JP2016011218A - Silicon nitride substrate, circuit board including the same, and electronic device - Google Patents

Silicon nitride substrate, circuit board including the same, and electronic device Download PDF

Info

Publication number
JP2016011218A
JP2016011218A JP2014132792A JP2014132792A JP2016011218A JP 2016011218 A JP2016011218 A JP 2016011218A JP 2014132792 A JP2014132792 A JP 2014132792A JP 2014132792 A JP2014132792 A JP 2014132792A JP 2016011218 A JP2016011218 A JP 2016011218A
Authority
JP
Japan
Prior art keywords
silicon nitride
mass
nitride substrate
circuit board
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014132792A
Other languages
Japanese (ja)
Other versions
JP6240034B2 (en
Inventor
健司 小松原
Kenji Komatsubara
健司 小松原
諭史 清田
Satoshi Kiyota
諭史 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014132792A priority Critical patent/JP6240034B2/en
Publication of JP2016011218A publication Critical patent/JP2016011218A/en
Application granted granted Critical
Publication of JP6240034B2 publication Critical patent/JP6240034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: a silicon nitride substrate with improved strength of connection with metal while having excellent mechanical strength; a circuit board including the silicon nitride substrate; and an electronic device.SOLUTION: A silicon nitride substrate is made of a sintered body that is composed mainly of silicon nitride and has a surface serving as a surface connected with metal. Rhombohedral boron nitride exists in the surface. A content of the rhombohedral boron nitride is not less than 5 mass% and not more than 20 mass% with respect to 100 mass% of all ingredients in the surface. The silicon nitride substrate makes it possible to improve strength of connection with metal while having excellent mechanical strength.

Description

本発明は、窒化珪素質基板およびこれを備える回路基板ならびに電子装置に関するものである。   The present invention relates to a silicon nitride substrate, a circuit substrate including the same, and an electronic device.

近年、絶縁ゲート・バイポーラ・トランジスタ(IGBT)素子、金属酸化膜型電界効果トランジスタ(MOSFET)素子、発光ダイオード(LED)素子、フリーホイーリングダイオード(FWD)素子、ジャイアント・トランジスタ(GTR)素子等の半導体素子、昇華型サーマルプリンタヘッド素子、サーマルインクジェットプリンタヘッド素子およびペルチェ素子等の各種電子部品を回路基板の回路部材上に搭載した電子装置が用いられている。   In recent years, insulated gate bipolar transistor (IGBT) elements, metal oxide field effect transistor (MOSFET) elements, light emitting diode (LED) elements, freewheeling diode (FWD) elements, giant transistor (GTR) elements, etc. 2. Description of the Related Art An electronic device in which various electronic components such as a semiconductor element, a sublimation thermal printer head element, a thermal ink jet printer head element, and a Peltier element are mounted on a circuit member of a circuit board is used.

このような回路基板は、絶縁性が高く機械的強度に優れた窒化珪素質基板の表面に、例えば、銅を主成分とする回路部材が接合されて用いられている。そして、回路基板ひいては電子装置の信頼性を高めるため、窒化珪素質基板と回路部材との接合強度を高めるための検討が為されている。   Such a circuit board is used, for example, by bonding a circuit member mainly composed of copper to the surface of a silicon nitride substrate having high insulation and excellent mechanical strength. And in order to improve the reliability of a circuit board and by extension, an electronic device, examination for improving the joint strength of a silicon nitride board | substrate and a circuit member is made.

例えば、特許文献1では、窒化珪素基板に金属回路板をろう付け接合した窒化珪素回路基板であって、窒化珪素基板の接合面は算術平均粗さRaが、Ra<1μm、最大高さRyが、Ry<10μm、粗さ曲線から求めたスキューネスRskが、1>Rsk>0であり、ろう付け接合界面のボイドの面積率が3%以下である窒化珪素回路基板が提案されている。   For example, in Patent Document 1, a silicon nitride circuit board is obtained by brazing and bonding a metal circuit board to a silicon nitride substrate, and the bonding surface of the silicon nitride substrate has an arithmetic average roughness Ra of Ra <1 μm and a maximum height Ry. , Ry <10 μm, a skewness Rsk obtained from a roughness curve is 1> Rsk> 0, and a silicon nitride circuit board having a void area ratio of 3% or less at a brazed joint interface has been proposed.

特開2010−76948号公報JP 2010-76948 A

今般、回路部材を介して電子部品が搭載される窒化珪素質基板には、優れた機械的強度を有しつつ、回路基板および電子装置の信頼性をさらに高めるため、回路部材となる金属との更なる接合強度の向上が求められている。   In recent years, a silicon nitride substrate on which electronic components are mounted via a circuit member has excellent mechanical strength and further increases the reliability of the circuit substrate and the electronic device. There is a need for further improvement in bonding strength.

本発明は、上記要求を満たすべく案出されたものであり、優れた機械的強度を有しつつ、金属との接合強度が向上した窒化珪素質基板およびこれを備える回路基板ならびに電子装置を提供することを目的とするものである。   The present invention has been devised to satisfy the above-described requirements, and provides a silicon nitride substrate having excellent mechanical strength and improved bonding strength with a metal, a circuit substrate including the same, and an electronic device It is intended to do.

本発明の窒化珪素質基板は、窒化珪素を主成分とし、金属との接合面となる表面を備える焼結体からなり、該表面に菱面体晶の窒化硼素が存在し、前記表面における全成分100
質量%のうち、前記菱面体晶の窒化硼素の含有量が5質量%以上20質量%以下であることを特徴とするものである。
The silicon nitride substrate of the present invention is composed of a sintered body having silicon nitride as a main component and having a surface serving as a joint surface with a metal, rhombohedral boron nitride is present on the surface, and all components on the surface are present. 100
Of the mass%, the rhombohedral boron nitride content is 5 mass% or more and 20 mass% or less.

また、本発明の回路基板は、上記構成の窒化珪素質基板の前記表面に回路部材を備えていることを特徴とするものである。   The circuit board of the present invention is characterized in that a circuit member is provided on the surface of the silicon nitride substrate having the above structure.

また、本発明の電子装置は、上記構成の回路基板における前記回路部材上に電子部品を
搭載してなることを特徴とするものである。
The electronic device according to the present invention is characterized in that an electronic component is mounted on the circuit member in the circuit board having the above-described configuration.

本発明の窒化珪素質基板は、優れた機械的強度を有しつつ、金属との接合強度を向上することができる。   The silicon nitride substrate of the present invention can improve bonding strength with a metal while having excellent mechanical strength.

また、本発明の回路基板および電子装置は、金属である回路部材と窒化珪素質基板とが強固に接合されていることから、長期間に使用に耐え得る優れた耐久性を有しているため高い信頼性を有する。   In addition, the circuit board and the electronic device of the present invention have excellent durability that can withstand use for a long period of time because the metal circuit member and the silicon nitride substrate are firmly bonded. High reliability.

本実施形態の回路基板の一例を示す、(a)は平面図であり、(b)は(a)のA−A’線での断面図である。An example of the circuit board of this embodiment is shown, (a) is a plan view, and (b) is a sectional view taken along line A-A ′ of (a). 本実施形態の回路基板の他の例を示す、(a)は平面図であり、(b)は(a)のB−B’線での断面図である。The other example of the circuit board of this embodiment is shown, (a) is a top view, (b) is sectional drawing in the B-B 'line | wire of (a). 本実施形態の回路基板のさらに他の例を示す、(a)は平面図であり、(b)は(a)のC−C’線での断面図である。Still another example of the circuit board of the present embodiment is shown, (a) is a plan view, and (b) is a sectional view taken along line C-C ′ of (a). 本実施形態の電子装置の一例を示す、(a)は平面図であり、(b)は(a)のD−D’線での断面図である。An example of the electronic device of this embodiment is shown, (a) is a plan view, and (b) is a cross-sectional view taken along line D-D 'in (a).

まず、本実施形態の窒化珪素質基板について説明する。   First, the silicon nitride substrate of this embodiment will be described.

本実施形態の窒化珪素質基板は、窒化珪素を主成分とし、金属との接合面となる表面を備える焼結体からなり、表面に菱面体晶の窒化硼素が存在し、表面における全成分100質
量%のうち、菱面体晶の窒化硼素の含有量が5質量%以上20質量%以下である。このような構成を満たしていることにより、本実施形態の窒化珪素質基板は、優れた機械的強度を有しつつ、金属との接合強度を向上できる。
The silicon nitride substrate of the present embodiment is composed of a sintered body having silicon nitride as a main component and a surface serving as a bonding surface with a metal, rhombohedral boron nitride is present on the surface, and all components 100 on the surface are present. Of the mass%, the rhombohedral boron nitride content is 5 mass% or more and 20 mass% or less. By satisfying such a configuration, the silicon nitride substrate of the present embodiment can improve the bonding strength with the metal while having excellent mechanical strength.

ここで、窒化硼素は、常圧における結晶構造として、六方晶と菱面体晶とがあり、菱面体晶の窒化硼素は、単位格子におけるc軸の格子定数(1.0000nm)が六方晶の窒化硼素の単位格子のc軸における格子定数(0.66813nm)よりも大きいものである。   Here, boron nitride has a hexagonal crystal and a rhombohedral crystal as the crystal structure at normal pressure, and rhombohedral boron nitride has a c-axis lattice constant (1.0000 nm) in the unit cell of boron nitride. It is larger than the lattice constant (0.66813 nm) on the c-axis of the unit cell.

そして、このような菱面体晶の窒化硼素が存在していることにより、焼結時に、窒化珪素の柱状結晶粒子を構成する単位格子の一部が菱面体晶の窒化硼素の単位格子内に侵入して、菱面体晶の窒化硼素と窒化珪素とが強固に結合されるとともに、結合された結晶の形状が複雑な形状となっているため接合強度が向上できると考えられる。   Since such rhombohedral boron nitride exists, a part of the unit cell constituting the silicon nitride columnar crystal grains penetrates into the rhombohedral boron nitride unit cell during sintering. Thus, it is considered that the rhombohedral boron nitride and silicon nitride are firmly bonded, and the bonding strength can be improved because the bonded crystal has a complicated shape.

