の式(1)で定義されるBth値が73.5以下になるように各工程が行われるものである。
th={aC(R-nr)/(R+nr)}/1000 ・・・(1)
(ただし、R≧15、C≧7.5。a、R、r、Sは単位をmmで表したときの値である。)
Further, the fourth aspect of the present invention made to solve the above problems is.
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
When the glass sintered body has a plurality of through holes, among the virtual circles inscribed in the outer periphery of the glass sintered body and circumscribed in the through holes in the cross section perpendicular to the central axis of the glass sintered body. Of the virtual circle having the maximum diameter and the virtual circle circumscribing the outer periphery of the through hole in the region surrounded by the plurality of through holes on the cross section perpendicular to the central axis of the glass sintered body. The diameter of the virtual circle with a large diameter is 2a, the outer diameter of the glass sintered body is 2R, the number of through holes is n, the diameter of the through holes is 2r, and the distance between the closest portions between the through holes is 2S. When the amount of the quartz glass powder contained in the slurry is 100 parts by weight and the weight part of the curable resin is C, the Bth value defined by the following formula (1) is 73. Each step is performed so as to be 5 or less.
B th = {aC 2 ( R2 - nr2) / (R + nr)} / 1000 ... (1)
(However, R ≧ 15, C ≧ 7.5. A, R, r, S are values when the unit is expressed in mm.)

さらにまた、上記課題を解決するためになされた本発明の第5の態様は、
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、孔形成用ロッドが配置された筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
貫通孔を有するガラス焼結体の中心軸と垂直な横断面上において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円のうち直径が最大となる最大仮想円が、14mm以上、58mm以下の直径を有するように、前記成形型の形状、前記孔形成用ロッドの形状が設定され、前記孔形成用ロッドが配置されているものである。
Furthermore, the fifth aspect of the present invention made to solve the above problems is.
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the accommodating portion of a mold having a tubular accommodating portion in which a pore-forming rod is arranged, and the curable resin is cured. Process and
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces.
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
On the cross section perpendicular to the central axis of the glass sintered body having the through hole, the maximum virtual circle having the largest diameter among the virtual circles inscribed in the outer periphery of the glass sintered body and circumscribed in the through hole is The shape of the molding die and the shape of the hole-forming rod are set so as to have a diameter of 14 mm or more and 58 mm or less, and the hole-forming rod is arranged.

本発明に係るガラス焼結体の製造方法によれば、ガラス焼結体を製造する工程において、成形体やガラス焼結体に割れが発生することを抑制できる。 According to the method for manufacturing a glass sintered body according to the present invention, it is possible to suppress the occurrence of cracks in the molded body or the glass sintered body in the step of manufacturing the glass sintered body.

本発明に係るガラス焼結体の製造工程を示す図。The figure which shows the manufacturing process of the glass sintered body which concerns on this invention. 1個の貫通孔を有する成形体の仮想円を説明するための図。The figure for demonstrating the virtual circle of the molded body which has one through hole. 2個の貫通孔を有する成形体の仮想円を説明するための図。The figure for demonstrating the virtual circle of the molded body which has two through holes. 4個の貫通孔を有する成形体の仮想円を説明するための図。The figure for demonstrating the virtual circle of the molded body which has 4 through holes. 5個の貫通孔を有する成形体の仮想円を説明するための図。The figure for demonstrating the virtual circle of the molded body which has 5 through holes. 7個の貫通孔を有する成形体の仮想円を説明するための図。The figure for demonstrating the virtual circle of the molded body which has 7 through holes. 製造例2のサンプル4~6の成形体の横断面を示す図(a)~(c)。Figures (a) to (c) show cross sections of the molded bodies of Samples 4 to 6 of Production Example 2.

本発明の第1の態様は、
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
貫通孔を有するガラス焼結体の中心軸と垂直な横断面上において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円のうち直径が最大となる最大仮想円が、14mm以上、58mm以下の直径を有するように、前記成形型の内径、前記孔形成用ロッドの直径が設定され、前記孔形成用ロッドが配置されているものである。
The first aspect of the present invention is
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
On the cross section perpendicular to the central axis of the glass sintered body having the through hole, the maximum virtual circle having the largest diameter among the virtual circles inscribed in the outer periphery of the glass sintered body and circumscribed in the through hole is The inner diameter of the molding die and the diameter of the hole forming rod are set so as to have a diameter of 14 mm or more and 58 mm or less, and the hole forming rod is arranged.

スラリーキャスト法においては、スラリーを成形型に入れて固化させた後、固化体から成形型及び孔形成用ロッドを脱離して成形体を得る。このようにして得られた成形体は、乾燥工程、脱脂工程、焼結工程を経ることでガラス焼結体となる。乾燥工程では、スラリーに含まれる溶媒が主に成形体から除去される。脱脂工程では、前記スラリーに含まれる硬化性樹脂が主に成形体から除去される。 In the slurry casting method, the slurry is placed in a molding die and solidified, and then the molding die and the hole-forming rod are separated from the solidified body to obtain a molded body. The molded product thus obtained becomes a glass sintered body through a drying step, a degreasing step, and a sintering step. In the drying step, the solvent contained in the slurry is mainly removed from the molded product. In the degreasing step, the curable resin contained in the slurry is mainly removed from the molded product.

乾燥工程において、成形体の表面付近の溶媒に比べると内部の溶媒は成形体の外部に排出されるまでに時間がかかる。成形体の表面と内部の乾燥状態が異なる状態が長時間続くと、乾燥工程時に成形体に割れが発生する。また、脱脂工程において、成形体の内部の硬化性樹脂は成形体から除去されにくい。成形体に含まれる硬化性樹脂が十分に除去されず、成形体の内部に残留すると、脱脂工程時に成形体に割れが生じたり、焼結工程時に焼結体に割れが生じたりする。 In the drying step, it takes longer for the internal solvent to be discharged to the outside of the molded product than the solvent near the surface of the molded product. If the dry state of the surface and the inside of the molded body are different for a long time, cracks occur in the molded body during the drying process. Further, in the degreasing step, the curable resin inside the molded product is difficult to be removed from the molded product. If the curable resin contained in the molded body is not sufficiently removed and remains inside the molded body, the molded body may be cracked during the degreasing step or the sintered body may be cracked during the sintering step.

貫通孔を有する成形体の場合、成形体に含まれる溶媒、硬化性樹脂は、成形体の外周面と貫通孔の内周面から排出される。そこで、本発明では、溶媒及び硬化性樹脂を排出し易くする指標としての最大仮想円を規定し、この最大仮想円が所定の大きさ(直径)となるように、前記成形型の内径、前記孔形成用ロッドの直径(外径)を設定し、前記孔形成用ロッドを配置することとした。最大仮想円は、本発明の製造方法で得られる最終製品としてのガラス焼結体の横断面上に規定される。したがって、乾燥、脱脂、焼結工程で生じる成形体の収縮を考慮して、前記成形型の内径、前記孔形成用ロッドの直径(外径)が設定され、前記孔形成用ロッドが配置されることになる。このような構成により、本発明では、乾燥工程及び脱脂工程において、成形体に含まれる溶媒、硬化性樹脂、分散剤を効率よく除去することができる。 In the case of a molded body having a through hole, the solvent and the curable resin contained in the molded body are discharged from the outer peripheral surface of the molded body and the inner peripheral surface of the through hole. Therefore, in the present invention, a maximum virtual circle is defined as an index for facilitating the discharge of the solvent and the curable resin, and the inner diameter of the molding mold is set so that the maximum virtual circle has a predetermined size (diameter). The diameter (outer diameter) of the hole forming rod was set, and the hole forming rod was arranged. The maximum virtual circle is defined on the cross section of the glass sintered body as the final product obtained by the manufacturing method of the present invention. Therefore, the inner diameter of the molding die and the diameter (outer diameter) of the hole forming rod are set in consideration of the shrinkage of the molded body caused by the drying, degreasing, and sintering steps, and the hole forming rod is arranged. It will be. With such a configuration, in the present invention, the solvent, the curable resin, and the dispersant contained in the molded product can be efficiently removed in the drying step and the degreasing step.

