JPH11295249A - Wall face inspection method - Google Patents

Wall face inspection method

Info

Publication number
JPH11295249A
JPH11295249A JP10298798A JP10298798A JPH11295249A JP H11295249 A JPH11295249 A JP H11295249A JP 10298798 A JP10298798 A JP 10298798A JP 10298798 A JP10298798 A JP 10298798A JP H11295249 A JPH11295249 A JP H11295249A
Authority
JP
Japan
Prior art keywords
surface temperature
building
temperature distribution
wall
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10298798A
Other languages
Japanese (ja)
Inventor
Shigetoshi Nagane
成寿 長根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP10298798A priority Critical patent/JPH11295249A/en
Publication of JPH11295249A publication Critical patent/JPH11295249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wall face inspection method in which deterioration on the outer wall of a building can be located accurately while eliminating thermal effect from the inside of the building as much as possible. SOLUTION: The surface temperature distribution image 38a on the outer wall of a building to be inspected is picked up at a first time and the surface temperature distribution image 38b on the outer wall of the building is picked up at a second time when the quantity of solar radiation is different from that at the first time. Based on these two surface temperature distribution images, a presumption is made that the exterior finish material is stripped in a region where the surface temperature and the variation rate thereof is high as compared with other part of the outer wall.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は壁面調査方法に関
し、特に建物の壁面劣化状況を調査するのに際し、建物
内部からの熱的影響を排して正確な壁面調査を行うこと
のできる壁面調査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for investigating a wall surface, and more particularly to a method for investigating a deterioration of a wall surface of a building. About.

【0002】[0002]

【従来の技術】従来より、赤外線映像装置を用いた建物
壁面のタイルやモルタル等の剥離状況を調査する方法が
ある。この従来の壁面調査方法では、まず図3に示すよ
うにして調査対象たる建物10を外部から赤外線映像装
置12で撮影し、建物10の外壁を中心とする表面温度
分布画像を取得する。図4はかかる表面温度分布画像を
模式的に示す図である。同図に示す表面温度分布画像1
4において、16は建物輪郭を表し、18,20は高温
領域を表す。この表面温度分布画像14において高温領
域18,20は周囲に比して暖色で表されており、建物
外壁の劣化により生じたものであると推定される。
2. Description of the Related Art Conventionally, there has been a method of investigating a peeling state of a tile, mortar, or the like on a building wall using an infrared imaging apparatus. In this conventional wall surface survey method, first, as shown in FIG. 3, a building 10 to be surveyed is photographed from the outside with an infrared imaging device 12, and a surface temperature distribution image centering on the outer wall of the building 10 is acquired. FIG. 4 is a diagram schematically showing such a surface temperature distribution image. Surface temperature distribution image 1 shown in FIG.
In 4, 16 represents a building outline, and 18 and 20 represent high temperature regions. In the surface temperature distribution image 14, the high-temperature regions 18 and 20 are represented by warmer colors than the surroundings, and are presumed to be caused by deterioration of the building outer wall.

【0003】ここで、図5及び図6に基づいてこの推定
をなし得る理由を説明する。図5は正常な建物外壁の横
断面図であり図中左側が建物内部を表す。同図に示すよ
うに、建物外壁22は躯体コンクリート24とその表面
に貼設されたモルタルやタイル等の外装仕上げ材26と
から構成されている。この正常な建物外壁22に建物外
部28から日光が照射された場合、その受けた熱エネル
ギーは建物外壁22に吸収され、或いは外装仕上げ材2
6の表面で反射され、熱伝搬曲線30に示すようにして
建物内部32の方向に伝搬する。これにより、外装仕上
げ材26の表面と躯体コンクリート24の内壁表面には
温度差dt0が生じることになる。
Here, the reason why this estimation can be made will be described with reference to FIGS. FIG. 5 is a cross-sectional view of a normal building outer wall, and the left side in the figure represents the inside of the building. As shown in the figure, the building outer wall 22 is composed of a skeleton concrete 24 and an exterior finishing material 26 such as mortar or tile attached to the surface thereof. When the normal building outer wall 22 is irradiated with sunlight from the outside 28 of the building, the received heat energy is absorbed by the building outer wall 22 or the exterior finishing material 2
6 and propagates in the direction of the building interior 32 as shown by the heat propagation curve 30. As a result, a temperature difference dt0 occurs between the surface of the exterior finishing material 26 and the inner wall surface of the skeleton concrete 24.

