JP2016006398A - Predictive diagnosis method of spall of concrete structure - Google Patents

Predictive diagnosis method of spall of concrete structure Download PDF

Info

Publication number
JP2016006398A
JP2016006398A JP2014127284A JP2014127284A JP2016006398A JP 2016006398 A JP2016006398 A JP 2016006398A JP 2014127284 A JP2014127284 A JP 2014127284A JP 2014127284 A JP2014127284 A JP 2014127284A JP 2016006398 A JP2016006398 A JP 2016006398A
Authority
JP
Japan
Prior art keywords
temperature
specimen
risk
peeling
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014127284A
Other languages
Japanese (ja)
Other versions
JP6413058B2 (en
Inventor
行雄 明石
Yukio Akashi
行雄 明石
橋本 和明
Kazuaki Hashimoto
和明 橋本
詳悟 林
Shogo Hayashi
詳悟 林
豊章 宮川
Toyoaki Miyagawa
豊章 宮川
哲 高谷
Satoshi Takaya
哲 高谷
繁貴 中村
Shigetaka Nakamura
繁貴 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Nippon Expressway Engineering Shikoku Co Ltd
Original Assignee
West Nippon Expressway Engineering Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Nippon Expressway Engineering Shikoku Co Ltd filed Critical West Nippon Expressway Engineering Shikoku Co Ltd
Priority to JP2014127284A priority Critical patent/JP6413058B2/en
Publication of JP2016006398A publication Critical patent/JP2016006398A/en
Application granted granted Critical
Publication of JP6413058B2 publication Critical patent/JP6413058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a predictive diagnosis method for photographing a structure with an infrared camera and quantitatively evaluating a risk of spalling of covering concrete from the structure using the photographed thermal image.SOLUTION: The predictive diagnosis method of spalls of a concrete structure includes: a step 101 of capturing an infrared thermal image of a surface of the concrete structure and measuring an outside temperature in the vicinity of the surface; a step 102 of calculating, on the basis of the infrared thermal image and the measured outside temperature, a detaching-part temperature difference ΔT as a temperature difference between a sound part and a detaching part, and a measurement temperature environment Te as a difference between the surface temperature of the sound part and the outside temperature; steps 103 and 104 of calculating a temperature environment coefficient k as a ratio of the calculated detaching-part temperature difference ΔT to the calculated measurement temperature environment Te and calculating a spall risk Ds according to the temperature environment coefficient k; and a step 105 of comparing the previously-calculated spall risk Ds1 with a currently-calculated spall risk Ds2 to calculate a spall period ts.

Description

本発明は、橋梁、高架、ビルディングのようなコンクリート構造物の剥落予測診断方法に関し、特に、赤外線カメラで撮影される熱画像を用いて、コンクリート構造物からかぶりコンクリートが剥落する危険度を予測する診断方法に関するものである。 The present invention relates to a method for predicting peeling of concrete structures such as bridges, overpasses, and buildings, and in particular, predicting the risk of covering concrete falling from a concrete structure using a thermal image taken by an infrared camera. It relates to a diagnostic method.

橋梁、高架、ビルディングのようなコンクリート構造物(以下、適宜、単に「構造物」という)中の鉄筋が腐食すると膨張圧が発生し、かぶりコンクリートにひび割れが生じることが知られている。ひび割れは、劣化の加速や美観・景観の点で問題となるだけでなく、かぶりコンクリートのはく落による第三者被害や耐力低下の原因となる。 It is known that when a reinforcing bar in a concrete structure such as a bridge, an overpass, or a building (hereinafter simply referred to as “structure”) is corroded, expansion pressure is generated, and the cover concrete is cracked. Cracking is not only a problem in terms of accelerated deterioration, aesthetics, and scenery, but also causes third party damage and reduced strength due to the peeling of cover concrete.

近年、多くの構造物が老朽化している中で、効率的な維持管理を実現するための非破壊検査手法が盛んに研究されている。中でも赤外線サーモグラフィは、はく離ひび割れの診断に適した手法であり、非接触で広範囲な点検が可能であることから構造物への適用事例は増加している。 In recent years, with many structures aging, non-destructive inspection methods for realizing efficient maintenance are being actively studied. In particular, infrared thermography is a method suitable for diagnosing delamination cracks, and a wide range of inspections can be performed in a non-contact manner, so that application examples to structures are increasing.

赤外線カメラを用いた赤外線調査では、赤外線カメラを用いて、被写体から放出される赤外線帯域のエネルギーを検出し、検出したエネルギーを温度に変換して温度分布の画像データを生成する。この温度分布の2次元画像を熱画像又はサーモグラフィ画像と称する。赤外線調査の一例は、例えば下記特許文献1、2に開示されている。 In an infrared survey using an infrared camera, an infrared camera is used to detect infrared band energy emitted from a subject, and the detected energy is converted into temperature to generate temperature distribution image data. This two-dimensional image of the temperature distribution is called a thermal image or a thermographic image. An example of an infrared survey is disclosed in Patent Documents 1 and 2 below, for example.

構造物は外気や太陽光の影響を受けて構造物外部から内部への吸熱と構造物内部から外部への放熱を繰り返す。吸熱と放熱の際に空洞部を伴う不具合箇所は断熱層として機能するため、不具合箇所で熱移動は遮断される。その結果、不具合が有る部分と不具合が無い部分との間で温度差が生じ、赤外線の放射率に差が生ずる。こうした状態のときに赤外線カメラで構造物の熱画像を撮影すると、不具合が有る部分と不具合が無い部分は相違する色で表示される。このとき不具合が有る部分は不具合が無い部分の中に局所的に表示される。このように周囲と異なる色の部分を異常部と称し、それ以外の部分を健全部と称する。熱画像を観察して異常部が存在するか否かを判定することで、構造物内部の不具合の有無を判定でき、さらには不具合の位置を判別できる。赤外線調査は外観の観察では解らない構造物内部の不具合の有無を判定でき損傷を予防できるという利点を有する。 Under the influence of outside air and sunlight, the structure repeatedly absorbs heat from the outside to the inside of the structure and releases heat from the inside of the structure to the outside. Since the defective part accompanied by the cavity during heat absorption and heat dissipation functions as a heat insulating layer, heat transfer is blocked at the defective part. As a result, a temperature difference is generated between a portion having a defect and a portion having no defect, resulting in a difference in infrared emissivity. When a thermal image of a structure is taken with an infrared camera in such a state, a defective portion and a non-defective portion are displayed in different colors. At this time, the part with the defect is locally displayed in the part without the defect. In this way, a portion having a different color from the surroundings is referred to as an abnormal portion, and the other portions are referred to as healthy portions. By observing the thermal image and determining whether or not there is an abnormal part, it is possible to determine the presence or absence of a defect in the structure, and further to determine the position of the defect. Infrared surveys have the advantage that damage can be prevented by determining the presence or absence of defects inside the structure that cannot be determined by visual observation.

赤外線サーモグラフィによるはく離検知では、はく離部の空気層がコンクリート内部で発生した熱流を遮断する性質を利用して、表面温度分布からはく離領域を特定する。 In the delamination detection by infrared thermography, the delamination area is specified from the surface temperature distribution by utilizing the property that the air layer at the delamination part blocks the heat flow generated inside the concrete.

赤外線サーモグラフィの測定手法は、日射や気温変化により生じた熱流を利用するパッシブ法と強制加熱あるいは強制冷却により人工的に発生させた熱流を利用するアクティブ法の2種類に大別される。 Infrared thermography measurement methods are broadly classified into two types: a passive method using heat flow generated by solar radiation and temperature changes, and an active method using heat flow artificially generated by forced heating or forced cooling.

アクティブ法はパッシブ法に比べ環境要因による制約の少ない手法である。しかし、測定対象箇所を逐一加熱または冷却する必要があり、点検効率ではパッシブ法に劣る。一方、パッシブ法による測定結果は季節や天候、撮影地域の違いによる日射量や気温変化、風速・風向などの影響を受ける。 The active method is less constrained by environmental factors than the passive method. However, it is necessary to heat or cool the measurement target point by point, and the inspection efficiency is inferior to the passive method. On the other hand, the measurement results obtained by the passive method are affected by the amount of solar radiation, temperature changes, wind speed and direction, etc., depending on the season, weather, and shooting region.

特開2005−140622号公報JP 2005-140622 A 特開2006−329760号公報JP 2006-329760 A

コンクリート構造物の維持管理における調査診断では、はく離部を検知するだけでなく、はく落の危険性を評価することが、補修工法の選定などのためには重要である。
しかしながら、赤外線サーモグラフィを用いて、はく落の危険性を定量評価する手法は、未だ存在していない。
In the investigation and diagnosis in the maintenance and management of concrete structures, it is important not only to detect the delamination but also to evaluate the risk of delamination for the selection of repair methods.
However, there is not yet a method for quantitatively evaluating the risk of flaking off using infrared thermography.

そこで、本発明は、特に、点検効率の高いパッシブ法によって、赤外線カメラで構造物を撮影し、撮影された熱画像を用いて、構造物から、かぶりコンクリートが剥落する危険度を定量評価する予測診断を行えるようにすることを課題とする。 Therefore, the present invention is a prediction method for photographing a structure with an infrared camera using a passive method with high inspection efficiency and quantitatively evaluating the risk of covering concrete peeling off from the structure using the photographed thermal image. The task is to enable diagnosis.

第1発明は、コンクリート構造物のはく落予測診断方法であって、
赤外線カメラを用いて前記コンクリート構造物表面の赤外線熱画像を撮影するとともに、撮影時の表面付近の外気温を計測するステップと、
前記赤外線熱画像および前記計測した前記外気温に基づいて、健全部とはく離部との間における温度差としてのはく離部温度差(ΔT)と、健全部の表面温度と前記外気温との差としての測定温度環境(Te)を算出するステップと、
前記算出した測定温度環境(Te)に対する前記算出したはく離部温度差(ΔT)との比率としての温度環境係数(k)を算出するステップと、
前記算出した温度環境係数(k)に応じて、はく落危険度(Ds)を算出するステップと
を含むコンクリート構造物のはく落予測診断方法であることを特徴とする。
The first invention is a method for predicting delamination of concrete structures,
Taking an infrared thermal image of the surface of the concrete structure using an infrared camera, measuring the outside air temperature near the surface at the time of shooting,
Based on the infrared thermal image and the measured outside air temperature, as a difference between the separation part temperature difference (ΔT) as a temperature difference between the healthy part and the separation part, and the difference between the surface temperature of the healthy part and the outside air temperature Calculating a measured temperature environment (Te) of:
Calculating a temperature environment coefficient (k) as a ratio of the calculated separation temperature difference (ΔT) to the calculated measurement temperature environment (Te);
A method for predicting a flaking prediction of a concrete structure including a step of calculating a flaking risk (Ds) according to the calculated temperature environment coefficient (k).