また、本発明の第2の態様は、
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
前記ガラス焼結体が複数の貫通孔を有しており、
前記ガラス焼結体の中心軸と垂直な横断面上の前記複数の貫通孔に囲まれた領域において、前記貫通孔の外周に外接する仮想円を第2仮想円と規定したとき、この第2仮想円の直径が14mm以上、58mm以下となるように、前記成形型の内径、前記孔形成用ロッドの直径が設定され、前記孔形成用ロッドが配置されているものである。
Further, the second aspect of the present invention is
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
The step of sintering the degreased molded product and the glass sintered body have a plurality of through holes.
When the virtual circle circumscribing the outer periphery of the through hole in the region surrounded by the plurality of through holes on the cross section perpendicular to the central axis of the glass sintered body is defined as the second virtual circle, the second virtual circle is defined. The inner diameter of the molding die and the diameter of the hole-forming rod are set so that the diameter of the virtual circle is 14 mm or more and 58 mm or less, and the hole-forming rod is arranged.

第1の態様と同様、第2の態様の製造方法においても、乾燥工程及び脱脂工程において、成形体に含まれる溶媒、硬化性樹脂、分散剤を一層、効率よく除去することができる。 Similar to the first aspect, in the production method of the second aspect, the solvent, the curable resin, and the dispersant contained in the molded product can be more efficiently removed in the drying step and the degreasing step.

第1又は第2の態様の製造方法においては、前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたとき、前記硬化性樹脂の量が7.5重量部以上、11.5重量部以下であることが好ましい。 In the production method of the first or second aspect, when the amount of the quartz glass powder contained in the slurry is 100 parts by weight, the amount of the curable resin is 7.5 parts by weight or more and 11.5 parts by weight. It is preferably less than a part by weight.

スラリー中の硬化性樹脂の含有量を上記範囲に設定することで、成形体から成形型及び孔形成用ロッドを脱離することが可能な硬さにスラリーが固化される一方、脱脂工程において、成形体に含まれる硬化性樹脂の多くを除去することができる。このため、焼結工程における割れの発生を抑制することができる。 By setting the content of the curable resin in the slurry to the above range, the slurry is solidified to a hardness that allows the molding die and the rod for forming holes to be separated from the molded body, while in the degreasing step, Most of the curable resin contained in the molded product can be removed. Therefore, it is possible to suppress the occurrence of cracks in the sintering process.

また、成形体に複数の貫通孔が形成される場合、隣り合う貫通孔の距離が近いとその箇所の強度が低下する。そのため、固化体から成形型及び孔形成用ロッドを脱離する工程、その後の乾燥工程、脱脂工程、焼結工程のいずれかで変形したり、割れが生じたりするおそれがある。
そこで、上述の製造方法においては、前記成形体が複数個の前記貫通孔を有しているときは、隣り合う2個の貫通孔の最近接部の間隔が3mm以上、58mm以下であることが好ましい。
Further, when a plurality of through holes are formed in the molded body, the strength of the through holes decreases when the distance between the adjacent through holes is short. Therefore, there is a risk of deformation or cracking in any of the steps of removing the molding die and the hole-forming rod from the solidified body, the subsequent drying step, the degreasing step, and the sintering step.
Therefore, in the above-mentioned manufacturing method, when the molded product has a plurality of the through holes, the distance between the closest portions of the two adjacent through holes is 3 mm or more and 58 mm or less. preferable.

ガラス焼結体が光ファイバのプリフォームとして利用される場合は、隣り合う2個の貫通孔の最近接部の間隔の下限値である3mmは、ガラス焼結体や成形体の強度が確保され、且つ、光が通過するコアを貫通孔に挿入する場合には、光ファイバのコア間のクロストークを発生させないような値に設定されたものであり、強度的に問題がなければ、上記の間隔は3mm未満にすることができる。 When the glass sintered body is used as a preform of an optical fiber, the strength of the glass sintered body or the molded body is ensured at 3 mm, which is the lower limit of the distance between the closest portions of two adjacent through holes. Moreover, when the core through which light passes is inserted into the through hole, the value is set so as not to cause crosstalk between the cores of the optical fiber, and if there is no problem in strength, the above-mentioned The spacing can be less than 3 mm.

また、本発明の第3及び第4の態様は、
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
ガラス焼結体が1個の貫通孔を有するとき、前記ガラス焼結体の中心軸と垂直な横断面上において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円のうち直径が最大となる仮想円の直径を2a、前記ガラス焼結体の外径を2R、前記貫通孔の数をn、前記貫通孔の直径を2r、前記貫通孔間の最近接部の間隔を2S、前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたときの前記硬化性樹脂の重量部をCとしたときに、以下の式(1)で定義されるBth値が73.5以下になるように、
また、
ガラス焼結体が複数の貫通孔を有するとき、前記ガラス焼結体の中心軸と垂直な横断面において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円のうち直径が最大となる仮想円、及び、前記ガラス焼結体の中心軸と垂直な横断面上の前記複数の貫通孔に囲まれた領域において、前記貫通孔の外周に外接する仮想円のうち、直径が大きい仮想円の直径を2a、前記ガラス焼結体の外径を2R、前記貫通孔の数をn、前記貫通孔の直径を2r、前記貫通孔間の最近接部の間隔を2S、前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたときの前記硬化性樹脂の重量部をCとしたときに、以下の式(1)で定義されるBth値が73.5以下になるように、各工程が行われるものである。
th={aC(R-nr)/(R+nr)}/1000 ・・・(1)
(ただし、R≧15、C≧7.5。a、R、r、Sは単位をmmで表したときの値である。)
Further, the third and fourth aspects of the present invention are:
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
When the glass sintered body has one through hole, a virtual circle inscribed in the outer periphery of the glass sintered body and circumscribed in the through hole on a cross section perpendicular to the central axis of the glass sintered body. Of these, the diameter of the virtual circle with the largest diameter is 2a, the outer diameter of the glass sintered body is 2R, the number of through holes is n, the diameter of the through holes is 2r, and the closest contact portion between the through holes. Bth defined by the following formula (1) when the interval is 2S and the weight part of the curable resin is C when the amount of the quartz glass powder contained in the slurry is 100 parts by weight. So that the value is 73.5 or less
again,
When the glass sintered body has a plurality of through holes, among the virtual circles inscribed in the outer periphery of the glass sintered body and circumscribed in the through holes in the cross section perpendicular to the central axis of the glass sintered body. Of the virtual circle having the maximum diameter and the virtual circle circumscribing the outer periphery of the through hole in the region surrounded by the plurality of through holes on the cross section perpendicular to the central axis of the glass sintered body. The diameter of the virtual circle having a large diameter is 2a, the outer diameter of the glass sintered body is 2R, the number of the through holes is n, the diameter of the through holes is 2r, and the distance between the closest portions between the through holes is 2S. When the amount of the quartz glass powder contained in the slurry is 100 parts by weight and the weight part of the curable resin is C, the Bth value defined by the following formula (1) is 73. Each step is performed so as to be 5 or less.
B th = {aC 2 ( R2 - nr2) / (R + nr)} / 1000 ... (1)
(However, R ≧ 15, C ≧ 7.5. A, R, r, S are values when the unit is expressed in mm.)

成形体からガラス焼結体に至る過程で成形体に割れが生じる要因の一つに、脱脂工程において成形体に残留する硬化性樹脂の量がある。つまり、脱脂工程において成形体に含まれる硬化性樹脂を十分に除去することができなければ、脱脂工程あるいはその後の焼結工程で割れが生じやすくなる。成形体に含まれる硬化性樹脂の量が多いと、脱脂工程において成形体から硬化性樹脂を除去することが難しくなり、成形体中の硬化性樹脂の残留量が多くなる。また、成形体の体積に対する表面積の比(比表面積)が小さいと、成形体から硬化性樹脂が排出され難くなり、成形体中の硬化性樹脂の残留量が多くなる。本発明の第2の態様は、これらの知見に基づきなされたものであり、成形体における割れの発生しやすさ(あるいは割れの発生しにくさ)を表す指標として上記の式(1)で定義されるBth値を見出したものである。このBth値が73.5以下になるように、スラリー中の石英ガラス粉体の含有量に対する硬化性樹脂の含有量の割合と、最大仮想円及びガラス焼結体の直径(外径)、貫通孔の大きさ及び配置という、ガラス焼結体の形状に関する因子を、バランスよく、適切に管理することで、安定に割れの無い石英ガラス焼結体を製造できる。 One of the factors that cause cracks in the molded body in the process from the molded body to the glass sintered body is the amount of curable resin remaining in the molded body in the degreasing step. That is, if the curable resin contained in the molded product cannot be sufficiently removed in the degreasing step, cracks are likely to occur in the degreasing step or the subsequent sintering step. If the amount of the curable resin contained in the molded body is large, it becomes difficult to remove the curable resin from the molded body in the degreasing step, and the residual amount of the curable resin in the molded body increases. Further, when the ratio of the surface area to the volume of the molded body (specific surface area) is small, it becomes difficult for the curable resin to be discharged from the molded body, and the residual amount of the curable resin in the molded body increases. The second aspect of the present invention is based on these findings, and is defined by the above formula (1) as an index showing the susceptibility to cracking (or the difficulty of cracking) in the molded product. It is the one that finds the Bth value to be obtained. The ratio of the content of the curable resin to the content of the quartz glass powder in the slurry and the maximum virtual circle and the diameter (outer diameter) of the glass sintered body so that the Bth value is 73.5 or less. By properly managing the factors related to the shape of the glass sintered body, such as the size and arrangement of the through holes, in a well-balanced manner, it is possible to stably produce a quartz glass sintered body without cracks.