【0004】また、図6は、外装仕上げ材26の剥離が
生じた場合の建物外壁22を示す横断面図である。外装
仕上げ材26は躯体コンクリート24に対して接着剤等
で貼設されているが、経時劣化等により剥離してくる場
合がある。同図には、外装仕上げ材26の剥離部位を中
心として建物外壁22が表されており、外装仕上げ材2
6の剥離により該外装仕上げ材26と躯体コンクリート
24との間に間隙34が生じていることが分かる。
FIG. 6 is a cross-sectional view showing the building outer wall 22 when the exterior finishing material 26 has peeled off. The exterior finishing material 26 is attached to the skeleton concrete 24 with an adhesive or the like, but may come off due to deterioration with time or the like. In the figure, the building outer wall 22 is shown centering on the exfoliated portion of the exterior finishing material 26, and the exterior finishing material 2
It can be seen that a gap 34 has been formed between the exterior finishing material 26 and the skeleton concrete 24 due to the peeling of No. 6.

【0005】そして、このように外装仕上げ材26に剥
離が生じ間隙34が発生した場合、外装仕上げ材26の
剥離部分の内側面から躯体コンクリート24への熱伝達
は、同図に示す熱伝搬曲線30aに示すように、著しく
妨げられる。このため、剥離が生じた場合に外装仕上げ
材26の表面と躯体コンクリート24の内壁表面との間
に生じる温度差dt1は、正常な建物外壁22における
外装仕上げ材26の表面と躯体コンクリート24の内壁
表面との間に生じる温度差dt0よりも大きくなる。
[0005] When the peeling occurs in the exterior finishing material 26 and the gap 34 occurs, the heat transfer from the inner surface of the peeled portion of the exterior finishing material 26 to the skeleton concrete 24 is represented by a heat propagation curve shown in FIG. As shown at 30a, it is significantly impeded. For this reason, the temperature difference dt1 generated between the surface of the exterior finishing material 26 and the inner wall surface of the skeleton concrete 24 when peeling occurs is caused by the difference between the surface of the exterior finishing material 26 on the normal building outer wall 22 and the inner wall of the skeleton concrete 24. It becomes larger than the temperature difference dt0 generated between the surface and the surface.

【0006】従来の壁面調査方法では、このように外装
仕上げ材26の剥離が生じた部分とそれ以外の正常な部
分とで熱伝搬特性が異なる点に着目し、図4に示すよう
な建物10の表面温度分布画像14における高温領域1
8,20を外装仕上げ材26の剥離に起因するものであ
ると推定している。
In the conventional wall surface inspection method, attention is paid to the fact that the heat transfer characteristic differs between the part where the exterior finishing material 26 has peeled off and the normal part other than the above, and the building 10 shown in FIG. Area 1 in the surface temperature distribution image 14
It is presumed that Nos. 8 and 20 are caused by peeling of the exterior finishing material 26.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、建物外
壁22の表面温度を決定づけるのは日射や外装仕上げ材
26の剥離だけではなく、建物内部に設置された発熱機
器からも多大な影響を受ける。たとえば、図7に示すよ
うに、建物内部32に冷蔵庫等の発熱機器36が躯体コ
ンクリート24に近接して設置されている場合、熱伝搬
曲線30bに示すようにして当該発熱機器36からの放
熱が建物外部28の方向に伝搬し、外装仕上げ材26の
表面温度を上昇させる。
However, the surface temperature of the building outer wall 22 is determined not only by the solar radiation and the peeling of the exterior finishing material 26 but also greatly influenced by the heat-generating equipment installed inside the building. For example, as shown in FIG. 7, when a heating device 36 such as a refrigerator is installed in the building interior 32 in the vicinity of the skeleton concrete 24, heat radiation from the heating device 36 is reduced as shown by a heat propagation curve 30b. Propagation in the direction of the building exterior 28 raises the surface temperature of the exterior finish 26.