第2発明は、第1発明において、
前回算出したはく落危険度(Ds1)と、今回算出したはく落危険度(Ds2)とを比較して、はく落時期(ts)を算出するステップと
を含むコンクリート構造物のはく落予測診断方法であることを特徴とする。
The second invention is the first invention,
Compared with the previously calculated flaking risk (Ds1) and the flaking risk (Ds2) calculated this time, this method is a method for predicting flaking prediction of a concrete structure including a step of calculating the flaking time (ts). Features.

本発明によれば、特に点検効率の高いパッシブ法によって、赤外線カメラで構造物を撮影し、撮影された熱画像を用いて、構造物から、かぶりコンクリートがはく落する危険度を定量評価する予測診断を行うことができ、かぶりコンクリートのはく落による第三者被害や耐力低下を確実に防止できるとともに、補修工法の選定などを適切に行うことができるようになる。 According to the present invention, a predictive diagnosis in which a structure is photographed with an infrared camera by a passive method with particularly high inspection efficiency, and the risk of covering concrete falling off from the structure is quantitatively evaluated using the photographed thermal image. As a result, it is possible to reliably prevent damage to third parties and decline in proof stress due to peeling of cover concrete, and to select repair methods appropriately.

図1は、コンクリート構造物のはく落予測診断方法をフローチャートである。FIG. 1 is a flowchart of a method for predicting delamination of a concrete structure. 図2は、赤外線カメラにてコンクリート構造物2の表面の赤外線熱画像を撮影する様子を示す図である。FIG. 2 is a diagram illustrating a state in which an infrared thermal image of the surface of the concrete structure 2 is taken with an infrared camera. 図3(a)、(b)は、赤外線熱画像を例示する図で、図3(a)は、供試体C20D19−1の熱画像であり、図3(b)は、供試体C40D19−1の熱画像である。3A and 3B are diagrams illustrating an infrared thermal image. FIG. 3A is a thermal image of the specimen C20D19-1, and FIG. 3B is a specimen C40D19-1. It is a thermal image. 図4は、図3に示す赤外線画像の中央ラインA〜Bにおける温度プロファイルを示す図で、供試体C20D19−1(劣化レベルSTEP3)の温度プロファイルを示す図である。FIG. 4 is a diagram showing a temperature profile in the center lines A to B of the infrared image shown in FIG. 3, and is a diagram showing a temperature profile of the specimen C20D19-1 (deterioration level STEP3). 図5は、測定温度環境Teと、はく離部温度差ΔTと、温度環境係数kとの関係を示した図である。FIG. 5 is a diagram showing the relationship among the measured temperature environment Te, the separation temperature difference ΔT, and the temperature environment coefficient k. 図6は、算出した温度環境係数kと、はく落危険度Dsとの関係を示した図である。FIG. 6 is a diagram showing the relationship between the calculated temperature environment coefficient k and the peeling risk Ds. 図7は、赤外線カメラの性能を示す図である。FIG. 7 is a diagram showing the performance of the infrared camera. 図8(a)は、弾性体挿入本数1本の場合の供試体の概要を示す図で、図8(b)は、弾性体挿入本数2本の場合の供試体の概要を示す図である。FIG. 8A is a diagram showing an outline of a specimen when the number of inserted elastic bodies is one, and FIG. 8B is a diagram showing an outline of the specimen when the number of inserted elastic bodies is two. . 図9は、載荷装置の概要を示す図である。FIG. 9 is a diagram showing an outline of the loading device. 図10(a)は、はく離ひび割れの概念図で、図10(b)は、曲げひび割れと水平ひび割れの概念図である。FIG. 10A is a conceptual diagram of peeling cracks, and FIG. 10B is a conceptual diagram of bending cracks and horizontal cracks. 図11は、供試体のかぶり鉄筋径比C/Dおよび想定される破壊形態を示す表である。FIG. 11 is a table showing the cover reinforcing bar diameter ratio C / D of the test specimen and the assumed fracture mode. 図12は、使用材料の熱特性を示す表である。FIG. 12 is a table showing the thermal characteristics of the materials used. 図13は、はく離ひび割れ顕在直前の熱画像を示す図である。FIG. 13 is a diagram showing a thermal image immediately before the appearance of a separation crack. 図14は、はく離ひび割れ顕在直前の中央ラインプロファイルを示す図である。FIG. 14 is a diagram showing a center line profile immediately before the appearance of a separation crack. 図15は、載荷開始直後の中央ラインプロファイルを示す図である。FIG. 15 is a diagram showing a center line profile immediately after the start of loading. 図16は、はく離ひび割れ顕在直前の差分プロファイルを示す図である。FIG. 16 is a diagram showing a differential profile immediately before the separation crack is revealed. 図17は、はく離部温度差と半径変化量の関係を示す図である。FIG. 17 is a diagram showing the relationship between the temperature difference at the peeled portion and the amount of change in radius. 図18は、はく離ひび割れ顕在時の半径変化量とはく離部温度差の関係を示した表である。FIG. 18 is a table showing the relationship between the amount of change in radius and the temperature difference at the separation part when the separation crack is apparent. 図19(a)、(b)は、供試体C20D13がはく落にいたるまでの変状を示す画像である。FIGS. 19A and 19B are images showing deformation until the specimen C20D13 is peeled off. 図20(a)、(b)、(c)は、供試体C30D13がはく落にいたるまでの変状を示す画像である。20A, 20B, and 20C are images showing deformation until the specimen C30D13 falls off. 図21は、浮き音確認以降の熱画像の一例を示す図である。FIG. 21 is a diagram illustrating an example of a thermal image after confirmation of floating sound. 図22は、浮き音確認以降の差分プロファイルの一例を示す図である。FIG. 22 is a diagram illustrating an example of the difference profile after the floating sound confirmation. 図23は、はく離部温度差とはく落危険度の関係を示す図である。FIG. 23 is a diagram showing the relationship between the temperature difference at the peeled portion and the degree of peeling risk. 図24(a)、(b)は荷重保持弁のメカニズムを示す図である。24A and 24B are views showing the mechanism of the load holding valve. 図25は、測定温度環境の概略図である。FIG. 25 is a schematic diagram of a measurement temperature environment. 図26は、はく離ひび割れ供試体C20D19−1の各劣化レベルにおける劣化性状を示す表である。FIG. 26 is a table showing deterioration properties at each deterioration level of the peeling crack specimen C20D19-1. 図27は、はく離ひび割れ供試体C20D19−2の各劣化レベルにおける劣化性状を示す表である。FIG. 27 is a table showing deterioration properties at each deterioration level of the peeling crack specimen C20D19-2. 図28は、水平ひび割れ供試体C40D19−1の各劣化レベルにおける劣化性状を示す表である。FIG. 28 is a table showing deterioration characteristics at each deterioration level of the horizontal crack specimen C40D19-1. 図29は、水平ひび割れ供試体C40D19−2の各劣化レベルにおける劣化性状を示す表である。FIG. 29 is a table showing deterioration characteristics of each horizontal crack specimen C40D19-2 at each deterioration level. 図30は、水平ひび割れ供試体C40D19−1(劣化レベルSTEP3)の中央ラインプロファイルを示す図である。FIG. 30 is a diagram showing a center line profile of a horizontal crack specimen C40D19-1 (deterioration level STEP3). 図31は、水平ひび割れ供試体C40D19−1(劣化レベルSTEP3)の上端ラインプロファイルを示す図である。FIG. 31 is a diagram showing an upper end line profile of a horizontal crack specimen C40D19-1 (deterioration level STEP3). 図32は、水平ひび割れ供試体C40D19−1(劣化レベルSTEP3)の差分プロファイルを示す図である。FIG. 32 is a diagram showing a difference profile of a horizontal crack specimen C40D19-1 (deterioration level STEP3). 図33は、はく離ひび割れ供試体C20D19−1を量子型カメラで撮影したときのはく離部温度差と測定温度環境の関係を示す図である。FIG. 33 is a diagram showing the relationship between the temperature difference of the peeled portion and the measured temperature environment when the peeled specimen C20D19-1 was photographed with a quantum camera. 図34は、水平ひび割れ供試体C40D19−1を量子型カメラで撮影したときのはく離部温度差と測定温度環境の関係を示す図である。FIG. 34 is a view showing the relationship between the temperature difference at the peeled portion and the measurement temperature environment when the horizontal crack specimen C40D19-1 is photographed with a quantum camera. 図35は、測定温度環境3.0℃におけるはく離部温度差データの分布を示した表である。FIG. 35 is a table showing the distribution of peel temperature difference data in the measurement temperature environment of 3.0 ° C. 図36は、供試体C20D19−1(劣化レベルSTEP3)のはく離部温度差の分布を示す図である。FIG. 36 is a diagram showing the distribution of the temperature difference at the separation part of the specimen C20D19-1 (deterioration level STEP3). 図37は、供試体C40D19−1(劣化レベルSTEP3)のはく離部温度差の分布を示す図である。FIG. 37 is a view showing the distribution of the temperature difference at the separation part of the specimen C40D19-1 (deterioration level STEP3). 図38は、はく落危険度と測定温度環境の関係を示す図である。FIG. 38 is a diagram showing the relationship between the degree of peeling risk and the measured temperature environment.

以下、図面を参照して本発明に係るコンクリート構造物のはく落予測診断方法の実施の形態について説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a concrete structure peeling prediction method according to the present invention will be described below with reference to the drawings.

図1は、コンクリート構造物のはく落予測診断方法をフローチャートで示している。 FIG. 1 is a flowchart showing a method for predicting delamination of a concrete structure.

図2は、赤外線カメラ1にてコンクリート構造物2の表面の赤外線熱画像を撮影する様子を示す。 FIG. 2 shows a state in which an infrared thermal image of the surface of the concrete structure 2 is taken by the infrared camera 1.

まず、赤外線カメラ1を用いてコンクリート構造物(たとえば高架)2の表面2aの赤外線熱画像を撮影するとともに、撮影時の表面2a付近の外気温Texを計測する。 First, an infrared thermal image of the surface 2a of the concrete structure (for example, elevated) 2 is taken using the infrared camera 1, and the outside air temperature Tex near the surface 2a at the time of shooting is measured.

図3(a)は、赤外線熱画像3を例示する(ステップ101)。 FIG. 3A illustrates the infrared thermal image 3 (step 101).