次に、図面を参照して本発明を光ファイバプリフォームの製造方法に適用した実施形態を説明する。
光ファイバは光ファイバプリフォーム(以下、プリフォームとする)を紡糸することで形成される。そのため、通常、プリフォームは、その軸方向と直交する断面(横断面)が、光ファイバの横断面とほぼ相似形となるように設計される。光ファイバに対するプリフォームの相似比が大きいほど、プリフォームから形成される光ファイバが長くなる。
Next, an embodiment in which the present invention is applied to a method for manufacturing an optical fiber preform will be described with reference to the drawings.
The optical fiber is formed by spinning an optical fiber preform (hereinafter referred to as a preform). Therefore, the preform is usually designed so that the cross section (cross section) orthogonal to the axial direction thereof is substantially similar to the cross section of the optical fiber. The larger the similarity ratio of the preform to the optical fiber, the longer the optical fiber formed from the preform.

図1は、本実施形態に係るガラス焼結体の製造方法の工程図である。スラリーの調合工程(ステップ1)では、石英ガラスの粉体、溶媒、分散剤、硬化性樹脂をボールミルに入れ、所定時間かけて混合する。溶媒としては通常、蒸留水が用いられる。ボールミルから取り出されたスラリーは、硬化剤が添加された後、成形型に充填される(ステップ2)。成形型には、ガラス焼結体が有する貫通孔を形成するための孔形成用ロッドが配置されており、成形型の内部のうち孔形成用ロッドが配置されていない空間にスラリーが充填される。成形型に充填されたスラリーは室温下に放置されることで、硬化性樹脂が硬化する(ステップ3)。 FIG. 1 is a process diagram of a method for manufacturing a glass sintered body according to the present embodiment. In the slurry preparation step (step 1), quartz glass powder, a solvent, a dispersant, and a curable resin are placed in a ball mill and mixed over a predetermined time. Distilled water is usually used as the solvent. The slurry taken out from the ball mill is filled in a molding die after the curing agent is added (step 2). A hole forming rod for forming a through hole of the glass sintered body is arranged in the molding die, and the slurry is filled in the space inside the molding die in which the hole forming rod is not arranged. .. The curable resin is cured by leaving the slurry filled in the mold at room temperature (step 3).

硬化性樹脂の硬化により成形型内に成形体が形成されると、その成形体から成形型及び孔形成用ロッドが脱離される(ステップ4)。続いて、成形体は乾燥され(ステップ5)、脱脂され(ステップ6)、焼結される(ステップ7)。乾燥工程では成形体中の主に溶媒(蒸留水)が除去され、脱脂工程では成形体中の硬化性樹脂が主に除去される。また、焼結工程により成形体はガラス焼結体となる。ガラス焼結体の貫通孔にコア材が挿入されることによりプリフォームとなり、このプリフォームを紡糸することによって光ファイバが得られる。乾燥工程、脱脂工程、焼結工程のいずれにおいても、スラリーの組成に応じた適宜の温度条件が設定されている。 When a molded body is formed in the molding die by curing the curable resin, the molding die and the hole-forming rod are detached from the molded body (step 4). Subsequently, the molded product is dried (step 5), degreased (step 6), and sintered (step 7). In the drying step, the solvent (distilled water) in the molded body is mainly removed, and in the degreasing step, the curable resin in the molded body is mainly removed. Further, the molded body becomes a glass sintered body by the sintering process. A core material is inserted into the through hole of the glass sintered body to form a preform, and the preform is spun to obtain an optical fiber. In any of the drying step, the degreasing step, and the sintering step, appropriate temperature conditions are set according to the composition of the slurry.

図2~6は、本実施形態に係るガラス焼結体の製造方法で得られた、貫通孔を有するガラス焼結体の横断面図である。図2には、1個の貫通孔10を有するガラス焼結体100の横断面が、図3には2個の貫通孔10を有するガラス焼結体200の横断面が、図4には4個の貫通孔10を有するガラス焼結体300の横断面が、図5には5個の貫通孔10を有するガラス焼結体400の横断面が、図6には7個の貫通孔10を有するガラス焼結体500の横断面がそれぞれ示されている。各成形体では、ガラス焼結体の中心軸と貫通孔10の中心軸が一致する位置に(図2、図6)、あるいはガラス焼結体の中心軸に関して回転対称な位置に(図3~6)、貫通孔10が配置されている。各ガラス焼結体の横断面のうち貫通孔10を除く領域(図2~6においてハッチングパターンが表示されている領域)は、光ファイバのクラッド層に対応する。以下、この領域をクラッド領域20という。 2 to 6 are cross-sectional views of a glass sintered body having through holes obtained by the method for manufacturing a glass sintered body according to the present embodiment. FIG. 2 shows a cross section of the glass sintered body 100 having one through hole 10, FIG. 3 shows a cross section of the glass sintered body 200 having two through holes 10, and FIG. 4 shows 4 The cross section of the glass sintered body 300 having the through holes 10 is shown in FIG. 5, the cross section of the glass sintered body 400 having the five through holes 10 is shown in FIG. 5, and the cross section of the glass sintered body 400 having the five through holes 10 is shown in FIG. The cross section of the glass sintered body 500 having is shown respectively. In each molded body, at a position where the central axis of the glass sintered body coincides with the central axis of the through hole 10 (FIGS. 2 and 6), or at a position rotationally symmetric with respect to the central axis of the glass sintered body (FIGS. 3 to 6). 6) The through hole 10 is arranged. The region of the cross section of each glass sintered body excluding the through hole 10 (the region where the hatching pattern is displayed in FIGS. 2 to 6) corresponds to the clad layer of the optical fiber. Hereinafter, this region is referred to as a clad region 20.

各ガラス焼結体のクラッド領域20に、ガラス焼結体の外周に内接し、貫通孔10に外接する円を仮定し、この円のうち直径が最大となるものを以下、仮想円30と定義する。この仮想円30は、本発明の最大仮想円に相当する。例えば、1個の貫通孔10を有するガラス焼結体100であって、貫通孔10の中心軸とガラス焼結体100の中心軸が一致している場合、ガラス焼結体100の外周に内接し、貫通孔10に外接する円は1種類しかなく、この円が仮想円30となる。また、2個の貫通孔10を有するガラス焼結体200であって、ガラス焼結体200の中心軸に関して点対称な位置に2個の貫通孔10が配置されている場合は、ガラス焼結体200の外周に内接し、貫通孔10に外接する円(図5に符号30、31を付した円)は複数種類存在する。それらのうち直径が最大のものが仮想円30となる。貫通孔10が4個のガラス焼結体300の場合も、同様にして仮想円30が設定される。 A circle inscribed in the outer periphery of the glass sintered body and circumscribed in the through hole 10 is assumed in the clad region 20 of each glass sintered body, and the circle having the largest diameter is hereinafter defined as a virtual circle 30. do. The virtual circle 30 corresponds to the maximum virtual circle of the present invention. For example, in a glass sintered body 100 having one through hole 10, when the central axis of the through hole 10 and the central axis of the glass sintered body 100 coincide with each other, the inside of the outer periphery of the glass sintered body 100 is inside. There is only one type of circle that touches and circumscribes the through hole 10, and this circle is the virtual circle 30. Further, in the case of a glass sintered body 200 having two through holes 10, when the two through holes 10 are arranged at positions symmetrical with respect to the central axis of the glass sintered body 200, the glass is sintered. There are a plurality of types of circles (circles with reference numerals 30 and 31 in FIG. 5) inscribed in the outer periphery of the body 200 and inscribed in the through hole 10. The one with the largest diameter is the virtual circle 30. In the case of the glass sintered body 300 having four through holes 10, the virtual circle 30 is set in the same manner.