【0008】このため、図4に示す建物10の表面温度
分布画像14を鵜呑みにして外装仕上げ材26の剥離位
置を判定することはできず、従来の調査方法において
は、建物内部32の冷暖房や発熱機器の設置の有無を別
途確認し、表面温度分布画像14による剥離位置判定に
際し、その確認内容を考慮に入れる必要があった。
For this reason, the peeling position of the exterior finishing material 26 cannot be determined based on the surface temperature distribution image 14 of the building 10 shown in FIG. It was necessary to separately confirm the presence or absence of the heat-generating device, and to take the confirmation details into consideration when determining the peeling position based on the surface temperature distribution image 14.

【0009】本発明は上記課題に鑑みてなされたもので
あって、その目的は、建物内部からの熱的影響を出来る
だけ排して正確に建物外壁の劣化位置を特定することの
できる壁面調査方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to eliminate the thermal effects from the inside of a building as much as possible and to accurately specify the deterioration position of the building outer wall. It is to provide a method.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る壁面調査方法は、第1の時刻に建物外
壁の表面温度分布を取得する第1の工程と、前記第1の
時刻とは異なる日射量の第2の時刻に前記建物外壁の表
面温度分布を再度取得する第2の工程と、前記第1の工
程で取得される表面温度分布と前記第2の工程で取得さ
れる表面温度分布とに基づき、いずれかの表面温度分布
において周囲に比して表面温度が高く、且つその変化が
大きい領域に外装仕上げ材の剥離が生じていると推定す
る第3の工程と、を含むことを特徴とする。
In order to solve the above-mentioned problems, a wall surface survey method according to the present invention comprises a first step of obtaining a surface temperature distribution of an outer wall of a building at a first time; A second step of reacquiring the surface temperature distribution of the building outer wall at a second time of solar radiation different from the time, and a surface temperature distribution acquired in the first step and acquired in the second step. A third step of estimating that, in any of the surface temperature distributions, the surface temperature is higher than the surroundings in any of the surface temperature distributions, and that the exterior finish material is peeled in a region where the change is large; and It is characterized by including.

【0011】また、本発明の一態様では、前記第1の工
程で取得される表面温度分布と前記第2の工程で取得さ
れる表面温度分布とに基づき、いずれかの表面温度分布
において周囲に比して表面温度が高く、且つその変化が
小さい領域には建物内側に発熱機器が設置されていると
推定する工程をさらに含むことを特徴とする。
Further, according to one aspect of the present invention, based on the surface temperature distribution obtained in the first step and the surface temperature distribution obtained in the second step, the ambient temperature distribution in any one of the surface temperature distributions The method further includes a step of estimating that a heating device is installed inside the building in a region where the surface temperature is high and the change is small.

【0012】すなわち、本発明では異なる日射量の環境
下で建物外壁の表面温度分布を複数取得する。そして、
その複数の表面温度分布に基づき、いずれかの表面温度
分布において周囲よりも高温であると判断され、かつそ
の温度の変化量が大きい部分を外装仕上げ材の剥離が生
じていると推定している。
That is, in the present invention, a plurality of surface temperature distributions of the building outer wall are acquired under different solar radiation environments. And
Based on the plurality of surface temperature distributions, it is determined that the temperature is higher than the surroundings in any one of the surface temperature distributions, and it is estimated that peeling of the exterior finishing material has occurred in a portion where the amount of change in the temperature is large. .