つぎに、赤外線熱画像3および計測した外気温Texに基づいて、健全部とはく離部との間における温度差としてのはく離部温度差ΔTと、健全部の表面温度Tcと外気温Texとの差Tc−Texとしての測定温度環境Te(=Tc−Tex)を算出する。 Next, based on the infrared thermal image 3 and the measured outside air temperature Tex, the difference between the peeled portion temperature difference ΔT as the temperature difference between the healthy portion and the separated portion, and the difference between the surface temperature Tc of the healthy portion and the outside air temperature Tex. A measurement temperature environment Te (= Tc−Tex) is calculated as Tc−Tex.

図4は、図3(a)に示す赤外線画像3の中央ラインA〜Bにおける温度プロファイルを示す。 FIG. 4 shows temperature profiles in the center lines A to B of the infrared image 3 shown in FIG.

図4において、はく離部温度差ΔT(℃)は、たとえば、健全部の温度Gとはく離部の温度Fとの差として、次式、
ΔT=G(健全部の温度)−F(はく離部の温度) (1)
で表される。また、測定温度環境Te(℃)は、健全部の表面温度Tcと外気温Texとの差として、次式、
Te=Tc−Tex (2)
で表される(ステップ102)。
In FIG. 4, the separation portion temperature difference ΔT (° C.) is, for example, as a difference between the temperature G of the healthy portion and the temperature F of the separation portion,
ΔT = G (temperature of healthy part) −F (temperature of peeled part) (1)
It is represented by The measurement temperature environment Te (° C.) is expressed as the difference between the surface temperature Tc of the healthy part and the outside air temperature Tex,
Te = Tc−Tex (2)
(Step 102).

つぎに、算出した測定温度環境Teに対する算出したはく離部温度差ΔTとの比率としての温度環境係数kを算出する。図5は、測定温度環境Teと、はく離部温度差ΔTと、温度環境係数kとの関係を示し、温度環境係数kは、次式、
k=ΔT/Te (3)
で表される(ステップ103)。
Next, a temperature environment coefficient k is calculated as a ratio with the calculated separation temperature difference ΔT with respect to the calculated measurement temperature environment Te. FIG. 5 shows the relationship between the measured temperature environment Te, the separation temperature difference ΔT, and the temperature environment coefficient k.
k = ΔT / Te (3)
(Step 103).

つぎに、算出した温度環境係数kに応じて、はく落危険度Dsを算出する。 Next, the peeling risk Ds is calculated according to the calculated temperature environment coefficient k.

図6は、算出した温度環境係数kと、はく落危険度Dsとの関係を示し、はく落危険度Dsは、次式、
Ds=1.23×k (4)
で表される。はく落危険度Dsが大きい値を示すほど、構造物のはく離による劣化が進行していることを示し、かぶりコンクリートがはく落する危険度が高くなる(ステップ104)。
FIG. 6 shows the relationship between the calculated temperature environment coefficient k and the flaking risk Ds. The flaking risk Ds is expressed by the following equation:
Ds = 1.23 × k (4)
It is represented by The greater the flaking risk Ds, the higher the deterioration due to peeling of the structure, and the higher the risk that the cover concrete will flake off (step 104).

さらに、図6において、前回算出したはく落危険度Ds1と、今回算出したはく落危険度Ds2とを比較して、はく落時期tsを算出する。   Further, in FIG. 6, the detachment time ts is calculated by comparing the previously calculated detachment risk Ds1 with the currently calculated detachment risk Ds2.

たとえば、t前の点検結果によるはく落危険度がDs1で、本年度の点検結果によるはく落危険度がDs2であったとすると、次式によりはく落時期はts年後であることが求まる。
ts={(1−Ds2)/(Ds2−Ds1)}×t (5)
(ステップ105)。
For example, if the risk of dropping according to the inspection result before t is Ds1, and the risk of dropping according to the inspection result of this fiscal year is Ds2, the removal time is determined to be after ts year according to the following equation.
ts = {(1-Ds2) / (Ds2-Ds1)} * t (5)
(Step 105).

以上のように、構造物2から、かぶりコンクリートがはく落する危険度を定量評価する予測診断を行うことができ、かぶりコンクリートのはく落による第三者被害や耐力低下を確実に防止できるとともに、補修工法の選定などを適切に行うことができるようになる。 As described above, it is possible to perform a predictive diagnosis that quantitatively evaluates the risk of cover concrete falling off from the structure 2, and it is possible to reliably prevent third party damage and deterioration of proof stress due to cover concrete peeling, and repair method. Can be selected appropriately.

以下、本発明のために行った実験結果を説明し、本発明を詳細に説明する。 Hereinafter, the results of experiments conducted for the present invention will be described, and the present invention will be described in detail.

赤外線カメラ1は、検出素子の動作原理の違いにより量子型カメラと熱型カメラの2種類に大別される。一般に、量子型カメラの測定波長は短波長帯で、熱型カメラの測定波長は長波長帯である。赤外線サーモグラフィは、測定波長帯によってノイズの影響が異なり、短波長帯では太陽反射や日なたと日陰の混在によるノイズの影響を受けやすく、長波長帯では天空や対面建造物等の低温から常温の物体の反射の影響を受けやすいことが報告されている。そのため通常、量子型カメラは夜間撮影で、熱型カメラは昼間撮影で用いられる傾向にある。しかし、図7のように量子型カメラと熱型カメラでは感度や応答速度など他の性能にも違いがあり、両者の測定結果を同等に扱うのは適切でない。 The infrared camera 1 is roughly classified into two types, a quantum type camera and a thermal type camera, depending on the operating principle of the detection element. In general, the measurement wavelength of a quantum camera is a short wavelength band, and the measurement wavelength of a thermal camera is a long wavelength band. Infrared thermography is affected by noise depending on the measurement wavelength band, and in the short wavelength band, it is susceptible to noise due to the sun reflection and the combination of sun and shade, and in the long wavelength band, the temperature is low to normal. It has been reported that it is susceptible to reflection of objects. For this reason, the quantum camera tends to be used for night photography, and the thermal camera tends to be used for daytime photography. However, as shown in FIG. 7, there are differences in other performances such as sensitivity and response speed between the quantum type camera and the thermal type camera, and it is not appropriate to handle both measurement results equally.

コンクリート構造物の維持管理における調査診断でははく離部を検知するだけでなく、はく落の危険性を評価することが、補修工法の選定などのためには重要である。 In the investigation and diagnosis in the maintenance and management of concrete structures, it is important not only to detect the delamination but also to evaluate the risk of delamination for the selection of repair methods.

本発明は、特に、点検効率の高いパッシブ法によってはく落の危険性を定量評価することを目標とし、鉄筋腐食膨張圧模擬実験による各損傷段階の供試体に対して赤外線サーモグラフィ測定を行った。 また、量子型カメラと熱型カメラの両方の測定結果を比較検討することで、汎用性の高い評価手法の提案を試みた。 In particular, the present invention aims to quantitatively evaluate the risk of flaking by a passive method with high inspection efficiency. Infrared thermography measurement was performed on specimens at each damage stage in a rebar corrosion expansion pressure simulation experiment. We also tried to propose a highly versatile evaluation method by comparing the measurement results of both the quantum and thermal cameras.

図8(a)、(b)のように、寸法400×400×150mmの角型供試体200に鉄筋201を直交配筋し、供試体200の中央には鉛直方向の鉄筋201と概ね同径の円柱空洞203を設ける。円柱空洞203に設置する弾性体204は、弾性係数1.39N/mm2、ポアソン比0.49のシリコンゴムを成形して作製し、コンクリートの打込み後に位置決め治具を用いて円柱空洞203の中央区間に設置した。弾性体204には、十分な潤滑油を塗布して挿入しており、弾性体204とコンクリートあるいは鉄筋201の摩擦は小さいと考えられる。弾性体204の両端には円柱空洞203と同径の鋼棒205(図9)を挿入した。 As shown in FIGS. 8 (a) and 8 (b), a reinforcing bar 201 is orthogonally arranged on a square specimen 200 having dimensions of 400 × 400 × 150 mm, and the center of the specimen 200 has the same diameter as that of the vertical reinforcing bar 201. The cylindrical cavity 203 is provided. The elastic body 204 installed in the cylindrical cavity 203 is made by molding silicon rubber having an elastic modulus of 1.39 N / mm 2 and a Poisson's ratio of 0.49, and a center section of the cylindrical cavity 203 is placed by using a positioning jig after placing concrete. Installed. A sufficient amount of lubricating oil is applied and inserted into the elastic body 204, and it is considered that the friction between the elastic body 204 and the concrete or the reinforcing bar 201 is small. Steel rods 205 (FIG. 9) having the same diameter as the cylindrical cavity 203 were inserted into both ends of the elastic body 204.

載荷の様子を図9に示す。 The state of loading is shown in FIG.

載荷はシャフト206をモータ207で降下させることにより行い、変位計208、ロードセル202にて鉛直変位、鉛直荷重を測定した。載荷は鉛直変位で制御し、シャフトの206の降下速度を0.01mm/sとした。 The loading was performed by lowering the shaft 206 with the motor 207, and the vertical displacement and the vertical load were measured with the displacement meter 208 and the load cell 202. Loading was controlled by vertical displacement, and the descending speed of the shaft 206 was set to 0.01 mm / s.

得られた鉛直変位(dL)および鉛直荷重(P)は、次式(11)、(12)により、半径変化量(dr)および内圧(Pi)に変換することができる。
ここで、dL:鉛直変位(mm)、P:鉛直荷重(N)、E:弾性体204の弾性係数(N/mm2)、ν:弾性体204のポアソン比、pi:内圧(N/mm2),dr:半径変化量(mm)、r0:弾性体204の元半径(mm)、L0:弾性体204の元長(mm)とする。
The obtained vertical displacement (dL) and vertical load (P) can be converted into a radius change amount (dr) and an internal pressure (Pi) by the following equations (11) and (12).
Where dL: vertical displacement (mm), P: vertical load (N), E: elastic coefficient of elastic body 204 (N / mm 2), ν: Poisson's ratio of elastic body 204, pi: internal pressure (N / mm 2) , Dr: radius change amount (mm), r0: original radius (mm) of the elastic body 204, and L0: original length (mm) of the elastic body 204.

図10は、ひび割れの概念を示す。図10(a)は、はく離ひび割れを示し、図10(b)は、曲げひび割れと水平ひび割れを示す。   FIG. 10 shows the concept of cracking. FIG. 10A shows a peeling crack, and FIG. 10B shows a bending crack and a horizontal crack.