本実施形態の製造方法では、ガラス焼結体のクラッド領域20に設定される仮想円30の直径が所定の範囲に収まるように、成形体からガラス焼結体に至るまでの成形体の収縮を考慮して、成形体の外径、貫通孔の内径及び配置が設計される。 In the manufacturing method of the present embodiment, the shrinkage of the molded body from the molded body to the glass sintered body is reduced so that the diameter of the virtual circle 30 set in the clad region 20 of the glass sintered body falls within a predetermined range. In consideration, the outer diameter of the molded body, the inner diameter of the through hole and the arrangement are designed.

図2に示される、1個の貫通孔10を有するガラス焼結体100の場合、その外径を2R、貫通孔10の内径を2r、仮想円30の直径を2aとすると、2aは、以下の式(2)で表される。
2a=R-r ・・・(2)
In the case of the glass sintered body 100 having one through hole 10 shown in FIG. 2, assuming that the outer diameter thereof is 2R, the inner diameter of the through hole 10 is 2r, and the diameter of the virtual circle 30 is 2a, 2a is as follows. It is expressed by the equation (2) of.
2a = R-r ・ ・ ・ (2)

図3に示される、2個の貫通孔10を有するガラス焼結体200の場合、2個の貫通孔10の最近接部の間隔を2Sとすると、仮想円30の直径2aは、以下の式(3)で表される。
2a=(R+S+2rS)/(R+r)・・・(3)
In the case of the glass sintered body 200 having two through holes 10 shown in FIG. 3, assuming that the distance between the closest portions of the two through holes 10 is 2S, the diameter 2a of the virtual circle 30 is expressed by the following formula. It is represented by (3).
2a = (R 2 + S 2 + 2rS) / (R + r) ... (3)

図4に示される、4個の貫通孔10を有するガラス焼結体300の場合、4個の貫通孔10の最近接部の間隔を2Sとすると、仮想円30の直径2aは、以下の式(4)で表される。
2a=(R-2(S+r)R+(2S+r+4rS))/(R-S)・・・(4)
なお、上述した式(2)~(4)では、数字とアルファベットの間、アルファベットとアルファベットの間の乗算記号(×)を省略している。
In the case of the glass sintered body 300 having four through holes 10 shown in FIG. 4, assuming that the distance between the closest portions of the four through holes 10 is 2S, the diameter 2a of the virtual circle 30 is expressed by the following formula. It is represented by (4).
2a = (R 2 -2 (S + r) R + (2S 2 + r 2 + 4rS)) / (RS) ... (4)
In the above-mentioned equations (2) to (4), the multiplication symbol (x) between the number and the alphabet and between the alphabet and the alphabet is omitted.

図5に示される、5個の貫通孔10を有するガラス焼結体400の場合、隣り合う2個の貫通孔10の最近接部の間隔を2Sとすると、仮想円30の直径2aは、以下の式(5)で表される。
2a=(R-2.75(S+r)R+(2.89S+1.89r+5.79Sr))/(R-1.38S-0.38r)・・・(5)
In the case of the glass sintered body 400 having the five through holes 10 shown in FIG. 5, assuming that the distance between the closest portions of the two adjacent through holes 10 is 2S, the diameter 2a of the virtual circle 30 is as follows. It is expressed by the equation (5) of.
2a = (R 2 -2.75 (S + r) R + (2.89S 2 + 1.89r 2 + 5.79Sr)) / (R-1.38S-0.38r) ... (5)

ただし、図5に示すガラス焼結体400の場合、5個の貫通孔10の内側に、貫通孔10の外周に接する円31を考えることができる。この円31は、ガラス焼結体400の外周に内接しないため、定義上、仮想円には相当しないが、この円31の直径2bが上記仮想円30の直径2aよりも大きい場合には、仮想円30に代えて円31の直径2bが所定の範囲に収まるように、成形体400の外径、貫通孔10の内径及び配置が設計される。円31の直径2bは次の式(6)で表される。
2b=3.40S+1.40r・・・(6)
However, in the case of the glass sintered body 400 shown in FIG. 5, a circle 31 in contact with the outer periphery of the through holes 10 can be considered inside the five through holes 10. Since this circle 31 does not inscribe the outer periphery of the glass sintered body 400, it does not correspond to a virtual circle by definition, but when the diameter 2b of this circle 31 is larger than the diameter 2a of the virtual circle 30, The outer diameter of the molded body 400, the inner diameter of the through hole 10, and the arrangement are designed so that the diameter 2b of the circle 31 is within a predetermined range instead of the virtual circle 30. The diameter 2b of the circle 31 is represented by the following equation (6).
2b = 3.40S + 1.40r ... (6)

また、図6に示される、7個の貫通孔10を有するガラス焼結体500の場合、隣り合う2個の貫通孔10の最近接部の間隔を2Sとすると、仮想円30の直径2aは、以下の式(7)で表される。
2a=(R-3.46(S+r)R+(4S+3r+8Sr))/(R-1.73S-0.73r)・・・(7)
Further, in the case of the glass sintered body 500 having the seven through holes 10 shown in FIG. 6, if the distance between the closest portions of the two adjacent through holes 10 is 2S, the diameter 2a of the virtual circle 30 is , Expressed by the following equation (7).
2a = (R 2 -3.46 (S + r) R + (4S 2 + 3r 2 + 8Sr)) / (R-1.73S-0.73r) ... (7)

図2~図6には、ガラス焼結体の横断面において、ガラス焼結体の中心軸に関して回転対称の位置に貫通孔が配置され、かつ、貫通孔が複数ある場合には、それらの貫通孔の直径が等しい例を示した。これに対して、直径が異なる貫通孔を有する場合、あるいは、回転対称ではない位置に貫通孔が存在するガラス焼結体の場合は、仮想円の直径は、上記の式では表すことができない。このような場合は、ガラス焼結体の横断面の形状から、最大仮想円を特定し、その直径を計測すればよい。さらに、ガラス焼結体の中心軸に関して回転対象の位置に貫通孔が配置されている場合であっても、そのガラス焼結体の横断面の形状から、最大仮想円を特定し、その直径を計測しても良い。この方法では、貫通孔の数がいくつであっても、また、貫通孔の形状や配置が不均一であっても、仮想円の直径を求めることができる。 In FIGS. 2 to 6, in the cross section of the glass sintered body, through holes are arranged at positions rotationally symmetric with respect to the central axis of the glass sintered body, and if there are a plurality of through holes, they penetrate through them. An example in which the diameters of the holes are equal is shown. On the other hand, in the case of a glass sintered body having through holes having different diameters or having through holes at positions that are not rotationally symmetric, the diameter of the virtual circle cannot be expressed by the above equation. In such a case, the maximum virtual circle may be specified from the shape of the cross section of the glass sintered body and its diameter may be measured. Further, even when a through hole is arranged at a position to be rotated with respect to the central axis of the glass sintered body, the maximum virtual circle is specified from the shape of the cross section of the glass sintered body, and its diameter is determined. You may measure it. In this method, the diameter of the virtual circle can be obtained regardless of the number of through holes and the uneven shape and arrangement of the through holes.

また、本実施形態の製造方法では、上述した式(1)で表されるBth値が73.5以下となるようにして、脱型から焼結までの各工程が行われる。式(1)においては、ガラス焼結体が有する貫通孔に、他の貫通孔とは径が異なる貫通孔が含まれる場合や、貫通孔の配置がガラス焼結体の中心軸に関して回転対称ではない場合には、式(1)に含まれる変数である貫通孔の直径2rを、複数の貫通孔の直径の平均値とし、隣り合う貫通孔の間隔のうち最小値を、間隔Sとすると良い。 Further, in the manufacturing method of the present embodiment, each step from demolding to sintering is performed so that the Bth value represented by the above-mentioned formula (1) is 73.5 or less. In the formula (1), when the through hole of the glass sintered body includes a through hole having a diameter different from that of other through holes, or when the arrangement of the through holes is rotationally symmetric with respect to the central axis of the glass sintered body. If not, the diameter 2r of the through hole, which is a variable included in the equation (1), may be the average value of the diameters of the plurality of through holes, and the minimum value among the intervals of the adjacent through holes may be the interval S. ..