【0013】この推定は、建物内部の発熱機器によって
建物外壁の表面が高温になった場合、日射量が変化した
としてもその温度は相対的に見れば変化しにくいのに対
し、外装仕上げ材の剥離部分が高温になるのは主として
日射の影響であることに基づく。こうして、本発明によ
れば、取得した表面温度分布に基づいて建物外壁の劣化
部位を判断するのに際し、建物内部からの熱的影響をで
きるだけ排して、正確にその位置を特定することができ
る。
This estimation is based on the assumption that when the surface of the outer wall of a building is heated to a high temperature by a heating device inside the building, even if the amount of insolation changes, the temperature is hard to change relatively when viewed from the outside. The high temperature of the peeled portion is mainly based on the effect of solar radiation. Thus, according to the present invention, when judging a deteriorated portion of a building outer wall based on the acquired surface temperature distribution, it is possible to accurately identify the position while eliminating as much thermal influence from the inside of the building as possible. .

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】図1は、本発明の一実施の形態に係る壁面
調査方法を説明する図である。本壁面調査方法において
は、図3に既に示したように調査対象たる建物の外壁を
外部から赤外線映像装置で複数回にわたりそれぞれ異な
る時間帯に撮影し、対象建物の表面温度分布画像を複数
取得する。図1の左上には、その取得された表面温度分
布画像のうちの1つであって日射が一定量ある時間帯に
取得された第1表面温度分布画像38aが示されてい
る。また、同図の右上には、取得された表面温度分布画
像のうちの1つであって日射がない時間帯、すなわち夜
間に取得された第2表面温度分布画像38bが示されて
いる。これら、第1表面温度分布画像38aや第2表面
温度分布画像38bにおいては、一般に建物外壁22の
大部分が比較的低温な部位として表され、部分的に周囲
と比して高温な領域が散在する。以下、説明のため、第
1表面温度分布画像38aにおいては建物輪郭40aに
含まれる領域のうち高温領域42aや高温領域44aが
比較的高温な部位であるとする。一方、第2表面温度分
布画像38bにおいては、該画像が夜間の撮影により取
得されたものであるから、高温部位は高温領域42bだ
けに減っている。
FIG. 1 is a view for explaining a wall surface inspection method according to one embodiment of the present invention. In this wall surface survey method, as shown in FIG. 3, the outer wall of the building to be surveyed is photographed a plurality of times from outside using an infrared imaging device at different time zones, and a plurality of surface temperature distribution images of the target building are acquired. . The upper left part of FIG. 1 shows a first surface temperature distribution image 38a which is one of the acquired surface temperature distribution images and is acquired during a time period when a certain amount of solar radiation is present. In addition, the upper right part of the drawing shows a second surface temperature distribution image 38b which is one of the acquired surface temperature distribution images and has no solar radiation, that is, acquired at night. In the first surface temperature distribution image 38a and the second surface temperature distribution image 38b, most of the outer wall 22 of the building is generally represented as a relatively low-temperature portion, and regions having a high temperature as compared with the surroundings are partially scattered. I do. Hereinafter, for the sake of explanation, it is assumed that, in the first surface temperature distribution image 38a, the high-temperature region 42a and the high-temperature region 44a are relatively high temperature regions among the regions included in the building outline 40a. On the other hand, in the second surface temperature distribution image 38b, since the image is obtained by photographing at night, the high-temperature portion is reduced to only the high-temperature region 42b.