かぶりC、鉄筋201の径D、鉄筋201の間隔、弾性体204の長さ、弾性体204の挿入本数を実験要因として鉄筋腐食膨張圧模擬実験を行うと、最大内圧付近で供試体200の表面に軸方向ひび割れが発生する場合が多いことや、かぶり鉄筋径比(C/D)の違いにより最大内圧到達後、内圧が下がる領域で破壊形態が異なることなどがわかっている。また、かぶり鉄筋径比C/Dが2.1より小さい場合では、はく離ひび割れが発生し、かぶり鉄筋径比C/Dが2.1より大きい場合では、押し出し破壊による曲げひび割れがかぶり表面に発生し、内部では鉄筋間をつなぐ形で水平ひび割れが発生することもわかっている。 When the reinforcing bar corrosion expansion pressure simulation experiment was performed using the cover C, the diameter D of the reinforcing bar 201, the interval between the reinforcing bars 201, the length of the elastic body 204, and the number of inserted elastic bodies 204 as experimental factors, the surface of the specimen 200 near the maximum internal pressure. It is known that there are many cases where axial cracks occur, and that the fracture mode differs in the region where the internal pressure decreases after reaching the maximum internal pressure due to the difference in the cover reinforcing bar diameter ratio (C / D). In addition, when the cover reinforcing bar diameter ratio C / D is less than 2.1, peeling cracks occur, and when the cover reinforcing bar diameter ratio C / D is greater than 2.1, bending cracks due to extrusion failure occur on the cover surface. However, it has also been found that horizontal cracks occur in the form connecting the reinforcing bars.

そこで、これらの過去の実験結果をもとに、かぶり、鉄筋201の径、鉄筋201の間隔、弾性体204の長さ、弾性体204の挿入本数の選定を行った。 Accordingly, the cover, the diameter of the reinforcing bars 201, the interval between the reinforcing bars 201, the length of the elastic body 204, and the number of inserted elastic bodies 204 were selected based on these past experimental results.

供試体200の鉄筋間隔Lp=150mm、弾性体204の長さ100mm、弾性体204の挿入本数を1本とした。実験要因は、かぶりC(10mm、20mm、30mmの3種類)、鉄筋201の径D(D13、D19の2種類)とし、各要因につき1体ずつ作製した。なお、供試体名は、かぶりCと鉄筋201の径Dの組み合わせ(たとえばC10D19)で表すこととし、各供試体200のかぶり鉄筋径比C/Dおよび想定される破壊形態を、図11に示す。なお、たとえば「C10D19」は、かぶりCが10mmで、鉄筋径Dが19mmの供試体200のことである。 The specimen 200 has a rebar interval Lp = 150 mm, the elastic body 204 has a length of 100 mm, and the number of inserted elastic bodies 204 is one. The experimental factors were the cover C (three types of 10 mm, 20 mm, and 30 mm) and the diameter D of the reinforcing bar 201 (two types of D13 and D19), and one body was prepared for each factor. The specimen name is represented by a combination of the cover C and the diameter D of the reinforcing bar 201 (for example, C10D19), and the covering reinforcing bar diameter ratio C / D of each specimen 200 and the assumed failure mode are shown in FIG. . For example, “C10D19” is a specimen 200 having a cover C of 10 mm and a reinforcing bar diameter D of 19 mm.

使用したコンクリートの水セメント比は、62%、材齢40日での圧縮強度は28.3N/mm2、引張強度は,3.03N/mm2であった。 The water-cement ratio of the concrete used was 62%, the compressive strength at 40 days of age was 28.3 N / mm2, and the tensile strength was 3.03 N / mm2.

本実験では,環境要因の影響を受けにくい実験室内で、夜間測定を想定した熱流の再現を試みた。別室(25℃程度)で養生した供試体200を20℃に設定した実験室の載荷装置に設置し、載荷と同時に測定を開始した。測定中は供試体200の表面温度が実験室温より約3℃程度高くなるように背面から熱源(ホットカーペット)で加熱した。 In this experiment, an attempt was made to reproduce the heat flow assuming nighttime measurement in a laboratory that is not easily affected by environmental factors. The specimen 200 cured in a separate room (about 25 ° C.) was placed in a laboratory loading device set to 20 ° C., and measurement was started simultaneously with loading. During the measurement, the specimen 200 was heated from the back with a heat source (hot carpet) so that the surface temperature of the specimen 200 was about 3 ° C. higher than the experimental room temperature.

前述の図7に示す量子型の赤外線カメラ1を用いて、供試体200から約4m離れた地点から20秒間隔で測定を行った。熱拡散の影響を考慮するため、はく離の影響が表面に現れるまで、適宜載荷を停止させた。また、打音検査による浮き音の有無も調べた。 Using the quantum infrared camera 1 shown in FIG. 7, the measurement was performed at intervals of 20 seconds from a point about 4 m away from the specimen 200. In order to consider the effect of thermal diffusion, loading was stopped as appropriate until the effect of peeling appeared on the surface. In addition, the presence or absence of a floating sound was also examined by a hammering test.

使用材料の熱特性を図12に示す。弾性体204や鋼棒205の熱特性はコンクリートと異なるが、弾性体204や鋼棒205が赤外線画像に与える影響はほとんどないことが既に確認されている。 The thermal characteristics of the materials used are shown in FIG. Although the thermal characteristics of the elastic body 204 and the steel bar 205 are different from those of concrete, it has already been confirmed that the elastic body 204 and the steel bar 205 have almost no influence on the infrared image.

供試体C10D19のはく離ひび割れがかぶり表面に現れる直前(以下、剥離ひび割れ顕在直前と記す)の熱画像3を図13に示し、同図13のA−Bライン上(供試体200の中央)の温度プロファイル(以下、中央ラインプロファイルと呼ぶ)を図14に示す。 A thermal image 3 immediately before the peeling crack of the specimen C10D19 appears on the cover surface (hereinafter referred to as immediately before the appearance of the peeling crack) is shown in FIG. 13, and the temperature on the line AB of FIG. 13 (center of the specimen 200). FIG. 14 shows a profile (hereinafter referred to as a center line profile).

図13、図14を見ると、はく離の影響により中央部に温度低下が見られる。しかし、側面からの熱の散逸による影響と考えられる供試体200の表面の温度勾配(以下、温度ムラと記す)が現れており、図13、図14では供試体200の表面中央部では、温度が高く、側面に近づくにつれて温度が低くなっている。そのため、はく離の影響による温度低下を正確に評価できない可能性が考えられる。 As shown in FIGS. 13 and 14, a temperature drop is observed at the center due to the effect of peeling. However, a temperature gradient (hereinafter referred to as temperature unevenness) of the surface of the specimen 200, which is considered to be an effect of heat dissipation from the side surface, appears in FIG. 13 and FIG. Is high, and the temperature is getting lower as it gets closer to the side. Therefore, there is a possibility that the temperature drop due to the influence of peeling cannot be accurately evaluated.

そこで載荷開始直後の中央ラインプロファイルを調べると同様に温度ムラが現れていた(図15)。これは供試体200の寸法が小さかったためによるものだと考えられ、熱の散逸が起こりうる可能性のある境界部が十分離れる実構造物2では問題にならないと考えられる。そこで評価する熱画像の中央ラインプロファイルから載荷開始直後の中央ラインプロファイルを差分すると(以下、差分プロファイルと呼ぶ)、図16のように温度ムラの影響を受けずにはく離による温度低下の影響を評価できることがわかった。 Therefore, when the central line profile immediately after the start of loading was examined, temperature unevenness appeared (FIG. 15). This is considered to be due to the small size of the specimen 200, and is not considered to be a problem in the actual structure 2 in which the boundary portion where heat dissipation may occur is sufficiently separated. Therefore, if the central line profile immediately after the start of loading is differentiated from the central line profile of the thermal image to be evaluated (hereinafter referred to as the differential profile), the influence of the temperature drop due to peeling is evaluated without being affected by temperature unevenness as shown in FIG. I knew it was possible.

差分プロファイルにおいて、
ΔT(はく離部温度差)=G1(健全部の差分温度)−F1(はく離部の差分温度)(例えば図16においてG1 −F1の値)とし、熱画像3の評価に、はく離部温度差ΔTを用いて検討を行った。
In the difference profile,
ΔT (separated part temperature difference) = G1 (differential temperature of healthy part) −F1 (differential temperature of separated part) (for example, the value of G1−F1 in FIG. 16). We examined using.

本実験では、すべての供試体200において、図11に示した破壊形態が確認された。
図17は、はく離部温度差ΔTを半径変化量drごとに整理した結果である。供試体C30D13はシャフト206のストロークが足りなかったため、変位が計測できた範囲のみのデータを掲載している。図17を見ると、半径変化量drが増加するにつれて、はく離部温度差ΔTも大きくなっていく様子が見られ、いずれの供試体200もはく落前にははく離部温度差ΔTが急激に上昇し、1.0℃以上にまで大きくなっていることがわかる。
In this experiment, the fracture mode shown in FIG. 11 was confirmed in all specimens 200.
FIG. 17 shows the result of arranging the separation temperature difference ΔT for each radius change amount dr. Since the specimen C30D13 has a short stroke of the shaft 206, data of only a range in which the displacement can be measured is shown. Referring to FIG. 17, it can be seen that as the radius change amount dr increases, the peel temperature difference ΔT increases, and the peel temperature difference ΔT rapidly increases before any specimen 200 peels off. It can be seen that the temperature is increased to 1.0 ° C. or higher.

図18は、はく離ひび割れ顕在時の半径変化量drとはく離部温度差ΔTの結果を整理したものである。ただし供試体C30D13については表面にはく離ひび割れが現れなかったため、打音による浮き音確認時点での半径変化量drとはく離部温度差ΔTを示している。 FIG. 18 is a summary of the results of the change in radius dr and the temperature difference ΔT of the peeled portion at the time when the flaking cracks are apparent. However, since no peeling cracks appeared on the surface of the specimen C30D13, the radius change amount dr and the peeling portion temperature difference ΔT at the time of confirmation of the floating sound due to the hitting sound are shown.

図18を見ると、かぶりとはく離ひび割れ顕在時のはく離部温度差ΔTに特に相関は見られなかった。この原因として、熱流の移動に時間がかかるため、短時間で行う本実験では実構造物2よりもはく離部温度差ΔTが小さいことや、供試体200によって周辺の空気と供試体200の温度差が違うことなどが考えられる。 As shown in FIG. 18, no particular correlation was found between the temperature difference ΔT of the peeling portion when the cover and the peeling crack were apparent. As a cause of this, since it takes time to move the heat flow, in this experiment performed in a short time, the temperature difference ΔT of the separation part is smaller than that of the actual structure 2, and the temperature difference between the surrounding air and the specimen 200 by the specimen 200. May be different.

本実験では、供試体C30D13のみ他とは異なり、曲げひび割れと水平ひび割れが生じる破壊形態となった。 In this experiment, only the specimen C30D13 was different from the others, and a fracture mode in which bending cracks and horizontal cracks occurred was obtained.