なお、窒化珪素質基板の表面における全成分100質量%のうち、菱面体晶の窒化硼素の
含有量が5%未満では、上述した接合強度の向上効果が少なくなる傾向があり、20質量%を超えると、機械的強度が低下する傾向がある。
If the content of rhombohedral boron nitride is less than 5% out of 100% by mass of the total component on the surface of the silicon nitride substrate, the effect of improving the bonding strength described above tends to decrease, and 20% by mass. When it exceeds, there exists a tendency for mechanical strength to fall.

また、窒化硼素において、六方晶の結晶構造の窒化硼素は少ないことが好適であり、六方晶の窒化硼素の含有量は、菱面体晶の窒化硼素の含有量の10%以下であることが好適である。   Further, in boron nitride, it is preferable that the boron nitride having a hexagonal crystal structure is small, and the content of hexagonal boron nitride is preferably 10% or less of the content of rhombohedral boron nitride. It is.

また、本実施形態において、窒化珪素質基板の表面とは、窒化珪素質基板のうち金属が接合される外表面を指すが、成分の同定や含有量の測定における試料採取にあたっては、採取領域を表面から深さ方向に50μmの深さまでを表面と見なすものとする。   In the present embodiment, the surface of the silicon nitride substrate refers to the outer surface of the silicon nitride substrate to which the metal is bonded, but when collecting samples for component identification and content measurement, a sampling region is used. The depth from the surface to the depth of 50 μm is regarded as the surface.

ここで、金属との接合面となる表面における各成分の含有量は、X線回折装置(XRD)を用いて、表面における成分を同定した後、蛍光X線分析装置(XRF)を用いて、元素の含有量を求め、同定された成分の含有量に換算すればよい。または、窒化珪素質基板の表面から深さ方向に30μm〜50μm程度の深さまで研磨して得られる研磨粉を試料とし
、ICP発光分光分析装置(ICP)を用いて、元素の含有量を求め、同定された成分の含有量に換算してもよい。具体的には、同定された成分が、窒化珪素、窒化硼素および窒化ジルコニウムであれば、XRFまたはICPで測定することによって得られた、珪素、硼素およびジルコニウムの含有量をそれぞれ窒化物の含有量に換算すればよい。
Here, the content of each component on the surface that becomes the bonding surface with the metal is determined using a fluorescent X-ray analyzer (XRF) after identifying the component on the surface using an X-ray diffractometer (XRD), What is necessary is just to obtain | require element content and to convert into content of the identified component. Or, using a polishing powder obtained by polishing from the surface of the silicon nitride substrate to a depth of about 30 μm to 50 μm in the depth direction as a sample, using an ICP emission spectrometer (ICP), the element content is obtained, You may convert into content of the identified component. Specifically, if the identified components are silicon nitride, boron nitride, and zirconium nitride, the silicon, boron, and zirconium contents obtained by measuring with XRF or ICP, respectively, are the nitride contents. Convert to.

また、XRDを用いて測定した際に、菱面体晶のみの窒化硼素が同定された場合には、上述した方法で求めた窒化硼素の含有量が菱面体晶の窒化硼素の含有量である。なお、六方晶の窒化硼素が同定された場合には、窒化珪素質基板の表面から深さ方向に30μm〜50
μm程度の深さまで研磨して得られる研磨粉を試料として、XRDを用いたリートベルト法で、結晶構造毎の質量百分率を求め、窒化硼素の含有量に菱面体晶の質量百分率を掛けて算出すればよい。
When the rhombohedral only boron nitride is identified when measured using XRD, the boron nitride content obtained by the above-described method is the rhombohedral boron nitride content. When hexagonal boron nitride is identified, it is 30 μm to 50 μm in the depth direction from the surface of the silicon nitride substrate.
Using a polishing powder obtained by polishing to a depth of about μm as a sample, calculate the mass percentage for each crystal structure by the Rietveld method using XRD, and multiply the boron nitride content by the mass percentage of rhombohedral crystals. do it.

そして、本実施形態の窒化珪素質基板は、窒化珪素を主成分とする。なお、主成分とは焼結体を構成する全成分100質量%のうち、窒化珪素を63質量%以上含有することを意味
し、特に、70質量%以上含有すると機械的強度がより高くなる傾向があるため好適である。また、金属とは、金属板、金属層、金属箔などのことであり、ろう材等により接合されている金属板も上記金属に含む概念である。 なお、本実施形態の窒化珪素質基板における機械的強度は、JIS R 1601−2008(ISO 14704:2000(MOD))に準拠し
て、室温における4点曲げ強度で評価することができ、本実施形態の窒化珪素質基板は、900MPa以上の4点曲げ強度を有する。また、本実施形態の窒化珪素質基板における金
属との接合強度は、JIS C 6481−1996に準拠して測定することができる。
And the silicon nitride substrate of this embodiment has silicon nitride as a main component. The main component means that 63% by mass or more of silicon nitride is contained in 100% by mass of all components constituting the sintered body, and in particular, when 70% by mass or more is contained, the mechanical strength tends to be higher. This is preferable. Moreover, a metal is a metal plate, a metal layer, a metal foil, or the like, and is a concept including a metal plate joined by a brazing material or the like. The mechanical strength of the silicon nitride substrate of the present embodiment can be evaluated by a four-point bending strength at room temperature in accordance with JIS R 1601-2008 (ISO 14704: 2000 (MOD)). The silicon nitride substrate of the form has a 4-point bending strength of 900 MPa or more. Moreover, the joint strength with the metal in the silicon nitride substrate of the present embodiment can be measured according to JIS C 6481-1996.

また、本実施形態の窒化珪素質基板は、窒化珪素の結晶間である粒界相に、窒化ジルコニウムが存在し、焼結体を構成する全成分100質量%のうち、ジルコニウムを窒化物に換
算した含有量が0.2質量%以上1.0質量%以下であることが好適である。
In the silicon nitride substrate of this embodiment, zirconium nitride exists in the grain boundary phase between silicon nitride crystals, and zirconium is converted to nitride out of 100% by mass of all components constituting the sintered body. It is preferable that the content is 0.2 mass% or more and 1.0 mass% or less.

上記構成を満たしているときには、高い電圧に耐え得る絶縁破壊特性を有しつつ、窒化ジルコニウムが、耐酸化性を有した高融点の結晶であるために、高温時においても優れた機械的強度を有する。   When the above configuration is satisfied, the zirconium nitride is a high melting point crystal having oxidation resistance while having a dielectric breakdown characteristic capable of withstanding a high voltage, so that it has excellent mechanical strength even at high temperatures. Have.

ここで、絶縁破壊特性については、JIS C 2141−1992(IEC 672-2(1980)
)に準拠した絶縁破壊の強さ(MV/m)で評価することができる。なお、本実施形態の窒化珪素質基板における絶縁破壊の強さは、20MV/m以上であることが好適である。
Here, regarding the dielectric breakdown characteristics, JIS C 2141-1992 (IEC 672-2 (1980))
) In accordance with the strength of dielectric breakdown (MV / m). Note that the strength of dielectric breakdown in the silicon nitride substrate of the present embodiment is preferably 20 MV / m or more.

また、本実施形態の窒化珪素質基板は、窒化珪素の結晶間である粒界相に、マグネシウムおよびアルミニウムの酸窒化物(MgAlON)を含むことが好適である。このような構成を満たしているときには、粒界相における結晶が増えることとなるため、高温時においても優れた機械的強度を有する。また、マグネシウムおよびアルミニウムの酸窒化物の線膨張係数は、酸化マグネシウムおよび酸化アルミニウムよりも窒化珪素の線膨張係数に近いものであるため、加熱と冷却とが繰り返された際に、粒界相からのクラックが生じにくくなる。さらに、マグネシウムおよびアルミニウムの酸窒化物は、耐食性に優れているため、ハロゲン系ガス等の腐食性の強いガスの環境下に配置される部材に好適に用いることができる。   In addition, the silicon nitride substrate of the present embodiment preferably includes magnesium and aluminum oxynitride (MgAlON) in the grain boundary phase between the silicon nitride crystals. When such a configuration is satisfied, the number of crystals in the grain boundary phase increases, so that it has excellent mechanical strength even at high temperatures. In addition, the linear expansion coefficient of oxynitride of magnesium and aluminum is closer to that of silicon nitride than that of magnesium oxide and aluminum oxide. Therefore, when heating and cooling are repeated, Cracks are less likely to occur. Furthermore, since oxynitride of magnesium and aluminum is excellent in corrosion resistance, it can be suitably used for a member disposed in an environment of highly corrosive gas such as halogen-based gas.

ここで、マグネシウムおよびアルミニウムの酸窒化物は、XRDを用いて同定すればよい。マグネシウムおよびアルミニウムの酸窒化物の組成式は、例えば、Mg0.2Al1.45
2.150.15として表される。また、他の方法としては、走査型電子顕微鏡(SEM)を用いて粒界相を確認し、エネルギー分散型X線分析装置(EDS)を用いて粒界相において確認される結晶にX線を照射し、Mg、Al、OおよびNが確認されることによっても、マグネシウムおよびアルミニウムの酸窒化物の存在を確認することができる。
Here, magnesium and aluminum oxynitrides may be identified using XRD. The composition formula of oxynitride of magnesium and aluminum is, for example, Mg 0.2 Al 1.45
Expressed as O 2.15 N 0.15 . As another method, the grain boundary phase is confirmed using a scanning electron microscope (SEM), and X-rays are applied to crystals confirmed in the grain boundary phase using an energy dispersive X-ray analyzer (EDS). The presence of magnesium and aluminum oxynitrides can also be confirmed by irradiation and confirmation of Mg, Al, O and N.