【0016】本壁面調査方法によれば、これら二つの表
面温度分布画像38a及び38b、或いはそれらの元と
なる表面温度分布情報を用いて建物各部位の温度変化量
を表す画像を生成する。たとえば、コンピュータに所定
の演算用ソフトウェアをロードし、上記表面温度分布情
報から、画像各部位における温度変化量を算出してもよ
い。なお、これら演算の際、外気温自体の違い等を考慮
し、いずれかの表面温度分布情報に所定係数を加減乗除
して補正を加え、その補正後の表面温度分布に基づいて
温度変化量を算出してもよい。
According to the wall surface survey method, an image representing the temperature change amount of each part of the building is generated by using these two surface temperature distribution images 38a and 38b or the surface temperature distribution information as the basis thereof. For example, predetermined calculation software may be loaded on a computer, and the temperature change amount in each part of the image may be calculated from the surface temperature distribution information. At the time of these calculations, taking into account differences in the outside air temperature itself, and adding or subtracting a predetermined coefficient to or subtracting from or multiplying or multiplying or subtracting a predetermined coefficient from any of the surface temperature distribution information, a temperature change amount is calculated based on the corrected surface temperature distribution. It may be calculated.

【0017】図1の下側にはこうして生成された建物各
部の温度変化量を表す温度変化量画像が示されている。
同図に示すように、この温度変化量画像45において
は、第1表面温度分布画像38aや第2表面温度分布画
像38bで表されていた建物10の建物輪郭40a等は
漠たるものとなったり消失したりする。のみならず、第
1表面温度分布画像38aで表れていた高温領域42a
及び第2表面温度分布画像38bで表れていた高温領域
42bは温度変化量画像45においては漠たるものとな
ったり消失したりする。一方、第1表面温度分布画像で
高温領域44aとなっていた部位は第2表面温度分布画
像38bでは一旦消失し、温度変化量画像45では再び
温度変化領域46として表される。
The lower part of FIG. 1 shows a temperature change image showing the temperature change of each part of the building thus generated.
As shown in the figure, in the temperature change amount image 45, the building outline 40a and the like of the building 10 represented by the first surface temperature distribution image 38a and the second surface temperature distribution image 38b become vague. Or disappear. In addition, the high-temperature region 42a that has appeared in the first surface temperature distribution image 38a
The high-temperature region 42b that has appeared in the second surface temperature distribution image 38b becomes vague or disappears in the temperature change amount image 45. On the other hand, the portion that was the high temperature region 44a in the first surface temperature distribution image once disappears in the second surface temperature distribution image 38b, and is represented again as the temperature change region 46 in the temperature change amount image 45.

【0018】本壁面調査方法ではこれら表面温度分布画
像38や温度変化量画像45を基に、高温領域42a及
び42bが恒常的な熱源により温度上昇している、すな
わち建物内部に設置された冷蔵庫等の発熱機器により温
度上昇している部分があると推定するとともに、日射量
の変化に対応して表面温度が変化した部分、すなわち温
度変化領域46を外装仕上げ材26の剥離が生じている
部分であると推定している。かかる推定は、外装仕上げ
材26の剥離が生じている部分が比較的高温になるのは
日射に依るところが大であって日射量の変化に対応して
敏感に温度変化するのに対し、建物内部に設置された発
熱機器36による温度上昇部位は日射量の変化が生じて
も相対的には温度変化が少ないことに基づいている。
In the present wall surface survey method, the temperature of the high temperature areas 42a and 42b is increased by a constant heat source based on the surface temperature distribution image 38 and the temperature change amount image 45, that is, a refrigerator or the like installed inside the building. It is presumed that there is a portion where the temperature has risen due to the heat-generating device, and the portion where the surface temperature has changed in response to the change in the amount of solar radiation, that is, the temperature change region 46 is the portion where the exterior finishing material 26 has peeled off. It is estimated that there is. Such estimation is based on the fact that the temperature of the part where the exterior finishing material 26 has peeled becomes relatively high depends on the solar radiation, and the temperature changes sensitively in response to the change in the amount of solar radiation. Is based on the fact that the temperature rise is relatively small even if the amount of solar radiation changes even if the temperature rises due to the heat-generating device 36 installed in the apparatus.