次に、図1に示した方法で実際にガラス焼結体を製造した例について、説明する。 Next, an example in which a glass sintered body is actually manufactured by the method shown in FIG. 1 will be described.

[製造例1]
製造例1では、サンプル1及びサンプル2という2種類のガラス焼結体を製造した。サンプル1、2のスラリーに含まれる石英ガラス粉末、蒸留水、硬化性樹脂、分散剤の処方、乾燥工程、脱脂工程及び焼結工程の温度条件は以下の表1に示した通りである。温度条件は、いずれもピーク温度を示している。
[Manufacturing Example 1]
In Production Example 1, two types of glass sintered bodies, Sample 1 and Sample 2, were produced. The temperature conditions of the quartz glass powder, distilled water, curable resin, formulation of dispersant, drying step, degreasing step and sintering step contained in the slurry of Samples 1 and 2 are as shown in Table 1 below. All temperature conditions indicate the peak temperature.

Figure 0007097115000001
Figure 0007097115000001

サンプル1では、外径(直径)が30mm、軸方向長さが400mmであり、貫通孔を有していない円柱状のガラス焼結体が得られるような成形型が用いられた。サンプル2では、外径が90mm、軸方向長さが160mmであり、貫通孔を有していない円柱状のガラス焼結体が得られるような成形型が用いられた。これらサンプル1,2について、乾燥工程、脱脂工程、焼結工程における割れの発生の有無を調べたところ、サンプル1では、いずれの工程でも割れが発生しなかったのに対して、サンプル2では、焼結工程時に割れが発生した。これは、ガラス焼結体の外径寸法が大きく、そのため成形体の外径寸法が大きいサンプル2では、脱脂工程で硬化性樹脂が十分に除去されず内部に残留したためであると推測された。 In Sample 1, a molding die having an outer diameter (diameter) of 30 mm and an axial length of 400 mm was used so as to obtain a columnar glass sintered body having no through holes. In Sample 2, a molding die having an outer diameter of 90 mm and an axial length of 160 mm was used so as to obtain a columnar glass sintered body having no through holes. When the presence or absence of cracks in the drying step, the degreasing step, and the sintering step was examined for these samples 1 and 2, the sample 1 did not generate cracks in any of the steps, whereas the sample 2 showed no cracks. Cracks occurred during the sintering process. It is presumed that this is because the curable resin was not sufficiently removed in the degreasing step and remained inside in the sample 2 in which the outer diameter of the glass sintered body was large and therefore the outer diameter of the molded body was large.

以上の結果から、表1に示すような従来のスラリーの処方、表1に示すような従来のスラリーキャスト法により円柱状のガラス焼結体を製造する場合は、ガラス焼結体の外径が30mm以下となるように成形型の寸法を設定すれば、いずれの工程でも割れが生じないことが分かった。また、製造例1より、割れの生じ易さに成形体の軸方向長さはほぼ影響を及ぼさないことが推測された。
貫通孔を有しないガラス焼結体の外径は、図2~6に示した、貫通孔を有するガラス焼結体の横断面のクラッド領域20に設定される仮想円30の直径とみなすことができる。つまり、製造例1の結果から、仮想円の直径が30mm以下となるように成形体の外径、貫通孔の内径、貫通孔の配置を設計すれば、成形体に含まれる蒸留水を乾燥工程で除去でき、硬化性樹脂を脱脂工程で除去できることが推測された。
From the above results, when a columnar glass sintered body is produced by the conventional slurry formulation as shown in Table 1 or the conventional slurry casting method as shown in Table 1, the outer diameter of the glass sintered body is large. It was found that if the dimensions of the molding die were set so as to be 30 mm or less, cracking did not occur in any of the steps. Further, from Production Example 1, it was presumed that the axial length of the molded product had almost no effect on the susceptibility to cracking.
The outer diameter of the glass sintered body having no through hole can be regarded as the diameter of the virtual circle 30 set in the clad region 20 of the cross section of the glass sintered body having the through hole shown in FIGS. 2 to 6. can. That is, if the outer diameter of the molded body, the inner diameter of the through hole, and the arrangement of the through hole are designed so that the diameter of the virtual circle is 30 mm or less from the result of Production Example 1, the distilled water contained in the molded body is dried. It was speculated that the curable resin could be removed in the degreasing step.

[製造例2]
製造例2ではサンプル3~5という3種類のガラス焼結体を製造した。サンプル3~5のスラリーに含まれる石英ガラス粉末、蒸留水、硬化性樹脂、分散剤の処方、乾燥工程、脱脂工程及び焼結工程の温度条件は以下の表2に示す通りである。なお、製造例2の乾燥工程及び焼結工程の温度条件は製造例1と同じであるが、脱脂工程の温度条件は製造例1と製造例2とで若干異なる。すなわち、製造例1,2とも脱脂工程のピーク温度が850℃である点で共通するが、製造例2の方が製造例1よりもピーク温度に達するまでの時間を長くした。
[Manufacturing Example 2]
In Production Example 2, three types of glass sintered bodies, Samples 3 to 5, were produced. The temperature conditions of the quartz glass powder, distilled water, curable resin, formulation of dispersant, drying step, degreasing step and sintering step contained in the slurry of Samples 3 to 5 are as shown in Table 2 below. The temperature conditions of the drying step and the sintering step of Production Example 2 are the same as those of Production Example 1, but the temperature conditions of the degreasing step are slightly different between Production Example 1 and Production Example 2. That is, both Production Examples 1 and 2 have a common point that the peak temperature of the degreasing step is 850 ° C., but Production Example 2 takes longer time to reach the peak temperature than Production Example 1.

Figure 0007097115000002
Figure 0007097115000002

サンプル3では、外径(直径)が90mm、軸方向長さが70mmであり、貫通孔を有していない円柱状のガラス焼結体が得られるような成形型が用いられた。サンプル4では、外径(直径)が90mm、軸方向長さが160mmであり、且つ、内部に内径が20mmの貫通孔を4個有する、円柱形状のガラス焼結体が得られるような成形型が用いられた。サンプル5では、外径(直径)が90mm、軸方向長さが160mmであり、且つ、内部に内径が20mmの貫通孔を7個有する、円柱形状のガラス焼結体が得られるような成形型が用いられた。つまり、サンプル4では、4個の孔形成用ロッドが内部に配置された成形型が用いられ、サンプル5では、7個の孔形成用ロッドが内部に配置された成形型が用いられた。 In Sample 3, a molding die having an outer diameter (diameter) of 90 mm and an axial length of 70 mm was used so as to obtain a columnar glass sintered body having no through holes. In sample 4, a molding die capable of obtaining a cylindrical glass sintered body having an outer diameter (diameter) of 90 mm, an axial length of 160 mm, and four through holes having an inner diameter of 20 mm inside. Was used. In sample 5, a molding die capable of obtaining a cylindrical glass sintered body having an outer diameter (diameter) of 90 mm, an axial length of 160 mm, and seven through holes having an inner diameter of 20 mm inside. Was used. That is, in sample 4, a molding die in which four hole-forming rods were arranged was used, and in sample 5, a molding die in which seven hole-forming rods were arranged inside was used.

図7の(a)~(c)は、サンプル3~5のガラス焼結体601,610,620の横断面を示している。図7(b)に示すように、サンプル4では、ガラス焼結体410のクラッド領域20に設定される仮想円30の直径が26mm、隣り合う貫通孔10の最近接部の間隔が6mmとなるように、4個の孔形成用ロッドが配置された成形型を用いた。 7 (a) to 7 (c) show the cross sections of the glass sintered bodies 601, 610, 620 of the samples 3 to 5. As shown in FIG. 7B, in the sample 4, the diameter of the virtual circle 30 set in the clad region 20 of the glass sintered body 410 is 26 mm, and the distance between the closest portions of the adjacent through holes 10 is 6 mm. As described above, a molding die in which four hole forming rods were arranged was used.

