JP2016003488A - Invert concrete construction method, and tunnel construction method using the same - Google Patents

Invert concrete construction method, and tunnel construction method using the same Download PDF

Info

Publication number
JP2016003488A
JP2016003488A JP2014124477A JP2014124477A JP2016003488A JP 2016003488 A JP2016003488 A JP 2016003488A JP 2014124477 A JP2014124477 A JP 2014124477A JP 2014124477 A JP2014124477 A JP 2014124477A JP 2016003488 A JP2016003488 A JP 2016003488A
Authority
JP
Japan
Prior art keywords
pipe
tunnel
tube
ground
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014124477A
Other languages
Japanese (ja)
Other versions
JP6400951B2 (en
Inventor
西村 和夫
Kazuo Nishimura
和夫 西村
雄吾 鈴木
Yugo Suzuki
雄吾 鈴木
宏 芳賀
Hiroshi Haga
宏 芳賀
茂治 岩永
Shigeji Iwanaga
茂治 岩永
省二 伊藤
Seiji Ito
省二 伊藤
仁 手塚
Hitoshi Tezuka
仁 手塚
秀明 小田原
Hideaki Odawara
秀明 小田原
宏一 青木
Koichi Aoki
宏一 青木
啓明 庄司
Hiroaki Shoji
啓明 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
East Nippon Expressway Co Ltd
Tokyo Metropolitan Public University Corp
Original Assignee
Kumagai Gumi Co Ltd
East Nippon Expressway Co Ltd
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, East Nippon Expressway Co Ltd, Tokyo Metropolitan Public University Corp filed Critical Kumagai Gumi Co Ltd
Priority to JP2014124477A priority Critical patent/JP6400951B2/en
Publication of JP2016003488A publication Critical patent/JP2016003488A/en
Application granted granted Critical
Publication of JP6400951B2 publication Critical patent/JP6400951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an invert concrete construction method and a tunnel construction method using the same, capable of closing a tunnel at an early stage and stabilizing the tunnel early.SOLUTION: Invert concrete is formed by forming a pilot tunnel A along an extension direction of a tunnel T scheduled to be constructed at the bottom of a planned construction site TR of the tunnel T, subsequently making a tube C with rectangular cross sections progress from the pilot tunnel A into the underground 10, installing the tube C in the underground 10 and filling the tube C installed in the underground 10 with concrete C1.

Description

本発明は、トンネルを構築する際のインバートコンクリート施工方法、及び、当該方法を使用したトンネル施工方法に関する。   The present invention relates to an invert concrete construction method for constructing a tunnel, and a tunnel construction method using the method.

一般に、トンネルを構築する場合、地山を掘削して形成したトンネル空洞部に地山が崩落することを防止するために、地山を掘削した後、トンネル空洞部の断面アーチ形状(上方に突出するように湾曲するアーチ形状)に形成された内壁面に支保工を構築し、さらに、支保工の断面アーチ形状(上方に突出するように湾曲するアーチ形状)の両脚部側の支持力不足等によりトンネル空洞部の断面形状が変形することを防止するために、トンネル空洞部の底部を掘削してトンネル空洞部の底面を断面アーチ形状(下方に突出するように湾曲するアーチ形状)の底盤に形成した後、当該底盤上にコンクリートを打設したりプレキャスト製のコンクリートを設置することによりインバートコンクリートを施工してトンネルを閉合することによってトンネルの安定化を図るようにしている(例えば特許文献1)。   In general, when constructing a tunnel, in order to prevent the natural ground from collapsing into the tunnel cavity formed by excavating the natural ground, after excavating the natural ground, the cross-sectional arch shape of the tunnel cavity (projecting upward) A support work is constructed on the inner wall surface formed in an arch shape that curves so as to be further, and there is insufficient support capacity on both leg sides of the cross-section arch shape of the support work (an arch shape that curves so as to protrude upward), etc. In order to prevent the cross-sectional shape of the tunnel cavity from being deformed by the excavation, the bottom of the tunnel cavity is excavated, and the bottom of the tunnel cavity is changed to a cross-section arch-shaped (arch shape that curves so as to protrude downward) After forming, cast concrete by placing concrete on the bottom or installing precast concrete to close the tunnel. So that stabilized panel (for example, Patent Document 1).

特開2013−28898号公報JP 2013-28898 A

しかしながら、上述した従来のインバートコンクリート施工方法においては、トンネル空洞部を形成した後にインバートコンクリートを施工しなければならず、トンネル空洞部を形成する前にインバートコンクリートを先行して施工することが不可能であるため、トンネルを早期に閉合することができず、トンネルの早期安定を図ることができないという問題点があった。
本発明は、トンネルを早期に閉合することができて、トンネルの早期安定を図ることが可能なインバートコンクリート施工方法、及び、当該方法を用いたトンネル施工方法を提供する。
However, in the conventional invert concrete construction method described above, it is necessary to construct the invert concrete after forming the tunnel cavity, and it is impossible to construct the invert concrete in advance before the tunnel cavity is formed. Therefore, there was a problem that the tunnel could not be closed early and the tunnel could not be stabilized early.
The present invention provides an invert concrete construction method capable of closing a tunnel at an early stage and achieving early stabilization of the tunnel, and a tunnel construction method using the method.

本発明に係るインバートコンクリート施工方法は、トンネルの施工予定地の底部に施工予定のトンネルの延長方向に沿った導坑を形成した後に、当該導坑から断面四角形の管を地中に進行させて管を地中に設置するとともに地中に設置された管内にコンクリートを充填することによりインバートコンクリートを形成したので、トンネルを早期に閉合することができて、トンネルの早期安定を図ることが可能となる。
また、インバートコンクリートを、トンネルの延長方向に延長する断面アーチ形状の厚さの等しい先行覆工として機能する板状に形成したので、トンネルの幅方向、及び、トンネルの延長方向において、均等な厚さ、均等な強度を備えた先行覆工として機能するインバートコンクリートを形成できる。
また、地中に設置された管内に支保工を設置した後に当該支保工が設置された管内にコンクリートを充填することによりインバートコンクリートを形成したので、支保工と覆工コンクリートとが一体となった耐圧の大きいインバートコンクリートを施工できる。
また、導坑がトンネルの施工予定地の底部において施工予定のトンネルの左右幅間の中央側に位置して施工予定のトンネルの延長方向に沿って延長するように形成され、導坑の側壁を介して導坑とトンネル空洞部の内壁の下端位置に相当する地中位置とに跨るように地中に設置された管が施工予定のトンネルの延長方向に沿って隣り合うように地中に複数配置されたので、トンネルの延長方向に沿って延長するように設けられた1本の導坑を介して管を地中に設置できるようになり、形成する導坑の数を最小限にできるので、施工コストを低減できる。
本発明に係るトンネル施工方法は、上述したインバートコンクリート施工方法によってインバートコンクリートを形成した後に、地中に形成されたインバートコンクリートの上方の地山を掘削してトンネル本坑を形成したので、トンネルを早期に閉合することができて、トンネルの早期安定を図ることが可能となるとともに、トンネル本坑のトンネル空洞部の掘削作業の前にすでにインバートコンクリートが構築されているため、トンネル本坑のトンネル空洞部を形成するための掘削作業の際の地表面沈下量を低減できる。
また、上述したインバートコンクリート施工方法によってインバートコンクリートを形成する作業とインバートコンクリートの形成予定地の上方の地山を掘削してトンネル空洞部を形成する作業とを同時進行で行うようにすれば、トンネルの早期安定を図ることが可能となるとともにトンネル施工時間を短縮することが可能なトンネル施工方法となる。
また、トンネル施工予定地のトンネル上半となる部分を掘削してトンネル上半空洞部を形成し、当該トンネル上半空洞部の内壁面に上部支保工を形成するとともにトンネル上半空洞部の底面に底部支保工を形成することによってトンネル上半空洞部の内周面に上半支保工を形成して当該トンネル上半空洞部を閉合した後、当該トンネル上半空洞部の内壁面の下端とインバートコンクリートの端部との間の地山を掘削して当該トンネル上半空洞部の内壁面に形成されている上部支保工の下端部とインバートコンクリートの端部とを繋ぐようにトンネル空洞部の内壁面の下端側の支保工を形成することによってトンネルを閉合し、その後、トンネル上半空洞部の底面に設けられた底部支保工の撤去作業、トンネル下半となる部分を掘削する掘削作業、導坑の撤去作業を行うことによってトンネル本坑を形成したので、トンネル上半空洞部及びトンネルを早期に閉合できて、トンネル支保構造の安定性を向上させることが可能となり、安全性の高いトンネル構築方法を実現できる。
In the invert concrete construction method according to the present invention, after forming a guide pit along the extension direction of the tunnel planned to be constructed at the bottom of the tunnel planned construction site, a pipe having a rectangular cross section is advanced from the guide pit into the ground. Invert concrete was formed by installing concrete pipes in the underground and filling the concrete pipes in the underground, so that the tunnel can be closed early and the tunnel can be stabilized early. Become.
Invert concrete is formed in a plate shape that functions as a preceding lining with the same thickness of the cross-sectional arch shape that extends in the tunnel extension direction, so that the thickness is equal in the tunnel width direction and tunnel extension direction. Invert concrete that functions as a preceding lining with uniform strength can be formed.
Invert concrete was formed by filling concrete in the pipe where the support was installed after installing the support in the pipe installed in the ground, so that the support and lining concrete were integrated. Invert concrete with high pressure resistance can be constructed.
In addition, the shaft is located at the center between the left and right widths of the tunnel to be constructed at the bottom of the planned construction site of the tunnel and extends along the extension direction of the tunnel to be constructed. A plurality of pipes installed in the ground so as to straddle the guide tunnel and the underground position corresponding to the lower end position of the inner wall of the tunnel cavity are adjacent to each other along the extension direction of the tunnel to be constructed. Since it is arranged, the pipe can be installed in the ground through one guide shaft provided to extend along the extension direction of the tunnel, and the number of guide shafts to be formed can be minimized. The construction cost can be reduced.
In the tunnel construction method according to the present invention, after the invert concrete was formed by the above-described invert concrete construction method, the tunnel main shaft was formed by excavating the ground above the invert concrete formed in the ground. It is possible to close early and stabilize the tunnel early, and since invert concrete has already been constructed before excavation work of the tunnel cavity of the tunnel main tunnel, The amount of ground surface settlement during excavation work for forming the cavity can be reduced.
In addition, if the work for forming invert concrete by the above-described invert concrete construction method and the work for excavating the ground above the place where the invert concrete is to be formed to form the tunnel cavity are performed simultaneously, the tunnel As a result, the tunnel construction method can shorten the tunnel construction time.
In addition, the upper half of the tunnel is excavated to form the upper half cavity of the tunnel construction site, the upper support is formed on the inner wall surface of the upper half cavity of the tunnel, and the bottom of the upper half cavity of the tunnel is formed. After forming the upper half support on the inner peripheral surface of the upper half cavity of the tunnel by closing the bottom half of the tunnel and closing the upper half cavity of the tunnel, Excavation of natural ground between the ends of the invert concrete and the tunnel cavity so that the lower end of the upper support formed on the inner wall of the upper half cavity of the tunnel and the end of the invert concrete are connected. The tunnel is closed by forming a supporting work on the lower end side of the inner wall, and then the bottom supporting work provided at the bottom of the upper half cavity of the tunnel is removed, and the excavation work that excavates the lower half of the tunnel Since the tunnel main shaft was formed by removing the guide shaft, the upper half cavity of the tunnel and the tunnel can be closed early, and the stability of the tunnel support structure can be improved and the safety is high. A tunnel construction method can be realized.

トンネル構築方法の工程図(実施形態1)。Process drawing of a tunnel construction method (Embodiment 1). トンネル構築方法の工程図(実施形態1)。Process drawing of a tunnel construction method (Embodiment 1). トンネル構築方法の工程図(実施形態1)。Process drawing of a tunnel construction method (Embodiment 1). インバート部の拡大図(実施形態1)。The enlarged view of an invert part (embodiment 1). インバート部の拡大図(実施形態2)。The enlarged view of an invert part (embodiment 2). 図5のA−A断面図(実施形態2)。AA sectional view of Drawing 5 (embodiment 2). 管設置装置の断面図(実施形態3)。Sectional drawing of a pipe installation apparatus (embodiment 3). 先頭管の先頭部分を示した斜視図(実施形態3)。The perspective view which showed the head part of the top pipe (embodiment 3). 案内刃管の刃先側から管の内部の掘削機械を見た図(実施形態3)。The figure which looked at the excavation machine inside a pipe | tube from the blade-tip side of a guide blade pipe | tube (Embodiment 3). 地中への管の設置方法を示す図(実施形態3)。The figure which shows the installation method of the pipe | tube in the ground (Embodiment 3). 管設置装置を示す斜視図(実施形態3)。A perspective view showing a pipe installation device (embodiment 3). 管設置装置を示す分解斜視図(実施形態3)。An exploded perspective view showing a pipe installation device (embodiment 3). 掘削機械揺動駆動装置を備えた管設置装置を示す断面図(実施形態8)。Sectional drawing which shows the pipe installation apparatus provided with the excavation machine rocking | fluctuation drive device (Embodiment 8). (a)は先頭管の先頭部分を示した斜視図、(b)一対の第2の掘削ビット群の関係を示す断面図(実施形態9)。(A) is the perspective view which showed the head part of the head pipe, (b) Sectional drawing which shows the relationship between a pair of 2nd excavation bit groups (Embodiment 9). (a)は回転掘削体の掘削時の状態を示す図、(b)は回転掘削体の回収時の姿勢状態を示す図(実施形態9)。(A) is a figure which shows the state at the time of excavation of a rotary excavation body, (b) is a figure which shows the attitude | position state at the time of collection | recovery of a rotary excavation body (Embodiment 9).

実施形態1
実施形態1のトンネル施工方法におけるインバートコンクリート施工方法は、トンネル空洞部を形成する前にインバートコンクリートを先行して施工する方法であって、図1及び図2に示すように、トンネルTの施工予定地TRの底部に施工予定のトンネルTの延長方向に沿った導坑Aを形成した後に、当該導坑Aから管Cを地中10に進行させて管Cを地中10に設置するとともに地中10に設置された管C内にコンクリートC1を充填することによりインバートコンクリートBを形成する。
以下、図1乃至図4に基づいて当該インバートコンクリート施工方法を用いたトンネル施工方法を説明する。尚、図1(a);(b)の二点鎖線は施工予定のトンネルTの断面形状を示す。
実施形態1によるトンネル施工方法は、導坑形成ステップと、インバートコンクリート形成ステップと、トンネル本坑形成ステップとを備え、導坑形成ステップにおいて、トンネルTの施工予定地TRの底部に施工予定のトンネルTの延長方向に沿った導坑Aを形成した後に、インバートコンクリート形成ステップにおいて、当該導坑Aから管Cを地中に進行させて管Cを地中10に設置するとともに地中10に設置された管C内にコンクリートC1を充填することによりトンネルTのインバートコンクリートBを形成し、その後、トンネル本坑形成ステップにおいて、地中10に形成されたインバートコンクリートBの上方の地山を掘削してトンネル本坑を形成する。
Embodiment 1
The invert concrete construction method in the tunnel construction method of Embodiment 1 is a method of constructing invert concrete in advance before forming the tunnel cavity, and as shown in FIG. 1 and FIG. After forming the guide pit A along the extension direction of the tunnel T to be constructed at the bottom of the ground TR, the pipe C is advanced from the guide pit A to the ground 10 to install the pipe C in the ground 10 and the ground. Invert concrete B is formed by filling concrete C1 into the pipe C installed in the middle 10.
Hereinafter, a tunnel construction method using the inverted concrete construction method will be described with reference to FIGS. In addition, the dashed-two dotted line of Fig.1 (a); (b) shows the cross-sectional shape of the tunnel T to be constructed.
The tunnel construction method according to Embodiment 1 includes a shaft formation step, an invert concrete formation step, and a tunnel main shaft formation step. In the shaft formation step, the tunnel scheduled to be constructed at the bottom of the planned construction site TR of the tunnel T After forming the guide shaft A along the extending direction of T, in the invert concrete forming step, the pipe C is advanced from the guide shaft A to the ground to install the tube C in the ground 10 and installed in the ground 10 The invert concrete B of the tunnel T is formed by filling the concrete pipe C into the pipe C, and then the ground above the invert concrete B formed in the underground 10 is excavated in the tunnel main shaft forming step. To form the main tunnel.

導坑形成ステップでは、図1(a)に示すように、トンネルTの施工予定地TRの底部において施工予定のトンネルTの左右幅間の中央側、即ち、施工予定のトンネルTの左右幅間の中央又はほぼ中央に位置して施工予定のトンネルTの延長方向に沿って延長する導坑Aを形成する。
尚、トンネルTの左右幅とは、トンネルTの延長方向と直交するトンネル断面(図3(c)参照)の左右幅を言う。
当該導坑Aは、例えばNATM工法等の公知のトンネル構築方法により形成される。
In the shaft formation step, as shown in FIG. 1A, at the bottom of the construction site TR of the tunnel T, the center side between the left and right widths of the tunnel T to be constructed, that is, between the left and right widths of the tunnel T to be constructed. A guide shaft A is formed that extends along the extension direction of the tunnel T to be constructed and is located at the center or substantially the center of the tunnel.
The horizontal width of the tunnel T means the horizontal width of the tunnel cross section (see FIG. 3C) orthogonal to the extending direction of the tunnel T.
The guide shaft A is formed by a known tunnel construction method such as a NATM construction method.

インバートコンクリート形成ステップでは、導坑Aの側壁を介して導坑Aと後に形成されるトンネル空洞部の内壁の下端位置に相当する地中位置とに跨るように地中10に設置された管Cが施工予定のトンネルTの延長方向に沿って隣り合うように地中10に複数配置される。
尚、管Cとしては、実施形態3で説明するような、管の中心線(中心軸)と直交する面で管を切断した場合の断面形状が四角形状、即ち、断面四角形の曲管あるいは折曲管を用いる。
即ち図1(a)〜図1(c)に示すように、導坑Aの左側壁ALの下端部ALeを介して導坑Aと後に形成されるトンネル空洞部の断面アーチ形状(上方に突出するように湾曲するアーチ形状)の内壁TUの左下端位置DLeに相当する地中位置とに跨るように設置された管Cが施工予定のトンネルTの延長方向に沿って接触又は近接して隣り合うように地中10に複数配置されるとともに、図2(a);(b)に示すように、導坑Aの右側壁ARの下端部AReを介して導坑Aと後に形成されるトンネル空洞部の断面アーチ形状(上方に突出するように湾曲するアーチ形状)の内壁TUの右下端位置DReに相当する地中位置とに跨るように設置された管Cが施工予定のトンネルTの延長方向に沿って隣り合うように地中10に複数配置される。
In the invert concrete formation step, the pipe C installed in the underground 10 so as to straddle the underground pit A and the underground position corresponding to the lower end position of the inner wall of the tunnel cavity portion formed later through the sidewall of the underground mine A. Are arranged in the underground 10 so as to be adjacent along the extending direction of the tunnel T to be constructed.
The pipe C has a quadrangular cross section when the pipe is cut along a plane orthogonal to the center line (center axis) of the pipe as described in the third embodiment, that is, a bent pipe or a fold having a square cross section. Use curved pipes.
That is, as shown in FIG. 1A to FIG. 1C, the cross-sectional arch shape of the tunnel cavity formed later and the tunnel A through the lower end portion ALe of the left side wall AL of the tunnel A (projecting upward) The pipe C installed so as to straddle the underground position corresponding to the lower left end position DLe of the inner wall TU of the inner wall TU of the inner wall TU in contact with or close to each other along the extending direction of the tunnel T to be constructed As shown in FIGS. 2 (a) and 2 (b), a plurality of tunnels are formed in the underground 10 so as to fit with each other, and are formed behind the guide shaft A via the lower end portion ARe of the right side wall AR of the guide shaft A. The pipe C installed so as to straddle the underground position corresponding to the right lower end position DRe of the inner wall TU having a cross-sectional arch shape (an arch shape curved so as to protrude upward) in the hollow portion is an extension of the tunnel T to be constructed. Arranged in the underground 10 so as to be adjacent along the direction That.