【0019】このように、本壁面調査方法によれば、日
射量の異なる環境下で取得した二つの表面温度情報から
調査対象たる建物の表面各部の温度変化量を算出するこ
とにより、建物内部に設置された発熱機器による影響を
排して高い精度で建物外壁22に生じた劣化部位を特定
することができる。
As described above, according to the wall surface survey method, the temperature change amount of each part of the surface of the building to be surveyed is calculated from the two surface temperature information obtained in the environment where the amount of solar radiation is different, so that the inside of the building is calculated. It is possible to identify the deteriorated portion generated on the building outer wall 22 with high accuracy while eliminating the influence of the installed heating equipment.

【0020】なお、上記本壁面調査方法は種々の変形実
施が可能である。たとえば、上述の例では第1表面温度
分布画像38aと第2表面温度分布画像38bとを日射
のある時(日中)と日射のない時(夜間)とに取得した
が、日射の強い時に第1表面温度分布画像を取得し、日
射の弱い時に第2表面温度分布画像をそれぞれ取得する
ようにしてもよい。図2は、変形例に係る壁面調査方法
を説明する図である。この場合、同図に示す第2表面温
度分布画像48bには、図1に示す第2表面温度分布画
像38bとは異なり、第1表面温度分布画像48aにお
ける高温領域44aよりも若干低温の高温領域50が表
されることになる。
The above-mentioned wall surface survey method can be implemented in various modifications. For example, in the above-described example, the first surface temperature distribution image 38a and the second surface temperature distribution image 38b are acquired when there is solar radiation (during the day) and when there is no solar radiation (at night). One surface temperature distribution image may be acquired, and the second surface temperature distribution image may be acquired when solar radiation is weak. FIG. 2 is a diagram illustrating a wall surface survey method according to a modification. In this case, unlike the second surface temperature distribution image 38b shown in FIG. 1, the second surface temperature distribution image 48b shown in FIG. 1 has a high temperature region slightly lower than the high temperature region 44a in the first surface temperature distribution image 48a. 50 will be represented.

【0021】ただ、この場合であってもやはり、第1表
面温度分布画像48aの元となる温度分布情報と第2表
面温度分布画像48bの元となる温度分布情報との差分
を取ることにより、或いはいずれかの情報に重み付けを
した後に差分を取ること等により、温度変化量画像52
には温度変化領域54が残る。そして、場合により温度
変化量画像52においては、建物内部の発熱機器36か
らの発熱に起因する高温領域42a及び42bに対応す
る温度変化領域56も表される。ただ、温度変化量画像
52にこのような温度変化領域56が表れた場合であっ
ても、それは温度変化領域54よりも温度変化が少ない
領域である。したがって、温度変化量が比較的多い領域
を外装仕上げ材に剥離が生じている部分であると判定す
ればよい。これにより、建物内部に設置された発熱機器
36による影響を排して、高い精度で建物外壁22に生
じた劣化部位を特定することができる。
However, even in this case, by taking the difference between the temperature distribution information that is the basis of the first surface temperature distribution image 48a and the temperature distribution information that is the basis of the second surface temperature distribution image 48b, Alternatively, the temperature change amount image 52
, A temperature change region 54 remains. In some cases, in the temperature change amount image 52, a temperature change region 56 corresponding to the high temperature regions 42a and 42b caused by heat generated from the heat generating device 36 inside the building is also displayed. However, even when such a temperature change area 56 appears in the temperature change amount image 52, it is an area where the temperature change is smaller than the temperature change area 54. Therefore, it is sufficient to determine that the region where the temperature change amount is relatively large is the portion where the peeling has occurred in the exterior finishing material. Thus, the influence of the heat generating device 36 installed inside the building can be eliminated, and the deteriorated portion generated on the building outer wall 22 can be specified with high accuracy.