また、サンプル5では、ガラス焼結体420のクラッド領域20に設定される仮想円30の直径が18mm、隣り合う貫通孔10の最近接部の間隔が5mmとなるように、7個の孔形成用ロッドが配置された成形型を用いた。 Further, in the sample 5, seven holes are formed so that the diameter of the virtual circle 30 set in the clad region 20 of the glass sintered body 420 is 18 mm and the distance between the closest portions of the adjacent through holes 10 is 5 mm. A molding die in which a rod was arranged was used.

以上のサンプル3~5について、乾燥工程、脱脂工程、焼結工程における割れの発生の有無を調べたところ、サンプル3及びサンプル4は、乾燥工程では成形体に割れは生じなかったが、脱脂工程で成形体にヒビが発生し、その後の焼結工程においてガラス焼結体に割れが生じた。一方、サンプル5では、いずれの工程でも、成形体、ガラス焼結体に割れは生じなかった。以上の結果から、製造例2の処方、各工程の温度条件では、ガラス焼結体の横断面に規定される仮想円の直径が18mm以下となるようにすることが、割れの発生を抑える点で好ましいといえる。 When the presence or absence of cracks in the drying step, the degreasing step, and the sintering step was examined for the above samples 3 to 5, the molded bodies of the samples 3 and 4 were not cracked in the drying step, but the degreasing step was performed. The molded body was cracked, and the glass sintered body was cracked in the subsequent sintering process. On the other hand, in sample 5, no cracks occurred in the molded body and the glass sintered body in any of the steps. From the above results, in the formulation of Production Example 2 and the temperature conditions of each process, the diameter of the virtual circle defined in the cross section of the glass sintered body should be 18 mm or less to suppress the occurrence of cracks. It can be said that it is preferable.

[製造例3]
製造例3では5種類のサンプル4,6~9のガラス焼結体を製造した。サンプル4,6~9のスラリーに含まれる石英ガラス粉末、蒸留水、硬化性樹脂、分散剤の処方、乾燥工程、脱脂工程及び焼結工程の温度条件は以下の表3に示す通りである。乾燥工程及び焼結工程の温度プロファイルは製造例1,2と同じにした。脱脂工程の温度プロファイルは製造例2と同じにした。サンプル4は、製造例2で用いたサンプル4と同じ条件でガラス焼結体を製造したものである。
[Manufacturing Example 3]
In Production Example 3, glass sintered bodies of five types of samples 4, 6 to 9 were produced. The temperature conditions of the quartz glass powder, distilled water, curable resin, formulation of dispersant, drying step, degreasing step and sintering step contained in the slurry of Samples 4 and 6 to 9 are as shown in Table 3 below. The temperature profiles of the drying step and the sintering step were the same as those of Production Examples 1 and 2. The temperature profile of the degreasing step was the same as that of Production Example 2. Sample 4 is a glass sintered body manufactured under the same conditions as Sample 4 used in Production Example 2.

Figure 0007097115000003
Figure 0007097115000003

これら5種類のサンプルは、スラリーに含まれる石英ガラス100gに対する樹脂の量が異なる以外は全て同じ条件とした。
製造例2の欄で説明した通り、サンプル4は、乾燥工程では成形体に割れは生じなかったが、脱脂工程で成形体にヒビが発生し、その後の焼結工程においてガラス焼結体に割れが生じた。また、サンプル8,9では、乾燥工程において成形体に割れが生じた(そのため、乾燥工程後の脱脂工程、焼結工程を行うことができなかった。)。一方、サンプル6,7では、いずれの工程でも、成形体、ガラス焼結体に割れは生じなかった。
All of these five types of samples had the same conditions except that the amount of resin was different with respect to 100 g of quartz glass contained in the slurry.
As described in the column of Production Example 2, the sample 4 did not crack in the molded body in the drying step, but cracks occurred in the molded body in the degreasing step, and the glass sintered body cracked in the subsequent sintering step. Has occurred. Further, in the samples 8 and 9, the molded body was cracked in the drying step (therefore, the degreasing step and the sintering step after the drying step could not be performed). On the other hand, in the samples 6 and 7, no cracks occurred in the molded body and the glass sintered body in any of the steps.

以上の結果から、スラリーに含まれる硬化性樹脂の量が多いと脱脂工程において硬化性樹脂を十分に除去することができず、その結果、焼結工程で割れが生じることが分かった。また、硬化性樹脂の量が少ないと、乾燥工程で成形体に割れが生じることが分かった。言い換えると、スラリーに含まれる硬化性樹脂の量を適切に設定することにより、成形体からガラス焼結体に至る工程における割れの発生を抑えることができることが分かった。 From the above results, it was found that if the amount of the curable resin contained in the slurry was large, the curable resin could not be sufficiently removed in the degreasing step, and as a result, cracks occurred in the sintering step. It was also found that when the amount of the curable resin was small, the molded product cracked in the drying process. In other words, it was found that the occurrence of cracks in the process from the molded body to the glass sintered body can be suppressed by appropriately setting the amount of the curable resin contained in the slurry.

製造例1~3の結果に基づき、乾燥工程、脱脂工程、焼結工程のいずれかにおいて成形体、ガラス焼結体に割れが生じた理由を検討した。理由の検討にあたり、サンプル1~9の、最大仮想円の直径2a(mm)、Bth値の計算値を参考にした。サンプル1~9の、最大仮想円の直径2a(mm)、Bth値の計算値を表4に示す。表4には、サンプル1~9の最大仮想円の直径2a(mm)、Bth値の計算値の他に、各サンプルのスラリーに含まれる石英ガラス粉末、蒸留水、硬化性樹脂、分散剤の処方、乾燥工程、脱脂工程及び焼結工程の温度条件等も示されている。 Based on the results of Production Examples 1 to 3, the reason why the molded body and the glass sintered body were cracked in any of the drying step, the degreasing step, and the sintering step was examined. In examining the reason, the calculated values of the maximum virtual circle diameter 2a (mm) and Bth value of Samples 1 to 9 were referred to. Table 4 shows the calculated values of the maximum virtual circle diameter 2a (mm) and Bth value of Samples 1 to 9. In Table 4, in addition to the diameter 2a (mm) of the maximum virtual circle of samples 1 to 9 and the calculated Bth value, the quartz glass powder, distilled water, curable resin, and dispersant contained in the slurry of each sample are shown. The temperature conditions of the formulation, drying step, degreasing step and sintering step of the above are also shown.

Figure 0007097115000004
Figure 0007097115000004

なお、貫通孔を有していないガラス焼結体の場合は、該ガラス焼結体の外径を、最大仮想円の直径とした。 In the case of a glass sintered body having no through hole, the outer diameter of the glass sintered body was defined as the diameter of the maximum virtual circle.

上記サンプル1~9のうち、石英ガラス100gに対する樹脂の量が11.7gであるサンプル1~5において、乾燥工程、脱脂工程、焼結工程のいずれにおいても割れが生じなかったサンプル1,5のBth値はそれぞれ30.7,14.2であったが、割れが生じたサンプル2~4のBth値は276.7、276.7、34.0であった。このことから、Bth値が34以下となるような条件でガラス焼結体を製造すれば、割れの無い良好なガラス焼結体が得られることが推測された。 Of the above samples 1 to 9, in the samples 1 to 5 in which the amount of resin with respect to 100 g of quartz glass was 11.7 g, the samples 1 and 5 in which cracks did not occur in any of the drying step, the degreasing step, and the sintering step. The B th values were 30.7 and 14.2, respectively, but the B th values of the cracked samples 2 to 4 were 276.7, 276.7, and 34.0, respectively. From this, it was speculated that if the glass sintered body is manufactured under the condition that the Bth value is 34 or less, a good glass sintered body without cracks can be obtained.

一方、サンプル8のBth値は12.3、サンプル9のBth値は8.7と、いずれもBth値が34以下であったが、乾燥工程時に割れが生じた。サンプル8及びサンプル9は、石英ガラス100gに対する樹脂の量が7.1g、5.8gであり、他のサンプルに比べると樹脂の割合が低い。石英ガラス100gに対する樹脂の量が少ないと、乾燥に時間がかかることから、乾燥工程の途中で成形体に割れが生じたものと思われる。 On the other hand, the B th value of the sample 8 was 12.3 and the B th value of the sample 9 was 8.7, both of which had a B th value of 34 or less, but cracks occurred during the drying step. In Sample 8 and Sample 9, the amount of resin per 100 g of quartz glass is 7.1 g and 5.8 g, and the ratio of resin is lower than that of other samples. If the amount of the resin is small with respect to 100 g of quartz glass, it takes a long time to dry, so it is considered that the molded product was cracked during the drying process.