地中10への管Cの設置作業は、例えば、後述する管設置装置1のような管設置手段を用いて行えばよい。
管Cは、例えば、後述する先頭の管2の進行方向後側に後続の管2を順次繋げて構成される複数の管2により構成された管C、又は、1本の管2により構成された管Cである。
尚、導坑Aの左側壁ALの下端部ALeとは、図1(a)に示す導坑Aの延長方向と直交する断面アーチ形状(上方に突出するように湾曲するアーチ形状)の内壁面における左下端部を言い、導坑Aの右側壁ARの下端部AReとは、図1(a)に示す導坑Aの延長方向と直交する断面アーチ形状の内壁面における右下端部を言う。
トンネル空洞部の内壁の左下端位置DLeとは、図3(c)に示すトンネル空洞部の延長方向と直交する断面アーチ形状の内壁TUにおける左下端位置を言い、トンネル空洞部の内壁の右下端位置DReとは、図3(c)に示すトンネル空洞部の延長方向と直交する断面アーチ形状の内壁TUにおける右下端位置を言う。
The installation work of the pipe C to the underground 10 may be performed using, for example, pipe installation means such as the pipe installation apparatus 1 described later.
The tube C is configured by, for example, a tube C configured by a plurality of tubes 2 configured by sequentially connecting subsequent tubes 2 to the rear side in the advancing direction of the first tube 2 described later, or a single tube 2. Tube C.
Note that the lower end portion ALe of the left side wall AL of the guide shaft A is an inner wall surface of a cross-sectional arch shape (arch shape curved so as to protrude upward) perpendicular to the extending direction of the guide shaft A shown in FIG. The lower left end ARe of the right side wall AR of the guide shaft A refers to the lower right end portion of the inner wall surface having a cross-sectional arch shape orthogonal to the extending direction of the guide shaft A shown in FIG.
The left lower end position DLe of the inner wall of the tunnel cavity portion refers to the left lower end position of the inner wall TU having an arched cross section perpendicular to the extending direction of the tunnel cavity portion shown in FIG. The position DRe refers to the right lower end position in the inner wall TU having an arched cross section perpendicular to the extending direction of the tunnel cavity shown in FIG.

導坑Aを発進坑として管Cが地中10に設置された後、地中10に設置された管C内にコンクリートC1が充填(打設)される。
地中10に設置された管C内へのコンクリートC1の充填作業は、地中10に設置された管Cの後端開口であって導坑A内に残る当該後端開口からコンクリートC1を管C内に圧入すればよい。
After the pipe C is installed in the underground 10 with the guide mine A as the starting mine, the concrete C1 is filled (placed) in the pipe C installed in the underground 10.
The concrete C1 filling operation into the pipe C installed in the underground 10 is the rear end opening of the pipe C installed in the underground 10 and the concrete C1 is piped from the rear end opening remaining in the guide shaft A. What is necessary is just to press-fit in C.

そして、図2(c);図4に示すように、導坑Aの左側壁ALを介して導坑Aと後に形成されるトンネル空洞部のアーチ形状の内壁TUの左下端位置DLeに相当する地中位置とに跨るように地中10に設置された左側の管Cの後端開口と導坑Aの右側壁ARを介して導坑Aと後に形成されるトンネル空洞部のアーチ形状の内壁TUの右下端位置DReに相当する地中位置とに跨るように地中10に設置された右側の管Cの後端開口との間における導坑Aの床面にコンクリートC1を打設し、導坑A内で互いに向かい合う当該左側の管Cの後端開口と当該右側の管Cの後端開口とをコンクリートC1で連結することによって、トンネル空洞部のアーチ形状の内壁TUの左下端位置DLeと内壁TUの右下端位置DReとに跨るインバートコンクリートBが形成される。   And as shown in FIG. 2 (c); FIG. 4, it corresponds to the left lower end position DLe of the arch-shaped inner wall TU of the tunnel cavity formed later with the guide pit A through the left side wall AL of the guide pit A. An arch-shaped inner wall of the tunnel cavity formed behind the mine shaft A through the rear end opening of the left pipe C installed in the underground 10 so as to straddle the underground position and the right side wall AR of the mine shaft A Concrete C1 is placed on the floor surface of the guide shaft A between the rear end opening of the right pipe C installed in the underground 10 so as to straddle the underground position corresponding to the right lower end position DRe of the TU, By connecting the rear end opening of the left pipe C and the rear end opening of the right pipe C facing each other in the shaft A by the concrete C1, the left lower end position DLe of the arch-shaped inner wall TU of the tunnel cavity portion And the invert converter straddling the lower right position DRe of the inner wall TU REITs B is formed.

尚、導坑Aの左側壁ALを介して導坑Aと後に形成されるトンネル空洞部のアーチ形状の内壁TUの左下端位置DLeに相当する地中位置とに跨るように地中10に設置された左側の管Cの後端開口と導坑Aの右側壁ARを介して導坑Aと後に形成されるトンネル空洞部のアーチ形状の内壁TUの右下端位置DReに相当する地中位置とに跨るように地中10に設置された右側の管Cの後端開口との間に図外の連結管を設置して、左側の管Cの後端開口端面と図外の連結管の一端開口端面とを突き合わせて端面同士を溶接等の接続手段で接続するとともに、右側の管Cの後端開口端面と図外の連結管の他端開口端面とを突き合わせて端面同士を溶接等の接続手段で接続した後、当該連結管の管壁を貫通するように形成された注入口を介して当該連結管内にコンクリートC1を充填することによって、トンネル空洞部のアーチ形状の内壁TUの左下端位置DLeと内壁TUの右下端位置DReとに跨るインバートコンクリートBを形成してもよい。   In addition, it is installed in the underground 10 so as to straddle the guiding hole A and the underground position corresponding to the lower left end position DLe of the arch-shaped inner wall TU of the tunnel cavity portion formed later through the left wall AL of the guiding mine A. The underground position corresponding to the right lower end position DRe of the arch-shaped inner wall TU of the tunnel cavity portion formed later with the guide pit A and the rear end opening of the left pipe C and the right side wall AR of the guide pit A A connecting pipe (not shown) is installed between the rear end opening of the right pipe C installed in the underground 10 so as to straddle the pipe, and a rear end opening end face of the left pipe C and one end of the connecting pipe (not shown). The end faces are connected to each other by connecting means such as welding, and the rear end opening end face of the right pipe C and the other end opening end face of the connecting pipe (not shown) are connected to each other. After connecting by means, the contact is made through an inlet formed so as to penetrate the wall of the connecting pipe. By filling concrete C1 to the connecting tube may be formed invert concrete B spanning the lower right end position DRe the lower left end position DLe inner wall TU inner wall TU arched tunnel cavity.

以上のように、施工予定のトンネルTにおけるトンネル空洞部のアーチ形状の内壁TUの左下端位置DLeに相当する地中位置と右下端位置DReに相当する地中位置とに跨るように設置され、かつ、施工予定のトンネルTの延長方向に沿って隣り合うように地中10に複数配置された管C内にコンクリートC1を充填することによって、インバートコンクリートBが形成される。即ち、トンネルTの延長方向に延長する断面アーチ形状(下方に突出するように湾曲するアーチ形状)の厚さの等しい板状のプレライニング(先行覆工)として機能するインバートコンクリートBが形成される。   As described above, it is installed so as to straddle the underground position corresponding to the left lower end position DLe and the underground position corresponding to the right lower end position DRe of the arch-shaped inner wall TU of the tunnel cavity in the tunnel T to be constructed, Invert concrete B is formed by filling concrete C1 into a plurality of pipes C arranged in the underground 10 so as to be adjacent to each other along the extension direction of the tunnel T to be constructed. That is, an invert concrete B is formed which functions as a plate-like prelining (preceding lining) having a cross-sectional arch shape extending in the extending direction of the tunnel T (an arch shape curved so as to protrude downward). .

トンネル本坑形成ステップは、トンネル上半形成ステップと、トンネル下半形成ステップとを備える。   The tunnel main shaft forming step includes a tunnel upper half forming step and a tunnel lower half forming step.

トンネル上半形成ステップでは、トンネルTの施工予定地TRのトンネル上半となる地山部分を掘削してトンネル上半空洞部Eを形成するとともに当該トンネル上半空洞部Eの内周面に上半支保工E1を形成してトンネル上半空洞部Eを上半支保工E1により早期に閉合する。上半支保工E1は、上部支保工E2と底部支保工E3とにより形成される。   In the tunnel upper half formation step, the ground half portion of the tunnel upper half of the planned construction site TR of the tunnel T is excavated to form the tunnel upper half cavity E and the upper half cavity E above the inner peripheral surface of the tunnel upper half cavity E. The semi-supporting work E1 is formed, and the upper half cavity E of the tunnel is quickly closed by the upper half supporting work E1. The upper half support E1 is formed by an upper support E2 and a bottom support E3.

例えば、トンネル上半空洞部Eの断面アーチ形状(上方に突出するように湾曲するアーチ形状)の内壁面にトンネルTの延長方向に沿って所定の間隔を隔てて複数の鋼製支保工を設置した後に当該トンネル上半空洞部Eの内壁面と鋼製支保工とにコンクリートを吹き付け、その後、吹き付けられたコンクリートをロックボルトによって地山に固定するNATM工法による上部支保工E2を施工するとともに、トンネル上半空洞部Eの底面に後に撤去される仮設の底部支保工E3を施工して、トンネル上半空洞部Eの内周面に上半支保工E1が形成されることによって、トンネル上半空洞部Eが早期に閉合される(図3(a)参照)。   For example, a plurality of steel supporters are installed at predetermined intervals along the extension direction of the tunnel T on the inner wall surface of the cross-sectional arch shape of the upper half cavity E of the tunnel (the arch shape curved so as to protrude upward) After the concrete is sprayed to the inner wall surface of the tunnel upper half cavity E and the steel support, and then the upper support E2 by the NATM method of fixing the sprayed concrete to the natural ground with the lock bolt, By constructing a temporary bottom support E3 to be removed later on the bottom surface of the tunnel upper half cavity E and forming the upper half support E1 on the inner peripheral surface of the tunnel upper half cavity E, the tunnel upper half The cavity E is closed early (see FIG. 3A).

このように、トンネル上半空洞部Eが上半支保工E1により早期に閉合されることで、地山からの圧力によって上半支保工E1が変形してしまうことを抑制でき、トンネル上半空洞部Eの断面形状を安定に保つことができるようになる。   In this way, the upper half cavity E can be prevented from being deformed by the pressure from the ground because the upper half cavity E of the tunnel is closed early by the upper half support E1, and the upper half cavity of the tunnel The cross-sectional shape of the part E can be kept stable.

トンネル上半空洞部Eの底部支保工E3は、例えば、トンネル上半空洞部Eの内壁面に形成された断面アーチ形状の上部支保工E2の左右の下端部の間(即ち、左下端部E2Leと右下端部E2Reとの間)に跨るようにトンネル上半空洞部Eの底面に設置された鋼製柱状のインバートストラットがトンネルTの延長方向に沿って所定の間隔を隔てて間欠的に複数配置されて、各インバートストラットの一端がトンネル上半空洞部Eの内壁面に形成された上部支保工E2の左下端部E2Leに接続されるとともに、各インバートストラットの他端がトンネル上半空洞部Eの内壁面に形成された上部支保工E2の右下端部E2Reに接続されるように構成される(図3(a)参照)。   The bottom support E3 of the tunnel upper half cavity E is, for example, between the left and right lower ends of the upper support E2 having an arched cross section formed on the inner wall surface of the tunnel upper half cavity E (that is, the left lower end E2Le). Steel column-shaped invert struts installed on the bottom surface of the upper half cavity portion E of the tunnel so as to straddle between the right lower end portion E2Re) and intermittently at predetermined intervals along the extension direction of the tunnel T. The one end of each invert strut is connected to the left lower end E2Le of the upper support E2 formed on the inner wall surface of the tunnel upper half cavity E, and the other end of each invert strut is connected to the tunnel upper half cavity It is comprised so that it may be connected to the lower right end part E2Re of the upper support E2 formed in the inner wall face of E (refer Fig.3 (a)).

上半支保工E1により早期に閉合されたトンネル上半空洞部Eを形成した後、当該トンネル上半空洞部Eの内壁面の下端とインバートコンクリートBの端部との間の地山を掘削して当該トンネル上半空洞部Eの内壁面に形成されている上部支保工E2の下端部とインバートコンクリートBの端部とを繋ぐようにトンネル空洞部Eの内壁面の下端側の支保工を形成する。
即ち、トンネル下半形成ステップでは、図3(b)に示すように、トンネル上半空洞部Eの上部支保工E2の左下端部E2LeとインバートコンクリートBの左端部BLeとの間の地山を掘削して作業空間FLを形成することによってトンネル空洞部の内壁面の左下端側となるトンネル下半空洞部Fの左側の内壁面を露出させ、かつ、トンネル上半空洞部Eの内壁面に形成されている上部支保工E2の左下端部E2LeとインバートコンクリートBの左端部BLeとを繋ぐようにトンネル空洞部の内壁面の左下端側の支保工E4を形成する。
さらに、トンネル下半形成ステップでは、図3(b)に示すように、トンネル上半空洞部Eの上部支保工E2の右下端部E2ReとインバートコンクリートBの右端部BReとの間の地山を掘削して作業空間FRを形成することによってトンネル空洞部の内壁面の右下端側となるトンネル下半空洞部Fの右側の内壁面を露出させ、かつ、トンネル上半空洞部Eの内壁面に形成されている上部支保工E2の右下端部E2ReとインバートコンクリートBの右端部BReとを繋ぐようにトンネル空洞部の内壁面の右下端側の支保工E5を形成する。
After forming the tunnel upper half cavity E, which was closed early by the upper half support E1, excavate a natural ground between the lower end of the inner wall of the tunnel upper half cavity E and the end of the invert concrete B Thus, the lower end of the inner wall surface of the tunnel cavity E is formed so as to connect the lower end of the upper support E2 formed on the inner wall surface of the upper half cavity E of the tunnel and the end of the invert concrete B. To do.
That is, in the lower half formation step of the tunnel, as shown in FIG. 3 (b), the ground between the lower left end portion E2Le of the upper support E2 of the upper half cavity portion E of the tunnel and the left end portion BLe of the invert concrete B is formed. By excavating to form a working space FL, the left inner wall surface of the lower tunnel half cavity F, which is the lower left side of the inner wall surface of the tunnel cavity, is exposed, and the inner wall surface of the upper tunnel half cavity E is exposed. A support E4 on the lower left side of the inner wall surface of the tunnel cavity is formed so as to connect the left lower end E2Le of the formed upper support E2 and the left end BLe of the invert concrete B.
Further, in the lower tunnel half-forming step, as shown in FIG. 3 (b), a natural ground between the lower right end E2Re of the upper support E2 of the upper tunnel half cavity E and the right end BRe of the invert concrete B is formed. By excavating to form a working space FR, the inner wall surface on the right side of the lower half cavity portion F which is the lower right side of the inner wall surface of the tunnel cavity portion is exposed, and the inner wall surface of the upper half cavity portion E of the tunnel is exposed. A support E5 on the lower right side of the inner wall surface of the tunnel cavity is formed so as to connect the lower right end E2Re of the formed upper support E2 and the right end BRe of the inverted concrete B.

トンネル空洞部の内壁面の左下端側の支保工E4及び右下端側の支保工E5は、例えば、トンネル上半空洞部Eの内壁面に設けられた上部支保工E2の下端部(左下端部E2Le又は右下端部E2Re)とインバートコンクリートBの端部(左端部BLe又は右端部BRe)との間に跨るように設置されたH形鋼等の鋼製支保工がトンネルTの延長方向に沿って所定の間隔を隔てて間欠的に複数配置されて、各鋼製支保工の上端がトンネル上半空洞部Eの上部支保工E2の下端部に接続されるとともに、各鋼製支保工の下端がインバート部Bを構成する管Cの端部の上面に接続又は載置され、かつ、トンネル下半空洞部Fの内壁面と鋼製支保工とにコンクリートを吹き付け、その後、吹き付けられたコンクリートをロックボルトによって地山に固定するNATM工法による支保工により形成される。
以上により、トンネル下半空洞部Fが形成される前で後にトンネル空洞部の断面アーチ状の内壁面TUになる部分に支保工(E2;E4;E5)が形成された構成となり、トンネルTが早期に閉合されることになる(図3(b)参照)。
The support E4 on the lower left side and the support E5 on the lower right side of the inner wall surface of the tunnel cavity are, for example, the lower end (the lower left end) of the upper support E2 provided on the inner wall surface of the tunnel upper half cavity E. E2Le or the right lower end E2Re) and the steel support such as H-shaped steel installed so as to straddle between the end of the invert concrete B (the left end BLe or the right end BRe) along the extending direction of the tunnel T The upper end of each steel support is connected to the lower end of the upper support E2 of the upper half cavity E of the tunnel, and the lower end of each steel support is arranged intermittently at predetermined intervals. Is connected to or placed on the upper surface of the end portion of the pipe C constituting the invert portion B, and concrete is sprayed on the inner wall surface of the lower half cavity portion F of the tunnel and the steel support, and then the sprayed concrete is Natural mountain by rock bolt Formed by shoring by fixing to NATM method.
As described above, the support T (E2; E4; E5) is formed in the portion that becomes the cross-sectional arch-shaped inner wall surface TU of the tunnel cavity portion before the tunnel lower half cavity portion F is formed. It is closed early (see FIG. 3B).

その後、トンネル上半空洞部Eの底面に設けられた仮設の底部支保工E3の撤去作業、トンネル下半となる部分を掘削する掘削作業、導坑Aの撤去作業を行うことにより、トンネル下半空洞部Fが形成され、トンネル上半空洞部Eとトンネル下半空洞部Fとより形成されるトンネル空洞部の断面アーチ状の内壁面TUに支保工(E2;E4;E5)が形成された構成となる(図3(c)参照)。   Thereafter, by removing the temporary bottom support E3 provided on the bottom surface of the upper half cavity E of the tunnel, excavating the lower half of the tunnel, and removing the guide shaft A, the lower half of the tunnel A cavity F was formed, and a support (E2; E4; E5) was formed on the inner wall TU having an arcuate cross section of the tunnel cavity formed by the upper half cavity C and the lower tunnel half cavity F. It becomes a structure (refer FIG.3 (c)).

尚、インバートコンクリートBは、左端が、左下端側の支保工E4の左下端(トンネル空洞部の支保工の左下端)よりも左側及び上側に出っ張った位置に到達し、かつ、右端が、右下端側の支保工E5の右下端(トンネル空洞部の支保工の右下端)よりも右側及び上側に出っ張った位置に到達するように地中10に設置されたので、トンネル空洞部の支保工の両方の下端を介して伝達される力を受ける面積が大きくなり、当該力を地山に分散させやすくなる。即ち、インバートコンクリートBに加わる荷重を地山に分散しやすい構成となる。また、インバートコンクリートBの施工後に、左下端側の支保工E4の左下端、及び、右下端側の支保工E5の右下端をインバートコンクリートBの左右幅方向の両端部に載置したり結合することが容易となる。   Invert concrete B reaches a position where the left end protrudes to the left and above the left lower end of the lower left supporter E4 (the lower left lower end of the tunnel cavity support), and the right end is the right Since it was installed in the underground 10 so as to reach the position protruding to the right side and the upper side of the lower right side of the lower support E5 (the lower right end of the tunnel cavity support), the tunnel cavity support The area that receives the force transmitted through both lower ends becomes larger, and the force is easily distributed to the ground. That is, the load applied to the invert concrete B is easily distributed to the natural ground. Further, after the construction of the invert concrete B, the left lower end of the support work E4 on the lower left side and the right lower end of the support work E5 on the lower right side are placed on or joined to both ends in the left-right width direction of the invert concrete B. It becomes easy.

そして、トンネル空洞部の断面アーチ形状の内壁面TUに形成された支保工(E2;E4;E5)の内面に図外の防水シートを設置した後に、当該防水シートの内側に図外の鉄筋を配置し、図外のセントル(覆工型枠)を用いて支保工の内側にコンクリートを打設して覆工コンクリートを形成することによりトンネル本坑が構成され、当該トンネル本坑とインバートコンクリートBとにより構成されたトンネルTが構築される。   Then, after installing a waterproof sheet (not shown) on the inner surface of the support wall (E2; E4; E5) formed on the inner wall surface TU having a cross-sectional arch shape in the tunnel cavity, a reinforcing bar (not shown) is placed inside the waterproof sheet. The tunnel main pit is constructed by placing and placing concrete inside the support using a centle (lining form) outside the figure to form the lining concrete, and the tunnel main pit and invert concrete B A tunnel T constituted by the above is constructed.