【0022】なお、この変形例に係る壁面調査方法で
は、温度変化量画像52を取得した後、温度変化領域5
4と温度変化領域56との差を容易に判断できるよう、
変化量の差を強調するフィルタ処理を施してもよい。
In the wall surface survey method according to this modification, after the temperature change amount image 52 is acquired, the temperature change area 5
4 so that the difference between the temperature change region 56 and the temperature change region 56 can be easily determined.
Filter processing that emphasizes the difference between the amounts of change may be performed.

【0023】また、以上の説明では表面温度分布画像を
2枚用いて建物壁面の表面温度の変化を観察したが、異
なる時間帯に撮影された3枚以上の表面温度分布画像を
用いて建物壁面の表面温度の変化を観察してもよい。こ
うすれば、さらに壁面における劣化位置を高い精度で判
断ないし推定することができる。
In the above description, the change in the surface temperature of the building wall was observed using two surface temperature distribution images. However, the building wall surface was changed using three or more surface temperature distribution images taken at different times. The change in the surface temperature may be observed. In this case, the deterioration position on the wall surface can be determined or estimated with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態に係る壁面調査方法を
説明する図である。
FIG. 1 is a diagram illustrating a wall surface inspection method according to an embodiment of the present invention.

【図2】 変形例に係る壁面調査方法を説明する図であ
る。
FIG. 2 is a diagram illustrating a wall surface survey method according to a modification.

【図3】 従来の壁面調査方法を説明する図である。FIG. 3 is a diagram illustrating a conventional wall surface survey method.

【図4】 従来の壁面調査方法を説明する図である。FIG. 4 is a diagram illustrating a conventional wall surface survey method.

【図5】 外装仕上げ材の剥離部分が比較的高温になる
理由を説明する図である。
FIG. 5 is a view for explaining the reason why the temperature of the peeled portion of the exterior finishing material is relatively high.

【図6】 外装仕上げ材の剥離部分が比較的高温になる
理由を説明する図である。
FIG. 6 is a view for explaining the reason why the temperature of the peeled portion of the exterior finishing material becomes relatively high.

【図7】 従来の壁面調査方法による不具合を説明する
図である。
FIG. 7 is a diagram for explaining a problem caused by a conventional wall surface inspection method.

【符号の説明】[Explanation of symbols]

38,48 表面温度分布画像、40 建物輪郭、4
2,44,50 高温領域、45,52 温度変化量画
像、46,54,56 温度変化領域。
38, 48 Surface temperature distribution image, 40 building outline, 4
2,44,50 High temperature area, 45,52 Temperature change amount image, 46,54,56 Temperature change area.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の時刻に建物外壁の表面温度分布を
取得する第1の工程と、 前記第1の時刻とは異なる日射量の第2の時刻に前記建
物外壁の表面温度分布を再度取得する第2の工程と、 前記第1の工程で取得される表面温度分布と前記第2の
工程で取得される表面温度分布とに基づき、いずれかの
表面温度分布において周囲に比して表面温度が高く、且
つその変化が大きい領域に外装仕上げ材の剥離が生じて
いると推定する第3の工程と、 を含むことを特徴とする壁面調査方法。
A first step of acquiring a surface temperature distribution of the building outer wall at a first time; and a step of re-calculating the surface temperature distribution of the building outer wall at a second time of an amount of solar radiation different from the first time. A second step of acquiring, and a surface temperature distribution obtained in the first step and a surface temperature distribution obtained in the second step, and a surface temperature distribution in one of the surface temperature distributions as compared with the surroundings. A third step of estimating that the exterior finish is peeled off in a region where the temperature is high and the change is large.
【請求項2】 請求項1に記載の壁面調査方法におい
て、 前記第1の工程で取得される表面温度分布と前記第2の
工程で取得される表面温度分布とに基づき、いずれかの
表面温度分布において周囲に比して表面温度が高く、且
つその変化が小さい領域には建物内側に発熱機器が設置
されていると推定する工程をさらに含むことを特徴とす
る壁面調査方法。
2. The wall surface inspection method according to claim 1, wherein one of the surface temperatures is determined based on a surface temperature distribution obtained in the first step and a surface temperature distribution obtained in the second step. A method for investigating a wall surface, further comprising a step of estimating that a heating device is installed inside a building in a region where the surface temperature is higher than the surroundings in the distribution and the change is small.
JP10298798A 1998-04-14 1998-04-14 Wall face inspection method Pending JPH11295249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298798A JPH11295249A (en) 1998-04-14 1998-04-14 Wall face inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298798A JPH11295249A (en) 1998-04-14 1998-04-14 Wall face inspection method