また、本実施形態の窒化珪素質基板は、希土類金属およびマグネシウムを粒界相に含み、それぞれを酸化物に換算した含有量の合計が3質量%以上6質量%以下であることが好適である。希土類金属は、酸素との親和性が高いことから、焼結時に窒化珪素の原料粉末間の酸素を多く取り込み、窒化珪素の粒成長を促進する。また、マグネシウムは、その酸化物が有する焼結促進作用によって緻密化を促進する。   In addition, the silicon nitride substrate of the present embodiment preferably includes a rare earth metal and magnesium in the grain boundary phase, and the total content converted to an oxide is 3% by mass or more and 6% by mass or less. . Since the rare earth metal has a high affinity with oxygen, a large amount of oxygen is incorporated between the raw material powders of silicon nitride at the time of sintering, and the grain growth of silicon nitride is promoted. Magnesium promotes densification by the sintering promoting action of the oxide.

それゆえ、窒化珪素質基板を構成する全成分のうち、希土類金属およびマグネシウムをそれぞれ酸化物に換算した含有量の合計が3質量%以上6質量%以下であるときには、粒界相の占有面積増加に伴う放熱特性の低下を抑えつつ、窒化珪素質基板の機械的強度を高めることができる。なお、マグネシウムの酸化物換算での含有量は1質量%以上2質量%以下であることが好適であり、希土類金属の酸化物換算での含有量は2質量%以上4質量%以下であることが好適である。   Therefore, when the total content of rare earth metals and magnesium converted into oxides is 3% by mass or more and 6% by mass or less among all the components constituting the silicon nitride substrate, the occupied area of the grain boundary phase is increased. Thus, the mechanical strength of the silicon nitride substrate can be increased while suppressing the deterioration of the heat dissipation characteristics. The content of magnesium in terms of oxide is preferably 1% by mass or more and 2% by mass or less, and the content of rare earth metal in terms of oxide is 2% by mass or more and 4% by mass or less. Is preferred.

また、希土類金属(RE)およびマグネシウム(Mg)が粒界相に含まれるか否かについては、EDSを用いて粒界相にX線を照射して確認すればよく、含有量については、XRFまたはICPによって、RE、Mgの含有量を求め、これら各含有量をRE、MgOに換算することで求めることができる。 Further, whether or not rare earth metal (RE) and magnesium (Mg) are contained in the grain boundary phase may be confirmed by irradiating the grain boundary phase with X-rays using EDS. Alternatively, the contents of RE and Mg can be obtained by ICP, and these contents can be obtained by converting them into RE 2 O 3 and MgO.

また、本実施形態の窒化珪素質基板の電気的特性は、常温における体積抵抗率が1014Ω・cm以上であり、300℃における体積抵抗率が1012Ω・cm以上であることが好適
である。この体積抵抗率は、JIS C 2141−1992に準拠して測定すればよい。ただし、窒化珪素質基板の大きさが小さく、窒化珪素質基板からJIS C 2141−1992で規定する大きさの試験片を得ることができない場合には、2端子法を用いて評価するものとし、その結果が上記数値を満足することが好適である。
The electrical characteristics of the silicon nitride substrate of this embodiment are preferably such that the volume resistivity at room temperature is 10 14 Ω · cm or more and the volume resistivity at 300 ° C. is 10 12 Ω · cm or more. is there. This volume resistivity may be measured according to JIS C 2141-1992. However, when the size of the silicon nitride substrate is small and a test piece having a size specified in JIS C 2141-1992 cannot be obtained from the silicon nitride substrate, the two-terminal method is used for evaluation. It is preferable that the result satisfies the above numerical value.

次に、本実施形態の回路基板について図面を用いて説明する。   Next, the circuit board of this embodiment will be described with reference to the drawings.

図1は、本実施形態の回路基板の一例を示す、(a)は平面図であり、(b)は(a)のA−A’線での断面図である。   1A and 1B show an example of a circuit board according to the present embodiment. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line A-A ′ in FIG.

図1に示す本実施形態の回路基板10は、本実施形態の窒化珪素質基板1の表面に回路部材2が直接接合されてなる例である。なお、以下の説明では、まず回路部材2を説明したのち、窒化珪素質基板1について説明する。   A circuit board 10 of this embodiment shown in FIG. 1 is an example in which a circuit member 2 is directly bonded to the surface of a silicon nitride substrate 1 of this embodiment. In the following description, the circuit member 2 is first described, and then the silicon nitride substrate 1 is described.

まず、回路部材2は金属成分を主成分とするものであり、回路部材2における主成分とは、回路部材2を構成する全成分100質量%のうち、50質量%以上占める成分のことであ
る。
First, the circuit member 2 has a metal component as a main component, and the main component in the circuit member 2 is a component that occupies 50% by mass or more out of 100% by mass of all components constituting the circuit member 2. .

より具体的には、銅を用いるのが好ましく、銅の含有量が90質量%以上であり、銅の含有量が多い、無酸素銅、タフピッチ銅およびりん脱酸銅のいずれかからなることが好適である。特に、無酸素銅のうち、銅の含有量が99.995質量%以上の線形結晶無酸素銅、単結晶状高純度無酸素銅および真空溶解銅のいずれかからなることが好適である。このように、回路部材2における銅の含有量が多いときには、高い熱伝導率により放熱特性が向上し、電気抵抗が低いことにより回路特性(電子部品の発熱を抑制し電力損失を少なくする特性)が向上する。また、銅の含有量が多いときには、降伏応力が低くなり、加熱すると塑
性変形しやすくなるため、回路部材2の接合強度が上がり、より信頼性が高くなる。なお、回路部材2の厚みは0.5mm以上5mm以下がよい。
More specifically, it is preferable to use copper, and the content of copper is 90% by mass or more, and the content of copper is any of oxygen-free copper, tough pitch copper, and phosphorus deoxidized copper. Is preferred. In particular, it is preferable that the oxygen-free copper is made of any of linear crystalline oxygen-free copper having a copper content of 99.995% by mass or more, single-crystal high-purity oxygen-free copper, and vacuum-melted copper. Thus, when the copper content in the circuit member 2 is large, the heat dissipation characteristics are improved due to the high thermal conductivity, and the circuit characteristics (characteristics for suppressing the heat generation of the electronic components and reducing the power loss) due to the low electrical resistance. Will improve. Further, when the copper content is large, the yield stress is low, and plastic deformation is easily caused by heating, so that the bonding strength of the circuit member 2 is increased and the reliability is further increased. The thickness of the circuit member 2 is preferably 0.5 mm or more and 5 mm or less.

次に、図2は、本実施形態の回路基板の他の一例を示す、(a)は平面図であり、(b)は(a)のB−B’線での断面図である。   Next, FIG. 2 shows another example of the circuit board of the present embodiment, in which (a) is a plan view and (b) is a sectional view taken along line B-B ′ of (a).

図2に示す例の回路基板20は、図1に示す回路基板10とは、窒化珪素質基板1と回路部材2とが接合層3を介して接合されている点で異なっている。回路部材2を接合層3となるろう材を介して接合することにより、窒化珪素質基板1に厚みの厚い回路部材2を容易に接合することができる。   The circuit board 20 in the example shown in FIG. 2 is different from the circuit board 10 shown in FIG. 1 in that the silicon nitride substrate 1 and the circuit member 2 are bonded via the bonding layer 3. By joining the circuit member 2 via the brazing material to be the joining layer 3, the thick circuit member 2 can be easily joined to the silicon nitride substrate 1.

なお、接合層3となるろう材としては、主成分が銀および銅の少なくともいずれか1種であって、チタン、ジルコニウム、ハフニウムおよびニオブから選ばれる1種以上を含有することが好適であり、その厚みは、例えば、5μm以上20μm以下がよい。   As the brazing material to be the bonding layer 3, it is preferable that the main component is at least one of silver and copper, and contains at least one selected from titanium, zirconium, hafnium and niobium, The thickness is preferably 5 μm or more and 20 μm or less, for example.

次に、図3は、本実施形態の回路基板のさらに他の一例を示す、(a)は平面図であり、(b)は(a)のC−C’線での断面図である。   Next, FIG. 3 shows still another example of the circuit board of the present embodiment, where (a) is a plan view and (b) is a sectional view taken along line C-C ′ of (a).

図3に示す例の回路基板30は、本実施形態の窒化珪素質基板1の表面に、窒化珪素質基板1側から接合層3および銅材4を順次介して回路部材2が接合されている例を示している。   In the circuit board 30 of the example shown in FIG. 3, the circuit member 2 is bonded to the surface of the silicon nitride substrate 1 of this embodiment from the silicon nitride substrate 1 side through the bonding layer 3 and the copper material 4 sequentially. An example is shown.

図2に示す回路基板20において、窒化珪素質基板1に回路部材2を接合するときの温度が800〜900℃であるのに対し、図3に示す回路基板30のように、銅材4を介することにより、回路部材2と銅材4との間の接合を、銅の拡散によって300〜500℃程度の比較的低い温度で接合することができるため、窒化珪素質基板1に生じる反りを抑制することができる。その結果、窒化珪素質基板1に生じる応力が小さいことから、熱を繰り返し加えても亀裂が生じにくいものとなる。また、回路部材2を厚くすることができるため、回路基板30の放熱特性を高くすることができる。   In the circuit board 20 shown in FIG. 2, the temperature when the circuit member 2 is joined to the silicon nitride substrate 1 is 800 to 900 ° C., whereas the copper material 4 is made as in the circuit board 30 shown in FIG. By interposing, since the joining between the circuit member 2 and the copper material 4 can be joined at a relatively low temperature of about 300 to 500 ° C. by the diffusion of copper, the warpage generated in the silicon nitride substrate 1 is suppressed. can do. As a result, since the stress generated in the silicon nitride substrate 1 is small, cracks are hardly generated even when heat is repeatedly applied. Moreover, since the circuit member 2 can be thickened, the heat dissipation characteristics of the circuit board 30 can be enhanced.