図19、図20に、はく落に至るまでの供試体C20D13と供試体C30D13の変状を示す。 19 and 20 show deformations of the specimen C20D13 and the specimen C30D13 until peeling.

図19(a)、(b)は、供試体C20D13の変状を示し、図20(a)、(b)、(c)は、供試体C30D13の変状を示す。   FIGS. 19A and 19B show the deformation of the specimen C20D13, and FIGS. 20A, 20B, and 20C show the deformation of the specimen C30D13.

供試体C30D13以外の供試体200については、はく離ひび割れが発生・進展した後、はく離ひび割れに沿ったはく落に至り、差分プロファイルにもはく離部と健全部に明白な温度差が見られた。一方、供試体C30D13では、はく離ひび割れは発生せず、複数本の曲げひび割れが発生し、載荷終了時は、図20(b)のように曲げひび割れと側面に貫通した水平ひび割れに沿って部分的なはく落が発生した。さらにはく落しなかった表面をハンマーで叩くと図20(c)のような広範囲のはく落が見られ、供試体200の左下の部分にも水平ひび割れが進展している様子が確認された。 For the specimens 200 other than the specimen C30D13, after peeling cracks were generated and propagated, the specimens were peeled along the peeling cracks, and a clear temperature difference was observed between the peeled part and the healthy part in the differential profile. On the other hand, in the specimen C30D13, no peeling cracks occurred, but a plurality of bending cracks occurred, and at the end of loading, partial bending along the bending cracks and horizontal cracks penetrating the side as shown in FIG. 20 (b). There was a fall. When the surface that did not peel off was further struck with a hammer, a wide range of peeling as shown in FIG. 20C was observed, and it was confirmed that horizontal cracks had also developed in the lower left part of the specimen 200.

はく離ひび割れや水平ひび割れが熱画像3上で面的に現れるのに対し、曲げひび割れは線的に現れる。図21は、浮き音確認以降の供試体C30D13の熱画像3の一例であるが、図21を見ると、供試体200の下部に曲げひび割れが線的に現れていることがわかる。しかし、実構造物2で適用する場合には遠方から測定を行うため、曲げひび割れを熱画像3上で検知することは困難であると考えられる。そのため、曲げひび割れと水平ひび割れが発生する場合には水平ひび割れを評価することではく落予測を行う手法が現実的である。 While peeling cracks and horizontal cracks appear on the surface of the thermal image 3, bending cracks appear linearly. FIG. 21 shows an example of the thermal image 3 of the specimen C30D13 after the confirmation of the floating sound. From FIG. 21, it can be seen that bending cracks appear linearly at the bottom of the specimen 200. FIG. However, it is considered that it is difficult to detect a bending crack on the thermal image 3 because the measurement is performed from a distance when the actual structure 2 is applied. Therefore, when bending cracks and horizontal cracks occur, it is realistic to perform a drop prediction by evaluating the horizontal cracks.

以降、供試体C30D13のように曲げひび割れと水平ひび割れが発生する場合では、はく離部温度差ΔTは、水平ひび割れによるはく離部と健全部の温度差で評価する。 Thereafter, when bending cracks and horizontal cracks occur as in the specimen C30D13, the temperature difference ΔT of the peeled portion is evaluated by the temperature difference between the peeled portion and the healthy portion due to the horizontal crack.

図17には変位計測が行えた劣化段階までしかデータを掲載していないが、供試体C30D13では、浮き音確認以降も熱画像3や差分プロファイルでは、はく離部と健全部の判別が困難であり(図21、図22(浮き音確認以降の差分プロファイル))、はく離部温度差ΔTの上昇はほとんど見られなかった。浮き音が確認されているにもかかわらず、赤外線サーモグラフィ測定では、内部に発生している水平ひび割れを正確に評価できなかった。はく離ひび割れが発生する場合は、劣化の進行とともにひび割れがかぶり面に近づくのに対し、水平ひび割れが発生する場合では、劣化が進行してもひび割れがかぶり面に近づかない。そのため、はく離ひび割れが発生した他の供試体200に比べ、供試体C30D13は、はく離部として表面に温度差が現れるのに必要な時間が長いと考えられる。水平ひび割れの影響が表面に現れるまでの時間に比べ、弾性体実験の載荷速度が速かったため、水平ひび割れを正確に評価できなかったと考えられる。また、本実験では供試体200の表面温度と実験室温の温度差が約3.0℃となるように設定したが、水平ひび割れを検知するのに必要な供試体200の内部の熱流量が不十分であった可能性も考えられる。
鉄筋腐食膨張圧模擬実験により得られた半径変化量drは、次式(13)、(14)により腐食量に換算できることが知られている。
FIG. 17 only shows data up to the deterioration stage where displacement measurement was possible. However, in the specimen C30D13, it is difficult to discriminate between the separated part and the healthy part in the thermal image 3 and the differential profile even after the floating sound confirmation. (FIG. 21, FIG. 22 (difference profile after confirmation of floating sound)), the separation part temperature difference ΔT was hardly increased. Despite the fact that the floating sound was confirmed, the infrared thermography measurement could not accurately evaluate the horizontal crack generated inside. When peeling cracks occur, the cracks approach the cover surface as the deterioration progresses, whereas when horizontal cracks occur, the cracks do not approach the cover surface even when the deterioration progresses. Therefore, it is considered that the time required for the specimen C30D13 to have a temperature difference on the surface as a peeling portion is longer than that of the other specimen 200 in which the separation crack occurred. It is considered that the horizontal crack could not be accurately evaluated because the loading speed of the elastic body experiment was faster than the time until the effect of the horizontal crack appeared on the surface. In this experiment, the temperature difference between the surface temperature of the specimen 200 and the experimental room temperature was set to be about 3.0 ° C., but the heat flow inside the specimen 200 necessary for detecting horizontal cracks was not good. It may be sufficient.
It is known that the radius change amount dr obtained by the rebar corrosion expansion pressure simulation experiment can be converted into the corrosion amount by the following equations (13) and (14).

ここで、Wloss: 換算腐食減量、 ρ: 鉄の比重(7.85mg/mm3)、Δr:腐食による鉄筋断面半径減少量(mm)、γ:腐食膨張倍率(2.5倍)とする。 Here, Wloss: conversion corrosion weight loss, ρ: specific gravity of iron (7.85 mg / mm 3), Δr: rebar radius reduction by corrosion (mm), γ: corrosion expansion ratio (2.5 times).

しかし、鉄筋腐食膨張圧模擬実験により算出される腐食減量は、電食実験などの実際に鉄筋を腐食させる実験の結果に比べると大きい傾向にある。この原因としては、弾性体204の膨張は周方向に均一に膨張すると仮定しているが、実構造物2ではかぶり表面に近い部分の腐食が進行することや、使用した弾性体204の弾性係数が錆層に比べて小さかったために必要な膨張量が大きくなったこと、などが考えられる。 However, the corrosion weight loss calculated by the rebar corrosion expansion pressure simulation experiment tends to be larger than the result of an experiment such as an electrolytic corrosion experiment that actually corrodes the rebar. As the cause of this, it is assumed that the expansion of the elastic body 204 is uniformly expanded in the circumferential direction, but in the actual structure 2, the corrosion near the cover surface proceeds, and the elastic coefficient of the used elastic body 204 It is conceivable that the required amount of expansion was increased because the rust layer was smaller than the rust layer.

半径変化量drは鉄筋腐食膨張圧模擬実験から得られる値であり、はく落に至るまでの劣化の程度を表すが、はく落時の半径変化量drはかぶりによって異なるため(図17)、半径変化量drの値のみでは現場ではく落の危険性を評価するのは難しい。また最大内圧に到達するまでの半径変化dr量の値では膨脹圧による腐食ひび割れは発生しないことが知られている。そこで、換算腐食減量の代わりになる指標として、次式(15)で表されるはく落危険度Dsを新たに提案する。
The radius change amount dr is a value obtained from a simulation experiment of reinforcing bar corrosion expansion pressure, and represents the degree of deterioration until peeling, but the radius change amount dr at the time of peeling differs depending on the fog (FIG. 17), so the radius change amount. It is difficult to evaluate the risk of dropping on site only with the value of dr. It is also known that no corrosion cracking due to expansion pressure occurs at the value of the radius change dr amount until the maximum internal pressure is reached. Therefore, as a substitute for reduced corrosion weight loss, a flaking risk Ds expressed by the following equation (15) is newly proposed.

ここで、 drs:はく落時の半径変化量(mm)、drpi:最大内圧時の半径変化量(mm)とする。 Here, it is assumed that drs: radius change amount at the time of peeling (mm), drpi: radius change amount at the maximum internal pressure (mm).

はく落危険度では、はく落の危険性を0から1の間の値で示す。はく落危険度Dsで、はく離部温度差ΔTを整理すると図23のようになる。供試体C30D13は、はく落時の半径変化量drが不明なため、図には載せていない。図23を見ると、ほとんどの供試体200がはく落危険度Dsが0から1に達するまで同様の経路を通ることがわかる。実構造物2では図面には載っていない鉄筋がかぶり近傍に入っている場合もあるが、かぶりや鉄筋径が不明であっても、はく落危険度Dsでは劣化の程度を評価することができると考えられる。 In the risk of peeling, the risk of peeling is indicated by a value between 0 and 1. FIG. 23 shows the separation temperature difference ΔT with the peeling risk Ds. The specimen C30D13 is not shown in the figure because the radius change amount dr at the time of peeling is unknown. Referring to FIG. 23, it can be seen that most specimens 200 follow the same route until the drop risk Ds reaches 0 to 1. In the actual structure 2, there is a case where a reinforcing bar not shown in the drawing is in the vicinity of the cover, but even if the cover and the diameter of the reinforcing bar are unknown, the degree of deterioration can be evaluated by the peeling risk Ds. Conceivable.

すなわち、はく離部温度差ΔTは、はく離部の形状や寸法の影響を受けるにも関わらず、はく離部温度差ΔTから算出したはく落危険度Dsを用いることでこれらの影響を受けることなく、はく離の進行を評価することができる。 That is, although the peeling portion temperature difference ΔT is affected by the shape and dimensions of the peeling portion, the peeling risk degree Ds calculated from the peeling portion temperature difference ΔT is not affected by these, and is not affected. Progress can be assessed.

例えば、t年前の点検結果によるはく落危険度がDs1で、本年度の点検結果によるはく落危険度がDs2であったとすると、前述の(5)式、
ts={(1−Ds2)/(Ds2−Ds1)}×t
によりはく落時期は、ts年後であることが求まる。
For example, suppose that the risk of dropping according to the inspection result t years ago is Ds1, and the risk of dropping according to the inspection result of this year is Ds2.
ts = {(1-Ds2) / (Ds2-Ds1)} * t
Therefore, the drop time is determined to be after ts years.