Publications (1)

Publication Number Publication Date
JPH11295249A true JPH11295249A (en) 1999-10-29

Family

ID=14342071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298798A Pending JPH11295249A (en) 1998-04-14 1998-04-14 Wall face inspection method

Country Status (1)

Country Link
JP (1) JPH11295249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006398A (en) * 2014-06-20 2016-01-14 西日本高速道路エンジニアリング四国株式会社 Predictive diagnosis method of spall of concrete structure
JP2017207296A (en) * 2016-05-16 2017-11-24 日本アビオニクス株式会社 Building structure external wall diagnosis aptitude determination device
JP2022042409A (en) * 2020-09-02 2022-03-14 株式会社テナーク Method for comparing continuous temperature, method for assaying specific temperature region, information processor, continuous temperature comparison system, specific temperature region assay system, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006398A (en) * 2014-06-20 2016-01-14 西日本高速道路エンジニアリング四国株式会社 Predictive diagnosis method of spall of concrete structure
JP2017207296A (en) * 2016-05-16 2017-11-24 日本アビオニクス株式会社 Building structure external wall diagnosis aptitude determination device
JP2022042409A (en) * 2020-09-02 2022-03-14 株式会社テナーク Method for comparing continuous temperature, method for assaying specific temperature region, information processor, continuous temperature comparison system, specific temperature region assay system, and program

Similar Documents

Publication Publication Date Title
US6804622B2 (en) Method and apparatus for non-destructive thermal inspection
JP4604033B2 (en) Radiometry using an uncooled microbolometer detector
US8384783B2 (en) Infrared camera and method for calculating output power value indicative of an amount of energy dissipated in an image view
US20180372487A1 (en) Thickness measurement method, thickness measurement device, defect detection method, and defect detection device
JPS57113332A (en) Compensating thermopile detector
Guilhem et al. Tore-Supra infrared thermography system, a real steady-state diagnostic
EP3312579B1 (en) Infrared sensor for measuring ambient air temperature
JP2004078297A (en) Information processor, information processing method and environment control device
US10242439B1 (en) Contrast based imaging and analysis computer-implemented method to analyze pulse thermography data for nondestructive evaluation
JPH11295249A (en) Wall face inspection method
JP2006177869A (en) Planning system for exterior improvement
JP2011038838A (en) Thermal device and method for measuring infrared output
CN111537076B (en) Method and system for inhibiting temperature drift of infrared equipment in starting stage
Peterson et al. Infrared imaging video bolometer for the large helical device
WO2006017544A2 (en) Sensor apparatus and method for noise reduction
EP3457119B1 (en) Method and system for detecting precursor to thermal barrier coating spallation
Durocher et al. Development of an original active thermography method adapted to ITER plasma facing components control
US11965735B2 (en) Thickness measurement method, thickness measurement device, defect detection method, and defect detection device
JPS61139751A (en) Method for inspecting released part of wall surface
JPH0933320A (en) Probing method and probing device for liquid level in container
JPH0519943B2 (en)
JP4448553B1 (en) Deformation detection method of concrete surface layer by passive infrared method
Jackson et al. Fast estimation method of boresight errors in nonuniformly heated sapphire windows
JPS6117920A (en) Thermal picture processing system
JPH04157355A (en) Method for dianosing peeling off of wall or the like

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040127

Free format text: JAPANESE INTERMEDIATE CODE: A02