なお、銅材4としては、銅の含有量が多い、無酸素銅、タフピッチ銅およびりん脱酸銅のいずれかからなることが好適である。特に、無酸素銅のうち、銅の含有量が99.995質量%以上の線形結晶無酸素銅、単結晶状高純度無酸素銅および真空溶解銅のいずれかからなることが好適であり、その厚みは、例えば、0.1mm以上0.6mm以下がよい。   The copper material 4 is preferably made of any one of oxygen-free copper, tough pitch copper and phosphorous deoxidized copper having a large copper content. In particular, among oxygen-free copper, it is preferably composed of any one of linear crystalline oxygen-free copper having a copper content of 99.995% by mass or more, single-crystal high-purity oxygen-free copper, and vacuum-melted copper. For example, 0.1 mm or more and 0.6 mm or less are preferable.

以上のように図1〜3の回路基板10〜30は、本実施形態の窒化珪素質基板1の表面に回路部材2が接合されてなることから、長期間に使用に耐え得る優れた耐久性を有しているため高い信頼性を有する。   As described above, the circuit boards 10 to 30 of FIGS. 1 to 3 have excellent durability that can be used for a long time since the circuit member 2 is bonded to the surface of the silicon nitride substrate 1 of the present embodiment. It has high reliability.

図4は、本実施形態の電子装置の一例を示す、(a)は平面図であり、(b)は(a)のD−D’線での断面図である。図4に示す例の電子装置Sは、本実施形態の回路基板10の回路部材2上に半導体素子等の電子部品5が搭載されたものである。   4A and 4B show an example of the electronic apparatus according to the present embodiment. FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view taken along line D-D ′ in FIG. The electronic device S of the example shown in FIG. 4 is one in which an electronic component 5 such as a semiconductor element is mounted on the circuit member 2 of the circuit board 10 of the present embodiment.

図4に示す例の電子装置Sによれば、窒化珪素質基板1が優れた機械的強度を有しつつ、回路部材2と窒化珪素質基板1とが強固に接合されていることから、長期間に使用に耐え得る優れた耐久性を有しているため高い信頼性を有している。また、機械的強度が高く、高い絶縁破壊の強さを有する回路基板10上に電子部品5が載置されていることから、信頼性の高い電子装置Sとすることができる。   According to the electronic device S of the example shown in FIG. 4, the circuit member 2 and the silicon nitride substrate 1 are firmly bonded while the silicon nitride substrate 1 has excellent mechanical strength. It has high reliability because it has excellent durability that can withstand use during a period. Further, since the electronic component 5 is placed on the circuit board 10 having high mechanical strength and high dielectric breakdown strength, the electronic device S with high reliability can be obtained.

次に、本実施形態の窒化珪素質基板の製造方法について説明する。   Next, a method for manufacturing the silicon nitride substrate of this embodiment will be described.

まず、β化率が20%以下であって、純度が98%以上である窒化珪素の粉末と、第1の添加成分(以下、純度が98%以上である窒化珪素の粉末と、第1の添加成分とを合わせて、1次原料という。)として酸化マグネシウム(MgO)および希土類金属の酸化物(例えば、Sc、Y、La、Ce、Pr11、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの少なくともいずれか1種)の各粉末とを、バレルミル、回転ミル、振動ミル、ビーズミル、サンドミル、アジテーターミル等の混合装置を用いて、水とともに湿式混合し、粉砕してスラリーを作製する。 First, a silicon nitride powder having a β conversion rate of 20% or less and a purity of 98% or more, a first additive component (hereinafter referred to as a silicon nitride powder having a purity of 98% or more, Together with the additive components, it is referred to as a primary raw material.) Magnesium oxide (MgO) and rare earth metal oxides (for example, Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Pr 6) O 11, Nd 2 O 3, Pm 2 O 3, Sm 2 O 3, Eu 2 O 3, Gd 2 O 3, Tb 2 O 3, Dy 2 O 3, Ho 2 O 3, Er 2 O 3, Tm 2 Each powder of O 3 , Yb 2 O 3 and Lu 2 O 3 ) is wet with water using a mixing device such as a barrel mill, a rotating mill, a vibration mill, a bead mill, a sand mill, an agitator mill, etc. Mix and grind to make slurry To.

ここで、酸化マグネシウムおよび希土類金属の酸化物の各粉末の添加量は、例えば、それぞれ1質量%以上2質量%以下、2質量%以上4質量%以下であり、残部が窒化珪素の粉末である。   Here, the addition amount of each powder of magnesium oxide and rare earth metal oxide is, for example, 1% by mass or more and 2% by mass or less, 2% by mass or more and 4% by mass or less, and the balance is powder of silicon nitride. .

なお、窒化珪素および第1の添加成分の粉末の粉砕で用いるボールは、不純物が混入しにくい材質あるいは同じ材料組成の窒化珪素質焼結体からなるボールが好適である。なお、1次原料の粉砕は、粒度分布曲線の累積体積の総和を100%とした場合の累積体積が90
%となる粒径(D90)が3μm以下となるまで粉砕することが、焼結性の向上という点から好適である。また、粉砕によって得られる粒度分布は、ボールの外径、ボールの量、スラリーの粘度、粉砕時間等で調整することができる。
The ball used for pulverization of the powder of silicon nitride and the first additive component is preferably a ball made of a material in which impurities are hardly mixed or a silicon nitride sintered body having the same material composition. The primary raw material is pulverized with a cumulative volume of 90% when the total cumulative volume of the particle size distribution curve is 100%.
It is preferable to grind until the particle size (D 90 ) of% becomes 3 μm or less from the viewpoint of improving the sinterability. The particle size distribution obtained by pulverization can be adjusted by the outer diameter of the ball, the amount of the ball, the viscosity of the slurry, the pulverization time, and the like.

次に、得られたスラリーをASTM E 11−61に記載されている粒度番号が200のメ
ッシュまたはこのメッシュより細かいメッシュの篩いに通した後に乾燥させて、窒化珪素を主成分とする顆粒(以下、窒化珪素質顆粒という。)を得る。乾燥は、噴霧乾燥機で乾燥させてもよく、他の方法であっても何ら問題ない。そして、粉末圧延法を用いて窒化珪素質顆粒をシート状に成形してセラミックグリーンシートとし、このセラミックグリーンシートを所定の長さに切断して窒化珪素を主成分とする成形体(以下、窒化珪素質成形体という。)を得る。あるいは、粉末圧延法に代えて、加圧成形法または冷間静水圧法を用い、窒化珪素質顆粒を成形型に充填してから加圧することによって窒化珪素質成形体を得ても構わない。
Next, the obtained slurry was passed through a mesh having a particle size number of 200 described in ASTM E 11-61 or a sieve having a finer mesh than this mesh, and then dried to obtain granules containing silicon nitride as a main component (hereinafter referred to as “silicone nitride”). , Referred to as silicon nitride granules). Drying may be performed by a spray dryer, and there is no problem even if other methods are used. Then, a silicon nitride granule is formed into a sheet by using a powder rolling method to form a ceramic green sheet, and the ceramic green sheet is cut into a predetermined length to form a molded body containing silicon nitride as a main component (hereinafter referred to as nitriding). This is referred to as a silicon-like molded body). Alternatively, instead of the powder rolling method, a silicon nitride-based molded body may be obtained by using a pressure molding method or a cold isostatic pressure method and filling the mold with the silicon nitride granules and then pressing.

そして、得られた窒化珪素質成形体の表面に、窒化珪素、第1の添加成分および菱面体晶の窒化硼素の各粉末を、バインダーとともにエタノール等の溶媒に添加したペーストをスクリーン印刷法で塗布し、温度を、例えば、60℃以上100℃以下として乾燥させると、
表面に菱面体晶の窒化硼素が存在する窒化珪素質成形体が得られる。なお、菱面体晶の窒化硼素の粉末の添加量は、上記各粉末の合計100質量%のうち、5質量%20質量%以下と
すればよい。
Then, a paste obtained by adding each powder of silicon nitride, first additive component and rhombohedral boron nitride to a solvent such as ethanol together with a binder is applied to the surface of the obtained silicon nitride-like molded body by a screen printing method. And when the temperature is dried at, for example, 60 ° C. or more and 100 ° C. or less,
A silicon nitride-based molded body having rhombohedral boron nitride on the surface is obtained. Note that the amount of rhombohedral boron nitride powder added may be 5% by mass or less and 20% by mass or less, out of a total of 100% by mass of the above powders.

あるいは、上記方法に代えて、窒化珪素質成形体を反応容器内の所定位置に配置し、硼素源ガスとしてBCl、BF、BBr、B、B、B13およびB(Cのうちの少なくともいずれか1種と、窒素源ガスとしてHN、NH、N、NHCl、NHBr、NHF、NHHfおよびNHIのうちの少なくともいずれか1種と、希釈搬送ガス(キャリヤガス)としてAr、HeおよびHのうちの少なくともいずれか1種とを反応容器内に導入し、温度を600〜800℃、時間を1〜3時間で気相合成してもよい。この気相合成により、窒化珪素の粒子と、窒化硼素の粒子とが表面に混在する窒化珪素質成形体を得ることができる。 Alternatively, instead of the above method, a silicon nitride-based molded body is arranged at a predetermined position in the reaction vessel, and boron source gas is BCl 3 , BF 3 , BBr 3 , B 2 H 6 , B 3 N 3 H 3 , B At least one of 3 N 3 H 3 C 13 and B (C 2 H 5 ) 3 , and HN 3 , NH 3 , N 2 H 2 , NH 4 Cl, NH 4 Br, NH as a nitrogen source gas At least one of 4 F, NH 4 Hf 2, and NH 4 I and at least one of Ar, He, and H 2 are introduced into the reaction vessel as a diluted carrier gas (carrier gas). The vapor phase synthesis may be performed at a temperature of 600 to 800 ° C. and for a time of 1 to 3 hours. By this vapor phase synthesis, it is possible to obtain a silicon nitride-based molded body in which silicon nitride particles and boron nitride particles are mixed on the surface.