実際の鉄筋腐食では腐食速度が一定でないため、正確にはく落時期を予測するためには、より多くの点検データを蓄積し、比較検討することが望ましい。また、はく落危険度Dsが0.8を超える場合ははく離部温度差ΔTが急上昇するため、現場で用いる際には、はく落危険度Dsが0.8を超える時点で叩き落とし等の対策を講じるのが望ましいと考えられる。 In actual rebar corrosion, since the corrosion rate is not constant, it is desirable to accumulate more inspection data and compare and compare in order to accurately predict the flaking time. Further, when the peeling risk degree Ds exceeds 0.8, the peeling portion temperature difference ΔT increases rapidly. Therefore, when used at the site, measures such as knocking off are taken when the peeling risk degree Ds exceeds 0.8. It is considered desirable.

このようにはく落危険度Dsは、はく落予測を行う上で非常に有用な指標であるが、水平ひび割れが発生する場合や供試体C10D13のようにはく落に至るまでの半径変化量drが小さい場合は経路が他と異なる可能性があるため、さらに検討する必要がある。また式(5)のように蓄積した点検結果を比較する場合には、できる限り同じ測定環境で行った結果と比較する必要がある。特に日射量や気温変化は赤外線画像3に与える影響が大きいと考えられるが、日射量は天候に、気温変化は時刻と日射量により左右されるため、同条件で点検データを蓄積するのは困難である。 The flaking risk degree Ds is a very useful index for flaking prediction. However, when a horizontal crack occurs or when the radius change dr until the flaking is small as in the specimen C10D13, The route may be different from others, so further consideration is required. Moreover, when comparing the accumulated inspection results as shown in Equation (5), it is necessary to compare with the results obtained in the same measurement environment as much as possible. In particular, the amount of solar radiation and changes in temperature are considered to have a large effect on the infrared image 3. However, it is difficult to accumulate inspection data under the same conditions because the amount of solar radiation depends on the weather and the change in temperature depends on the time and amount of solar radiation. It is.

そこで、次項では測定温度環境が熱画像3に与える影響について検討を行った。
測定温度環境Te (℃)は、前述の(2)式、
Te=Tc−Tex
で定義される。
Therefore, in the next section, the influence of the measurement temperature environment on the thermal image 3 was examined.
The measurement temperature environment Te (° C.) is expressed by the above equation (2),
Te = Tc−Tex
Defined by

ここで、Tc :健全部のコンクリート表面温度(℃)、Tex:コンクリート表面付近の外気温(℃)とする。 Here, Tc is the concrete surface temperature (° C.) of the healthy part, and Tex is the outside air temperature (° C.) near the concrete surface.

実験要因を、破壊形態(はく離ひび割れ,水平ひび割れの2種類)とし,それぞれ2体ずつ作製した。なお、はく離ひび割れ供試体200では,かぶりC=20mm、弾性体204の挿入本数を1本とし,水平ひび割れ供試体200では,かぶりC=40mm、弾性体204の挿入本数を2本とした。鉄筋径D19、鉄筋間隔Lp=90mm、弾性体200の長さ100mmは共通である。使用したコンクリートの水セメント比は60%、材齢40日での圧縮強度は、26.0N/mm2,引張強度は、2.83N/mm2であった。
本実験では鉄筋腐食膨張圧再現実験により5段階の劣化レベル(最大内圧〜はく落の間の任意の5点)を模擬した。載荷により目標の劣化レベルが得られた時点で除荷し、載荷装置から取り外す。弾性体204の両端には荷重保持弁を設置し,載荷により生じた弾性体204の変形が除荷しても維持されるように工夫した。
The experimental factors were the fracture mode (two types of peeling cracks and horizontal cracks), and two each were prepared. In the peeled crack specimen 200, the fog C = 20 mm and the number of inserted elastic bodies 204 were one, and in the horizontal crack specimen 200, the fog C = 40 mm and the number of inserted elastic bodies 204 were two. The reinforcing bar diameter D19, the reinforcing bar interval Lp = 90 mm, and the length of the elastic body 200 are 100 mm. The water-cement ratio of the concrete used was 60%, the compressive strength at the age of 40 days was 26.0 N / mm2, and the tensile strength was 2.83 N / mm2.
In this experiment, five levels of degradation (any five points between the maximum internal pressure and peeling) were simulated by a rebar corrosion expansion pressure reproduction experiment. When the target deterioration level is obtained by loading, the load is unloaded and removed from the loading device. Load holding valves were installed at both ends of the elastic body 204 so that the deformation of the elastic body 204 caused by loading was maintained even after unloading.

荷重保持弁の作用メカニズムを図24(a)、(b)に示す。弁は挿入方向に移動させる場合には摩擦抵抗が小さく、挿入方向と反対方向に移動する場合には摩擦抵抗が大きい。そのため挿入方向のみ移動が可能で挿入方向と反対方向の力が作用しても移動することはない。弁の性能に関しては、短期間であれば、荷重が抜けず、ひび割れの進展も見られないことが既に確認されている。 The action mechanism of the load holding valve is shown in FIGS. When the valve moves in the insertion direction, the frictional resistance is small, and when the valve moves in the direction opposite to the insertion direction, the frictional resistance is large. Therefore, it can move only in the insertion direction, and does not move even if a force in the direction opposite to the insertion direction is applied. Regarding the performance of the valve, it has already been confirmed that, for a short period of time, the load cannot be removed and the development of cracks is not observed.

後述する手法で赤外線サーモグラフィ測定を行った後、再び次の劣化レベルまで載荷を行う。以降これを繰り返し、5段階の劣化レベルにおいて赤外線サーモグラフィ測定を行った。また除荷する際にクラックスケールによる最大曲げひび割れ幅(最大軸方向ひび割れ幅)、レーザー変位計による最大浮き幅、および打音検査による浮き音の有無を計測した。 なお、最大浮き幅とはレーザー変位計により二次元的に走査し、測定した水平変位の最大値のことであり、最大はく離ひび割れ幅あるいは最大水平ひび割れ幅と概ね一致しているものとして考察を行った。 After performing infrared thermography measurement by the method described later, loading is performed again to the next deterioration level. This was repeated thereafter, and infrared thermography measurement was performed at five levels of deterioration. When unloading, the maximum bending crack width by crack scale (maximum crack width in the axial direction), the maximum floating width by laser displacement meter, and the presence or absence of floating sound by hammering test were measured. Note that the maximum floating width is the maximum value of the horizontal displacement measured two-dimensionally with a laser displacement meter, and is considered to be approximately the same as the maximum peel crack width or the maximum horizontal crack width. It was.

側面および背面を厚さ12mmの断熱材(発泡スチロール)で覆った供試体200を別室(28℃程度)で養生し、20℃に設定した実験室に移動させてから測定を開始した。供試体200の表面温度が実験室温とほとんど等しくなった時点で、供試体200を屋外(28℃程度)に移動させ、再び測定を行った。供試体200の表面温度が外気温とほとんど等しくなった時点で測定を終了した。なお屋外測定は直接日射が当たらない地下1階で行い、センサ温度計により外気温を30秒間隔で計測した。 The specimen 200, whose side and back surfaces were covered with a 12 mm thick heat insulating material (styrofoam), was cured in a separate room (about 28 ° C.), moved to a laboratory set at 20 ° C., and measurement was started. When the surface temperature of the specimen 200 became almost equal to the experimental room temperature, the specimen 200 was moved outdoors (about 28 ° C.), and measurement was performed again. The measurement was finished when the surface temperature of the specimen 200 was almost equal to the outside air temperature. Outdoor measurements were taken on the first basement floor where direct sunlight was not applied, and the outside temperature was measured at 30-second intervals with a sensor thermometer.

測定温度環境の概略図を図25に示す。 A schematic diagram of the measurement temperature environment is shown in FIG.

本実験では、図7に示す量子型カメラと熱型カメラを用いて測定を行った。測定は供試体200から約5m離れた地点から30秒間隔で行った。また、コンクリート表面付近の温度は、断熱材の上方に設置したコンクリートの薄片をそれぞれの赤外線カメラ1で測定した温度を使用した。 In this experiment, measurement was performed using a quantum camera and a thermal camera shown in FIG. The measurement was performed at intervals of 30 seconds from a point about 5 m away from the specimen 200. Moreover, the temperature near the concrete surface used the temperature which measured the thin piece of the concrete installed above the heat insulating material with each infrared camera 1. FIG.

各劣化レベルにおけるクラックスケールによる最大曲げひび割れ幅、レーザー変位計による最大浮き幅、および打音検査による浮き音の有無の計測結果を図26〜図29に示す。 なお、図26〜図29中の浮き音の欄では、浮き音が確認されなかった場合は×を、浮き音の判定が難しかった場合は△を、浮き音が確認された場合は○を記載している。 26 to 29 show the measurement results of the maximum bending crack width by the crack scale at each deterioration level, the maximum floating width by the laser displacement meter, and the presence or absence of the floating sound by the hammering test. In the floating sound column in FIGS. 26 to 29, x is indicated when no floating sound is confirmed, △ is indicated when it is difficult to determine the floating sound, and ○ is indicated when floating sound is confirmed. doing.

図26〜図29を見ると、はく離ひび割れ供試体(C20D19−1、C20D19−2)では、はく離ひび割れ発生までは軸方向ひび割れが進展するものの、はく離ひび割れ発生以降は軸方向ひび割れはほとんど進展せず、浮き幅が増大する傾向が見られた。一方、水平ひび割れ供試体(C40D19−1、C40D19−2)では軸方向ひび割れ発生後、供試体左側にはく離ひび割れ発生した。 26 to 29, in the cracked specimens (C20D19-1 and C20D19-2), although the axial crack progresses until the peeling crack occurs, the axial crack hardly progresses after the peeling crack occurs. There was a tendency for the floating width to increase. On the other hand, in the horizontal crack specimens (C40D19-1 and C40D19-2), after the occurrence of an axial crack, a crack occurred on the left side of the specimen.

かぶり鉄筋径比C/Dが2.1よりも大きい供試体200でこのような結果が得られた理由として、2本の弾性体204に均一に荷重をかけられなったことが考えられる。しかし、はく離ひび割れと同時に曲げひび割れが複数本発生し、劣化レベルSTEP3ではひび割れが供試体200の右側面に現れた。このことから供試体200の右側では水平ひび割れが発生していると考えられる。さらにはく離ひび割れ発生後、表面に現れたはく離ひび割れはほとんど進展せず、曲げひび割れ幅と浮き幅がともに増大する傾向が見られた。 As a reason why such a result was obtained with the specimen 200 having the cover reinforcing bar diameter ratio C / D larger than 2.1, it is considered that the two elastic bodies 204 were not uniformly loaded. However, a plurality of bending cracks occurred at the same time as the separation cracks, and cracks appeared on the right side surface of the specimen 200 at the deterioration level STEP3. From this, it is considered that a horizontal crack has occurred on the right side of the specimen 200. Furthermore, the flaking cracks appearing on the surface after the peeling cracks had hardly progressed, and both the bending crack width and the floating width tended to increase.