[製造例4]
製造例4では、7個のサンプル10~16のガラス焼結体を製造した。サンプル10~16のスラリー含まれる石英ガラス粉末、蒸留水、硬化性樹脂、分散剤の処方、乾燥工程、脱脂工程及び焼結工程の温度条件は以下の表5に示す通りである。また、製造例4では、乾燥工程の温度プロファイルを製造例1~3と同じにし、脱脂工程の温度プロファイルを製造例2,3と同じにした。
[Manufacturing Example 4]
In Production Example 4, seven sample 10 to 16 glass sintered bodies were produced. The temperature conditions of the quartz glass powder, distilled water, curable resin, formulation of dispersant, drying step, degreasing step and sintering step contained in the slurry of the samples 10 to 16 are as shown in Table 5 below. Further, in Production Example 4, the temperature profile of the drying step was the same as that of Production Examples 1 to 3, and the temperature profile of the degreasing step was the same as that of Production Examples 2 and 3.

Figure 0007097115000005
Figure 0007097115000005

製造例4では、焼結工程の温度プロファイルは、ピーク温度が異なる以外は製造例1~3と同じにした。具体的には、製造例1~3では焼結工程のピーク温度を1500℃に設定していたが、製造例4では、焼結工程のピーク温度を1550℃に設定した。 In Production Example 4, the temperature profile of the sintering step was the same as that of Production Examples 1 to 3 except that the peak temperature was different. Specifically, in Production Examples 1 to 3, the peak temperature of the sintering step was set to 1500 ° C., but in Production Example 4, the peak temperature of the sintering step was set to 1550 ° C.

また、表5には、サンプル10~16の最大仮想円の直径2a(mm)、Bth値の計算値も示した。
表5の「割れ(〇:なし、×:あり)」の欄に「×」が付されているサンプルは、乾燥工程、脱脂工程、焼結工程のいずれかで割れが生じたことを表しており、割れが生じた工程を備考欄に記載した。
Table 5 also shows the calculated values of the diameter 2a (mm) and the Bth value of the maximum virtual circles of the samples 10 to 16.
Samples marked with "x" in the "cracking (○: none, ×: yes)" column in Table 5 indicate that cracking occurred in any of the drying process, degreasing process, and sintering process. The process in which the crack occurred is described in the remarks column.

表5に示されている通り、サンプル14は、乾燥工程では成形体に割れは生じなかったが、脱脂工程で成形体にヒビが発生し、その後の焼結工程においてガラス焼結体に割れが生じた。サンプル15は、乾燥工程では成形体に割れは生じなかったが、脱脂工程で成形体にワレが生じた(そのため、脱脂工程後の焼結工程を行わなかった)。サンプル16は、乾燥工程において成形体に割れが生じた(そのため、乾燥工程後の脱脂工程、焼結工程を行うことができなかった。)。一方、サンプル10~13では、いずれの工程でも、成形体、ガラス焼結体に割れは生じなかった。 As shown in Table 5, in the sample 14, the molded body did not crack in the drying step, but cracks occurred in the molded body in the degreasing step, and the glass sintered body cracked in the subsequent sintering step. occured. In the sample 15, the molded body did not crack in the drying step, but cracks occurred in the molded body in the degreasing step (therefore, the sintering step after the degreasing step was not performed). In the sample 16, the molded body was cracked in the drying step (therefore, the degreasing step and the sintering step after the drying step could not be performed). On the other hand, in the samples 10 to 13, no cracks occurred in the molded body and the glass sintered body in any of the steps.

製造例1~4の結果から、割れのない良好なガラス焼結体を得るための条件として、以下が推測された。
(1)最大仮想円の直径が58.0mm以下であること。
(2)スラリーに含まれる石英ガラス100gに対する樹脂の量を7.1gよりも多くすし、且つ11.7g以下にすること。
(3)Bth値が73.5以下になるように、ガラス焼結体の形状を設定すること。
(4)ガラス焼結体が複数の貫通孔を有している場合は、隣り合う貫通孔の最近接部の間隔が58.0mm以下であること。
なお、最大仮想円の直径の下限値、Bth値の下限値、隣り合う貫通孔の最近接部の間隔の下限値は、ガラス焼結体に求められる機械的強度に応じて決定される。
From the results of Production Examples 1 to 4, the following were presumed as conditions for obtaining a good glass sintered body without cracks.
(1) The diameter of the maximum virtual circle is 58.0 mm or less.
(2) The amount of resin per 100 g of quartz glass contained in the slurry should be more than 7.1 g and less than 11.7 g.
(3) Set the shape of the glass sintered body so that the B th value is 73.5 or less.
(4) When the glass sintered body has a plurality of through holes, the distance between the closest portions of the adjacent through holes shall be 58.0 mm or less.
The lower limit of the diameter of the maximum virtual circle, the lower limit of the Bth value, and the lower limit of the distance between the adjacent portions of the adjacent through holes are determined according to the mechanical strength required for the glass sintered body.

本発明は上述した実施形態に限定されるものではなく適宜の変更が可能である。
例えば上記実施形態では、断面が円形状のガラス焼結体(つまり、円柱状のガラス焼結体)の製造例について説明したが、それに限らず、断面が多角形の柱状のガラス焼結体を製造する場合、断面形状は概ね円形状であるが、外周面の一部が平坦面であるような柱状のガラス焼結体を製造する場合にも、本発明の製造方法を適用することが可能である。
また、本発明の製造方法の乾燥工程で得られた円柱状の成形体の外周面の一部、あるいは全体を削って平坦面にした、その成形体を脱脂し、焼結してガラス焼結体を得るようにしてもよい。
The present invention is not limited to the above-described embodiment, and can be appropriately modified.
For example, in the above embodiment, a manufacturing example of a glass sintered body having a circular cross section (that is, a columnar glass sintered body) has been described, but the present invention is not limited to this, and a columnar glass sintered body having a polygonal cross section may be used. In the case of manufacturing, the cross-sectional shape is generally circular, but the manufacturing method of the present invention can also be applied when manufacturing a columnar glass sintered body in which a part of the outer peripheral surface is a flat surface. Is.
Further, a part or the whole of the outer peripheral surface of the columnar molded body obtained in the drying step of the manufacturing method of the present invention is scraped to make a flat surface, and the molded body is degreased, sintered and glass sintered. You may try to get a body.

10…貫通孔
20…クラッド領域
30…仮想円
100、200、300、400、500、601、610、620…ガラス焼結体
10 ... Through hole 20 ... Clad area 30 ... Virtual circle 100, 200, 300, 400, 500, 601, 610, 620 ... Glass sintered body

Claims (4)