そして、表面に菱面体晶の窒化硼素が存在する窒化珪素質成形体を、相対密度が55%以上95%以下の窒化珪素質焼結体からなるこう鉢の内部に複数枚積み重ねた状態で、黒鉛抵抗発熱体が設置された焼成炉内に入れて焼成する。なお、このとき、窒化珪素質成形体の
含有成分の揮発を抑制するために、窒化珪素質成形体と組成の近似した共材を窒化珪素質成形体の周囲に配置する。この共材は窒化珪素質成形体100質量部に対して、2質量部以
上10質量部未満の量が好適である。
And, in a state where a plurality of silicon nitride-based molded bodies having rhombohedral boron nitride on the surface are stacked inside a mortar made of a silicon nitride-based sintered body having a relative density of 55% or more and 95% or less, It is fired in a firing furnace in which a graphite resistance heating element is installed. At this time, in order to suppress volatilization of the components contained in the silicon nitride-based molded body, a common material having a composition similar to that of the silicon nitride-based molded body is disposed around the silicon nitride-based molded body. The amount of the co-material is preferably 2 parts by mass or more and less than 10 parts by mass with respect to 100 parts by mass of the silicon nitride-based molded body.

また、焼成条件については、室温から300〜1000℃までは真空雰囲気中にて昇温し、そ
の後、窒素ガスを導入して、窒素分圧を15〜900kPaに維持する。そして、さらに昇温
を進めることによって、1000〜1400℃付近では添加成分が固相反応を経て液相成分を形成し、1400℃以上の温度域でα型からβ型への窒化珪素の相転移が不可逆的に起こる。
Moreover, about baking conditions, it heats up in a vacuum atmosphere from room temperature to 300-1000 degreeC, Then, nitrogen gas is introduce | transduced and nitrogen partial pressure is maintained at 15-900 kPa. Further, by further increasing the temperature, the additive component forms a liquid phase component in the vicinity of 1000 to 1400 ° C through a solid phase reaction, and the phase transition of silicon nitride from α-type to β-type in the temperature range of 1400 ° C or higher Happens irreversibly.

そして、焼成炉内の温度を上げて、1640℃以上1700℃未満で4時間以上10時間以下保持した後、170℃/時間以上230℃/以下の降温速度で冷却することによって、金属との接合面となる表面を備え、この表面に菱面体晶の窒化硼素が存在し、表面における全成分100
質量%のうち、菱面体晶の窒化硼素の含有量が5質量%以上20質量%以下である本実施形態の窒化珪素質基板を得ることができる。なお、1700℃以上では、菱面体晶の窒化硼素は、六方晶の窒化硼素に変わりやすくなる。
Then, the temperature in the firing furnace is raised and held at 1640 ° C. or higher and lower than 1700 ° C. for 4 hours or longer and 10 hours or shorter, and then cooled at a temperature lowering rate of 170 ° C./hour or higher and 230 ° C./lower, thereby joining the metal. A rhombohedral boron nitride is present on the surface, and all components on the surface are 100
The silicon nitride substrate of the present embodiment having a rhombohedral boron nitride content of 5% by mass or more and 20% by mass or less can be obtained. Note that at 1700 ° C. or higher, rhombohedral boron nitride is easily changed to hexagonal boron nitride.

次に、窒化珪素の結晶間である粒界相に、窒化ジルコニウムが存在し、焼結体を構成する全成分100質量%のうち、ジルコニウムを窒化物に換算した含有量が0.2質量%以上1.0
質量%以下である窒化珪素質基板を得るには、前述の1次原料に、第2の添加成分として酸化ジルコニウムまたは窒化ジルコニウムの粉末を加えればよい。このとき、第2の添加成分が酸化ジルコニウムの粉末の場合には、添加する原料の合計100質量%のうち、0.2質量%以上1.2質量%以下となるように加え、第2の添加成分が窒化ジルコニウムの粉末の
場合には、0.2質量%以上1.0質量%以下となるように加えればよい。なお、窒化珪素質成形体の表面に塗布するペーストに、酸化ジルコニウムの粉末または窒化ジルコニウムの粉末を添加してもよいことはいうまでもない。
Next, zirconium nitride is present in the grain boundary phase between the silicon nitride crystals, and out of 100 mass% of all components constituting the sintered body, the content of zirconium converted to nitride is 0.2 mass% or more and 1.0.
In order to obtain a silicon nitride substrate having a mass% or less, zirconium oxide or zirconium nitride powder may be added to the above-mentioned primary raw material as the second additive component. At this time, when the second additive component is a powder of zirconium oxide, it is added so that it is 0.2% by mass or more and 1.2% by mass or less in the total 100% by mass of the raw material to be added. In the case of zirconium powder, it may be added so as to be 0.2% by mass or more and 1.0% by mass or less. It goes without saying that zirconium oxide powder or zirconium nitride powder may be added to the paste applied to the surface of the silicon nitride-based molded body.

また、マグネシウムおよびアルミニウムの酸窒化物(MgAlON)を粒界相に含む窒化珪素質基板を得るには、前述の1次原料に窒化アルミニウムの粉末を加え、酸化マグネシウムの粉末と窒化アルミニウムの粉末とのモル比が、例えば、1:0.8〜1:1.2になるようにすればよい。   In addition, in order to obtain a silicon nitride substrate containing magnesium and aluminum oxynitride (MgAlON) in the grain boundary phase, aluminum nitride powder is added to the above-mentioned primary raw material, magnesium oxide powder, aluminum nitride powder, The molar ratio may be, for example, 1: 0.8 to 1: 1.2.

さらに、希土類金属およびマグネシウムを粒界相に含み、それぞれを酸化物に換算した含有量の合計が3質量%以上6質量%以下である窒化珪素質基板を得るには、添加する原料の合計100質量%のうち、希土類金属およびマグネシウムの第1の添加成分の各粉末の
合計が3質量%以上6質量%以下、残部を窒化珪素となるように秤量すればよい。
Furthermore, in order to obtain a silicon nitride substrate that contains rare earth metal and magnesium in the grain boundary phase, and the total content converted to oxides is 3% by mass or more and 6% by mass or less, a total of 100 raw materials are added. What is necessary is just to weigh so that the sum total of each powder of the rare earth metal and the first additive component of magnesium is 3% by mass to 6% by mass and the remainder is silicon nitride.

上述した方法により得られた窒化珪素質基板は、相対密度が98%以上、特に、99.95%
以上であることが好適で、不可避不純物が含まれていても構わない。
The silicon nitride substrate obtained by the above-described method has a relative density of 98% or more, particularly 99.95%.
The above is preferable, and inevitable impurities may be included.

次に、本実施形態の回路基板の製造方法について説明する。   Next, the manufacturing method of the circuit board of this embodiment is demonstrated.

図1に示す例の回路基板10を得るには、まず、窒化珪素質基板1を上述した製造方法により準備する。次いで、この窒化珪素質基板1の表面(図1(a)に示す面)に銅を主成分とする回路部材2を配置する。その後、窒素雰囲気中、1065℃以上1085℃以下で加熱し、同時に30MPa以上の圧力を加えることによって、窒化珪素質基板1の表面に、直接接合により回路部材2を接合してなる回路基板10を得ることができる。   In order to obtain the circuit board 10 of the example shown in FIG. 1, first, the silicon nitride substrate 1 is prepared by the manufacturing method described above. Next, the circuit member 2 containing copper as a main component is disposed on the surface of the silicon nitride substrate 1 (the surface shown in FIG. 1A). Thereafter, the circuit board 10 in which the circuit member 2 is bonded to the surface of the silicon nitride substrate 1 by direct bonding by heating at 1065 ° C. to 1085 ° C. in a nitrogen atmosphere and simultaneously applying a pressure of 30 MPa or more. Can be obtained.

図2に示す例の回路基板20を得るには、まず、上述した窒化珪素質基板1を準備した後、この窒化珪素質基板1の表面(図2(a)に示す面)に、チタン、ジルコニウム、ハフニウムおよびニオブから選ばれる1種以上を含有する銀(Ag)−銅(Cu)系合金のペ
ースト状のろう材を、スクリーン印刷法、ロールコーター法および刷毛塗り法等のいずれかの方法により塗布し、この上に銅を主成分とする回路部材2を配置する。このペースト状のろう材には、モリブデン、タンタル、オスミウム、レニウムおよびタングステンから選ばれる1種以上を含有させてもよい。その後、真空雰囲気中、800℃以上900℃以下で加熱し、同時に30MPa以上の圧力を加えることによって、窒化珪素質基板1の表面に、接合層3を介して回路部材2を接合してなる回路基板20を得ることができる。
In order to obtain the circuit substrate 20 of the example shown in FIG. 2, first, after preparing the silicon nitride substrate 1 described above, the surface of the silicon nitride substrate 1 (surface shown in FIG. 2A) is made of titanium, A silver (Ag) -copper (Cu) alloy paste-like brazing material containing at least one selected from zirconium, hafnium and niobium is applied to any method such as screen printing, roll coater, and brush coating. The circuit member 2 containing copper as a main component is disposed thereon. The pasty brazing material may contain one or more selected from molybdenum, tantalum, osmium, rhenium and tungsten. Thereafter, the circuit is formed by heating the circuit member 2 to the surface of the silicon nitride substrate 1 through the bonding layer 3 by heating at 800 ° C. to 900 ° C. in a vacuum atmosphere and simultaneously applying a pressure of 30 MPa or more. The substrate 20 can be obtained.