実施形態1のインバートコンクリート施工方法によれば、トンネルTの施工予定地TRの底部に施工予定のトンネルTの延長方向に沿った導坑Aを形成し、支保工を行わずに、当該導坑Aから地中10に進行させて施工予定のトンネルTのトンネル空洞部の断面アーチ状の内壁面TUの左下端位置DLeに相当する地中位置と右下端位置DReに相当する地中位置とに跨るように設置される管Cをコンクリート型枠として設置した後に当該管C内にコンクリートC1を充填することによって、トンネル空洞部を形成する前にプレライニング(先行覆工)として機能するインバートコンクリートBを先行して形成することができるので、トンネル空洞部の断面アーチ形状の内壁面に構築される断面アーチ形状の支保工の両脚部を先行のインバートコンクリートBに結合することで、トンネルTが早期に閉合されることになり、トンネル施工において、トンネルTの早期安定を図ることが可能となる。実施形態1によれば、大断面や扁平な断面のトンネルの施工であっても、トンネルTを早期に閉合させることができるので、トンネルの早期安定を実現でき、安全なトンネル施工方法を提供できるようになる。
尚、従来、トンネル空洞部を形成する前に底部支保工を構築した後に、トンネル空洞部を形成し、その後、ライニング(覆工)として機能するインバートコンクリートを施工する方法があるが、当該方法の場合、トンネル空洞部を形成する作業の前後で支保工と覆工とを別々に行う必要があり、施工期間の短縮化が図れないという問題があった。
これに対して実施形態1では、トンネル空洞部を形成する前に支保工を行わずに、コンクリート型枠として設置した管C内にコンクリートC1を充填することによって、プレライニング(先行覆工)として機能するインバートコンクリートBを先行して形成するため、トンネル空洞部を形成した後の覆工を行う必要がなくなり、施工期間の短縮化が図れる。
また、管Cとして、管の中心線(中心軸)と直交する面で管を切断した場合の断面形状が四角形状の曲管あるいは折曲管を用い、当該管Cを地中10のインバートコンクリート施工位置に設置し、当該地中に設置された管Cをコンクリート型枠として利用して管C内にコンクリートC1を充填することでインバートコンクリートBを施工したので、トンネルTの延長方向に延長する断面アーチ形状(下方に突出するように湾曲するアーチ形状)の厚さの等しい板状体で構成されたプレライニング(先行覆工)として機能するインバートコンクリートBを容易に施工できる。即ち、インバートコンクリートBを、トンネルTの延長方向に延長する断面アーチ形状の厚さの等しいプレライニング(先行覆工)として機能する板状に形成したので、トンネルTの幅方向、及び、トンネルTの延長方向において、均等な厚さ、均等な強度を備えたプレライニング(先行覆工)として機能するインバートコンクリートBを形成できる。また、管Cをコンクリート型枠として利用しているので、厚さ寸法の異なる管Cを使用することで、管Cの厚さ寸法に応じた厚さのインバートコンクリートBを容易に施工できるようになる。
また、トンネルTの施工予定地TRの底部において施工予定のトンネルTの左右幅間の中央側、即ち、施工予定のトンネルTの左右幅間の中央又はほぼ中央に位置して施工予定のトンネルTの延長方向に沿って延長する導坑Aを形成し、導坑Aの側壁を介して導坑Aとトンネル空洞部の内壁TUの下端位置に相当する地中位置とに跨るように地中10に設置された管Cが施工予定のトンネルTの延長方向に沿って隣り合うように地中10に複数配置されたので、トンネルTの延長方向に沿って延長するように設けられた1本の導坑Aを介して管Cを地中10に設置できるようになり、形成する導坑Aの数を最小限にできるので、施工コストを低減できる。
尚、実施形態1では、トンネルTの施工予定地TRの底部において施工予定のトンネルTの左右幅間の中央側、即ち、施工予定のトンネルTの左右幅間の中央又はほぼ中央に位置して施工予定のトンネルTの延長方向に沿って延長する導坑Aを形成した例を示したが、本発明では、施工予定のトンネルTの左右幅間の左側寄り又は右側寄りに位置して施工予定のトンネルTの延長方向に沿って延長する1本の導坑Aを形成してもよい。
また、本発明では、トンネルTの施工予定地TRの底部において施工予定のトンネルTの左下端側に左側導坑を形成するとともに、トンネルTの施工予定地TRの底部において施工予定のトンネルTの右下端側に右側導坑を形成し、当該左側導坑と右側導坑とに跨るように地中10に管Cを設置し、このように地中10に設置された管C内にコンクリートC1を充填してインバートコンクリートBを施工するようにしてもよい。
According to the invert concrete construction method of the first embodiment, the guide shaft A is formed at the bottom of the planned construction site TR of the tunnel T along the extension direction of the tunnel T planned to be constructed. The underground position corresponding to the lower left position DLe and the lower right position DRe corresponding to the lower left position DLe of the inner wall TU having a cross-sectional arch shape in the tunnel cavity of the tunnel T to be constructed from A to the ground 10 Invert concrete B that functions as prelining (advance lining) before forming the tunnel cavity by filling the concrete C1 into the pipe C after installing the pipe C installed so as to straddle. Can be formed in advance, so that both legs of the cross-section arch-shaped supporter constructed on the inner wall of the cross-section arch-shape of the tunnel cavity can be By binding to concrete B, will be the tunnel T is closing prematurely, in tunnel construction, it is possible to achieve early stabilization of the tunnel T. According to the first embodiment, the tunnel T can be closed at an early stage even in the construction of a tunnel having a large cross section or a flat cross section, so that early tunnel stabilization can be realized and a safe tunnel construction method can be provided. It becomes like this.
Conventionally, there is a method of constructing a tunnel cavity after constructing the bottom support before forming the tunnel cavity, and then constructing invert concrete that functions as a lining (lining). In this case, it is necessary to perform the support work and the lining work separately before and after the work for forming the tunnel cavity, and there is a problem that the construction period cannot be shortened.
In contrast to this, in the first embodiment, the concrete C1 is filled into the pipe C installed as a concrete formwork without performing a support work before forming the tunnel cavity, thereby providing a prelining (preceding lining). Since the functioning invert concrete B is formed in advance, it is not necessary to perform lining after the tunnel cavity is formed, and the construction period can be shortened.
Further, as the pipe C, a curved pipe or a bent pipe having a square cross section when the pipe is cut along a plane orthogonal to the center line (center axis) of the pipe is used, and the pipe C is used as an invert concrete of the underground 10. Since the invert concrete B was constructed by filling the concrete C1 into the pipe C using the pipe C installed in the ground as a concrete formwork, it is extended in the extension direction of the tunnel T. Invert concrete B that functions as a prelining (advanced lining) composed of a plate-like body having a cross-sectional arch shape (an arch shape that curves so as to protrude downward) and having the same thickness can be easily constructed. That is, since the invert concrete B is formed in a plate shape that functions as a pre-lining (preceding lining) having an equal cross-sectional arch shape extending in the extending direction of the tunnel T, the width direction of the tunnel T and the tunnel T In the extending direction, invert concrete B that functions as a prelining (preceding lining) having a uniform thickness and a uniform strength can be formed. Moreover, since the pipe C is used as a concrete formwork, the invert concrete B having a thickness corresponding to the thickness dimension of the pipe C can be easily constructed by using the pipe C having a different thickness dimension. Become.
In addition, at the bottom of the planned construction site TR of the tunnel T, the tunnel T to be constructed is located at the center side between the left and right widths of the tunnel T to be constructed, that is, at the center or almost the center between the left and right widths of the tunnel T to be constructed. The underground shaft 10 is formed so as to extend over the side wall of the tunnel A and the underground position corresponding to the lower end position of the inner wall TU of the tunnel cavity portion. Since a plurality of pipes C installed in the underground 10 are arranged so as to be adjacent to each other along the extension direction of the tunnel T to be constructed, one pipe C provided to extend along the extension direction of the tunnel T is provided. Since the pipe C can be installed in the underground 10 through the guide shaft A, and the number of guide shafts A to be formed can be minimized, the construction cost can be reduced.
In the first embodiment, at the bottom of the planned construction site TR of the tunnel T, the center side between the left and right widths of the tunnel T to be constructed, that is, the middle or almost the middle between the left and right widths of the tunnel T to be constructed. Although an example in which the guide shaft A extending along the extension direction of the tunnel T scheduled to be constructed is shown, in the present invention, the construction scheduled to be located on the left side or the right side between the left and right widths of the tunnel T scheduled to be constructed. One guide shaft A extending along the extending direction of the tunnel T may be formed.
Further, in the present invention, the left side shaft is formed on the lower left side of the tunnel T to be constructed at the bottom of the planned construction site TR of the tunnel T, and the tunnel T to be constructed is constructed at the bottom of the planned construction site TR of the tunnel T. A right guide shaft is formed on the lower right side, a pipe C is installed in the underground 10 so as to straddle the left guide shaft and the right guide shaft, and the concrete C1 is placed in the pipe C installed in the underground 10 in this way. The invert concrete B may be constructed by filling.

実施形態1のトンネル施工方法によれば、上述したインバートコンクリート施工方法によってインバートコンクリートBを形成した後に、地中10に形成されたインバートコンクリートBの上方の地山を掘削してトンネル本坑を形成したので、トンネルTを早期に閉合することができて、トンネルTの早期安定を図ることができるとともに、トンネル本坑のトンネル空洞部を形成するための掘削作業を行う前にインバートコンクリートBを形成することで、トンネル本坑のトンネル空洞部の掘削作業の前にすでにプレライニング(先行覆工)として機能するインバートコンクリートBが構築されているため、トンネル本坑のトンネル空洞部を形成するための掘削作業の際の地表面沈下量を低減できる。
また、トンネル空洞部を形成するに際して、まず、トンネル上半空洞部Eを形成して当該トンネル上半空洞部Eの内周面に上半支保工E1を形成することによってトンネル上半空洞部Eが早期に閉合されるので、比較的大きな断面のトンネルTを構築する場合において、トンネル支保構造の安定性を向上させることが可能となり、安全性の高いトンネル施工方法を実現できる。
さらに、トンネル下半空洞部Fを掘削して形成する作業を、トンネルTが閉合された状態で行えるので、安全性の高いトンネル施工方法を実現できる。
According to the tunnel construction method of the first embodiment, after forming the invert concrete B by the above-described invert concrete construction method, excavating the natural ground above the invert concrete B formed in the underground 10 to form the tunnel main shaft. As a result, the tunnel T can be closed early, the tunnel T can be stabilized early, and the invert concrete B is formed before the excavation work for forming the tunnel cavity of the tunnel main shaft is performed. As a result, the invert concrete B functioning as a pre-lining (advanced lining) has already been constructed before the excavation work of the tunnel cavity of the tunnel main mine, so that the tunnel cavity of the tunnel main mine is formed. The amount of land subsidence during excavation can be reduced.
When forming the tunnel cavity, first, the tunnel upper half cavity E is formed, and the upper half support E1 is formed on the inner peripheral surface of the tunnel upper half cavity E, thereby forming the tunnel upper half cavity E. Therefore, when the tunnel T having a relatively large cross section is constructed, the stability of the tunnel support structure can be improved, and a highly safe tunnel construction method can be realized.
Furthermore, since the work for excavating and forming the lower half cavity F of the tunnel can be performed in a state where the tunnel T is closed, a highly safe tunnel construction method can be realized.

実施形態2
実施形態2のトンネル施工方法におけるインバートコンクリート施工方法は、トンネル空洞部を形成する前にインバートコンクリートを先行して施工する方法であって、トンネルTの施工予定地TRの底部に施工予定のトンネルTの延長方向に沿った導坑Aを形成した後に、当該導坑Aから管Cを地中10に進行させて管Cを地中10に設置するまでは上述した実施形態1と同じであるが、実施形態2では、地中10に設置された管C内に支保工を設置した後に当該支保工が設置された管内にコンクリートを充填することによりインバートコンクリートBXを形成する。
以下、図5;図6に基づいて当該インバートコンクリート施工方法を用いたトンネル施工方法を説明する。尚、実施形態1と同一部分は同一符号を付して詳説を省略する。
実施形態2によるトンネル施行方法は、導坑形成ステップと、インバートコンクリート形成ステップと、トンネル本坑形成ステップとを備え、導坑形成ステップにおいて、トンネルTの施工予定地TRの底部に施工予定のトンネルTの延長方向に沿った導坑Aを形成した後に、インバート部形成ステップにおいて、導坑Aから管Cを地中10に進行させて管Cを地中10に設置するとともに地中10に設置された管C内にコンクリートC1を充填(打設)する前に、地中10に設置された管C内に支保工CXを設置した後に当該支保工CXが設置された管C内にコンクリートC1を充填(打設)することによって、支保工CXを内蔵したインバートコンクリートBXが形成され、その後、トンネル本坑形成ステップにおいて、インバートコンクリートBXの上方の地山を掘削してトンネル本坑を形成する。
Embodiment 2
The invert concrete construction method in the tunnel construction method of the second embodiment is a method in which invert concrete is constructed in advance before forming the tunnel cavity, and the tunnel T scheduled to be constructed at the bottom of the construction site TR of the tunnel T is constructed. After forming the guide shaft A along the extending direction, the pipe C is advanced from the guide shaft A to the ground 10 until the tube C is installed in the ground 10. In Embodiment 2, an invert concrete BX is formed by installing a support in the pipe C installed in the underground 10 and then filling the pipe in which the support is installed with concrete.
Hereinafter, a tunnel construction method using the inverted concrete construction method will be described based on FIG. 5 and FIG. 6. Note that the same parts as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
The tunnel enforcement method according to the second embodiment includes a shaft formation step, an invert concrete formation step, and a tunnel main shaft formation step. After forming the guide shaft A along the extending direction of T, in the invert portion forming step, the tube C is advanced from the guide shaft A to the underground 10 and installed in the underground 10 and installed in the underground 10 Before the concrete C1 is filled (placed) in the pipe C, the support CX is installed in the pipe C installed in the underground 10 and then the concrete C1 is placed in the pipe C in which the support CX is installed. Is filled (placed) to form invert concrete BX with built-in support CX. Drilled above the natural ground of Ried BX a tunnel Honko.

実施形態1では、地中10に設置された管C内にコンクリートC1を充填することによりインバートコンクリートBを形成した。つまり、実施形態1では、支保工を省略してプレライニング(先行覆工)として機能するインバートコンクリートBを構築するようにしたが、実施形態2では、導坑Aから発進して地中10に設置された管C内に挿入されて設置された支保工CXと管C内にコンクリートC1が充填されて形成された覆工コンクリートとが一体形成されたインバートコンクリートBXを施工するようにした。即ち、実施形態1で説明したインバートコンクリートBの内側に支保工CXが設置されて構成されたインバートコンクリートBXを施工するようにした。
管C内に挿入されて設置される支保工CXとしては、例えば、H型鋼(図5;図6参照)等の形鋼、鉄筋、インバートストラット等を使用すればよい。
また、支保工CXの周囲にコンクリートかぶり厚が確保されるように管C内に支保工CXを設置するため、図6に示すような、支保工位置決め設置部材(スペーサ)CYを用いればよい。
支保工位置決め設置部材CYは、例えば図6に示すように、支保工CXとなるH型鋼の高さ寸法に対応した間隔を隔てて設けられた上横枠材CY1及び下横枠材CY2と、上横枠材CY1及び下横枠材CY2の端部同士を連結する左縦枠CY3及び右縦枠CY4とを備えて、鳥居のような形に構成された支保工位置決め設置部材CYを用いればよい。このような支保工位置決め設置部材CYを、管C毎に管C内に固定状態に設置し、管Cの地中10への設置が終了した後に、上横枠材CY1、下横枠材CY2、左縦枠CY3、右縦枠CY4で囲まれた空間部分に支保工CXとしてのH型鋼を挿入し、支保工CXとしてのH型鋼が管Cの断面中空空間の中央部に位置されるように設置した後に管C内にコンクリートC1を充填することによって、支保工CXの周囲にコンクリートかぶり厚が確保されるように管C内に支保工CXを設置することが可能となる。
In Embodiment 1, the invert concrete B was formed by filling the concrete C1 in the pipe C installed in the underground 10. That is, in the first embodiment, the support concrete is omitted and the invert concrete B functioning as a prelining (preceding lining) is constructed, but in the second embodiment, the vehicle starts from the guide shaft A and enters the underground 10. The invert concrete BX in which the support CX inserted and installed in the installed pipe C and the lining concrete formed by filling the pipe C with concrete C1 is integrally formed is constructed. That is, the invert concrete BX constituted by installing the support CX inside the invert concrete B described in the first embodiment is constructed.
As the support CX inserted and installed in the pipe C, for example, a shape steel such as H-shaped steel (see FIG. 5; FIG. 6), a reinforcing bar, an invert strut, or the like may be used.
Further, in order to install the support CX in the pipe C so that the concrete cover thickness is secured around the support CX, a support positioning positioning member (spacer) CY as shown in FIG. 6 may be used.
For example, as shown in FIG. 6, the support work positioning installation member CY includes an upper horizontal frame material CY1 and a lower horizontal frame material CY2 provided at intervals corresponding to the height dimension of the H-shaped steel to be the support work CX, If a support positioning positioning member CY that is provided with a left vertical frame CY3 and a right vertical frame CY4 that connect ends of the upper horizontal frame material CY1 and the lower horizontal frame material CY2 and is configured in a shape like a torii is used. Good. Such a support positioning positioning member CY is installed in a fixed state in the pipe C for each pipe C, and after the installation of the pipe C to the ground 10 is finished, the upper horizontal frame material CY1 and the lower horizontal frame material CY2 The H-shaped steel as the supporting work CX is inserted into the space surrounded by the left vertical frame CY3 and the right vertical frame CY4 so that the H-shaped steel as the supporting work CX is positioned at the center of the cross-section hollow space of the pipe C. After filling the pipe C with the concrete C1, the support CX can be installed in the pipe C so that the concrete cover thickness is secured around the support CX.

実施形態2によれば、地中10に設置された管C内に支保工CXを設置した後に当該支保工CXが設置された管C内にコンクリートC1を充填することによって、支保工CXとプレライニング(先行覆工)として機能する覆工コンクリートとが一体となったインバートコンクリートBXを同時に施工できるようになり、支保工CXとプレライニング(先行覆工)として機能する覆工コンクリートとが一体となったインバートコンクリートBXの施工時間を短縮でき、施工コストを削減できるようになる。
また、実施形態2によれば、当支保工CXとプレライニング(先行覆工)として機能する覆工コンクリートとが一体となった耐圧の大きいインバートコンクリートBXを構築できるので、例えば地質が中硬岩層〜軟岩層の地山で地山が変動しやすい場所に、地山からの土圧を受けても変形しにくいインバートコンクリートBXを施工できるようになる。
According to the second embodiment, after the support CX is installed in the pipe C installed in the ground 10, the concrete C1 is filled in the pipe C in which the support CX is installed. Invert concrete BX combined with lining concrete that functions as lining (advanced lining) can be constructed at the same time, and support concrete CX and lining concrete that functions as prelining (advanced lining) are integrated. The construction time of the inverted concrete BX can be shortened and the construction cost can be reduced.
In addition, according to the second embodiment, the invert concrete BX having a large pressure resistance in which the supporting work CX and the lining concrete functioning as a prelining (advanced lining) are integrated can be constructed. -Invert concrete BX that is hard to deform even when subjected to earth pressure from a natural rock can be constructed in a place where the natural rock tends to fluctuate in a soft rock formation.

実施形態3
図7乃至図12に基づいて、上述した管設置装置1の一例を説明する。
図7に示すように、管設置装置1は、管2と、掘削装置3と、推進装置4と、推進力伝達装置70と、案内台90と、押さえ部材110とを備える。尚、以下、図7における上側を管2や管設置装置1の先頭あるいは前側と定義し、図7における下側を管2や管設置装置1の後側と定義し、図7における左右側を管2や管設置装置1の左右側と定義し、図7の紙面と直交する方向の上下側を管2や管設置装置1の上下側と定義して説明する。図8に管2や管設置装置1の前側、後側、左側、右側、上側、下側を明記した。
Embodiment 3
An example of the above-described tube installation device 1 will be described with reference to FIGS.
As shown in FIG. 7, the pipe installation device 1 includes a pipe 2, an excavation device 3, a propulsion device 4, a propulsion force transmission device 70, a guide stand 90, and a pressing member 110. In the following, the upper side in FIG. 7 is defined as the head or front side of the tube 2 or the tube installation device 1, the lower side in FIG. 7 is defined as the rear side of the tube 2 or the tube installation device 1, and the left and right sides in FIG. It will be defined as the left and right sides of the tube 2 and the tube installation device 1, and the upper and lower sides in the direction orthogonal to the paper surface of FIG. In FIG. 8, the front side, the rear side, the left side, the right side, the upper side, and the lower side of the pipe 2 and the pipe installation device 1 are clearly shown.