石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたとき、前記硬化性樹脂の量が7.5重量部以上、11.5重量部以下であり、
前記ガラス焼結体が複数の貫通孔を有しており、
前記ガラス焼結体の中心軸と垂直な横断面上において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円、及び、前記横断面上の前記複数の貫通孔に囲まれた領域において、前記貫通孔の外周に外接する仮想円のうち、直径が最大となる最大仮想円の直径が、14mm以上、58mm以下となるように、前記成形型の内径、前記孔形成用ロッドの直径が設定され、前記孔形成用ロッドが配置されている、ガラス焼結体の製造方法。
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
When the amount of the quartz glass powder contained in the slurry is 100 parts by weight, the amount of the curable resin is 7.5 parts by weight or more and 11.5 parts by weight or less.
The glass sintered body has a plurality of through holes, and the glass sintered body has a plurality of through holes.
On a cross section perpendicular to the central axis of the glass sintered body, a virtual circle inscribed in the outer periphery of the glass sintered body and circumscribed in the through hole, and the plurality of through holes on the cross section. In the enclosed area, the inner diameter of the molding mold and the hole formation so that the diameter of the maximum virtual circle having the maximum diameter among the virtual circles circumscribing the outer periphery of the through hole is 14 mm or more and 58 mm or less. A method for manufacturing a glass sintered body, wherein the diameter of the rod for forming is set and the rod for forming a hole is arranged.
請求項に記載のガラス焼結体の製造方法において、
隣り合う2個の貫通孔の最近接部の間隔が3mm以上、58mm以下である、ガラス焼結体の製造方法。
In the method for manufacturing a glass sintered body according to claim 1 ,
A method for manufacturing a glass sintered body, wherein the distance between the closest portions of two adjacent through holes is 3 mm or more and 58 mm or less.
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、円柱状の孔形成用ロッドが配置された円筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する円柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたとき、前記硬化性樹脂の量が7.5重量部以上、11.5重量部以下であり、
ガラス焼結体が1個の貫通孔を有するとき、前記ガラス焼結体の中心軸と垂直な横断面上において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円のうち直径が最大となる仮想円の直径を2a、前記ガラス焼結体の外径を2R、前記貫通孔の数をn、前記貫通孔の直径を2r、前記貫通孔間の最近接部の間隔を2S、前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたときの前記硬化性樹脂の重量部をCとしたときに、以下の式(1)で定義されるB th 値が73.5以下になるように各工程が行われる、ガラス焼結体の製造方法。
th ={aC (R -nr )/(R+nr)}/1000 ・・・(1)
(ただし、R≧15、C≧7.5。a、R、r、Sは単位をmmで表したときの値である。)
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the mold accommodating portion having a cylindrical accommodating portion in which a columnar hole-forming rod is arranged, and the curable resin is filled. And the process of curing
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces. ,
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
When the amount of the quartz glass powder contained in the slurry is 100 parts by weight, the amount of the curable resin is 7.5 parts by weight or more and 11.5 parts by weight or less.
When the glass sintered body has one through hole, a virtual circle inscribed in the outer periphery of the glass sintered body and circumscribed in the through hole on a cross section perpendicular to the central axis of the glass sintered body. Of these, the diameter of the virtual circle with the largest diameter is 2a, the outer diameter of the glass sintered body is 2R, the number of through holes is n, the diameter of the through holes is 2r, and the closest contact portion between the through holes. Bth defined by the following formula (1) when the interval is 2S and the weight part of the curable resin is C when the amount of the quartz glass powder contained in the slurry is 100 parts by weight. A method for manufacturing a glass sintered body, in which each step is performed so that the value is 73.5 or less.
B th = {aC 2 ( R2 - nr2) / (R + nr)} / 1000 ... (1)
(However, R ≧ 15, C ≧ 7.5. A, R, r, S are values when the unit is expressed in mm.)
石英ガラス粉体、分散剤、硬化性樹脂及び溶媒を含むスラリーを、孔形成用ロッドが配置された筒状の収容部を有する成形型の前記収容部に充填し、前記硬化性樹脂を硬化させる工程と、
前記成形型内のスラリーが固化した後、前記スラリーの固化体から前記成形型及び前記孔形成用ロッドを脱離させて、両端面を貫通する貫通孔を有する柱状の成形体を得る工程と、
前記成形体を乾燥させる工程と、
乾燥させた前記成形体を脱脂する工程と、
脱脂した前記成形体を焼結する工程と
を有する、貫通孔を有するガラス焼結体を製造する方法であって、
前記スラリーに含まれる前記石英ガラス粉体の量を100重量部としたとき、前記硬化性樹脂の量が7.5重量部以上、11.5重量部以下であり、
前記ガラス焼結体が複数の貫通孔を有しており、
前記ガラス焼結体の中心軸と垂直な横断面上において、前記ガラス焼結体の外周に内接し、且つ前記貫通孔に外接する仮想円、及び、前記横断面上の前記複数の貫通孔に囲まれた領域において、前記ガラス焼結体の外周に内接せず、且つ前記貫通孔の外周に外接する仮想円のうち、直径が最大となる最大仮想円の直径が、14mm以上、58mm以下となるように、前記成形型の内径、前記孔形成用ロッドの直径が設定され、前記孔形成用ロッドが配置されている、ガラス焼結体の製造方法。
A slurry containing quartz glass powder, a dispersant, a curable resin, and a solvent is filled in the accommodating portion of a mold having a tubular accommodating portion in which a pore-forming rod is arranged, and the curable resin is cured. Process and
After the slurry in the molding die is solidified, the molding die and the hole forming rod are separated from the solidified body of the slurry to obtain a columnar molded body having through holes penetrating both end faces.
The step of drying the molded product and
The step of degreasing the dried molded product and
A method for producing a glass sintered body having through holes, which comprises a step of sintering the degreased molded body.
When the amount of the quartz glass powder contained in the slurry is 100 parts by weight, the amount of the curable resin is 7.5 parts by weight or more and 11.5 parts by weight or less.
The glass sintered body has a plurality of through holes, and the glass sintered body has a plurality of through holes.
On a cross section perpendicular to the central axis of the glass sintered body, a virtual circle inscribed in the outer circumference of the glass sintered body and circumscribed to the through hole, and the plurality of through holes on the cross section. In the enclosed area, among the virtual circles that do not inscribe the outer periphery of the glass sintered body and circumscribe the outer periphery of the through hole, the diameter of the maximum virtual circle having the maximum diameter is 14 mm or more and 58 mm or less. A method for manufacturing a glass sintered body, wherein the inner diameter of the molding die and the diameter of the hole forming rod are set so as to be, and the hole forming rod is arranged.
JP2021125951A 2020-07-31 2021-07-30 Manufacturing method of glass sintered body Active JP7097115B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020131238 2020-07-31
JP2020131238 2020-07-31

Publications (2)

Publication Number Publication Date
JP2022027734A JP2022027734A (en) 2022-02-14
JP7097115B2 true JP7097115B2 (en) 2022-07-07

Family

ID=80036451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021125951A Active JP7097115B2 (en) 2020-07-31 2021-07-30 Manufacturing method of glass sintered body

Country Status (2)

Country Link
JP (1) JP7097115B2 (en)
WO (1) WO2022025285A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227548A (en) 2008-03-25 2009-10-08 Photonic Science Technology Inc Method for producing preform for photonic crystal fiber, and method for producing photonic crystal fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587959B2 (en) * 2012-10-25 2014-09-10 湖北工業株式会社 Optical fiber preform manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227548A (en) 2008-03-25 2009-10-08 Photonic Science Technology Inc Method for producing preform for photonic crystal fiber, and method for producing photonic crystal fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山本潤,「スラリーキャスト法を用いたマルチコアファイバの作製」,電気情報通信学会技術研究報告,日本,一般社団法人 電子情報通信学会,2016年,第116巻, 第295号,第29-33ページ,ISSN 0913-5685

Also Published As

Publication number Publication date
JP2022027734A (en) 2022-02-14
WO2022025285A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
CN110333571B (en) Double negative curvature anti-resonance hollow optical fiber and preparation method thereof
US20100104869A1 (en) Photonic Crystal Fibers and Methods for Manufacturing the Same
CN1151918C (en) Insert pipe for injection molding, insert pipe processing method, and molded article
WO2009010317A1 (en) Method for the manufacture of an optical component having longitudinal holes
JP7097115B2 (en) Manufacturing method of glass sintered body
EP2821377B1 (en) Methods for manufacturing optical fiber preforms
WO2022030583A1 (en) Optical fiber preform and method for producing optical fiber
CN112939425A (en) Method and system for pressing tire lens by using free cavity
WO2004046777A1 (en) Microstructured polymer signal guiding element
JP2021155308A (en) Method for manufacturing multi-core fiber preform and method for manufacturing multi-core fiber
CN110877239A (en) Polishing method of tungsten steel mold core and mold sleeve
JP2020019680A (en) Method for manufacturing multicore fiber preform and method for manufacturing multicore fiber
JP6567303B2 (en) Optical fiber preform manufacturing method
JP7025809B2 (en) Manufacturing method of molded product
JP2014201504A5 (en)
JP5492325B2 (en) Method for manufacturing optical fiber preform and optical fiber preform
JPH09278475A (en) Production of multiple glass body
JPH07267669A (en) Production of multiple structure material
JP5587959B2 (en) Optical fiber preform manufacturing method
WO2022190912A1 (en) Multicore fiber, method for manufacturing multicore fiber, multicore fiber base material, and method for manufacturing multicore fiber base material
US11866360B2 (en) Method for producing a preform for producing a multicore fibre and also a preform and a multicore fibre
KR100535570B1 (en) Truck lower duct and manufacturing process its
JPS59209125A (en) Preparation of plastic member having shaft
JPH06183768A (en) Production of optical fiber porous preform
JP5603519B1 (en) Optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7097115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150