また、図3に示す例の回路基板30を得るには、まず、上述した窒化珪素質基板1を準備する。次いで、この窒化珪素質基板1の表面(図3(a)に示す面)に、チタン、ジルコニウム、ハフニウムおよびニオブから選ばれる1種以上を含有する銀(Ag)−銅(Cu)系合金のペースト状のろう材を、スクリーン印刷法、ロールコーター法および刷毛塗り法等のいずれかの方法により塗布する。このペースト状のろう材にも、モリブデン、タンタル、オスミウム、レニウムおよびタングステンから選ばれる1種以上を含有させてもよい。そして、ろう材上に薄状の銅材4を配置する。その後、800℃以上900℃以下で加熱して、窒化珪素質基板1の表面に接合層3を介して銅材4を接合する。   In order to obtain the circuit board 30 of the example shown in FIG. 3, first, the silicon nitride substrate 1 described above is prepared. Next, a silver (Ag) -copper (Cu) -based alloy containing one or more selected from titanium, zirconium, hafnium and niobium is formed on the surface of the silicon nitride substrate 1 (the surface shown in FIG. 3A). The paste-like brazing material is applied by any method such as a screen printing method, a roll coater method, and a brush coating method. This pasty brazing material may also contain one or more selected from molybdenum, tantalum, osmium, rhenium and tungsten. Then, a thin copper material 4 is disposed on the brazing material. Thereafter, the copper material 4 is bonded to the surface of the silicon nitride substrate 1 via the bonding layer 3 by heating at 800 ° C. or more and 900 ° C. or less.

そして、銅材4における回路部材2と対向する面を研磨した後、銅材4上に回路部材2を配置する。続いて、水素、窒素、ネオンまたはアルゴンのいずれかから選ばれる雰囲気中、300℃以上500℃以下で加熱し、同時に30MPa以上の圧力を加えることによって、窒化珪素質基板1の表面に、接合層3、銅材4を順次介して回路部材2を接合してなる回路基板30を得ることができる。   Then, after polishing the surface of the copper material 4 facing the circuit member 2, the circuit member 2 is disposed on the copper material 4. Subsequently, the bonding layer is formed on the surface of the silicon nitride substrate 1 by heating at 300 ° C. or more and 500 ° C. or less in an atmosphere selected from hydrogen, nitrogen, neon, and argon, and simultaneously applying a pressure of 30 MPa or more. 3. A circuit board 30 formed by joining the circuit members 2 sequentially through the copper material 4 can be obtained.

また、本実施形態の電子装置Sについては、上述した製造方法によって得られた回路基板10〜30における回路部材2上に電子部品を実装することにより、得ることができる。なお、窒化珪素質基板1の回路部材2を設けた面の反対面に放熱部材を設けてもよいことはいうまでもない。   In addition, the electronic device S of the present embodiment can be obtained by mounting electronic components on the circuit member 2 in the circuit boards 10 to 30 obtained by the above-described manufacturing method. Needless to say, a heat radiating member may be provided on the surface opposite to the surface on which the circuit member 2 of the silicon nitride substrate 1 is provided.

以下、本実施形態の実施例を具体的に説明するが、本実施形態はこれらの実施例に限定されるものではない。   Examples of the present embodiment will be specifically described below, but the present embodiment is not limited to these examples.

まず、β化率が10%(即ち、α化率が90%)であって、純度が98%である窒化珪素の粉末と、第1の添加成分として酸化マグネシウム(MgO)および酸化イットリウム(Y)の各粉末を、回転ミルを用いて湿式混合し、粒径(D90)が1μm以下となるまで粉砕してスラリーとした。 First, silicon nitride powder having a β conversion rate of 10% (that is, an α conversion rate of 90%) and a purity of 98%, and magnesium oxide (MgO) and yttrium oxide (Y Each powder of 2 O 3 ) was wet-mixed using a rotary mill, and pulverized until the particle size (D 90 ) became 1 μm or less to obtain a slurry.

ここで、上記各粉末は、窒化珪素質基板におけるマグネシウムおよびイットリウムの各含有量が酸化物換算でそれぞれ1.5質量%、2.5質量%となるようにそれぞれ秤量した。   Here, each of the powders was weighed so that the contents of magnesium and yttrium in the silicon nitride substrate were 1.5% by mass and 2.5% by mass, respectively, in terms of oxide.

次に、得られたスラリーに有機バインダを加えた後、ASTM E 11−61に記載されている粒度番号が250のメッシュの篩いに通した後に噴霧乾燥機を用いて乾燥させること
によって、窒化珪素質顆粒を得た。そして、粉末圧延法を用いて、窒化珪素質顆粒をシート状に成形してセラミックグリーンシートとし、このセラミックグリーンシートを所定の長さに切断し、平板状の窒化珪素質成形体を得た。また、冷間静水圧法を用いて、圧力を150MPaとして、窒化珪素質基板の外寸が60mm×60mm×20mmとなるような厚肉の
窒化珪素質成形体を得た。
Next, after adding an organic binder to the obtained slurry, it is passed through a sieve having a mesh size of 250 described in ASTM E 11-61, and then dried using a spray dryer, thereby obtaining silicon nitride. Granules were obtained. Then, using a powder rolling method, the silicon nitride granule was formed into a sheet shape to form a ceramic green sheet, and the ceramic green sheet was cut into a predetermined length to obtain a flat silicon nitride molded body. Moreover, using a cold isostatic pressure method, the pressure was set to 150 MPa, and a thick silicon nitride-based molded body having an outer dimension of the silicon nitride substrate of 60 mm × 60 mm × 20 mm was obtained.

ここで得られた平板状の窒化珪素質成形体は、回路部材と窒化珪素質基板との接合強度を評価するためのものであり、厚肉の窒化珪素質成形体は、窒化珪素質基板の機械的強度を評価するためのものである。   The flat silicon nitride molded body obtained here is for evaluating the bonding strength between the circuit member and the silicon nitride substrate, and the thick silicon nitride molded body is formed of the silicon nitride substrate. It is for evaluating mechanical strength.

次に、1次原料および結晶構造が菱面体晶または六方晶である窒化硼素の各粉末を準備し、窒化硼素の粉末の添加量を表1に示す通りとし、残部を1次原料となるように秤量し、バインダーとともにエタノール等の溶媒に添加したペーストをスクリーン印刷法で塗布し、温度を80℃として乾燥させた。   Next, each of the primary raw material and each boron nitride powder having a rhombohedral or hexagonal crystal structure is prepared, and the addition amount of the boron nitride powder is as shown in Table 1, with the remainder being the primary raw material. A paste added to a solvent such as ethanol together with a binder was applied by screen printing and dried at a temperature of 80 ° C.

そして、ペーストを塗布し、乾燥させた窒化珪素質成形体を相対密度が75%である窒化珪素質焼結体からなるこう鉢の内部に複数枚積み重ねた状態で、黒鉛抵抗発熱体が設置された焼成炉内に入れて焼成した。なお、このとき、窒化珪素質成形体100質量部に対して
、6質量部である窒化珪素質成形体と同組成の共材を窒化珪素質成形体の周囲に配置した。
Then, a graphite resistance heating element is installed in a state in which a plurality of pastes and dried silicon nitride-based molded bodies are stacked inside a mortar made of a silicon nitride-based sintered body having a relative density of 75%. It was fired in a baking furnace. At this time, a common material having the same composition as that of the silicon nitride-based molded body of 6 parts by mass was disposed around the silicon nitride-based molded body with respect to 100 parts by mass of the silicon nitride-based molded body.

焼成条件については、室温から500℃までは真空雰囲気中にて昇温し、その後、窒素ガ
スを導入して、窒素分圧を100kPaに維持した。そして、焼成炉内の温度を上げて表1
に示す焼成温度で5時間保持した。そして、降温速度を200℃/時間として冷却すること
によって、窒化珪素質基板である試料No.1〜9を得た。
Regarding the firing conditions, the temperature was raised in a vacuum atmosphere from room temperature to 500 ° C., and then nitrogen gas was introduced to maintain the nitrogen partial pressure at 100 kPa. And the temperature in the firing furnace is raised and Table 1
Was held for 5 hours. Then, by cooling at a temperature drop rate of 200 ° C./hour, the sample No. 1 which is a silicon nitride substrate is used. 1-9 were obtained.

そして、金属との接合面となる表面における各成分の含有量は、XRDを用いて、表面における成分を同定した後、XRFを用いて、元素の含有量を求め、同定された成分の含有量に換算し、窒化硼素の含有量のみ表1に示した。   Then, the content of each component on the surface that becomes the joint surface with the metal is determined by using XRD, then determining the content of the element using XRF, and the content of the identified component. Table 1 shows only the boron nitride content.

ここで、XRDを用いて、菱面体晶のみ若しくは六方晶のみの窒化硼素が同定された試料No.8以外については、上述した方法で求めた窒化硼素の含有量を菱面体晶若しくは六方晶の窒化硼素の含有量とした。一方、試料No.8の結晶については、菱面体晶および六方晶の窒化硼素が同定されたため、上記表面から深さ方向に50μm研磨し、この範囲における研磨粉を試料として、XRDを用いたリートベルト法で、菱面体晶および六方晶の質量百分率を求め、窒化硼素の含有量に、質量百分率を掛けて算出し、菱面体晶および六方晶それぞれの含有量を表1に示した。   Here, the sample No. 1 in which only rhombohedral or hexagonal boron nitride was identified using XRD. Except for 8, the boron nitride content determined by the above-described method was used as the rhombohedral or hexagonal boron nitride content. On the other hand, sample No. With respect to the crystal No. 8, since rhombohedral and hexagonal boron nitride were identified, the surface was polished by 50 μm in the depth direction from the above surface. The mass percentages of the rhombohedral and hexagonal crystals were determined and calculated by multiplying the boron nitride content by the mass percentage. Table 1 shows the contents of the rhombohedral and hexagonal crystals.