管Cを構成する管2は、円弧を描くように曲がって延長するように形成された曲管(管の中心線(管の延長方向と直交する断面の中心点を管の延長方向に沿って連続して繋いだ線)が曲線である管)、あるいは、折曲管である。当該折曲管は、一方の管の後端開口縁と他方の管の前端開口縁とを溶接等の連結手段によって連結して構成される管であって、一方及び他方の管として、管の互いに平行に対向する一方の一対の側壁が合同な台形に形成され、当該側壁の台形の互いに平行な辺縁が管の中心線と平行である側壁台形状に形成された折曲管である。当該折曲管を構成する一方の管の側壁の台形及び他方の管の側壁の台形は、台形の各脚と台形の互いに平行な上底及び下底である辺縁とのなす角が直角でない台形に形成され、当該折曲管は、一方の管の一対の台形状の側壁の脚である辺縁で開口する後端開口縁と他方の管の一対の台形状の側壁の脚である辺縁で開口する前端開口縁とが溶接等で連結されることで形成される。本明細書では、管の互いに平行な一方の一対の側壁のそれぞれが連結部を境界とした複数の平面で形成された構成の管を折曲管と言い、管の互いに平行な一方の一対の側壁のそれぞれが湾曲面で形成された構成の管を曲管という。
これら曲管、折曲管は、例えば管の中心線(中心軸)と直交する面で管を切断した場合の断面形状が四角形状の管により形成される。
管2としては例えば鋼製の管が用いられる。管2の大きさは、管2が断面形状長方形の曲管である場合、例えば、管の長さ(管の中心線に沿った方向の長さ)が1500mm、管の左右幅(断面長方形の長辺の長さ)が1240mm、管の上下幅(断面長方形の短辺の長さ)が690mm、管の肉厚が16mmである。また、折曲管を形成する個々の管の大きさは、例えば、管が断面形状長方形の管である場合、管2の長さ(管の中心線に沿った方向の長さ)が、台形の側壁の上低側で463mm、台形の側壁の下底側で497mmであり、管の左右幅が1240mm、管の上下幅が690mm、管の肉厚が16mmである。
そして、複数の曲管が順次連結されて地中10に設置されることによって円弧を描くように曲がって延長する管Cが地中10に構築されたり、複数の折曲管が順次連結されて地中10に設置されることによって連結部で折れ曲がって円弧に近似するように延長する管Cが地中10に構築される。
実施形態3の管設置装置1及び管設置方法によって地中10に構築される管Cは、先頭に位置される管2(以下、先頭管という)と後続の複数の管2(以下、後続管という)とにより形成される。例えば、管Cは、先頭に位置される先頭管6(図7;図10等参照)と先頭管6の後に続くように設けられる後続の複数の後続管7(図10参照)とにより形成される後端開口縁と前端開口縁とが水密状態に溶接にて順次連結された複数の管6;7;7…によって構築される。
The tube 2 constituting the tube C is a curved tube formed so as to bend and extend so as to draw an arc (the center line of the tube (the center point of the cross section perpendicular to the tube extending direction is along the tube extending direction). A continuously connected line) is a curved tube) or a bent tube. The bent pipe is a pipe configured by connecting a rear end opening edge of one pipe and a front end opening edge of the other pipe by connecting means such as welding, and the one and the other pipes are A pair of side walls opposing each other in parallel is formed into a congruent trapezoid, and the trapezoid of the side walls is formed into a side wall trapezoid whose parallel edges are parallel to the center line of the pipe. The trapezoid of the side wall of one pipe and the trapezoid of the side wall of the other pipe constituting the bent pipe are not perpendicular to the angle formed by each leg of the trapezoid and the edges of the trapezoid parallel to the upper and lower bases. The bent pipe is formed in a trapezoidal shape, and the bent pipe includes a rear-end opening edge that opens at the edge that is a leg of a pair of trapezoidal side walls of one pipe and a side that is a leg of a pair of trapezoidal side walls of the other pipe The front end opening edge that opens at the edge is connected by welding or the like. In the present specification, a pipe having a configuration in which each of a pair of side walls parallel to each other is formed of a plurality of planes with a connecting portion as a boundary is referred to as a bent pipe, and a pair of pipes parallel to each other is referred to as a bent pipe. A tube having a configuration in which each side wall is formed of a curved surface is referred to as a curved tube.
These bent pipes and bent pipes are formed by, for example, pipes having a quadrangular cross section when the pipe is cut along a plane orthogonal to the center line (center axis) of the pipe.
As the pipe 2, for example, a steel pipe is used. When the tube 2 is a curved tube having a rectangular cross section, the length of the tube (the length in the direction along the center line of the tube) is 1500 mm, and the width of the tube (the rectangular cross section). The length of the long side) is 1240 mm, the vertical width of the tube (the length of the short side of the rectangular cross section) is 690 mm, and the thickness of the tube is 16 mm. The size of each tube forming the bent tube is, for example, when the tube is a tube having a rectangular cross section, the length of the tube 2 (the length in the direction along the center line of the tube) is a trapezoid. 463 mm on the upper and lower sides of the side wall of the tube, 497 mm on the lower bottom side of the trapezoidal side wall, the horizontal width of the tube is 1240 mm, the vertical width of the tube is 690 mm, and the wall thickness of the tube is 16 mm.
Then, a plurality of bent pipes are sequentially connected and installed in the underground 10 so that a tube C that bends and extends so as to draw an arc is constructed in the underground 10 or a plurality of bent pipes are sequentially connected. By being installed in the underground 10, a pipe C is constructed in the underground 10 that is bent at the connecting portion and extends so as to approximate an arc.
The pipe C constructed in the underground 10 by the pipe installation device 1 and the pipe installation method of the third embodiment includes a pipe 2 positioned at the head (hereinafter referred to as a head pipe) and a plurality of subsequent pipes 2 (hereinafter referred to as subsequent pipes). And). For example, the pipe C is formed by a head pipe 6 (see FIG. 7; FIG. 10 and the like) positioned at the head and a plurality of subsequent succeeding pipes 7 (see FIG. 10) provided so as to follow the head pipe 6. The rear end opening edge and the front end opening edge are constructed by a plurality of pipes 6; 7;

以下、図7乃至図9を参照して管設置装置1の構成について説明する。
先頭管6は、管の先端側に案内刃部を備えた構成であり、例えば、図7に示すように、管6xと、管6xの先端に設けられた案内刃部として機能する案内刃管9とで形成される。案内刃管9は、管の一方の開口端縁13が鋭利に形成された刃部14を備えた管である。
先頭管6は、案内刃管9の他方の開口端部と管6xの先端の開口端部8とが接続されて形成される。この場合、例えば、案内刃管9の管の外径寸法が管6xの管の外径寸法よりも大きく、案内刃管9の他方の開口端面15側には、開口端面15における管の内周面側が削られて、段差が設けられることで、管6xの先端の開口端部8を嵌め込む嵌合孔16が形成された構成とする。そして、案内刃管9の他方の開口部17に設けられた嵌合孔16内に管6xの先端の開口端部8を嵌め込み、かつ、これら両者が、ボルト接合,溶接などの図外の接続手段によって接続されることで、案内刃管9の他方の開口端部と管6xの先端の開口端部8とが接続された構成とする。このように、案内刃管9の他方の開口部17に設けられた嵌合孔16内に管6xの先端の開口端部8を嵌め込んで、案内刃管9が管6xの先端開口端面18を覆うように取付けられた構成としたことで、管6xの推進の際に、管6xの先端開口端面18が地中10の抵抗を受けず、推進抵抗を少なくできる。また、管6xの先端の開口端部8を嵌め込む嵌合孔16が形成された構成としたことで、管6xの先端に容易に案内刃管9を設置でき、先頭管6を形成するための管6xと案内刃管9との組み立てを容易とすることができる。この場合、先頭管6の矩形外周面において管6xと案内刃管9との間で段差が生じるが、この段差は、管2の矩形外周面と出発口の内周面とに設けられる水密性能維持部材により止水性能を維持できるように小さく(例えば、1cm程度)形成される。
Hereinafter, the configuration of the pipe installation device 1 will be described with reference to FIGS. 7 to 9.
For example, as shown in FIG. 7, the leading pipe 6 has a guide blade tube that functions as a guide blade provided at the tip of the tube 6x and the tube 6x. And 9. The guide blade tube 9 is a tube including a blade portion 14 in which one open end edge 13 of the tube is formed sharply.
The leading tube 6 is formed by connecting the other opening end of the guide blade tube 9 and the opening end 8 at the tip of the tube 6x. In this case, for example, the outer diameter of the guide blade tube 9 is larger than the outer diameter of the tube 6x, and the inner periphery of the tube at the opening end surface 15 is located on the other opening end surface 15 side of the guide blade tube 9. The surface side is shaved and a step is provided to form a fitting hole 16 into which the opening end 8 at the tip of the tube 6x is fitted. Then, the opening end 8 at the tip of the tube 6x is fitted into the fitting hole 16 provided in the other opening 17 of the guide blade tube 9, and both of them are connected outside the figure such as bolting and welding. By connecting by means, the other opening end of the guide blade tube 9 and the opening end 8 at the tip of the tube 6x are connected. In this way, the opening end 8 at the tip of the tube 6x is fitted into the fitting hole 16 provided in the other opening 17 of the guide blade tube 9, and the guide blade tube 9 is at the end opening end face 18 of the tube 6x. When the tube 6x is propelled, the tip opening end face 18 of the tube 6x does not receive the resistance of the underground 10 and the propulsion resistance can be reduced. In addition, since the fitting hole 16 for fitting the opening end 8 at the tip of the tube 6x is formed, the guide blade tube 9 can be easily installed at the tip of the tube 6x, and the leading tube 6 is formed. The assembly of the tube 6x and the guide blade tube 9 can be facilitated. In this case, a step is generated between the tube 6x and the guide blade tube 9 on the rectangular outer peripheral surface of the leading tube 6. This step is a watertight performance provided on the rectangular outer peripheral surface of the tube 2 and the inner peripheral surface of the starting port. It is formed small (for example, about 1 cm) so that the water stop performance can be maintained by the maintenance member.

尚、案内刃管9と管6xとの外径寸法を同径とし、案内刃管9の他方の開口端面と管6xの先端開口端面18とを突き合わせた状態でこれらの境界部分を全周溶接、又は、点溶接することで先頭管6を形成してもよい。
また、管の先端側が案内刃管9として機能する案内刃部に形成された管を先頭管6として用いてもよい。
このようにすれば、先頭管6の矩形外周面の段差を小さくできるか、段差が生じないので、管2の矩形外周面と出発口の内周面とに設けられる水密性能維持部材による止水性能を良好に維持できる。
The outer diameter of the guide blade tube 9 and the tube 6x is the same diameter, and the boundary portion of the guide blade tube 9 is welded all around with the other opening end surface of the guide blade tube 9 and the tip opening end surface 18 of the tube 6x abutting each other. Alternatively, the leading pipe 6 may be formed by spot welding.
Alternatively, a tube formed on a guide blade portion whose tip side functions as the guide blade tube 9 may be used as the leading tube 6.
In this way, the step on the rectangular outer peripheral surface of the leading pipe 6 can be reduced or no step occurs, so that the water stoppage by the watertight performance maintaining member provided on the rectangular outer peripheral surface of the pipe 2 and the inner peripheral surface of the starting port is provided. Good performance can be maintained.

先頭管6の管の内面20において、管の延長方向(管の中心線に沿った方向)の中央部よりも先頭側の位置には、管側推進力受け部21が設けられる。管側推進力受け部21は、後述する掘削装置3に設けられた基板25を介して推進装置4からの推進力を受けて先頭管6を推進させる。管側推進力受け部21は、先頭管6の断面(先頭管の中心線と直交する面で先頭管を切断した場合の断面)の内面を一周した矩形形状に対応した矩形枠外周寸法に形成された矩形枠体22により形成され、矩形枠体22の外周面23と先頭管6の管の内周面20aとが対応するように設置された状態で矩形枠体22が先頭管6の管の内周面20aに溶接、ボルト・ナットなどの図外の接続手段により固定される。   On the inner surface 20 of the pipe of the leading pipe 6, a pipe-side propulsive force receiving portion 21 is provided at a position on the leading side with respect to the central portion in the tube extending direction (the direction along the center line of the pipe). The tube side propulsive force receiving portion 21 receives the propulsive force from the propulsion device 4 via a substrate 25 provided in the excavating device 3 to be described later and propels the top tube 6. The tube-side propulsive force receiving portion 21 is formed to have a rectangular frame outer peripheral size corresponding to a rectangular shape that goes around the inner surface of the cross section of the front tube 6 (a cross section when the front tube is cut along a plane orthogonal to the center line of the front tube). The rectangular frame 22 is formed by the rectangular frame 22, and the rectangular frame 22 is installed in a state where the outer peripheral surface 23 of the rectangular frame 22 and the inner peripheral surface 20 a of the tube of the leading tube 6 correspond to each other. Is fixed to the inner peripheral surface 20a by a connecting means (not shown) such as welding, bolts and nuts.

掘削装置3は、基板25と、掘削機械26と、駆動源27と、水供給機構75と、排泥機構76とを備える。
基板25は、先頭管6の中心線と基板25の中心線とが一致するように配置されて先頭管6内を前後方向に移動可能に設けられる。基板25は、先頭管6の断面の内面を一周した矩形形状に対応した矩形板30により形成される。当該矩形板30の大きさは、先頭管6の断面の内面を一周した矩形の寸法よりも小さく、かつ、上記管側推進力受け部21を形成する矩形枠体22の矩形枠内周寸法よりも大きい。即ち、基板25を形成する矩形板30の前面39fにおける矩形周縁面33と、上記管側推進力受け部21を形成する矩形枠体22の枠後面32とが対向するように形成される。尚、基板25を形成する矩形板30の前面39fにおける矩形周縁面33と管側推進力受け部21を形成する矩形枠体22の枠後面32との間には例えば弾性体により形成された水密性能維持部材(パッキン)35が設けられる。水密性能維持部材35は、例えば、基板25を形成する矩形板30の前面39fにおける矩形周縁面33、又は、管側推進力受け部21を形成する矩形枠体22の枠後面32に取付けられる矩形枠体36により形成される。したがって、基板25に伝達された推進力が水密性能維持部材35を介して管側推進力受け部21に伝達されることにより、管2と掘削機械26とが一緒に推進する。
基板25の前面39fの中央部には、掘削機械26の支持部40の一端が固定される。
また、基板25の中央部には後述する耐圧ホース56を貫通させる貫通孔38aが形成される。
The excavation apparatus 3 includes a substrate 25, an excavation machine 26, a drive source 27, a water supply mechanism 75, and a mud discharge mechanism 76.
The substrate 25 is disposed so that the center line of the top tube 6 and the center line of the substrate 25 coincide with each other, and is provided to be movable in the front-rear direction in the top tube 6. The substrate 25 is formed by a rectangular plate 30 corresponding to a rectangular shape that goes around the inner surface of the cross section of the top tube 6. The size of the rectangular plate 30 is smaller than the rectangular dimension that goes around the inner surface of the cross section of the leading pipe 6 and is larger than the rectangular inner peripheral dimension of the rectangular frame 22 that forms the tube-side propulsive force receiving portion 21. Is also big. That is, the rectangular peripheral surface 33 on the front surface 39 f of the rectangular plate 30 that forms the substrate 25 and the frame rear surface 32 of the rectangular frame 22 that forms the tube-side thrust receiving portion 21 are formed to face each other. In addition, between the rectangular peripheral surface 33 in the front surface 39f of the rectangular plate 30 which forms the board | substrate 25, and the frame rear surface 32 of the rectangular frame 22 which forms the tube side thrust receiving part 21, the watertight formed by the elastic body, for example A performance maintaining member (packing) 35 is provided. The watertight performance maintaining member 35 is, for example, a rectangular attached to the rectangular peripheral surface 33 of the front surface 39f of the rectangular plate 30 forming the substrate 25 or the frame rear surface 32 of the rectangular frame 22 forming the tube side propulsive force receiving portion 21. The frame 36 is formed. Therefore, the propulsive force transmitted to the substrate 25 is transmitted to the pipe-side propulsive force receiving portion 21 via the watertight performance maintaining member 35, whereby the pipe 2 and the excavating machine 26 are propelled together.
One end of the support portion 40 of the excavating machine 26 is fixed to the central portion of the front surface 39 f of the substrate 25.
In addition, a through hole 38a is formed in the central portion of the substrate 25 so as to penetrate a pressure hose 56 described later.

掘削機械26は、支持部40と、回転部41とを備える。
支持部40は、1つの支柱42と2つの分岐支柱43とが組合されたT字状の中空支柱により形成される。支柱42の一端部には例えば図外の取付フランジが設けられ、この取付フランジがボルト及びナットのような固定具などによって基板25の前面39fの中央に着脱可能に固定されることによって支柱42の一端が基板25の前面39fの中央に固定され、支柱42が基板25の前面39fに対して直交する方向に延長する。2つの分岐支柱43は、支柱42の先端部(他端部)より支柱42の延長方向と直交する一直線上において互いに離れる方向に延長する。即ち、支持部40のT字状の中空路と貫通孔38aとが連通するように支柱42の一端が基板25に固定される。分岐支柱43の先端には、それぞれモータマウント44を備える。
The excavating machine 26 includes a support unit 40 and a rotating unit 41.
The support portion 40 is formed by a T-shaped hollow column in which one column 42 and two branch columns 43 are combined. For example, a mounting flange (not shown) is provided at one end of the column 42, and the mounting flange is detachably fixed to the center of the front surface 39f of the substrate 25 by a fixing tool such as a bolt and a nut. One end is fixed to the center of the front surface 39f of the substrate 25, and the support column 42 extends in a direction orthogonal to the front surface 39f of the substrate 25. The two branch columns 43 extend in a direction away from each other on a straight line perpendicular to the extending direction of the columns 42 from the tip end portion (the other end portion) of the columns 42. That is, one end of the support column 42 is fixed to the substrate 25 so that the T-shaped hollow path of the support portion 40 communicates with the through hole 38a. A motor mount 44 is provided at each end of the branch column 43.

回転部41は、回転機構部45と、回転掘削体46とを備える。
回転機構部45は、例えばモータ47により構成される。各モータマウント44;44には、モータ47のケーシング48が固定される。
2つのモータ47;47の回転軸49;49は、支柱42の先端部より支柱の延長方向と直交する一直線上において互いに離れる方向に延長する。
回転掘削体46は、一端開口他端閉塞の筐体50と、筐体50の外周面51に設けられた複数の掘削ビット(掘削刃)52とを備える。
The rotating unit 41 includes a rotating mechanism unit 45 and a rotating excavator 46.
The rotation mechanism unit 45 is configured by a motor 47, for example. A casing 48 of a motor 47 is fixed to each motor mount 44;
The rotating shafts 49; 49 of the two motors 47; 47 extend in a direction away from each other on a straight line perpendicular to the extending direction of the support column from the tip end portion of the support column 42.
The rotary excavator 46 includes a housing 50 that is closed at one end and the other end, and a plurality of excavation bits (excavation blades) 52 provided on the outer peripheral surface 51 of the housing 50.

モータ47は、例えば、流体圧により作動するモータ、あるいは、電気で作動するモータを用いる。例えば油圧モータ(以下、油圧モータ47とする)を用いる場合、駆動源27としての油圧源55と油圧モータ47のケーシング48内とが圧油供給路56a及び油帰還路56bを形成する耐圧ホース56で繋がれる。即ち、耐圧ホース56は貫通孔38a及び支持部40のT字状の中空路を介して油圧モータ47のケーシング48に接続される。油圧モータ47は、耐圧ホース56を介してケーシング48内に供給される圧油によって回転軸49が回転するように構成される。   As the motor 47, for example, a motor that operates by fluid pressure or a motor that operates by electricity is used. For example, when a hydraulic motor (hereinafter referred to as a hydraulic motor 47) is used, a pressure hose 56 in which a hydraulic source 55 as the drive source 27 and the casing 48 of the hydraulic motor 47 form a pressure oil supply path 56a and an oil return path 56b. Connected with That is, the pressure hose 56 is connected to the casing 48 of the hydraulic motor 47 through the through hole 38 a and the T-shaped hollow path of the support portion 40. The hydraulic motor 47 is configured such that the rotating shaft 49 is rotated by pressure oil supplied into the casing 48 via the pressure hose 56.

例えば、回転掘削体46の筐体50の他端閉塞内面(筐体の内底面)53の中心と回転軸49の回転中心とが一致するように、筐体50の他端閉塞内面53と油圧モータ47により回転する回転軸49の先端に設けられた連結板54とがねじ等の連結具57により連結される。
即ち、2つの回転掘削体46が2つの回転軸49;49に共通の1つの回転中心線Lを回転中心として回転するように構成される。つまり、先頭管6の推進方向と直交する回転中心線Lを回転中心として回転する2つの回転掘削体46;46を備える。このような2つの回転掘削体46;46を備えた構成は、ツインヘッダと呼ばれる。先頭管6の推進方向と直交する回転中心線Lを回転中心として回転する2つの回転掘削体46;46を備えた所謂ツインヘッダを用いた場合、推進方向と直交する面内における回転掘削体46の掘削幅を大きくできるので、掘削幅に応じた矩形幅の管2を容易に地中10に設置できるようになる。
For example, the other end closed inner surface 53 of the casing 50 and the hydraulic pressure are adjusted so that the center of the other end closed inner surface (inner bottom surface of the casing) 53 of the casing 50 of the rotary excavator 46 coincides with the rotation center of the rotary shaft 49. A connecting plate 54 provided at the tip of a rotating shaft 49 rotated by a motor 47 is connected by a connecting tool 57 such as a screw.
In other words, the two rotary excavating bodies 46 are configured to rotate around a single rotation center line L common to the two rotation shafts 49 and 49. That is, the two rotary excavating bodies 46 and 46 that rotate about the rotation center line L orthogonal to the propulsion direction of the leading pipe 6 are provided. Such a configuration including two rotary excavating bodies 46; 46 is called a twin header. When a so-called twin header provided with two rotary excavating bodies 46; 46 rotating around the rotation center line L orthogonal to the propulsion direction of the leading pipe 6 is used, the rotary excavating body 46 in a plane orthogonal to the propulsion direction is used. Therefore, it becomes possible to easily install the pipe 2 having a rectangular width corresponding to the excavation width in the underground 10.