図3(a)、(b)は、本実験で測定された熱画像3の一例(劣化レベルSTEP3、Te=−3.0℃、量子型カメラ)である。図3(a)は、供試体C20D19−1の熱画像3であり、図3(b)は、供試体C40D19−1の熱画像3である。供試体C20D19−1のはく離ひび割れ供試体200では、図4のように温度ムラによる影響も少なく、中央ラインプロファイルからはく離部温度差ΔTを評価できた。 FIGS. 3A and 3B are examples of the thermal image 3 (deterioration level STEP3, Te = −3.0 ° C., quantum camera) measured in this experiment. FIG. 3A is a thermal image 3 of the specimen C20D19-1, and FIG. 3B is a thermal image 3 of the specimen C40D19-1. In the peeling crack specimen 200 of the specimen C20D19-1, there was little influence due to temperature unevenness as shown in FIG.

はく離ひび割れ供試体200では、はく離部温度差ΔTを、前述の(1)式、
ΔT=G(健全部の温度)−F(はく離部の温度) (1)
と定義する。これは、図4における図中のG−Fの値である。
In the delamination crack specimen 200, the delamination temperature difference ΔT is expressed by the above equation (1),
ΔT = G (temperature of healthy part) −F (temperature of peeled part) (1)
It is defined as This is the value of GF in the diagram of FIG.

一方、図30に示すように、C40D19−1の水平ひび割れ供試体200では、温度ムラの影響のため水平ひび割れが発生している領域のはく離部温度差の評価は中央ラインプロファイルのみでは困難であった。 On the other hand, as shown in FIG. 30, in the horizontal crack specimen 200 of C40D19-1, it is difficult to evaluate the temperature difference at the separation part in the region where the horizontal crack is generated due to the influence of temperature unevenness only by the center line profile. It was.

そこで健全な領域であると考えられる供試体200の上端の温度プロファイルを調べると図31のような温度ムラが発生していることがわかる。 Therefore, when the temperature profile at the upper end of the specimen 200 considered to be a healthy region is examined, it can be seen that temperature unevenness as shown in FIG. 31 occurs.

図32は中央ラインプロファイルから上端ラインプロファイルを差分した温度プロファイルである。 FIG. 32 is a temperature profile obtained by subtracting the upper end line profile from the center line profile.

図32を見ると水平ひび割れが発生している領域がはっきりとわかるため、水平ひび割れ供試体200では、はく離部温度差ΔTを、
ΔT(はく離部温度差)=
G1(健全部の差分温度)-F1(水平ひび割れによるはく離部の差分温度) (16)
と定義する。これは、図32における図中G1−F1の値である。
Since the region where the horizontal crack is generated can be clearly seen from FIG. 32, in the horizontal crack specimen 200, the peeling portion temperature difference ΔT is
ΔT (separation temperature difference) =
G1 (Differential temperature of healthy part)-F1 (Differential temperature of peeled part due to horizontal crack) (16)
It is defined as This is a value of G1-F1 in FIG.

図33、図34は、それぞれ供試体C20D19−1、C40D19−1の量子型カメラ1の測定結果より得られたはく離部温度差ΔTと測定温度環境Teの関係を示している。 FIGS. 33 and 34 show the relationship between the separation temperature difference ΔT and the measurement temperature environment Te obtained from the measurement results of the quantum cameras 1 of the specimens C20D19-1 and C40D19-1, respectively.

供試体C40D19−1では、劣化レベルSTEP1においてはく離部温度差ΔTが0℃であったため、劣化レベルSTEP2からの結果を掲載している。供試体C20D19−2、C40D19−2についてもそれぞれ供試体C20D19−1、C40D19−1と同様の結果が得られた。   In the specimen C40D19-1, since the separation temperature difference ΔT was 0 ° C. at the deterioration level STEP1, the results from the deterioration level STEP2 are shown. For the specimens C20D19-2 and C40D19-2, the same results as those for the specimens C20D19-1 and C40D19-1 were obtained, respectively.

図33、図34を見ると、供試体C20D19−1、C40D19−1ともに同一劣化レベルSTEP上においてはく離部温度差ΔTが単調増加している様子がわかる。 33 and 34, it can be seen that both the specimens C20D19-1 and C40D19-1 have a monotonically increasing peel temperature difference ΔT on the same deterioration level STEP.

測定温度環境Te が0℃であれば、理論上では熱流が発生しないため、はく離部温度差ΔTは0℃になると考えられる。そこで原点を通る線形近似を行うと、図33、図34のように精度よく近似ができた。劣化レベルSTEP1やSTEP2では、はく離部温度差ΔTが微小なため、劣化レベルSTEP3以降に比べ相関係数が小さくなっている。また、腐食が進むにつれて勾配k(前述のとおり、温度環境係数と呼ぶこととする)が大きくなっているこ
とから、勾配kを用いてはく落危険度Dsを評価することが可能であると考えられる。
If the measurement temperature environment Te is 0 ° C., no heat flow is theoretically generated, and therefore, the peeling portion temperature difference ΔT is considered to be 0 ° C. Therefore, when linear approximation passing through the origin is performed, approximation can be performed with high accuracy as shown in FIGS. In the deterioration levels STEP1 and STEP2, the peel-off portion temperature difference ΔT is very small, so that the correlation coefficient is smaller than that after the deterioration level STEP3. Further, since the gradient k (referred to as a temperature environment coefficient as described above) increases as corrosion progresses, it is considered possible to evaluate the drop risk Ds using the gradient k. .

量子型カメラに比べ熱型カメラは、ノイズが目立ち、欠陥検出精度が落ちることがわかっている。本実験でも量子型カメラより熱型カメラの方がはく離検知が困難な傾向にあった。しかし、はく離部温度差ΔTと測定温度環境Teの関係については両カメラでほとんど同様の結果が得られた。量子型カメラよりも性能が低い熱型カメラでも量子型カメラと同様の結果が得られたのは、熱画像3のサンプル数が多かったことが考えられる。測定温度環境Teが3.0 ℃ におけるC20D19−1(劣化レベルSTEP3) と供試体C40D19−1(劣化レベルSTEP3)のはく離部温度差ΔTのデータの分布を図35に示す。そして、図35のデータが正規分布に従うと仮定した場合のグラフを図36、図37に示す。 Thermal cameras are known to be more prominent in noise and less accurate in detecting defects than quantum cameras. In this experiment, the thermal camera tended to be more difficult to detect delamination than the quantum camera. However, as for the relationship between the temperature difference ΔT of the peeled portion and the measured temperature environment Te, almost the same results were obtained with both cameras. It is considered that the result similar to that of the quantum type camera was obtained even with the thermal type camera having lower performance than the quantum type camera because the number of samples of the thermal image 3 was large. FIG. 35 shows the data distribution of the separation temperature difference ΔT between C20D19-1 (deterioration level STEP3) and specimen C40D19-1 (deterioration level STEP3) when the measurement temperature environment Te is 3.0 ° C. And the graph at the time of assuming that the data of FIG. 35 follows normal distribution is shown in FIG. 36, FIG.

図36は、供試体C20D19−1(劣化レベルSTEP3)のはくり部温度差ΔTの分布を示し、図37は、供試体C40D19−1(劣化レベルSTEP3)のはく離部温度差ΔTの分布を示す。 FIG. 36 shows the distribution of the peeling portion temperature difference ΔT of the specimen C20D19-1 (deterioration level STEP3), and FIG. 37 shows the distribution of the peeling portion temperature difference ΔT of the specimen C40D19-1 (deterioration level STEP3). .

図36、図37を見ると、供試体C20D19−1のはく離ひび割れ供試体200、供試体C40D19−1の水平ひび割れ供試体200ともに量子型カメラよりも熱型カメラの方がばらつきが大きい様子がわかる。この理由としては、短波長帯を検出する量子型カメラよりも長波長帯を検出する熱型カメラの方が対面物体の反射の影響によるノイズが大きいことが考えられる。このことから、実構造物2で熱型カメラを適用する際には数十枚以上の熱画像3を平均化して評価するのが望ましい。 36 and FIG. 37, it can be seen that the thermal type camera has a larger variation than the quantum type camera in both the peeling crack specimen 200 of the specimen C20D19-1 and the horizontal crack specimen 200 of the specimen C40D19-1. . This is probably because the thermal camera that detects the long wavelength band has a larger noise due to the reflection of the facing object than the quantum camera that detects the short wavelength band. For this reason, it is desirable to average and evaluate several tens or more of the thermal images 3 when the thermal camera is applied to the actual structure 2.

温度環境係数kは、測定温度環境Teとはく離部温度差ΔTの関係から得られるパラメータであり、温度環境係数kには熱伝達係数が内包されていると考えられる。したがって、様々な測定温度環境条件下で、はく落予測を簡便に行うためには、はく落危険度Dsを温度環境係数kから算出できるのが望ましい。 The temperature environment coefficient k is a parameter obtained from the relationship between the measured temperature environment Te and the separation temperature difference ΔT, and it is considered that the temperature environment coefficient k includes a heat transfer coefficient. Therefore, in order to easily perform the flaking prediction under various measurement temperature environment conditions, it is desirable that the flaking risk Ds can be calculated from the temperature environment coefficient k.

図38は、これまで述べた実験結果から、はく落危険度Dsと温度環境係数kの関係を示したものである。この図38は前述の図5に相当する。
図38を見ると、破壊形態の違いを考慮することなく、はく落危険度Dsで評価することができた。本実験より求められたはく落危険度Ds と温度環境係数kの関係は、前述した(3)式、
k=ΔT/Te
および、(4)式
Ds=1.23×k
で表される。
FIG. 38 shows the relationship between the drop risk Ds and the temperature environment coefficient k based on the experimental results described so far. FIG. 38 corresponds to FIG. 5 described above.
As shown in FIG. 38, it was possible to evaluate by the peeling risk Ds without considering the difference in the destruction mode. The relationship between the peeling risk Ds obtained from this experiment and the temperature environment coefficient k is the expression (3) described above,
k = ΔT / Te
And (4) Formula Ds = 1.23 × k
It is represented by

(4)式のR2は、0.63と小さい原因としては腐食膨脹圧模擬実験によるばらつきや、赤外線サーモグラフィ測定の測定精度などが考えられる。また、実構造物2での適用を考える際には、その他の環境要因の影響や対象構造物の構造形式による影響も加わると考えられる。なお、これらの式はあくまで本実験結果に基づく実験式であり、式(3)で表される温度環境係数kと熱伝達係数の関係等については解析等により今後明らかにする必要がある。 The reason why R2 in the equation (4) is as small as 0.63 is considered to be variation due to a corrosion expansion pressure simulation experiment, measurement accuracy of infrared thermography measurement, and the like. Further, when considering application in the actual structure 2, it is considered that the influence of other environmental factors and the influence of the structure type of the target structure are also added. These formulas are experimental formulas based on the results of this experiment, and the relationship between the temperature environment coefficient k and the heat transfer coefficient represented by formula (3) needs to be clarified in the future by analysis or the like.