次に、窒化珪素質基板を850℃で熱処理することによって、窒化珪素質基板の表面に付
着した有機物や残留炭素を除去した。そして、熱処理した窒化珪素質基板の表面における回路部材の配置に対応する部分に、ペースト状のろう材をスクリーン印刷で塗布した後、135℃で乾燥させた。
Next, the silicon nitride substrate was heat-treated at 850 ° C. to remove organic substances and residual carbon adhering to the surface of the silicon nitride substrate. A paste-like brazing material was applied by screen printing to a portion corresponding to the arrangement of the circuit members on the surface of the heat-treated silicon nitride substrate, and then dried at 135 ° C.

その後、乾燥したろう材の存在領域に無酸素銅からなる回路部材を配置して、真空雰囲気中において、840℃で加熱することにより、窒化珪素質基板の表面に接合層を介して回
路部材が接合された回路基板を得た。
Thereafter, a circuit member made of oxygen-free copper is placed in the dry brazing material existing area, and heated in a vacuum atmosphere at 840 ° C., so that the circuit member is attached to the surface of the silicon nitride substrate via the bonding layer. A bonded circuit board was obtained.

そして、窒化珪素質基板と回路部材との引きはがし強さをJIS C 6481−1996に準拠して測定することにより、回路部材と窒化珪素質基板との接合強度を評価した。   Then, the bonding strength between the circuit member and the silicon nitride substrate was evaluated by measuring the peel strength between the silicon nitride substrate and the circuit member in accordance with JIS C 6481-1996.

また、外寸が60mm×60mm×20mmの窒化珪素質基板から、厚さ、幅および長さがそれぞれ3mm、4mm、50mmである試験片を切り出し、JIS 1601−2008(ISO 14704:2000(MOD))に準拠して、室温における4点曲げ強度を求めた。結果を表1
に示す。
Further, a test piece having a thickness, width and length of 3 mm, 4 mm and 50 mm, respectively, was cut out from a silicon nitride substrate having an outer dimension of 60 mm × 60 mm × 20 mm, and JIS 1601-2008 (ISO 14704: 2000 (MOD)). ), The four-point bending strength at room temperature was determined. Table 1 shows the results.
Shown in

Figure 2016011218
Figure 2016011218

表1に示す通り、試料No.1は、引きはがし強さが29KN/mであり、試料No.7〜9は、4点曲げ強度の値が900MPa未満であった。これに対し、試料No.2〜6は
、4点曲げ強度および引きはがし強さにおいて大きな値が得られており、表面に菱面体晶の窒化硼素が存在し、表面における全成分100質量%のうち、菱面体晶の窒化硼素の含有
量が5質量%以上20質量%以下であることにより、優れた機械的強度を有しつつ、金属との接合強度を向上できることがわかった。
As shown in Table 1, Sample No. No. 1 has a peeling strength of 29 KN / m. 7 to 9 had a 4-point bending strength value of less than 900 MPa. In contrast, sample no. In Nos. 2 to 6, large values were obtained in the four-point bending strength and the peel strength, and rhombohedral boron nitride was present on the surface, and out of 100% by mass of all components on the surface, rhombohedral nitridation. It has been found that when the boron content is 5% by mass or more and 20% by mass or less, the bonding strength with the metal can be improved while having excellent mechanical strength.

実施例1の試料No.4で用いた粉末に、第2の添加成分として酸化ジルコニウムの粉末を、これら粉末の合計100質量%のうち、表2に示す添加量で加え、実施例1に示した
方法と同じ方法で、窒化珪素質顆粒を得た。
Sample No. 1 of Example 1 In the same manner as the method shown in Example 1, the zirconium oxide powder as the second additive component was added to the powder used in No. 4 in the addition amount shown in Table 2 out of a total of 100% by mass of these powders. Silicon nitride granules were obtained.

そして、粉末圧延法を用いて、窒化珪素質顆粒をシート状に成形してセラミックグリーンシートとし、このセラミックグリーンシートを所定の長さに切断し、平板状の窒化珪素質成形体を得た。   Then, using a powder rolling method, the silicon nitride granule was formed into a sheet shape to form a ceramic green sheet, and the ceramic green sheet was cut into a predetermined length to obtain a flat silicon nitride molded body.

また、窒化珪素質基板の機械的強度を評価するために、冷間静水圧法を用いて、圧力を150MPaとして、窒化珪素質基板の外寸が60mm×60mm×20mmとなるような厚肉の
窒化珪素質成形体を得た。
Further, in order to evaluate the mechanical strength of the silicon nitride substrate, a cold isostatic pressure method is used, the pressure is set to 150 MPa, and the silicon nitride substrate has a thickness of 60 mm × 60 mm × 20 mm. A silicon nitride-like molded body was obtained.

これ以降は、実施例1に示した方法と同じ方法で、試料No.10〜16の窒化珪素質基板を得た。なお、焼成温度は、いずれの試料も1670℃とした。   Thereafter, the same method as shown in Example 1 was used, and the sample No. 10 to 16 silicon nitride substrates were obtained. The firing temperature was 1670 ° C. for all samples.

そして、XRDを用いて、成分を同定した結果、いずれの試料も表面には、窒化珪素、菱面体晶の窒化硼素が存在し、断面におけるXRDの確認において、窒化ジルコニウムが存在することを確認した。   As a result of identifying the components using XRD, it was confirmed that silicon nitride and rhombohedral boron nitride were present on the surface of each sample, and zirconium nitride was present in the XRD confirmation in the cross section. .

また、XRFを用いて、各試料の断面におけるジルコニウムの含有量を求め、窒化ジル
コニウムの含有量に換算した。
Moreover, the content of zirconium in the cross section of each sample was determined using XRF, and converted to the content of zirconium nitride.

また、外寸が60mm×60mm×20mmの窒化珪素質基板から、厚さ、幅および長さがそれぞれ3mm、4mm、50mmである試験片を切り出し、JIS R 1601−2008(ISO 14704:2000(MOD))に準拠して、室温における4点曲げ強度SおよびJIS
R 1604−2008(ISO 17565:2003(MOD))に準拠して、800℃における4点曲げ強度Sをそれぞれ測定した。そして、次の式により、4点曲げ強度の低下率ΔSを求めた。ΔS=(S−S)/S × 100 ・・・(1)
Further, a test piece having a thickness, width and length of 3 mm, 4 mm and 50 mm, respectively, was cut out from a silicon nitride substrate having an outer dimension of 60 mm × 60 mm × 20 mm, and JIS R 1601-2008 (ISO 14704: 2000 (MOD )), 4 point bending strength S 0 at room temperature and JIS
In accordance with R 1604-2008 (ISO 17565: 2003 (MOD)), the four-point bending strength S 1 at 800 ° C. was measured. And the reduction | decrease rate (DELTA) S of 4-point bending strength was calculated | required by the following formula. ΔS = (S 0 −S 1 ) / S 0 × 100 (1)

また、各試料の絶縁破壊の強さを評価するために、JIS C 2110−1−2010(IEC 60243−1(1998))に準拠して各試料の絶縁破壊の強さ(MV/m)を測定した。
なお、各試料の外寸、各試料に印加する電圧、昇圧速度および周波数は、それぞれ25mm×25mm×0.32mm、3.5kV、0.5kV/秒、60Hzとした。、また、各試料の厚み方向に配置される電極の材質は黄銅とし、各試料の周囲媒質としてシリコーン油を用いた。結果を表2に示す。
Moreover, in order to evaluate the strength of dielectric breakdown of each sample, the strength of dielectric breakdown (MV / m) of each sample was determined in accordance with JIS C 2110-1-2010 (IEC 60243-1 (1998)). It was measured.
The external dimensions of each sample, the voltage applied to each sample, the pressure increase rate and the frequency were 25 mm × 25 mm × 0.32 mm, 3.5 kV, 0.5 kV / second, and 60 Hz, respectively. Moreover, the material of the electrode arranged in the thickness direction of each sample was brass, and silicone oil was used as the surrounding medium of each sample. The results are shown in Table 2.

Figure 2016011218
Figure 2016011218

表2に示す通り、試料No.11〜15は、800℃における4点曲げ強度が820MPa以上であり、4点曲げ強度の下げ幅が小さく、絶縁破壊の強さが24MV/m以上であった。この結果より、粒界相に、窒化ジルコニウムが存在し、焼結体を構成する全成分100質量%の
うち、ジルコニウムを窒化物に換算した含有量が0.2質量%以上1.0質量%以下であることにより、高い電圧に耐え得る絶縁破壊特性を有しつつ、高温時においても優れた機械的強度を有するものであることがわかった。
As shown in Table 2, Sample No. In Nos. 11 to 15, the 4-point bending strength at 800 ° C. was 820 MPa or more, the decrease in the 4-point bending strength was small, and the dielectric breakdown strength was 24 MV / m or more. From this result, zirconium nitride is present in the grain boundary phase, and out of 100 mass% of all components constituting the sintered body, the content of zirconium converted to nitride is 0.2 mass% or more and 1.0 mass% or less. As a result, it was found that the film had excellent mechanical strength even at high temperatures while having dielectric breakdown characteristics capable of withstanding high voltages.

酸化マグネシウムの粉末と窒化アルミニウムの粉末とのモル比を1:1となるように、実施例1の試料No.4で用いた粉末に、窒化アルミニウムの粉末を加え、実施例1に示した方法と同じ方法で、窒化珪素質顆粒を得た。   Sample No. 1 of Example 1 was adjusted so that the molar ratio of the magnesium oxide powder and the aluminum nitride powder was 1: 1. Aluminum nitride powder was added to the powder used in Step 4, and silicon nitride granules were obtained by the same method as shown in Example 1.

そして、冷間静水圧法を用いて、圧力を150MPaとして、窒化珪素質基板の外寸が60
mm×60mm×20mmとなるような窒化珪素質成形体を得た。
Then, using the cold isostatic pressure method, the pressure is 150 MPa, and the outer dimension of the silicon nitride substrate is 60.
A silicon nitride-based molded body having a size of mm × 60 mm × 20 mm was obtained.