尚、回転掘削体46;46の前後位置は、管側推進力受け部21の設置位置を前後に変えることにより適宜調整すればよい。
例えば、図7に示すように、掘削ビット52の先端80と案内刃管9の刃先81とが案内刃管9の中心軸と直交する1つの平面上に位置するように回転掘削体46;46を設置したり、図示しないが、掘削ビット52の先端80が案内刃管9の刃先81よりも前方側に突出するように回転掘削体46;46を設置したり、掘削ビット52の先端80が先頭管6内に位置するように回転掘削体46;46を設置する。
In addition, what is necessary is just to adjust suitably the front-back position of the rotary excavation body 46; 46 by changing the installation position of the pipe side thrust receiving part 21 back and forth.
For example, as shown in FIG. 7, the rotary excavator 46; 46 so that the tip 80 of the excavation bit 52 and the cutting edge 81 of the guide blade tube 9 are located on one plane orthogonal to the central axis of the guide blade tube 9. Although not shown, the rotary excavator 46; 46 is installed so that the tip 80 of the excavation bit 52 protrudes forward from the cutting edge 81 of the guide blade tube 9, or the tip 80 of the excavation bit 52 is The rotary excavator 46; 46 is installed so as to be located in the leading pipe 6.

掘削ビット52の先端80を案内刃管9の刃先81よりも前方側に突出させて回転掘削体46;46の掘削動作を行えば、案内刃管9の刃先よりも前方に位置する地盤を掘削ビット52により確実に掘削できるので、案内刃管9の刃先81が硬質の地盤に衝突して先頭管6を推進できなくなるような事態を少なくできる。例えば、回転中心線Lと案内刃管9の刃先81とが同一平面上に位置するように、掘削ビット52の先端80を案内刃管9の刃先81よりも前方側に突出させて回転掘削体46;46による掘削動作を行えば、案内刃管9の刃先よりも前方に位置する地盤を掘削ビット52によりさらに確実に掘削できるようになり、管2をより推進させやすくなるので、管2の設置作業をよりスムーズに行える。   If the excavating operation of the rotary excavating body 46; 46 is performed by causing the tip 80 of the excavating bit 52 to protrude forward from the cutting edge 81 of the guide blade tube 9, the ground located in front of the cutting edge of the guide blade tube 9 is excavated. Since the excavation can be surely performed by the bit 52, it is possible to reduce a situation in which the cutting edge 81 of the guide blade tube 9 collides with the hard ground and the leading tube 6 cannot be pushed. For example, the rotary excavator is configured such that the tip 80 of the excavation bit 52 projects forward from the cutting edge 81 of the guide blade tube 9 so that the rotation center line L and the cutting edge 81 of the guide blade tube 9 are located on the same plane. If the excavation operation by 46; 46 is performed, the ground located in front of the cutting edge of the guide blade tube 9 can be more reliably excavated by the excavation bit 52, and the tube 2 can be more easily propelled. Installation work can be performed more smoothly.

また、掘削ビット52の先端80を先頭管6内に位置させた状態で先頭管6の推進動作及び回転掘削体46;46の掘削動作を行えば、地中10に突刺された案内刃管9の刃先の内側に入り込んだ地中部分のみが掘削ビット52により掘削されるので、地中10の余掘り部分が少なくなり、地盤沈下等、地中10に与える影響を少なくすることができる。   Further, if the leading pipe 6 is propelled and the rotary excavating body 46; 46 is excavated with the tip 80 of the excavating bit 52 positioned in the leading pipe 6, the guide blade pipe 9 pierced into the ground 10 is used. Since only the underground part that enters the inside of the blade edge is excavated by the excavation bit 52, the excessive excavation part of the underground 10 is reduced, and the influence on the underground 10 such as ground subsidence can be reduced.

回転掘削体46;46の間には固定掘削体77を備える。
固定掘削体77は、分岐支柱43よりも前方に突出するように2つの分岐支柱43;43の境界部分の前方外周面に溶接又はボルト、ナット等の固定手段によって固定状態に取付けられる。
固定掘削体77は、例えば、上下間の中央部が案内刃管9の刃先81側に膨出する湾曲形状に形成され、この湾曲面の左右幅間の中心が湾曲面の周方向に沿って連続する鋭利な刃形状となるように形成された構成である。
このように、固定掘削体77は、上下間の中央部が案内刃管9の刃先81側に膨出する湾曲形状に形成された構成としたので、先頭管6が推進する際の地盤の抵抗を減らすことができ、先頭管6をよりスムーズに推進させることができるようになる。
A fixed excavator 77 is provided between the rotary excavators 46;
The fixed excavation body 77 is attached in a fixed state to the front outer peripheral surface of the boundary portion between the two branch columns 43; 43 so as to protrude forward from the branch column 43 by fixing means such as welding or bolts and nuts.
The fixed excavation body 77 is formed in, for example, a curved shape in which the central portion between the upper and lower sides bulges toward the cutting edge 81 side of the guide blade tube 9, and the center between the left and right widths of the curved surface is along the circumferential direction of the curved surface. It is the structure formed so that it might become a continuous sharp blade shape.
Thus, since the fixed excavation body 77 has a configuration in which the central portion between the upper and lower sides is formed in a curved shape that bulges toward the cutting edge 81 side of the guide blade tube 9, the resistance of the ground when the leading tube 6 is propelled. Thus, the leading pipe 6 can be more smoothly propelled.

上記固定掘削体77が設けられていない場合には、掘削された土砂が回転掘削体46;46の間に詰まってしまう可能性があるが、回転掘削体46;46の間に固定掘削体77を設けた場合には、固定掘削体77が、先頭管6の推進により地盤に衝突することによって、地盤を削ったり、衝突した地盤部分にある土砂や岩を左右に振り分けて左右の回転掘削体46;46に仕向けたりするといった役割を果たすので、先頭管6をよりスムーズに推進させることができるようになる。
例えば、図7に示すように、固定掘削体77の上下間の中央と回転掘削体46の掘削ビット52と案内刃管9の刃先81とが先頭管6の中心軸と直交する同一平面上に位置するように構成される。
このように固定掘削体77の上下間の中央と回転掘削体46の掘削ビット52と案内刃管9の刃先81とが先頭管6の中心軸と直交する同一平面上に位置するように構成した場合は、上述したような、固定掘削体77が掘削に先立って地盤にひび割れを誘発させることにより掘削しやすくなるといった効果が得られるとともに、固定掘削体77が地盤に衝突してしまって先頭管6が推進しなくなるといったことも防止できる。
When the fixed excavation body 77 is not provided, the excavated earth and sand may be clogged between the rotary excavation bodies 46; 46, but the fixed excavation body 77 is interposed between the rotary excavation bodies 46; 46. When the fixed excavation body 77 collides with the ground by propelling the head pipe 6, the fixed excavation body 77 cuts the ground or distributes the earth and sand and rocks in the collided ground portion to the left and right. 46; 46, so that the leading pipe 6 can be promoted more smoothly.
For example, as shown in FIG. 7, the center between the upper and lower sides of the fixed excavation body 77, the excavation bit 52 of the rotary excavation body 46, and the cutting edge 81 of the guide blade tube 9 are on the same plane orthogonal to the central axis of the top tube 6. Configured to be located.
In this way, the center between the upper and lower sides of the fixed excavation body 77, the excavation bit 52 of the rotary excavation body 46, and the cutting edge 81 of the guide blade tube 9 are configured to be located on the same plane perpendicular to the central axis of the top tube 6. In this case, as described above, the fixed excavation body 77 can be easily excavated by inducing cracks in the ground prior to excavation, and the fixed excavation body 77 collides with the ground and the top pipe It can also be prevented that 6 is not promoted.

尚、固定掘削体77の上下間の中央が回転掘削体46の掘削ビット52と案内刃管9の刃先81よりも後方又は前方に位置するように構成してもよい。
固定掘削体77の上下間の中央が回転掘削体46の掘削ビット52と案内刃管9の刃先81よりも前方に位置するように構成された場合、固定掘削体77が掘削に先立って地盤にひび割れを誘発させることにより掘削しやすくなるといった効果も得られる。
逆に、固定掘削体77の上下間の中央が回転掘削体46の掘削ビット52と案内刃管9の刃先81よりも後方に位置するように構成された場合は、地盤が硬質の場合において掘削ビット52や案内刃管9の刃先81よりも先に固定掘削体77が地盤に衝突してしまって先頭管6が推進しなくなるといったことを防止できる。
In addition, you may comprise so that the center between the upper and lower sides of the fixed excavation body 77 may be located behind or ahead of the excavation bit 52 of the rotary excavation body 46 and the cutting edge 81 of the guide blade tube 9.
When the center between the upper and lower sides of the fixed excavation body 77 is configured to be positioned in front of the excavation bit 52 of the rotary excavation body 46 and the cutting edge 81 of the guide blade tube 9, the fixed excavation body 77 is placed on the ground prior to excavation. The effect that it becomes easy to excavate by inducing a crack is also acquired.
Conversely, if the center between the upper and lower sides of the fixed excavation body 77 is positioned behind the excavation bit 52 of the rotary excavation body 46 and the cutting edge 81 of the guide blade tube 9, excavation is performed when the ground is hard. It can be prevented that the fixed excavation body 77 collides with the ground before the cutting edge 81 of the bit 52 or the guide blade tube 9 and the leading tube 6 is not propelled.

また、固定掘削体77の先端形状は、先頭管6の推進により地盤に衝突することによって、地盤を削ったり、衝突した地盤部分にある土砂や岩を左右に振り分けて左右の回転掘削体46;46に仕向けたり、掘削に先立って地盤にひび割れを誘発させて掘削しやすいようにするという役割を達成できる形状に形成されていればよい。例えば、上述したように前方先端が鋭利な刃先状に形成されたものでもよいし、前方先端が面状に形成されたものでもよく、地盤の地質によって、地盤を掘削して崩しやすい形状のものを選択すればよい。   Further, the tip shape of the fixed excavation body 77 is such that the top pipe 6 collides with the ground by cutting the ground, and the left and right rotary excavation bodies 46 are distributed by dividing the earth and sand on the collided ground portion to the left and right; It may be formed in a shape that can achieve the role of directing to 46, or inducing cracks in the ground prior to excavation to facilitate excavation. For example, as described above, the tip of the front tip may be formed in a sharp blade shape, or the tip of the front tip may be formed in a plane shape, and the shape is such that the ground is easily excavated and broken depending on the geology of the ground. Should be selected.

また、回転掘削体46の筐体50は案内刃管9の左右の内面と接触しないように案内刃管9の左右の内面から離れて設置されるので、筐体50と案内刃管9の左右の内面との間の地盤が掘削されにくい可能性がある。
そこで、先頭管6の中央側に位置される掘削ビット52を筐体50の中心軸(中心線L)と直交する方向に延長するように設け、かつ、図7乃至図9に示すように、先頭管6の左側に位置される掘削ビット52a(52)をできるだけ案内刃管9の左の内面に近付く位置まで先頭管6の左側に延長させて設け、さらに、先頭管6の右側に位置される掘削ビット52b(52)をできるだけ案内刃管9の右の内面に近付く位置まで先頭管6の右側に延長させて設けることによって、先頭管6の左右側に位置される掘削ビット52a;52bで先頭管6の左右の角部に位置する地盤をより効果的に掘削できるようにした。
Further, since the casing 50 of the rotary excavator 46 is installed away from the left and right inner surfaces of the guide blade tube 9 so as not to contact the left and right inner surfaces of the guide blade tube 9, It may be difficult to excavate the ground between the inner surface.
Therefore, the excavation bit 52 located on the center side of the top pipe 6 is provided so as to extend in a direction orthogonal to the central axis (center line L) of the housing 50, and as shown in FIGS. The excavation bit 52a (52) located on the left side of the leading pipe 6 is provided to extend to the left side of the leading pipe 6 as close as possible to the position on the left inner surface of the guide blade pipe 9, and is further located on the right side of the leading pipe 6. The excavation bit 52b (52) is extended to the right side of the leading pipe 6 as far as possible to a position as close to the right inner surface of the guide blade tube 9 as possible. The ground located at the left and right corners of the front pipe 6 can be excavated more effectively.

水供給機構75は、水貯留タンク75aと、基板25の前面39fと後面39とに貫通する水供給孔75bと、例えば蛇腹管や鋼管等により構成された水供給管75cと、送水用のポンプ75d、連結管75eとを備える。
基板25の前面39fと先頭管6の内面20とで囲まれた空間69内に水供給管75cの一端開口が連通するように、例えば、水供給孔75bの内側に水供給管75cの一端がねじ嵌合されることによって水供給孔75bと水供給管75cの一端とが結合される。そして、水供給管75cの他端開口と送水用のポンプ75dの吐出口とが連通可能に連結され、送水用のポンプ75dの吸込口と水貯留タンク75aとが連結管75eにより連通可能に連結される。
The water supply mechanism 75 includes a water storage tank 75a, a water supply hole 75b penetrating through the front surface 39f and the rear surface 39 of the substrate 25, a water supply pipe 75c formed of, for example, a bellows tube or a steel pipe, and a pump for water supply. 75d and a connecting pipe 75e.
For example, one end of the water supply pipe 75c is connected to the inside of the water supply hole 75b so that the one end opening of the water supply pipe 75c communicates with the space 69 surrounded by the front surface 39f of the substrate 25 and the inner surface 20 of the leading pipe 6. The water supply hole 75b and one end of the water supply pipe 75c are coupled by screwing. The other end opening of the water supply pipe 75c and the discharge port of the water supply pump 75d are connected so as to communicate with each other, and the suction port of the water supply pump 75d and the water storage tank 75a are connected so as to communicate with each other through the connection pipe 75e. Is done.

排泥機構76は、基板25の前面39fと後面39とに貫通する排泥孔76aと、例えば蛇腹管や鋼管等により構成された排泥管76bと、排泥用のポンプ76cと、排泥タンク76dと、連結管76eとを備える。
空間69内に排泥管76bの一端開口が連通するように、例えば、排泥孔76aの内側に排泥管76bの一端がねじ嵌合されることによって排泥孔76aと排泥管76bの一端とが結合される。そして、排泥管76bの他端開口と排泥用のポンプ76cの吸込口とが連通可能に連結され、排泥用のポンプ76cの吐出口と排泥タンク76dとが連結管76eにより連通可能に連結される。
The mud drain mechanism 76 includes a mud hole 76a penetrating the front surface 39f and the rear surface 39 of the substrate 25, a mud pipe 76b formed of, for example, a bellows tube or a steel pipe, a pump 76c for draining mud, A tank 76d and a connecting pipe 76e are provided.
For example, one end of the mud pipe 76b is screwed inside the mud hole 76a so that the one end opening of the mud pipe 76b communicates with the space 69, so that the mud hole 76a and the mud pipe 76b are connected. One end is joined. The other end opening of the mud pipe 76b and the suction port of the mud pump 76c are connected so as to communicate with each other, and the discharge port of the mud pump 76c and the mud tank 76d can be communicated with each other through the connecting pipe 76e. Connected to

尚、水貯留タンク75a及び排泥タンク76dは、水貯留タンク75aと排泥タンク76dとが一体となった集合タンク75Xにより構成される。即ち、集合タンク75Xの内部に仕切体75wを設けて集合タンク75Xの内部を2つの領域に区切り、一方の領域を水貯留タンク75aとして使用し、他方の領域を排泥タンク76dとして使用する。
つまり、最初に一定量の水を集合タンク75X内に満たしておき、送水用のポンプ75dを駆動して空間69内に水を圧送すると、空間69内に圧送された水と掘削機械26により掘削された土砂とが混ざって泥水となる。そして、排泥用のポンプ76cを駆動することにより、空間69内の泥水が排泥タンク76dに排出される。排泥タンク76dに排出された泥水中の泥が排泥タンク76dの底に沈殿するとともに、仕切体75wを越えて水貯留タンク75aに入り込んだ泥水が再び送水用のポンプ75dによって空間69内に圧送される。即ち、泥水を循環させて空間69内に供給できるようになるので、水の使用量を減らすことができる。また、水よりも比重が大きい泥水を空間69内に供給できるので、地盤及び地下水の圧力に抵抗できて、地盤及び地下水の圧力と空間69内の圧力とを均等にしやすくなるので、地盤沈下等、地中10に与える影響を少なくすることができる。また、空間69内が泥水化するので、排泥をスムーズに行えるようになり、掘削しやすくなる。
The water storage tank 75a and the waste mud tank 76d are constituted by a collective tank 75X in which the water storage tank 75a and the waste mud tank 76d are integrated. That is, the partition 75w is provided inside the collective tank 75X to divide the collective tank 75X into two regions, one region is used as the water storage tank 75a, and the other region is used as the waste mud tank 76d.
That is, when a certain amount of water is initially filled in the collecting tank 75X, and the water pump 75d is driven to pump water into the space 69, the water pumped into the space 69 and the excavating machine 26 excavate. Muddy water is mixed with the earth and sand. Then, the mud water in the space 69 is discharged into the mud tank 76d by driving the mud pump 76c. Mud in the mud discharged to the waste mud tank 76d settles at the bottom of the waste mud tank 76d, and the mud that has entered the water storage tank 75a beyond the partition 75w is again put into the space 69 by the pump 75d for water supply. Pumped. That is, since the muddy water can be circulated and supplied into the space 69, the amount of water used can be reduced. Further, since muddy water having a specific gravity greater than that of water can be supplied into the space 69, the pressure of the ground and groundwater can be resisted, and the pressure of the ground and groundwater and the pressure in the space 69 can be easily equalized. , The influence on the underground 10 can be reduced. Moreover, since the inside of the space 69 becomes muddy water, the mud can be drained smoothly and excavation is facilitated.

また、水供給孔75bと水供給管75cの一端との結合構造、排泥孔76aと排泥管76bの一端との結合構造は、次のような結合構造であってもよい。即ち、基板の後面39に孔(水供給孔75b、排泥孔76a)に連通する図外の管部を形成しておいて、当該管部の開口端面と管(水供給管75c、排泥管76b)の一端開口端面とを互いに突き合わせた状態で環状ジョイント部材を当該突合せ部分に被せることにより管部と管とを結合したり、管の一端開口を介して管内に管部を嵌め込んだ状態で管の一端開口部の外周面を環状クリップ部材で締め付けることにより管部と管とを結合する構造であってもよい。
尚、最初から泥水を集合タンク75X内に満たしておき、送水用のポンプ75dを駆動して空間69内と集合タンク75X内との間で泥水を循環させるようにしてもよい。
The coupling structure between the water supply hole 75b and one end of the water supply pipe 75c and the coupling structure between the mud hole 76a and one end of the mud pipe 76b may be the following coupling structure. That is, an unillustrated pipe portion communicating with the holes (water supply hole 75b, mud drain hole 76a) is formed on the rear surface 39 of the substrate, and the opening end face of the pipe portion and the pipe (water feed pipe 75c, mud mud) are formed. The pipe portion and the pipe are joined by covering the butted portion with the annular joint member in a state where the one end opening end face of the pipe 76b is abutted with each other, or the pipe portion is fitted into the pipe via the one end opening of the pipe. The structure which couple | bonds a pipe part and a pipe | tube by clamp | tightening the outer peripheral surface of the one end opening part of a pipe | tube with an annular clip member in the state may be sufficient.
The muddy water may be filled in the collecting tank 75X from the beginning, and the muddy water may be circulated between the space 69 and the collecting tank 75X by driving the pump 75d for water supply.

推進装置4は、例えば、管2の発進基地となる導坑Aに設けられた案内台90上に設置された断面四角形状の管2の互いに平行に対向する一方の一対の外側面6a;6bのうちの一方の外側面である左外側面6aの外側の横に管2の延長方向と同方向にシリンダー66及びピストンロッド63が延長するように配置される左の油圧ジャッキ62と、当該管2の互いに平行に対向する一方の一対の外側面6a;6bのうちの他方の外側面である右外側面6bの外側の横に管2の延長方向と同方向にシリンダー66及びピストンロッド63が延長するように配置される右の油圧ジャッキ62と、を備える。油圧ジャッキ62のピストンロッド63の先端には押圧板64が設けられる。   The propulsion device 4 includes, for example, one pair of outer side surfaces 6a; 6b of the pipe 2 having a quadrangular cross section that are installed on a guide stand 90 provided in a guide shaft A that is a starting base of the pipe 2 and facing each other in parallel. A left hydraulic jack 62 disposed so that a cylinder 66 and a piston rod 63 extend in the same direction as the extension direction of the pipe 2 on the outside of the left outer face 6a which is one of the outer faces of the pipe, and the pipe The cylinder 66 and the piston rod 63 are arranged in the same direction as the extension direction of the tube 2 on the outside of the right outer surface 6b which is the other outer surface of the pair of two outer surfaces 6a; A right hydraulic jack 62 arranged to extend. A pressing plate 64 is provided at the tip of the piston rod 63 of the hydraulic jack 62.