以上のとおり、本実験結果より、前述の図1に示すフローチャートにて示す手順にて、コンクリート構造物のはく落予測診断を行うことができる。 As described above, from this experimental result, it is possible to perform the flaking prediction diagnosis of the concrete structure by the procedure shown in the flowchart shown in FIG.

なお、図1のステップ101〜105の処理を複数回繰り返し行い、複数回の点検データを蓄積することで、はく落予測の精度を高めることができる。 It should be noted that the accuracy of the drop prediction can be improved by repeatedly performing the processing of steps 101 to 105 in FIG. 1 a plurality of times and accumulating a plurality of inspection data.

1 赤外線カメラ、2 構造物(コンクリート構造物)、3 赤外線画像   1 Infrared camera, 2 structure (concrete structure), 3 infrared image

Claims (2)

コンクリート構造物のはく落予測診断方法であって、
赤外線カメラを用いて前記コンクリート構造物表面の赤外線熱画像を撮影するとともに、撮影時の表面付近の外気温を計測するステップと、
前記赤外線熱画像および前記計測した前記外気温に基づいて、健全部とはく離部との間における温度差としてのはく離部温度差(ΔT)と、健全部の表面温度と前記外気温との差としての測定温度環境(Te)を算出するステップと、
前記算出した測定温度環境(Te)に対する前記算出したはく離部温度差(ΔT)との比率としての温度環境係数(k)を算出するステップと、
前記算出した温度環境係数(k)に応じて、はく落危険度(Ds)を算出するステップとを含むコンクリート構造物のはく落予測診断方法。
A method for predicting delamination of concrete structures,
Taking an infrared thermal image of the surface of the concrete structure using an infrared camera, measuring the outside air temperature near the surface at the time of shooting,
Based on the infrared thermal image and the measured outside air temperature, as a difference between the separation part temperature difference (ΔT) as a temperature difference between the healthy part and the separation part, and the difference between the surface temperature of the healthy part and the outside air temperature Calculating a measured temperature environment (Te) of:
Calculating a temperature environment coefficient (k) as a ratio of the calculated separation temperature difference (ΔT) to the calculated measurement temperature environment (Te);
A method for predicting a flaking prediction of a concrete structure, including a step of calculating a flaking risk (Ds) according to the calculated temperature environment coefficient (k).
前回算出したはく落危険度(Ds1)と、今回算出したはく落危険度(Ds2)とを比較して、はく落時期(ts)を算出するステップと
を含む請求項1記載のコンクリート構造物のはく落予測診断方法。
The prediction of delamination of a concrete structure according to claim 1, further comprising a step of calculating a delamination time (ts) by comparing the delamination risk (Ds1) calculated last time with the delamination risk (Ds2) calculated this time. Method.
JP2014127284A 2014-06-20 2014-06-20 A method for predicting flaking of concrete structures. Active JP6413058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127284A JP6413058B2 (en) 2014-06-20 2014-06-20 A method for predicting flaking of concrete structures.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127284A JP6413058B2 (en) 2014-06-20 2014-06-20 A method for predicting flaking of concrete structures.

Publications (2)

Publication Number Publication Date
JP2016006398A true JP2016006398A (en) 2016-01-14
JP6413058B2 JP6413058B2 (en) 2018-10-31

Family

ID=55224909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127284A Active JP6413058B2 (en) 2014-06-20 2014-06-20 A method for predicting flaking of concrete structures.

Country Status (1)

Country Link
JP (1) JP6413058B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189321A (en) * 2019-06-03 2019-08-30 中南大学 A kind of concrete surface coating uniformity determines method and system
RU2728488C1 (en) * 2019-11-19 2020-07-29 Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) Method of indirect temperature control of concrete mixture during production of reinforced concrete structures using infrared pyrometry
KR102160639B1 (en) * 2019-06-26 2020-09-28 삼성물산(주) Porosity Detection Method in Concrete Member Covered With Steel Plate Using Thermal Image and Construction Management Method of Concrete Member Covered With Steel Plate Using The Same
CN111896629A (en) * 2020-07-10 2020-11-06 同济大学 Rapid detection method for tunnel structure surface layer diseases
JP2022007303A (en) * 2020-06-26 2022-01-13 三井住友建設株式会社 Inspection device and inspection system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201625A (en) * 1992-10-26 1994-07-22 Puranetsuto Kk Apparatus and method for searching defect
JPH0777460A (en) * 1993-09-07 1995-03-20 Nippon Data Service Kk Detecting method for outer wall peel section with thermal image
JPH11295249A (en) * 1998-04-14 1999-10-29 Mitsubishi Electric Building Techno Service Co Ltd Wall face inspection method
JP2003139731A (en) * 2001-10-31 2003-05-14 Nec San-Ei Instruments Ltd Thermography unit, measuring method therefor, and system for investigating and diagnosing structure
JP2009236863A (en) * 2008-03-28 2009-10-15 Sumitomo Osaka Cement Co Ltd Defect inspection method and device therefor
JP2010197375A (en) * 2009-01-29 2010-09-09 Mitsuhiro Wada Method for detecting modified part of concrete surface layer part by passive infrared method
US20130142213A1 (en) * 2010-01-08 2013-06-06 Fabien Barberon Method for measuring corrosion in a concrete building

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201625A (en) * 1992-10-26 1994-07-22 Puranetsuto Kk Apparatus and method for searching defect
JPH0777460A (en) * 1993-09-07 1995-03-20 Nippon Data Service Kk Detecting method for outer wall peel section with thermal image
JPH11295249A (en) * 1998-04-14 1999-10-29 Mitsubishi Electric Building Techno Service Co Ltd Wall face inspection method
JP2003139731A (en) * 2001-10-31 2003-05-14 Nec San-Ei Instruments Ltd Thermography unit, measuring method therefor, and system for investigating and diagnosing structure
JP2009236863A (en) * 2008-03-28 2009-10-15 Sumitomo Osaka Cement Co Ltd Defect inspection method and device therefor
JP2010197375A (en) * 2009-01-29 2010-09-09 Mitsuhiro Wada Method for detecting modified part of concrete surface layer part by passive infrared method
US20130142213A1 (en) * 2010-01-08 2013-06-06 Fabien Barberon Method for measuring corrosion in a concrete building

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189321A (en) * 2019-06-03 2019-08-30 中南大学 A kind of concrete surface coating uniformity determines method and system
CN110189321B (en) * 2019-06-03 2021-01-29 中南大学 Method and system for determining uniformity of concrete surface coating
KR102160639B1 (en) * 2019-06-26 2020-09-28 삼성물산(주) Porosity Detection Method in Concrete Member Covered With Steel Plate Using Thermal Image and Construction Management Method of Concrete Member Covered With Steel Plate Using The Same
WO2020262878A1 (en) * 2019-06-26 2020-12-30 삼성물산 주식회사 Method for detecting void in concrete composite member covered with steel plate using thermal image, and method for managing construction of concrete composite member covered with steel plate by applying same
RU2728488C1 (en) * 2019-11-19 2020-07-29 Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) Method of indirect temperature control of concrete mixture during production of reinforced concrete structures using infrared pyrometry
JP2022007303A (en) * 2020-06-26 2022-01-13 三井住友建設株式会社 Inspection device and inspection system
CN111896629A (en) * 2020-07-10 2020-11-06 同济大学 Rapid detection method for tunnel structure surface layer diseases
CN111896629B (en) * 2020-07-10 2023-05-12 同济大学 Rapid detection method for tunnel structure surface layer defect

Also Published As

Publication number Publication date
JP6413058B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6413058B2 (en) A method for predicting flaking of concrete structures.
Maquin et al. Heat dissipation measurements in low stress cyclic loading of metallic materials: From internal friction to micro-plasticity
US7769201B2 (en) Method for analyzing multi-layer materials from one-sided pulsed thermal imaging
JP4859557B2 (en) Method for judging the soundness of concrete buildings
CN102928580B (en) Corrosion monitoring device and method for reinforcement bar in concrete structure
Rocha et al. Detection of delaminations in sunlight-unexposed concrete elements of bridges using infrared thermography
Tran et al. Effects of rebars on the detectability of subsurface defects in concrete bridges using square pulse thermography
Ghiassi et al. FRP-to-masonry bond durability assessment with infrared thermography method
Al-Kassir et al. Thermographic study of energetic installations
Golrokh et al. An experimental study of the effects of climate conditions on thermography and pavement assessment
Wang et al. Multiple laboratory characterization methods to identify the D-Load of reinforced concrete pipes based on three edge bearing tests
JP4859550B2 (en) Method for judging the soundness of concrete structural members
JP7079055B2 (en) Installation method of optical fiber sensor to detect deterioration of concrete due to frost damage and deterioration detection method of concrete structure
Ta et al. Nondestructive detection of delamination in painted concrete structures through square pulse thermography
Pop et al. Determination of timber material fracture parameters using mark tracking method
JP2855366B2 (en) Diagnosis method of peeling of wall etc.
Feng et al. Portable automatic detection system with infrared imaging for measuring steel wires corrosion damage
Menun et al. A new 2-step testing method for measuring moisture-induced shrinkage of concrete blocks, mortar and masonry assemblies
RU2285915C2 (en) Method of testing heat protecting properties of guarding structure
Sultan et al. Heat exposure in fire resistance furnaces: full-scale vs intermediate-scale
Tuğla et al. A study on the use of advanced nondestructive testing methods on histroric structures
Lourenço et al. Anomaly Diagnosis in Ceramic Claddings by Thermography—A Review
McGinnis et al. RC bearing walls subjected to elevated temperatures
Afshanii et al. Investigate the detection rate of defects in concrete lining using infrared-thermography method
Sahamitmongkol et al. Damage analysis of an RC column subjected to long-term transient elevated temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180828

R150 Certificate of patent or registration of utility model

Ref document number: 6413058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250