これ以降は、実施例1に示した方法と同じ方法で窒化珪素質基板である試料No.17を
得た。なお、焼成温度は、1670℃とした。また、比較例として、実施例1の試料No.4を試料No.18として準備した。
Thereafter, the sample No. 1 which is the silicon nitride substrate by the same method as shown in Example 1 was used. 17 was obtained. The firing temperature was 1670 ° C. As a comparative example, the sample No. 4 was prepared as Sample No.18.

そして、各試料の断面についてXRDを用いて、マグネシウムおよびアルミニウムの酸窒化物の有無を確認したところ、試料No.18では確認されず、確認された試料No.17についてはその組成式を表3に示した。   And when the presence or absence of the oxynitride of magnesium and aluminum was confirmed using XRD about the cross section of each sample, sample no. Sample No. 18 was not confirmed but confirmed. The composition formula of 17 is shown in Table 3.

そして、窒化珪素質基板から、厚さ、幅および長さがそれぞれ3mm、4mm、50mmである試験片を切り出し、JIS R 1604−2008(ISO 17565:2003(MOD))
に準拠して、1200℃における4点曲げ強度Sを測定し、その値を表3に示した。
Then, test pieces having a thickness, width and length of 3 mm, 4 mm and 50 mm, respectively, were cut out from the silicon nitride substrate, and JIS R 1604-2008 (ISO 17565: 2003 (MOD)).
In conformity with the intensity S 2 4-point bending at 1200 ° C. were measured. The values in Table 3.

Figure 2016011218
Figure 2016011218

表3に示す通り、試料No.17は、試料No.18よりも1200℃における4点曲げ強度において大きな値が得られており、粒界相に、マグネシウムおよびアルミニウムの酸窒化物が存在することにより、高温時においても機械的強度に優れていることがわかった。   As shown in Table 3, Sample No. Sample No. 17 Larger value is obtained in 4-point bending strength at 1200 ° C than 18 and the presence of oxynitride of magnesium and aluminum in the grain boundary phase makes it excellent in mechanical strength even at high temperatures. all right.

1:窒化珪素質基板
2:回路部材
3:接合層
4:銅材
5:電子部品
10、20、30:回路基
1: Silicon nitride substrate 2: Circuit member 3: Bonding layer 4: Copper material 5: Electronic component
10, 20, 30: Circuit base

Claims (5)

窒化珪素を主成分とし、金属との接合面となる表面を備える焼結体からなり、該表面に菱面体晶の窒化硼素が存在し、前記表面における全成分100質量%のうち、前記菱面体晶の窒化硼素の含有量が5質量%以上20質量%以下であることを特徴とする窒化珪素質基板。   The rhombohedral is composed of a sintered body having silicon nitride as a main component and having a surface serving as a bonding surface with a metal, and rhombohedral boron nitride is present on the surface, and out of 100% by mass of all components on the surface. A silicon nitride substrate, wherein the content of crystalline boron nitride is 5% by mass or more and 20% by mass or less. 前記窒化珪素の結晶間である粒界相に、窒化ジルコニウムが存在し、前記焼結体を構成する全成分100質量%のうち、ジルコニウムを窒化物に換算した含有量が0.2質量%以上1.0質量%以下であることを特徴とする請求項1に記載の窒化珪素質基板。   Zirconium nitride is present in the grain boundary phase between the silicon nitride crystals, and out of 100 mass% of all components constituting the sintered body, the content of zirconium converted to nitride is 0.2 mass% or more. It is 1.0 mass% or less, The silicon nitride substrate of Claim 1 characterized by the above-mentioned. 前記粒界相に、マグネシウムおよびアルミニウムの酸窒化物が存在することを特徴とする請求項1または請求項2に記載の窒化珪素質基板。   3. The silicon nitride based substrate according to claim 1, wherein magnesium and aluminum oxynitrides are present in the grain boundary phase. 4. 請求項1乃至請求項3のいずれかに記載の窒化珪素質基板の前記表面に回路部材が接合されてなることを特徴とする回路基板。   A circuit board comprising a circuit member bonded to the surface of the silicon nitride substrate according to any one of claims 1 to 3. 請求項4に記載の回路基板における前記回路部材上に電子部品を搭載してなることを特徴とする電子装置。   An electronic device comprising an electronic component mounted on the circuit member in the circuit board according to claim 4.
JP2014132792A 2014-06-27 2014-06-27 Silicon nitride substrate, circuit board including the same, and electronic device Active JP6240034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014132792A JP6240034B2 (en) 2014-06-27 2014-06-27 Silicon nitride substrate, circuit board including the same, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014132792A JP6240034B2 (en) 2014-06-27 2014-06-27 Silicon nitride substrate, circuit board including the same, and electronic device

Publications (2)

Publication Number Publication Date
JP2016011218A true JP2016011218A (en) 2016-01-21
JP6240034B2 JP6240034B2 (en) 2017-11-29

Family

ID=55228176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014132792A Active JP6240034B2 (en) 2014-06-27 2014-06-27 Silicon nitride substrate, circuit board including the same, and electronic device

Country Status (1)

Country Link
JP (1) JP6240034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804253A (en) * 2016-10-31 2019-05-24 京瓷株式会社 Probe card substrate, probe card and detection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354167A (en) * 1989-07-20 1991-03-08 Ngk Insulators Ltd Preparation of silicon nitride sintered product
JPH03275565A (en) * 1990-03-26 1991-12-06 Mitsubishi Materials Corp Silicon nitride-based sintered material having high toughness and strength
JPH046159A (en) * 1990-04-23 1992-01-10 Nippon Cement Co Ltd Production of silicon nitride-based ceramics sintered body
JPH1067586A (en) * 1996-08-27 1998-03-10 Dowa Mining Co Ltd Circuit base plate for power module and its production
JPH11139881A (en) * 1997-11-06 1999-05-25 Isuzu Ceramics Res Inst Co Ltd Composite sintered compact of silicon nitride and boron nitride
JP2006290709A (en) * 2005-04-14 2006-10-26 Nippon Steel Corp Silicon nitride material and its manufacturing method
JP2010076948A (en) * 2008-09-24 2010-04-08 Hitachi Metals Ltd Silicon nitride circuit substrate and semiconductor module using the same
WO2013054852A1 (en) * 2011-10-11 2013-04-18 日立金属株式会社 Silicon nitride substrate and method for manufacturing silicon nitride substrate
JP2015164184A (en) * 2014-01-30 2015-09-10 京セラ株式会社 Silicon nitride substrate, circuit board including the same, and electronic apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354167A (en) * 1989-07-20 1991-03-08 Ngk Insulators Ltd Preparation of silicon nitride sintered product
JPH03275565A (en) * 1990-03-26 1991-12-06 Mitsubishi Materials Corp Silicon nitride-based sintered material having high toughness and strength
JPH046159A (en) * 1990-04-23 1992-01-10 Nippon Cement Co Ltd Production of silicon nitride-based ceramics sintered body
JPH1067586A (en) * 1996-08-27 1998-03-10 Dowa Mining Co Ltd Circuit base plate for power module and its production
JPH11139881A (en) * 1997-11-06 1999-05-25 Isuzu Ceramics Res Inst Co Ltd Composite sintered compact of silicon nitride and boron nitride
JP2006290709A (en) * 2005-04-14 2006-10-26 Nippon Steel Corp Silicon nitride material and its manufacturing method
JP2010076948A (en) * 2008-09-24 2010-04-08 Hitachi Metals Ltd Silicon nitride circuit substrate and semiconductor module using the same
WO2013054852A1 (en) * 2011-10-11 2013-04-18 日立金属株式会社 Silicon nitride substrate and method for manufacturing silicon nitride substrate
JP2015164184A (en) * 2014-01-30 2015-09-10 京セラ株式会社 Silicon nitride substrate, circuit board including the same, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804253A (en) * 2016-10-31 2019-05-24 京瓷株式会社 Probe card substrate, probe card and detection device

Also Published As

Publication number Publication date
JP6240034B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5850031B2 (en) Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module
JP4812144B2 (en) Aluminum nitride sintered body and manufacturing method thereof
KR101246978B1 (en) Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP6697363B2 (en) Semiconductor manufacturing equipment member, manufacturing method thereof, and heater with shaft
JP4997431B2 (en) Method for producing high thermal conductivity silicon nitride substrate
JP6591455B2 (en) High thermal conductivity silicon nitride sintered body, silicon nitride substrate, silicon nitride circuit substrate and semiconductor device using the same
JP5665988B2 (en) Circuit board and electronic device
JP5755170B2 (en) Silicon nitride sintered body, circuit board and electronic device using the same
CN102781878B (en) Ceramic sintered compact, circuit board using the same, electronic device and thermoelectric conversion module
JP6396817B2 (en) Silicon nitride substrate, circuit board including the same, and electronic device
WO2011087055A1 (en) Silicon nitride substrate, circuit substrate and electronic device using same
JP3629783B2 (en) Circuit board
JP5743830B2 (en) Silicon nitride sintered body, circuit board and electronic device using the same
JP5439729B2 (en) Silicon nitride substrate, manufacturing method thereof, silicon nitride circuit substrate and semiconductor module using the same
JP2010235335A (en) Ceramic sintered compact, heat dissipating substrate and electronic device
JP6240034B2 (en) Silicon nitride substrate, circuit board including the same, and electronic device
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
WO2020203683A1 (en) Silicon nitride sintered body, method for producing same, multilayer body and power module
JP7035220B2 (en) Ceramic sintered body and substrate for semiconductor devices
JP4999238B2 (en) Wiring board
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2005101624A (en) Wiring board for power module
JP2000114425A (en) Wiring board for power module
JP5064202B2 (en) Manufacturing method of aluminum nitride base material for 3D circuit board and 3D circuit board
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171102

R150 Certificate of patent or registration of utility model

Ref document number: 6240034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150