管2の発進基地となる導坑Aの底面側に設置される管2の外側面の横位置で推進装置4からの押圧力を受けて当該押圧力を管2に伝達する推進力伝達装置70は、例えば、一対の推進力伝達部材85;85と、推進力伝達棒状体710と、上述の基板25と、上述の水密性能維持部材35と、上述の管側推進力受け部21とを備える。
一方の推進力伝達部材としての左の推進力伝達部材85は、発進基地となる導坑Aの底面に設けられた案内台90上に設置された断面四角形状の管2の左外側面6aの外側に当該左外側面6aと平行に対向するように配置された伝達体71と、当該伝達体71の一端側において管2の左外側面6aより離れる方向に延長するように設けられて左の油圧ジャッキ62からの押圧力を受ける力受部72と、伝達体71の他端側において後述する左の推進力伝達棒状体71Aの棒状体71xの他端71fに接触するように設けられて、力受部72及び伝達体71を介して伝達された力を棒状体71xに伝達する押圧部73とを備える。
他方の推進力伝達部材としての右の推進力伝達部材85は、発進基地となる導坑Aの底面に設けられた案内台90上に設置された断面四角形状の管2の右外側面6bの外側に当該右外側面6bと平行に対向するように配置された伝達体71と、当該伝達体71の一端側において管2の右外側面6bより離れる方向に延長するように設けられて右の油圧ジャッキ62からの押圧力を受ける力受部72と、伝達体71の他端側において後述する右の推進力伝達棒状体71Bの棒状体71xの他端71fに接触するように設けられて、力受部72及び伝達体71を介して伝達された力を棒状体71xに伝達する押圧部73とを備える。
左の推進力伝達部材85及び右の推進力伝達部材85は、例えば同一構成である。このように、同一構成とすることで、左の推進力伝達部材85を右の推進力伝達部材85として使用したり、右の推進力伝達部材85を左の推進力伝達部材85として使用することが可能となり、使い方が容易となる。また、一種類の推進力伝達部材85を製作するだけでよいので、量産性に優れる。
推進力伝達棒状体710は、一端71e(図10参照)から他端71fまでの長さが基板25の後面39と先頭管6の後端6eとの間の最短距離よりも長い寸法の棒状体71xと、棒状体71xの他端71f側より突出させた傾き防止部71cとを備える。棒状体71xは例えばH形鋼を用い、傾き防止部71cは例えば棒状体71xを形成するH形鋼に溶接又はボルトなどの接続手段で結合された鋼材を用いる。尚、傾き防止部71cは、先頭管6の左内側面や右内側面に面接触する面を有した面体71dを備える。
推進力伝達棒状体710は、棒状体71xの中心線が先頭管6の中心線と同一方向を向くように設置され、かつ、面体71dの面と先頭管6の左内側面や右内側面とが面接触するように、一端71eと基板25の後面39とが溶接又はボルトなどの接続手段で結合される。
即ち、左の推進力伝達棒状体71Aの棒状体71xの中心線が先頭管6の中心線と同一方向を向くように設置され、かつ、左の推進力伝達棒状体71Aの面体71dの面と先頭管6の左内側面とが面接触するように、左の推進力伝達棒状体71Aの棒状体71xの一端71eと基板25の後面39とが溶接又はボルトなどの接続手段で結合される。また、右の推進力伝達棒状体71Bの棒状体71xの中心線が先頭管6の中心線と同一方向を向くように設置され、かつ、右の推進力伝達棒状体71Bの面体71dの面と先頭管6の右内側面とが面接触するように、右の推進力伝達棒状体71Bの棒状体71xの一端71eと基板25の後面39とが溶接又はボルトなどの接続手段で結合される。
左右の推進力伝達棒状体71A;71Bの一端71e;71eは、基板25の上下縁間の中央部に結合される。
以上の構成の推進力伝達装置70によれば、推進装置4としての油圧ジャッキ62による押圧力を、左右の推進力伝達部材85;85、左右の推進力伝達棒状体71A;71B、基板25、水密性能維持部材35、管側推進力受け部21を介して管2に伝達して管2を推進させる構成としたので、管2の左右に均等に押圧力を加えることができるようになる。
A propulsive force transmission device 70 that receives a pressing force from the propulsion device 4 and transmits the pressing force to the tube 2 at the lateral position of the outer surface of the tube 2 installed on the bottom surface side of the guide pit A serving as a starting base of the tube 2. Includes, for example, a pair of propulsion force transmission members 85; 85, a propulsion force transmission rod-like body 710, the above-described substrate 25, the above-described watertight performance maintaining member 35, and the above-described tube-side propulsion force receiving portion 21. .
The left propulsive force transmitting member 85 as one propulsive force transmitting member is formed on the left outer side surface 6a of the pipe 2 having a quadrangular cross section installed on the guide table 90 provided on the bottom surface of the guide shaft A serving as a starting base. A transmission body 71 disposed on the outer side so as to face the left outer surface 6a in parallel, and one end side of the transmission body 71 provided to extend in a direction away from the left outer surface 6a of the pipe 2 A force receiving portion 72 that receives a pressing force from the hydraulic jack 62, and the other end side of the transmission body 71 so as to come into contact with the other end 71f of the rod-like body 71x of the left propulsive force transmission rod-like body 71A described later; And a pressing portion 73 that transmits the force transmitted through the force receiving portion 72 and the transmitting body 71 to the rod-shaped body 71x.
The right propulsive force transmitting member 85 as the other propulsive force transmitting member is formed on the right outer side surface 6b of the pipe 2 having a quadrangular cross section installed on the guide table 90 provided on the bottom surface of the guide pit A serving as a starting base. A transmission body 71 arranged on the outer side so as to face the right outer side surface 6b in parallel, and one end side of the transmission body 71 provided so as to extend in a direction away from the right outer side surface 6b of the pipe 2 A force receiving portion 72 that receives a pressing force from the hydraulic jack 62, and the other end side of the transmission body 71 provided so as to come into contact with the other end 71f of the rod-like body 71x of the right propulsive force transmission rod-like body 71B described later; And a pressing portion 73 that transmits the force transmitted through the force receiving portion 72 and the transmitting body 71 to the rod-shaped body 71x.
The left propulsive force transmission member 85 and the right propulsive force transmission member 85 have the same configuration, for example. Thus, by using the same configuration, the left propulsive force transmission member 85 can be used as the right propulsive force transmission member 85, or the right propulsive force transmission member 85 can be used as the left propulsive force transmission member 85. Can be used and is easy to use. Further, since only one type of propulsive force transmission member 85 needs to be manufactured, the mass productivity is excellent.
The propulsive force transmission rod-shaped body 710 has a length from one end 71e (see FIG. 10) to the other end 71f longer than the shortest distance between the rear surface 39 of the substrate 25 and the rear end 6e of the leading tube 6. 71x and a tilt prevention portion 71c that protrudes from the other end 71f side of the rod-shaped body 71x. The rod-shaped body 71x uses, for example, H-section steel, and the tilt prevention portion 71c uses, for example, a steel material that is joined to the H-section steel forming the rod-shaped body 71x by connection means such as welding or bolts. The tilt preventing portion 71c includes a face body 71d having a surface in contact with the left inner surface and the right inner surface of the leading pipe 6.
The propulsive force transmission rod-shaped body 710 is installed so that the center line of the rod-shaped body 71x faces the same direction as the center line of the top tube 6, and the surface of the face member 71d and the left inner surface and the right inner surface of the head tube 6 The one end 71e and the rear surface 39 of the substrate 25 are joined by connection means such as welding or a bolt so that the two come into surface contact.
That is, the left propulsive force transmitting rod-shaped body 71A is installed so that the center line of the rod-shaped body 71x faces the same direction as the center line of the top tube 6, and the left propulsive force transmitting rod-shaped body 71A has a surface of the face 71d. One end 71e of the rod-shaped body 71x of the left propulsive force transmitting rod-shaped body 71A and the rear surface 39 of the substrate 25 are joined by a connecting means such as welding or a bolt so that the left inner surface of the front pipe 6 is in surface contact. The center line of the rod-shaped body 71x of the right propulsive force transmission rod-shaped body 71B is installed so as to face the same direction as the center line of the top tube 6, and the surface of the face body 71d of the right thrust-force transmission rod-shaped body 71B One end 71e of the rod-shaped body 71x of the right propulsive force transmitting rod-shaped body 71B and the rear surface 39 of the substrate 25 are joined by connection means such as welding or a bolt so that the right inner surface of the front pipe 6 is in surface contact.
One ends 71e; 71e of the left and right propulsive force transmission rod-like bodies 71A; 71B are coupled to the central portion between the upper and lower edges of the substrate 25.
According to the propulsion force transmission device 70 having the above-described configuration, the right and left propulsion force transmission members 85; 85, the left and right propulsion force transmission rods 71A; 71B, the substrate 25, Since the pipe 2 is propelled by being transmitted to the pipe 2 via the watertight performance maintaining member 35 and the pipe-side propulsive force receiving portion 21, it becomes possible to apply a pressing force evenly to the left and right of the pipe 2.

案内台90は、発進基地となる導坑A内において、左右の油圧ジャッキ62;62で管2を押圧した際に管2から油圧ジャッキ62;62に伝わる反力を受けるために設けられた反力受け壁74と発進面となる導坑Aの側壁AUとの間に設置される。
案内台90は、管2が載置されて管2を発進面となる導坑Aの側壁AUに案内するための案内面91と、案内面91の左右の側部に設けられた左右の設置台92;92とを備える。設置台92は、案内面91の側部より立ち上がるように設けられた台により構成される。
左右の設置台92;92を形成する各台の互いに向かい合う内側面92a;92aにより当該案内面91上の当該内側面92a;92a間に載置された管2の左右方向への移動が規制される。
左の設置台92の台上面の後側には左の油圧ジャッキ62が固定具67等によって固定されるとともに、右の設置台92の台上面の後側には右の油圧ジャッキ62が固定具67等によって固定される。尚、油圧ジャッキ62は管2の地中10への進入角度に合わせて傾斜した状態で設置台92の台上面に設置されるため、油圧ジャッキ62のシリンダー66の底面は反力受け壁74の前面に対して傾斜した状態となる。そこで、反力受け壁74の前面には、シリンダー66の底面に接触する接触板79;79が設けられる。
左の推進力伝達部材85の力受部72が、左の設置台92の台上面の後側における左の油圧ジャッキ62の前方に位置され、かつ、左の推進力伝達部材85の押圧部73が、左の推進力伝達棒状体71Aの棒状体71xの他端71fに接触するように、左の推進力伝達部材85が設置される。
また、右の推進力伝達部材85の力受部72が、右の設置台92の台上面の後側における右の油圧ジャッキ62の前方に位置され、かつ、右の推進力伝達部材85の押圧部73が、右の推進力伝達棒状体71Bの棒状体71xの他端71fに接触するように、右の推進力伝達部材85が設置される。
The guide stand 90 is provided in order to receive a reaction force transmitted from the pipe 2 to the hydraulic jack 62; 62 when the pipe 2 is pressed by the left and right hydraulic jacks 62; 62 in the guide shaft A serving as a starting base. It is installed between the force receiving wall 74 and the side wall AU of the guide pit A which becomes the starting surface.
The guide table 90 includes a guide surface 91 for guiding the pipe 2 to the side wall AU of the guide shaft A on which the pipe 2 is placed and serving as a starting surface, and left and right installations provided on the left and right sides of the guide surface 91. Pedestal 92; 92. The installation table 92 is configured by a table provided so as to rise from the side of the guide surface 91.
Movement of the pipe 2 placed between the inner side surfaces 92a; 92a on the guide surface 91 in the left-right direction is restricted by the inner side surfaces 92a; The
A left hydraulic jack 62 is fixed to the rear side of the top surface of the left installation base 92 by a fixture 67 and the right hydraulic jack 62 is fixed to the rear side of the top surface of the right installation base 92. It is fixed by 67 etc. The hydraulic jack 62 is installed on the top surface of the installation base 92 in an inclined state according to the angle of entry of the pipe 2 into the ground 10, so that the bottom surface of the cylinder 66 of the hydraulic jack 62 is attached to the reaction force receiving wall 74. It is in a state inclined with respect to the front surface. Therefore, a contact plate 79; 79 that contacts the bottom surface of the cylinder 66 is provided on the front surface of the reaction force receiving wall 74.
The force receiving portion 72 of the left propulsive force transmission member 85 is positioned in front of the left hydraulic jack 62 on the rear side of the upper surface of the left installation base 92 and the pressing portion 73 of the left propulsive force transmission member 85. However, the left propulsive force transmission member 85 is installed so as to come into contact with the other end 71f of the rod-like body 71x of the left propulsive force-transmitting rod-like body 71A.
Further, the force receiving portion 72 of the right propulsive force transmitting member 85 is positioned in front of the right hydraulic jack 62 on the rear side of the upper surface of the right installation base 92 and is pressed by the right propulsive force transmitting member 85. The right propulsive force transmission member 85 is installed so that the portion 73 contacts the other end 71f of the rod-like body 71x of the right propulsive force-transmitting rod-like body 71B.

尚、案内台90は、管2として曲管又は折曲管を載せるので、図12に示すように、案内面91と左右の設置台92;92の上面とが曲管の曲率に合わせた湾曲面に形成され、凹溝93が設置台92の延長方向に沿って湾曲して延長する構成のものを用いる。また、管2の地中10への進入角度に合わせて案内面91の設置傾斜角度を決めるための管進入角度設定手段95(図11;図12参照)を備える。例えば、管進入角度設定手段95は、案内台90の下面に着脱可能に設けられたり、あるいは、案内台90の下面に一体に形成された構成の、支持台や支持枠等により構成される。案内台90の下面に一体に形成された構成の、支持台や支持枠等により構成される。
さらに、左右の設置台92;92の各外側面92b;92b(内側面92aと平行に対向する側面であって案内台90の左右の側面)には、外側面92bに開口する断面凹形状で設置台92の延長方向(前後方向)に延長する凹溝93を備える。案内台90の各凹溝93;93の前端に相当する設置台92の前端面は開口93aに形成されており、この開口93aを介して後述する押さえ部材110の走行手段114が凹溝93内に挿入される。
尚、後述する押さえ部材110の走行手段114を備えた各支柱111;111と梁材112とを分解可能に構成しておいて、各支柱111の走行手段114を凹溝93内に挿入して各支柱111;111を立設した状態で各支柱111;111の上端部同士を梁材112で連結して押さえ部材110を組み立てる構成としてもよく、この場合、各案内台90の各凹溝93;93の前端に相当する設置台92の前端面及び案内台90の各凹溝93;93の後端に相当する設置台92の後端面が閉塞された構成であってもよい。
In addition, since the guide stand 90 mounts a curved pipe or a bent pipe as the pipe 2, as shown in FIG. 12, the guide surface 91 and the upper surfaces of the left and right installation bases 92; 92 are curved in accordance with the curvature of the curved pipe. A structure in which the concave groove 93 is curved and extended along the extending direction of the installation base 92 is used. Further, a pipe entry angle setting means 95 (see FIG. 11; see FIG. 12) for determining the installation inclination angle of the guide surface 91 in accordance with the entry angle of the pipe 2 into the ground 10 is provided. For example, the pipe entry angle setting means 95 is configured by a support base, a support frame, or the like that is detachably provided on the lower surface of the guide table 90 or that is integrally formed on the lower surface of the guide table 90. It is constituted by a support stand, a support frame, etc., which are integrally formed on the lower surface of the guide stand 90.
Furthermore, the outer side surfaces 92b; 92b of the left and right installation bases 92; 92 (the side surfaces facing in parallel to the inner side surface 92a and the left and right side surfaces of the guide base 90) have a concave cross-sectional shape that opens to the outer side surface 92b. A concave groove 93 extending in the extending direction (front-rear direction) of the installation base 92 is provided. The front end surface of the installation base 92 corresponding to the front end of each concave groove 93; 93 of the guide base 90 is formed in an opening 93 a, and the travel means 114 of the pressing member 110 described later passes through the opening 93 a in the concave groove 93. Inserted into.
In addition, each support | pillar 111; 111 provided with the travel means 114 of the pressing member 110 mentioned later and the beam material 112 are comprised so that decomposition | disassembly is possible, and the travel means 114 of each support | pillar 111 is inserted in the recessed groove 93. It is also possible to assemble the pressing member 110 by connecting the upper ends of the columns 111; 111 with the beam material 112 in a state where the columns 111; 111 are erected. The front end surface of the installation base 92 corresponding to the front end of 93 and the concave grooves 93 of the guide base 90; the rear end surface of the installation base 92 corresponding to the rear end of 93 may be closed.

図11;図12に示すように、推進力伝達部材85は、例えば、鋼材により別々に構成された伝達体71、力受部72、押圧部73を組み合わせて構成される。
伝達体71は、例えば、形鋼を組み合わせて構成される。そして、力受部72が、伝達体71の互いに対向する一対の外側面のうちの一方の外側面71aにおける伝達体71の延長方向の一端側より当該一方の外側面と直交する方向に延長するように設けられ、押圧部73が、伝達体71の互いに対向する一対の外側面のうちの他方の外側面71bにおける伝達体71の延長方向の他端側より当該他方の外側面71bと直交する方向に延長するように設けられる。即ち、力受部72及び押圧部73は、伝達体71の各外側面71a;71bから互いに離れる方向に延長するように設けられている。
力受部72は、伝達体71の一方の外側面71aの一端側とボルト及びナット又は溶接等の連結手段で連結される連結板72aと、油圧ジャッキ62の押圧力を受ける力受板72bと、連結板72aと力受板72bとを連結する補強板72cとを備える。連結板72aは、伝達体71の延長方向に平行な一方の外側面71aに面接触して当該一方の外側面71aの一端側に連結される平板により形成される。力受板72bは、伝達体71の延長方向に平行な一方の外側面71aと直交する面を形成する平板により形成される。
押圧部73は、伝達体71の他方の外側面71bの他端側とボルト及びナット又は溶接等の連結手段で連結される連結板73aと、推進力伝達棒状体710の棒状体71xの他端71fに接触する押圧板73bと、連結板73aと押圧板73bとを連結する補強板73cとを備える。連結板73aは、伝達体71の延長方向に平行な他方の外側面71bに面接触して当該他方の外側面71bの他端側に連結される平板により形成される。押圧板73bは、伝達体71の延長方向に平行な他方の外側面71bと直交する面を形成する平板により形成される。
As shown in FIG. 11; FIG. 12, the propulsive force transmission member 85 is configured by combining, for example, a transmission body 71, a force receiving portion 72, and a pressing portion 73 that are separately formed of steel.
The transmission body 71 is configured by combining, for example, section steel. And the force receiving part 72 is extended in the direction orthogonal to the said one outer surface from the one end side of the extension direction of the transmission body 71 in one outer side surface 71a of a pair of outer surfaces which the transmission body 71 mutually opposes. The pressing portion 73 is orthogonal to the other outer surface 71b from the other end side in the extending direction of the transmitting body 71 on the other outer surface 71b of the pair of outer surfaces facing each other of the transmitting body 71. It is provided to extend in the direction. That is, the force receiving portion 72 and the pressing portion 73 are provided so as to extend in directions away from the outer side surfaces 71a; 71b of the transmission body 71.
The force receiving portion 72 includes a connecting plate 72a that is connected to one end of one outer surface 71a of the transmission body 71 by connecting means such as a bolt, a nut, or welding, and a force receiving plate 72b that receives the pressing force of the hydraulic jack 62. And a reinforcing plate 72c for connecting the connecting plate 72a and the force receiving plate 72b. The connecting plate 72a is formed by a flat plate that comes into surface contact with one outer surface 71a parallel to the extending direction of the transmission body 71 and is connected to one end side of the one outer surface 71a. The force receiving plate 72 b is formed by a flat plate that forms a surface orthogonal to one outer surface 71 a parallel to the extending direction of the transmission body 71.
The pressing portion 73 includes a connecting plate 73a connected to the other end side of the other outer surface 71b of the transmitting body 71 by connecting means such as a bolt, a nut, or welding, and the other end of the rod-shaped body 71x of the propulsive force transmitting rod-shaped body 710. A pressing plate 73b that comes into contact with 71f and a reinforcing plate 73c that connects the connecting plate 73a and the pressing plate 73b are provided. The connecting plate 73a is formed by a flat plate that comes into surface contact with the other outer surface 71b parallel to the extending direction of the transmission body 71 and is connected to the other end side of the other outer surface 71b. The pressing plate 73 b is formed by a flat plate that forms a surface orthogonal to the other outer surface 71 b parallel to the extending direction of the transmission body 71.

尚、最初に地中10に設置する先頭管6の内部には掘削機械26が設置されるので、先頭管6としては管の長さが後続管7の管の長さよりも長いものを用いることが多いが、従来、このような管長の長い先頭管6を推進させる場合、先頭管6の管長が長いために、出発部に設置された先頭管6の後方に油圧ジャッキ62を設置できずに先頭管6を推進させることができなかったり、また、先頭管6の後方にピストンロッドの伸長ストロークの短い小型の油圧ジャッキしか設置できない場合があり、先頭管6の後方にピストンロッドの伸長ストロークの短い小型の油圧ジャッキしか設置できない場合には、油圧ジャッキのピストンロッドの1回の最大伸長動作で先頭管6を少ししか推進させることができないため、油圧ジャッキのピストンロッドの先端と棒状体71xの他端71fとの間に図外のスペーサーを介在させて油圧ジャッキの伸長動作を何回も繰り返したり、あるいは、油圧ジャッキの1回の伸長動作が終わる毎に油圧ジャッキ及び油圧ジャッキの反力受け壁74を前方に移動させて油圧ジャッキの伸長動作を何回も繰り返す必要があり、先頭管6を地中10に推進させる際の油圧ジャッキによる作業効率が悪かった。
実施形態3によれば、出発部に設置された先頭管6の左右の外側面6a;6bの横にそれぞれ油圧ジャッキ62;62を設置できるので、出発部に設置された先頭管6の後方に油圧ジャッキ62を設置できない場合であっても先頭管6を推進させることができ、また、油圧ジャッキ62としてピストンロッド63の伸長ストロークの長いものを用いることができるので、ピストンロッド63の1回の最大伸長動作で先頭管6を長距離移動させることができて油圧ジャッキ62による作業効率を良くできる。
In addition, since the excavating machine 26 is installed inside the first pipe 6 that is first installed in the ground 10, the first pipe 6 should have a length longer than that of the subsequent pipe 7. However, conventionally, when propelling such a long pipe 6, the hydraulic pipe 62 cannot be installed behind the pipe 6 because the pipe 6 is long. In some cases, the front pipe 6 cannot be propelled, or only a small hydraulic jack with a short piston rod extension stroke can be installed behind the front pipe 6. When only a short and small hydraulic jack can be installed, the top pipe 6 can be pushed a little by one maximum extension operation of the piston rod of the hydraulic jack, so the piston lock of the hydraulic jack A hydraulic jack is repeated many times by interposing a spacer (not shown) between the tip of the rod and the other end 71f of the rod-like body 71x, or every time the extension operation of the hydraulic jack ends. In addition, it is necessary to move the hydraulic jack reaction force receiving wall 74 forward and repeat the extension operation of the hydraulic jack many times, and the working efficiency of the hydraulic jack when propelling the top pipe 6 to the ground 10 is poor.
According to the third embodiment, since the hydraulic jacks 62; 62 can be installed beside the left and right outer surfaces 6a; 6b of the leading pipe 6 installed at the starting part, the rear part of the leading pipe 6 installed at the starting part is provided. Even when the hydraulic jack 62 cannot be installed, the leading pipe 6 can be propelled, and a piston rod 63 having a long extension stroke can be used as the hydraulic jack 62. The leading pipe 6 can be moved a long distance by the maximum extending operation, and the working efficiency by the hydraulic jack 62 can be improved.

図11;図12に示すように、押さえ部材110は、案内台90の左右幅間隔よりも広い間隔を隔てて互いに平行に対向するように設けられた一対の支柱111;111と、一対の支柱111;111の上端部同士を連結する梁材112と、を備えた門形体113と、一対の支柱111;111の下端部にそれぞれ設けられた走行手段114と、連結材120とを備えた構成である。
門形体113は、例えばH形鋼のような形鋼を用いた支柱111及び梁材112を組み合わせて構成される。
走行手段114は、各支柱111;111の下端部における互いに対向する内側面に固定されたベース台115と、ベース台115に回転中心軸を介して回転可能に設けられた車輪116とを備えた。
ベース台115は、例えば長尺板の両方の長辺側縁部に長尺板に対して同方向に垂直に延長する立ち上がり板を備えた断面凹形状の長尺部材により形成され、この長尺部材が支柱111の延長方向と直交する方向であって管2の側面と平行に延長するように凹部の開口を上に向けて取付けられている。
そして、例えば車輪116を備えたキャスターのベース板がベース台115の凹部の底を形成する長尺板に固定され、車輪116が当該凹部の底から凹部の開口を介して立ち上がり板より上方に突出するように設けられる。車輪116は、ベース台115の延長方向に沿って間隔を隔てて例えば2個設けられる。
As shown in FIG. 11; FIG. 12, the pressing member 110 includes a pair of support columns 111; 111 and a pair of support columns provided to face each other in parallel with an interval wider than the left-right width interval of the guide table 90. 111; A structure including a portal body 113 provided with a beam member 112 that connects upper end portions of 111, traveling means 114 provided on the lower end portions of the pair of support columns 111; 111, and a connecting member 120, respectively. It is.
The gate-shaped body 113 is configured by combining a support column 111 and a beam member 112 using, for example, a section steel such as an H-section steel.
The traveling means 114 includes a base 115 fixed to inner surfaces facing each other at the lower ends of the respective columns 111; 111, and a wheel 116 rotatably provided on the base 115 via a rotation center axis. .
The base table 115 is formed of a long member having a concave cross section, for example, provided with rising plates extending vertically in the same direction with respect to the long plate at both long side edges of the long plate. The member is attached with the opening of the recess facing upward so that the member extends in a direction perpendicular to the extending direction of the column 111 and extends in parallel with the side surface of the tube 2.
For example, a base plate of a caster provided with a wheel 116 is fixed to a long plate that forms the bottom of the recess of the base stand 115, and the wheel 116 protrudes upward from the rising plate through the opening of the recess from the bottom of the recess. To be provided. For example, two wheels 116 are provided at intervals along the extending direction of the base table 115.

各支柱111;111の下端部に設けられた走行手段114を案内台90の左右の設置台92;92の凹溝93内に開口93aを介して挿入し、梁材112の下の案内面91上に載置される管2の上面6uと梁材112との間に連結材120を挿入して、凹溝93の走行面としての上壁面93tと車輪116の外周面とを接触させることにより、管2が進行した場合に、走行手段114を備えた門形体113と連結材120とが一緒に連れ立って進行するように構成される。   The traveling means 114 provided at the lower end of each column 111; 111 is inserted into the left and right installation bases 92; By inserting the connecting member 120 between the upper surface 6u of the pipe 2 placed on the top and the beam member 112, the upper wall surface 93t as the running surface of the concave groove 93 and the outer peripheral surface of the wheel 116 are brought into contact with each other. When the pipe 2 travels, the portal body 113 including the traveling means 114 and the connecting member 120 are configured to travel together.

つまり、管2が先端から地中10に入り込んだ後の導坑A内に残る管2の後端6eが管2の中心軸と交差する方向に動くこと(例えば管2の後端6eが上方に浮き上がること)を規制する管後端移動規制手段200を備え、当該管後端移動規制手段200が、押さえ部材110の車輪116と係合するとともに車輪116の走行面を形成する凹溝93を備えた案内台90と、車輪116が凹溝93に係合されて車輪116が凹溝93から当該凹溝93の延長方向と直行する方向に外れないように設けられて梁材112が案内面91上に載置される管2の上面6u(管2の外側面)と対向するように管2の上方に位置される門形体113と、門形体113の梁材112と管2の上面6uとの間に挿入されて梁材112を押し上げて車輪116の外周面を凹溝93の上壁面93tに接触させる連結材120とを備えた構成である。   That is, the rear end 6e of the pipe 2 remaining in the guide shaft A after the pipe 2 enters the underground 10 from the front end moves in a direction intersecting the central axis of the pipe 2 (for example, the rear end 6e of the pipe 2 is A pipe rear end movement restricting means 200 that restricts the movement of the pipe rear end movement restricting means 200, and the pipe rear end movement restricting means 200 engages with the wheel 116 of the pressing member 110 and has a concave groove 93 that forms a running surface of the wheel 116. The guide table 90 provided, the wheel 116 is engaged with the concave groove 93, and the wheel 116 is provided so as not to deviate from the concave groove 93 in a direction perpendicular to the extending direction of the concave groove 93. 91, a portal body 113 positioned above the pipe 2 so as to face the upper surface 6u (outer surface of the pipe 2) of the pipe 2 placed on the pipe 91, a beam 112 of the portal body 113, and an upper surface 6u of the pipe 2 Between the wheel 116 and the beam member 112 The peripheral surface is configured to include a connecting member 120 into contact with the upper wall surface 93t of the concave groove 93.

即ち、連結材120は、管2と梁材112との間に楔の如く咬ますように挿入されて管2と梁材112とに密着することにより、管2が進行した場合に、管2が地中10に移動する場合の推進力を押さえ部材110に伝達し、押さえ部材110の車輪116が凹溝93の上壁面93tで形成された走行面を走行できるように車輪116の外周面と上壁面93tとを接触させる部材である。連結材120は、例えば、管2の上面6uに接触させる当て板121と、当て板121と梁材112との間に楔のように咬まされて梁材112を押し上げて当て板121と梁材112とに密着し、車輪116の外周面を凹溝93の上壁面93tに接触させる角材122とにより構成される。   In other words, the connecting member 120 is inserted between the tube 2 and the beam member 112 so as to bite like a wedge, and comes into close contact with the tube 2 and the beam member 112, so that the tube 2 is advanced when the tube 2 advances. Is transmitted to the pressing member 110 so that the wheel 116 of the pressing member 110 can travel on the traveling surface formed by the upper wall surface 93t of the concave groove 93 and the outer peripheral surface of the wheel 116. It is a member which contacts the upper wall surface 93t. The connecting member 120 is, for example, a contact plate 121 brought into contact with the upper surface 6 u of the pipe 2, and is bitten like a wedge between the contact plate 121 and the beam material 112 to push up the beam material 112 to raise the contact plate 121 and the beam material. 112 and a square member 122 that contacts the upper wall surface 93 t of the concave groove 93.

つまり、互いに対向する1対の支柱111;111と支柱111;111の上端部同士を連結する梁材112と各支柱111;111の下端部に設けられた走行手段114;114とを備えた門形体113と、当該押さえ部材110の各支柱111の下端部に設けられた各走行手段114が挿入される凹溝93を備えた案内台90と、案内台90の案内面91に設置された管2と門形体113の梁材112との間に楔の如く咬ますように挿入されて管2と梁材112とを密着させるとともに門形体113の車輪116が走行面を走行できるように車輪116の外周面と上壁面93tとを接触させる連結材120とにより構成された管後端移動規制手段200を備えたことにより、管2が先端から地中10に入り込んだ場合、導坑A内に残る管2の後端6eが管後端移動規制手段200によって案内面91から離れる方向に移動しないように押さえ込まれた状態で管2が地中10に推進する。即ち、管2を先端から地中10に設置する場合に、出発部に残る管2の後端の浮き上がりが管後端移動規制手段200によって防止される。
即ち、実施形態3においては、管2の一の外側面である下面(外面)と接触して管2を導坑Aの側壁AUに案内するための案内面91を有した案内台90と、管2が先端から導坑Aの側壁AUを経由して地中10に入り込んだ後の導坑Aに残る管2の後端6eが管2の中心線と交差する方向に移動することを規制する管後端移動規制手段200と、を備え、管後端移動規制手段200は、案内面91に設置された管2を案内面91に押し当てるように管2を押圧しながら管2とともに移動可能でかつ案内台90に対して移動可能なように設けられた押さえ部材110により構成される。
That is, a gate provided with a pair of struts 111; 111 facing each other and a beam member 112 connecting the upper ends of the struts 111; 111 and traveling means 114; 114 provided at the lower ends of the struts 111; 111. Form 113, guide stand 90 provided with a concave groove 93 into which each traveling means 114 provided at the lower end of each support column 111 of the pressing member 110 is inserted, and a pipe installed on the guide surface 91 of the guide stand 90 2 and the beam member 112 of the gate-shaped body 113 are inserted so as to bite like a wedge so that the tube 2 and the beam member 112 are brought into close contact with each other and the wheel 116 of the gate-shaped body 113 can travel on the traveling surface. When the pipe 2 enters the underground 10 from the tip, the pipe rear end movement restricting means 200 is provided. Remaining pipe Tube 2 is driven into the ground 10 at the back end 6e of is held down so as not to move in a direction away from the guide surface 91 by a tube rear movement restricting means 200. That is, when the pipe 2 is installed in the ground 10 from the tip, the rear end movement restricting means 200 prevents the rear end of the pipe 2 remaining at the starting portion from rising.
That is, in the third embodiment, a guide table 90 having a guide surface 91 for contacting the lower surface (outer surface) which is one outer surface of the tube 2 and guiding the tube 2 to the side wall AU of the guide shaft A, It is restricted that the rear end 6e of the pipe 2 remaining in the guide shaft A after entering the underground 10 from the tip through the side wall AU of the guide shaft A moves in a direction intersecting the center line of the tube 2. A pipe rear end movement restricting means 200, and the pipe rear end movement restricting means 200 moves together with the pipe 2 while pressing the pipe 2 so as to press the pipe 2 installed on the guide surface 91 against the guide surface 91. The holding member 110 is provided so as to be movable with respect to the guide table 90.

次に、図10を参照して管設置装置1による地中10への管2の設置方法を説明する。
尚、ここでは、先頭管6として管長が後続管7の管長よりも長いものを用いるものとし、後続管7として管長が先頭管6の管長のほぼ半分の長さの後続管7を用いる場合を例にして説明する。
掘削機械26と推進力伝達棒状体71と水供給管75cと排泥管76bとが取付けられた基板25を先頭管6の内側に設置する。つまり、基板25を形成する矩形板30の前面39fにおける矩形周縁面33が、先頭管6の内側に管側推進力受け部21を形成する矩形枠体22の枠後面32に水密性能維持部材35を介して突き付けられた状態となるように設置する。これにより、管2を、発進基地となる導坑Aの側壁AUから地中10に設置する場合に、先に地中10に入れる先頭管6の先端開口6t側の内側に掘削機械26が設置される。
図10(a)に示すように、発進基地となる導坑Aにおいて、側壁AUの手前側に案内台90を設置し、掘削機械26と水供給管75cと排泥管76bとが取付けられた基板25を内側に設置した先頭管6の先端開口6tを導坑Aの側壁AUに向けて当該先頭管6を案内面91上に設置する。
尚、案内台90は、案内面91に設置された管2が案内面91上を移動する際に動かないように、出発部の地盤にアンカー等で固定しておくか、あるいは、自重を増やすために、案内台90に錘を付加するか、重量を増した大重量の案内台90を用いる。
そして、押さえ部材110の走行手段114を左右の設置台92;92の凹溝93内に開口93aから挿入して、梁材112の下の案内面91上に載置される先頭管6の上面6uと梁材112との間に連結材120を挿入し、凹溝93の走行面としての上壁面93tと車輪116の外周面とを接触させる。
また、左の設置台92の台上面の後側に左の油圧ジャッキ62を固定するともに、右の設置台92の台上面の後側に右の油圧ジャッキ62を固定する。さらに、伝達体71が先頭管6の左外側面6aの後側と平行に対向するように左の推進力伝達部材85を設置し、伝達体71が先頭管6の右外側面6bの後側と平行に対向するように右の推進力伝達部材85を設置する。
Next, with reference to FIG. 10, the installation method of the pipe | tube 2 to the underground 10 by the pipe installation apparatus 1 is demonstrated.
Here, it is assumed that the pipe length of the leading pipe 6 is longer than that of the succeeding pipe 7, and the succeeding pipe 7 having a pipe length approximately half the length of the leading pipe 6 is used as the trailing pipe 7. An example will be described.
The substrate 25 to which the excavating machine 26, the propulsion force transmission rod 71, the water supply pipe 75 c and the mud pipe 76 b are attached is installed inside the top pipe 6. That is, the rectangular peripheral surface 33 on the front surface 39 f of the rectangular plate 30 that forms the substrate 25 is arranged on the frame rear surface 32 of the rectangular frame 22 that forms the tube-side propulsive force receiving portion 21 inside the top tube 6. It is installed so that it is in a state of being pushed through. As a result, when the pipe 2 is installed in the underground 10 from the side wall AU of the guide shaft A serving as the starting base, the excavating machine 26 is installed inside the tip opening 6t side of the leading pipe 6 that is first inserted into the underground 10. Is done.
As shown in FIG. 10 (a), in the guide shaft A serving as a starting base, a guide stand 90 is installed on the front side of the side wall AU, and the excavating machine 26, the water supply pipe 75c, and the mud pipe 76b are attached. The leading pipe 6 is placed on the guide surface 91 with the tip opening 6t of the leading pipe 6 with the substrate 25 placed inside facing the side wall AU of the guide shaft A.
In addition, the guide stand 90 is fixed to the ground of the departure portion with an anchor or the like so that the pipe 2 installed on the guide surface 91 does not move when moving on the guide surface 91, or increases its own weight. For this purpose, a weight is added to the guide base 90 or a heavy weight guide base 90 with an increased weight is used.
The traveling means 114 of the pressing member 110 is inserted into the concave grooves 93 of the left and right installation bases 92; 92 from the opening 93a, and the upper surface of the leading pipe 6 placed on the guide surface 91 below the beam member 112. The connecting member 120 is inserted between 6 u and the beam member 112, and the upper wall surface 93 t as a running surface of the concave groove 93 and the outer peripheral surface of the wheel 116 are brought into contact with each other.
In addition, the left hydraulic jack 62 is fixed to the rear side of the upper surface of the left installation table 92, and the right hydraulic jack 62 is fixed to the rear side of the upper surface of the right installation table 92. Further, the left propulsive force transmission member 85 is installed so that the transmission body 71 faces the rear side of the left outer side surface 6 a of the leading pipe 6 in parallel, and the transmission body 71 is located behind the right outer side surface 6 b of the leading pipe 6. The right propulsive force transmission member 85 is installed so as to face in parallel.

そして、図10(b)に示すように、掘削機械26及び左右の油圧ジャッキ62;62を作動させることで、ピストンロッド63の先端の押圧板64が推進力伝達部材85の力受板72bに接触するとともに、推進力伝達部材85の押圧板73bが棒状体71xの他端71fに接触した状態となり、ピストンロッド63が伸びるにしたがって先頭管6が地中10へと進行する。即ち、図7の送水用のポンプ75dを駆動して空間69内に泥水を供給し、空間69内と集合タンク75X内との間で泥水を循環させるとともに、制御装置65による制御によって、油圧源55から油圧モータ47に圧油を供給して回転掘削体46を回転させながら、油圧ジャッキ62のピストンロッド63を伸ばすことで、推進力伝達装置70を介して先頭管6に伝達される推進力と回転掘削体46の回転に伴って導坑Aの側壁AUに形成された図外の発進孔を介して先頭管6が前方に推進し、先頭管6が地中10に設置される。尚、回転掘削体46;46が地中10を掘削した土砂は空間69内で水と混ざって泥水となって排泥タンク76dに排出される。先頭管6が進行した場合に、連結材120と押さえ部材110とが一緒に連れ立って進行し、連結材120と押さえ部材110とによって出発部に残る先頭管6の後端6eの浮き上がりが防止される。   10B, the excavating machine 26 and the left and right hydraulic jacks 62; 62 are operated, so that the pressing plate 64 at the tip of the piston rod 63 becomes the force receiving plate 72b of the propulsive force transmitting member 85. At the same time, the pressing plate 73b of the propulsive force transmitting member 85 comes into contact with the other end 71f of the rod-like body 71x, and the leading pipe 6 advances to the ground 10 as the piston rod 63 extends. That is, the pump 75d for water supply shown in FIG. 7 is driven to supply muddy water into the space 69, and the muddy water is circulated between the space 69 and the collecting tank 75X. The propulsive force transmitted to the top pipe 6 via the propulsive force transmission device 70 is achieved by extending the piston rod 63 of the hydraulic jack 62 while supplying the hydraulic oil from the hydraulic motor 47 to the hydraulic motor 47 and rotating the rotary excavator 46. As the rotary excavator 46 rotates, the leading pipe 6 is propelled forward through a starting hole (not shown) formed in the side wall AU of the guide pit A, and the leading pipe 6 is installed in the ground 10. The earth and sand excavated by the rotary excavator 46; 46 in the ground 10 are mixed with water in the space 69 to become muddy water and discharged to the mud tank 76d. When the leading pipe 6 advances, the connecting member 120 and the holding member 110 move together, and the connecting member 120 and the holding member 110 prevent the rear end 6e of the leading pipe 6 remaining at the starting portion from being lifted. The

次に、左右の油圧ジャッキ62;62のピストンロッド63;63を最大限伸長させた後、図10(c)に示すように、ピストンロッド63;63を戻すとともに、左右の推進力伝達部材85;85を外した後、先頭管6の後方に後続管7を設置し、先頭管6の後端開口縁と後続管7の前端開口縁とを水密状態に連結する。即ち、先頭管6の後端6eに後続管7を溶接、又は、ボルト等の固定具により接続し、図10(d)に示すように、先頭の推進力伝達棒状体710の他端71fと後続の推進力伝達棒状体71の一端71eとをボルト、又は、溶接により結合することにより、先頭の推進力伝達棒状体71の後ろに後続の推進力伝達棒状体710を継ぎ足すとともに、さらに、耐圧ホース56の他端に図外の延長耐圧ホースを継ぎ足し、水供給管75cの他端に図外の延長水供給管を継ぎ足し、排泥管76bの他端に図外の延長排泥管を継ぎ足していく。
そして、図10(d)に示すように、伝達体71が後続管7の左側面と平行に対向するように左の推進力伝達部材85を設置し、伝達体71が後続管7の右側面と平行に対向するように右の推進力伝達部材85を設置した後、掘削機械26及び左右の油圧ジャッキ62;62を作動させることで、ピストンロッド63;63の先端の押圧板64;64が推進力伝達部材85の力受板72bに接触するとともに、推進力伝達部材85の押圧板73bが棒状体71xの他端71fに接触した状態となり、ピストンロッド63が伸びるにしたがって先頭管6がさらに地中10へと推進するとともに後続管7が前方に移動する。
以後、同様に、前の後続管7に後の後続管7を順次連結して地中10に設置していくことで、管Cを構築できる。尚、後続管7を地中10に推進させる際において後続管7の後端6eが浮き上がるようであれば、押さえ部材110の走行手段114を左右の設置台92;92の凹溝93内に開口93aから挿入して、梁材112の下の案内面91上に載置される後続管7の上面と梁材112との間に連結材120を挿入し、凹溝93の走行面としての上壁面93tと車輪116の外周面とを接触させた後に、後続管7を推進させれば、導坑Aに残る後続管7の後端6eの浮き上がりが防止される。
即ち、先頭管6を地中10に設置する際において、先頭管6の後端6eの浮き上がり現象が生じる場合には管後端移動規制手段200を用いればよく、先頭管6の後端6eの浮き上がり現象が生じない場合には管後端移動規制手段200を用いる必要はない。また、後続管7を地中10に推進させる際において、後続管7の後端6eの浮き上がり現象が生じる場合には管後端移動規制手段200を用いればよく、後続管7の後端6eの浮き上がり現象が生じない場合には管後端移動規制手段200を用いる必要はない。
Next, after the piston rods 63; 63 of the left and right hydraulic jacks 62; 62 are extended to the maximum extent, as shown in FIG. 10 (c), the piston rods 63; After removing 85, the succeeding pipe 7 is installed behind the leading pipe 6, and the rear end opening edge of the leading pipe 6 and the front end opening edge of the succeeding pipe 7 are connected in a watertight state. That is, the succeeding pipe 7 is connected to the rear end 6e of the leading pipe 6 by welding or a fixing tool such as a bolt, and as shown in FIG. 10 (d), the other end 71f of the leading propulsive force transmitting rod-like body 710 and By joining one end 71e of the subsequent propulsive force transmitting rod-like body 71 with a bolt or welding, the subsequent propulsive force transmitting rod-like body 710 is added behind the leading propulsive force transmitting rod-like body 71, and further, An extension pressure hose (not shown) is added to the other end of the pressure hose 56, an extension water supply pipe (not shown) is added to the other end of the water supply pipe 75c, and an extension drain mud pipe (not shown) is connected to the other end of the mud pipe 76b. We will add.
Then, as shown in FIG. 10 (d), the left propulsive force transmission member 85 is installed so that the transmission body 71 faces the left side surface of the subsequent pipe 7 in parallel, and the transmission body 71 is positioned on the right side surface of the subsequent pipe 7. After the right propulsive force transmission member 85 is installed so as to face in parallel, the excavating machine 26 and the left and right hydraulic jacks 62; 62 are operated, so that the pressing plate 64; 64 at the tip of the piston rod 63; While being in contact with the force receiving plate 72b of the propulsive force transmitting member 85, the pressing plate 73b of the propulsive force transmitting member 85 is in contact with the other end 71f of the rod-like body 71x, and the leading pipe 6 further increases as the piston rod 63 extends. The rear pipe 7 moves forward while propelling to the underground 10.
Thereafter, similarly, the pipe C can be constructed by sequentially connecting the subsequent succeeding pipe 7 to the previous succeeding pipe 7 and installing it in the underground 10. If the rear end 6e of the succeeding pipe 7 is lifted when propelling the succeeding pipe 7 into the ground 10, the traveling means 114 of the pressing member 110 is opened in the concave grooves 93 of the left and right installation bases 92; The connecting member 120 is inserted between the upper surface of the succeeding pipe 7 placed on the guide surface 91 below the beam member 112 and the beam member 112, and the upper surface as the running surface of the concave groove 93. If the succeeding pipe 7 is propelled after the wall surface 93t and the outer peripheral surface of the wheel 116 are brought into contact with each other, the rear end 6e of the succeeding pipe 7 remaining in the guide shaft A is prevented from being lifted.
That is, when the leading pipe 6 is installed in the ground 10 and the trailing end 6e of the leading pipe 6 is lifted, the pipe trailing end movement restricting means 200 may be used. If the lifting phenomenon does not occur, it is not necessary to use the pipe rear end movement restricting means 200. Further, when the trailing pipe 7 is propelled to the ground 10 and the trailing end 6e of the trailing pipe 7 is lifted, the pipe trailing end movement restricting means 200 may be used. If the lifting phenomenon does not occur, it is not necessary to use the pipe rear end movement restricting means 200.

管Cを地中10に設置した後は、掘削始点となった発進基地である導坑A内に掘削機械26を引き戻して回収する。   After the pipe C is installed in the ground 10, the excavating machine 26 is pulled back into the guide shaft A, which is the starting base that is the starting point of excavation, and collected.

上述した管設置装置1を用いれば、先頭管6の先端開口6t側の内側に、先頭管6の推進方向と交差する回転中心線Lを回転中心として回転する回転掘削体46を有した掘削機械26を設置し、管2を押圧するとともに掘削機械26で地中を掘削することにより、管2を推進させて地中10に設置したので、地中10が、硬質・レキ混じりである場合でも、断面矩形状の管2の内側の角部付近の地中部分を2つの回転掘削体46;46で掘削できるようになるので、管2を地中10においてスムーズに推進させることができるようになり、管Cを容易に地中10に設置できるようになる。   If the above-described pipe installation device 1 is used, an excavation machine having a rotary excavator 46 that rotates around the rotation center line L intersecting the propulsion direction of the front pipe 6 on the inner side of the front pipe 6 on the tip opening 6t side. 26 is pushed and the pipe 2 is pressed and the underground is excavated by the excavating machine 26 so that the pipe 2 is propelled and installed in the underground 10. Since the underground portion near the inner corner of the tube 2 having a rectangular cross section can be excavated by the two rotary excavators 46; 46, the tube 2 can be smoothly driven in the underground 10. Thus, the pipe C can be easily installed in the underground 10.

実施形態3の管設置装置1によれば、推進力伝達装置70を備えたので、管設置装置1が設置される導坑A内が狭小であり、導坑A内において管2の後側に油圧ジャッキ62を設置するための設置スペースが無い場合にあっても、油圧ジャッキ62;62を管2の左右の外側面6a;6bの横に沿った状態に設置することが可能となり、油圧ジャッキ62;62を管2の後側に設置できない場合であっても管2を推進させて地中10に進行させることができるようになる。   According to the pipe installation device 1 of the third embodiment, since the propulsive force transmission device 70 is provided, the inside of the guide shaft A where the pipe installation device 1 is installed is narrow, and the rear side of the pipe 2 in the guide shaft A. Even when there is no installation space for installing the hydraulic jack 62, the hydraulic jack 62; 62 can be installed along the left and right outer surfaces 6a; 6b of the pipe 2, and the hydraulic jack 62 can be installed. Even if 62; 62 cannot be installed on the rear side of the pipe 2, the pipe 2 can be propelled and advanced into the ground 10.

また、油圧ジャッキ62;62を管2の左右の外側面6a;6bの横に沿った状態に設置することが可能となることから、油圧ジャッキ62としてピストンロッド63の伸長ストロークの長いものを用いることができるようになり、ピストンロッド63の1回の最大伸長動作で管2を長距離移動させることができて油圧ジャッキ62による作業効率を良くできる。   Moreover, since it becomes possible to install the hydraulic jacks 62; 62 along the sides of the left and right outer surfaces 6a; 6b of the pipe 2, the hydraulic jack 62 having a long extension stroke of the piston rod 63 is used. As a result, the pipe 2 can be moved over a long distance by one maximum extension operation of the piston rod 63, and the working efficiency of the hydraulic jack 62 can be improved.

また、後続管7として管の長さが先頭管6の管の長さと同じ長さのものを用いる場合においては、図10(c)の状態において、左右の推進力伝達部材85;85の代わりに、左右の油圧ジャッキ62;62の押圧板64;64に跨って設けられて左右の推進力伝達棒状体71A;71Bの他端71f;71fに接触させる図外の横架部材を設ける。この状態で掘削機械26及び左右の油圧ジャッキ62;62を作動させると、左右の油圧ジャッキ62;62による押圧力が横架部材を介して先頭管6に伝達されて先頭管6が前方に移動するので、先頭管6の後端6eと反力受け壁74との間に後続管7の設置スペースが形成される。
尚、先頭管6の後端に順次後続管7を接続していく際、導坑A内において後続管7の後側に油圧ジャッキ62を設置するための設置スペースが確保される場合には、出発部において当該後続管7の後側に油圧ジャッキ62を設置して、左右の推進力伝達棒状体71A;71Bの他端71f;71f又は左右の推進力伝達棒状体71A;71Bの他端71f;71fに跨るように設けられた図外の横架部材を油圧ジャッキ62で押圧することにより、後続管7及び先頭管6を推進させるようにしてもよい。
Further, in the case where a tube having the same length as the tube of the leading tube 6 is used as the succeeding tube 7, in the state of FIG. 10C, instead of the left and right propulsive force transmitting members 85; Further, a horizontal member (not shown) is provided across the pressing plates 64; 64 of the left and right hydraulic jacks 62; 62 so as to contact the other ends 71f; 71f of the left and right propulsive force transmission rods 71A; When the excavating machine 26 and the left and right hydraulic jacks 62; 62 are operated in this state, the pressing force by the left and right hydraulic jacks 62; 62 is transmitted to the leading pipe 6 through the horizontal member, and the leading pipe 6 moves forward. Therefore, an installation space for the subsequent pipe 7 is formed between the rear end 6 e of the leading pipe 6 and the reaction force receiving wall 74.
When the subsequent pipe 7 is sequentially connected to the rear end of the leading pipe 6, when an installation space for installing the hydraulic jack 62 on the rear side of the subsequent pipe 7 is secured in the guide shaft A, At the starting portion, a hydraulic jack 62 is installed on the rear side of the succeeding pipe 7, and the left and right propulsive force transmitting rod-like bodies 71A; 71B, the other end 71f; The trailing pipe 7 and the leading pipe 6 may be propelled by pressing a horizontal member (not shown) provided across 71f with the hydraulic jack 62;

実施形態3によれば、管2が先端から地中に入り込んだ後の導坑A内に残る管2の後端6eが管2の中心線と交差する方向に移動することを規制する管後端移動規制手段200を備えたことにより、管2を先端から地中10に設置する場合に、例えば導坑A内に残る管2の後端6eが浮き上がる等のように、導坑A内に残る管2の後端6eが管2の中心線と交差する方向に移動する現象(以下、管後端移動現象という)を抑制できるので、地中10に入り込んだ管2の進行方向ずれを防止でき、管2を予定の地中位置に正確に設置できるようになる。
尚、上述した管後端移動現象が発生する原因としては、先頭管6の内側に設けられた掘削機械26の重量が重いことや、先頭管6の地中10に設置された管の先端側の長さに比べて出発部に残る管の長さが長い場合等において、先頭管6の重量バランスが崩れることが考えられる。また、上記管後端移動現象は、管2として、曲管、折曲管のいずれを用いる場合でも起こり得るが、特に、折曲管を地中10に設置する場合には、折曲管を構成する管と管との連結部が角部になり、湾曲面に形成された案内面91に載置された折曲管の連結部の角部のみが案内面91の湾曲面に接触するため、この折曲管の連結部の角部が回転支点となって回転しやすくなるので、上述した管後端移動現象が顕著となる傾向がある。実施形態3によれば、当該管後端移動現象を確実に抑制できるようになる。
また、管後端移動規制手段200は、案内面91に設置された管2を案内面91に押し当てるように管2を押圧しながら管2とともに移動可能でかつ案内台90に対して移動可能なように設けられた押さえ部材110により構成されたので、管2を案内面91に押し当てて上述した管後端移動現象を抑制しながら管2を地中10に推進させることができる。
さらに、押さえ部材110は、案内面91に設置された管2の左右幅間隔よりも広い間隔を隔てて当該管2の両側に配置された一対の支柱111;111と、一対の支柱111;111の上端部(一端部)同士を連結して案内面91に設置された管2の上面6u(外面)と対向する梁材112とを備えた門形体113に形成され、かつ、当該門形体113の梁材112と管2の上面6uとを密着させる連結材120を備えたので、門形体113の梁材112と連結材120とによって、管2を案内面91に押し当てて上述した管後端移動現象を抑制しながら管2を地中10に推進させることができる。
案内台90の左右の設置台92;92が走行面を形成する凹溝93を備え、押さえ部材110が走行面を走行するとともに凹溝93内に係合される走行手段114を備えたことにより、押さえ部材110をスムーズに移動させることができて、推進作業を効率的に行える。
According to the third embodiment, after the pipe that restricts the rear end 6e of the pipe 2 remaining in the guide shaft A after the pipe 2 enters the ground from the tip from moving in the direction intersecting the center line of the pipe 2. Since the end movement restricting means 200 is provided, when the pipe 2 is installed in the ground 10 from the tip, the rear end 6e of the pipe 2 remaining in the guide shaft A is lifted in the guide shaft A, for example. Since the phenomenon that the rear end 6e of the remaining pipe 2 moves in the direction intersecting the center line of the pipe 2 (hereinafter referred to as the pipe rear end movement phenomenon) can be suppressed, the traveling direction deviation of the pipe 2 that has entered the underground 10 can be prevented. The pipe 2 can be accurately installed at the planned underground position.
The cause of the phenomenon of the pipe rear end movement described above is that the excavating machine 26 provided inside the leading pipe 6 is heavy, or the leading end side of the pipe installed in the ground 10 of the leading pipe 6. When the length of the pipe remaining in the starting portion is longer than the length of the pipe, it is conceivable that the weight balance of the leading pipe 6 is lost. In addition, the pipe rear end movement phenomenon can occur when either a bent pipe or a bent pipe is used as the pipe 2, but in particular, when the bent pipe is installed in the ground 10, The connecting portion between the pipes constituting the tube becomes a corner portion, and only the corner portion of the connecting portion of the bent tube placed on the guide surface 91 formed on the curved surface comes into contact with the curved surface of the guide surface 91. Since the corner portion of the connecting portion of the bent pipe becomes a rotation fulcrum and is easy to rotate, the above-described tube rear end movement phenomenon tends to become remarkable. According to Embodiment 3, the pipe rear end movement phenomenon can be reliably suppressed.
The pipe rear end movement restricting means 200 can move with the pipe 2 while pressing the pipe 2 so as to press the pipe 2 installed on the guide surface 91 against the guide surface 91 and can move with respect to the guide table 90. Since the pressing member 110 is provided as described above, the pipe 2 can be pushed to the ground 10 while pressing the pipe 2 against the guide surface 91 and suppressing the above-described pipe rear end movement phenomenon.
Further, the pressing member 110 includes a pair of support pillars 111; 111 disposed on both sides of the pipe 2 at an interval wider than the horizontal width of the pipe 2 installed on the guide surface 91, and a pair of support pillars 111; 111. The upper end portions (one end portions) of the pipes 2 are connected to each other and formed on a gate body 113 including an upper surface 6u (outer surface) of the pipe 2 disposed on the guide surface 91 and a beam member 112 facing the upper surface 6u. Since the connecting member 120 for bringing the beam member 112 and the upper surface 6u of the tube 2 into close contact with each other is provided, the tube member 2 is pressed against the guide surface 91 by the beam member 112 and the connecting member 120 of the portal body 113, and the tube after The pipe 2 can be propelled to the ground 10 while suppressing the end movement phenomenon.
The left and right installation bases 92; 92 of the guide base 90 are provided with a concave groove 93 that forms a traveling surface, and the pressing member 110 includes a traveling means 114 that travels on the traveling surface and is engaged in the concave groove 93. The holding member 110 can be moved smoothly, and the propulsion work can be performed efficiently.

実施形態4
管後端移動規制手段としては、押さえ部材110の支柱111の下端部が推進力伝達部材85に着脱自在に取付けられた構成としてもよい。この場合、押さえ部材110で管2の後端部上面を押さえながら、管2を推進させることで、管2と一緒に押さえ部材110も移動するので、実施形態1と同様に、管後端移動現象を防止できる。即ち、実施形態2による管後端移動規制手段200は、案内台90に設置された管2を案内面91に押し当てるように管2を押圧しながら管2とともに移動可能でかつ案内台90に対して移動可能なように推進力伝達部材85に着脱可能に取付けられた押さえ部材110により構成される。実施形態2の場合、走行手段114と走行面とを備えない構成とできる。
Embodiment 4
The pipe rear end movement restricting means may be configured such that the lower end portion of the column 111 of the pressing member 110 is detachably attached to the propulsive force transmission member 85. In this case, since the holding member 110 moves together with the pipe 2 by pushing the pipe 2 while holding the upper surface of the rear end portion of the pipe 2 with the holding member 110, the movement of the rear end of the pipe is performed as in the first embodiment. The phenomenon can be prevented. That is, the pipe rear end movement restricting means 200 according to the second embodiment can move with the pipe 2 while pressing the pipe 2 so as to press the pipe 2 installed on the guide base 90 against the guide surface 91, and the guide base 90 can be moved. The holding member 110 is detachably attached to the propulsive force transmission member 85 so as to be movable. In the case of Embodiment 2, it can be set as the structure which does not provide the travel means 114 and a travel surface.

実施形態5
管後端移動規制手段としては、案内面91上に載置される管2の外周面を囲むトンネル筒状に形成されて出発口の手前に固定される構成のものを用いてもよい。
Embodiment 5
As the pipe rear end movement restricting means, a structure that is formed in a tunnel cylindrical shape surrounding the outer peripheral surface of the pipe 2 placed on the guide surface 91 and is fixed in front of the starting port may be used.

実施形態6
管後端移動規制手段としては、案内面91上に載置された管2の上面6uに載せる図外の錘を用いてもよい。
Embodiment 6
As the tube rear end movement restricting means, a weight (not shown) placed on the upper surface 6u of the tube 2 placed on the guide surface 91 may be used.

実施形態7
左右の設置台92;92を形成する各台の互いに向かい合う内側面92a;92aに、当該内側面92aに開口する断面凹形状で設置台92の延長方向に延長する凹部としての図外の凹溝を設けるとともに、管2の左右の外側面6a;6bに、当該左右の凹溝に挿入されて係合する図外の凸部を設け、当該凸部が当該凹溝に係合されて凸部が凹溝から当該凹溝の延長方向と直行する方向に外れないように設けられた構成としてもよい。即ち、案内面91上に載置される管2の左右の外側面6a;6bに設けられた凸部と、当該左右の外側面6a;6bと対向する左右の設置台92;92の左右の内側面92a;92aに設けられた凹部としての凹溝と、の凹凸係合、又は、案内面91上に載置される管2の左右の外側面6a;6bに設けられた凹部と、当該左右の外側面6a;6bと対向する左右の設置台92;92の左右の内側面92a;92aに設けられた凸部と、の凹凸係合により、管2が先端から地中10に入り込んだ後の導坑Aに残る管2の後端が管2の中心軸と交差する方向に移動することを規制する管後端移動規制手段が構成される。尚、案内台90の上述した図外の各凹溝の前端に相当する設置台92の前端面には図外の開口を形成し、管2が推進して凸部が当該開口を超えて地中10に入る前に、当該凸部を除去する。
実施形態7の場合、管2の左右の外側面6a;6bに溶接やボルト及びナット等で取付けられた凸部を案内面91の上方から図外の凹溝内に挿入できるように、凹溝の上壁を切欠いた図外の挿入穴を形成しておく。
尚、挿入穴を設けない場合には、管2を案内面91上に設置した後、凹溝内に入り込ませた凸部を形成する突起物を管2の左右の外側面6a;6bに溶接やボルト及びナット等で取付けてもよい。
Embodiment 7
On the inner side surfaces 92a; 92a of the left and right installation bases 92; 92 facing each other, a concave groove (not shown) as a concave portion extending in the extending direction of the installation base 92 with a concave cross section opening to the inner side surface 92a. And the left and right outer surfaces 6a; 6b of the tube 2 are provided with protrusions (not shown) that are inserted into and engaged with the left and right grooves, and the protrusions are engaged with the grooves and protruded. It is good also as a structure provided so that may not remove | deviate from the ditch | groove in the direction orthogonal to the extension direction of the said ditch | groove. That is, the convex portions provided on the left and right outer surfaces 6a; 6b of the pipe 2 placed on the guide surface 91, and the left and right installation bases 92; 92 facing the left and right outer surfaces 6a; Concavity and convexity engagement with a concave groove as a concave portion provided on the inner side surface 92a; 92a, or a concave portion provided on the left and right outer side surfaces 6a; 6b of the tube 2 placed on the guide surface 91, The pipe 2 has entered the ground 10 from the tip due to the concave-convex engagement with the convex portions provided on the left and right inner surfaces 92a; 92a of the left and right installation bases 92; 92 facing the left and right outer surfaces 6a; Pipe rear end movement restricting means for restricting movement of the rear end of the pipe 2 remaining in the rear guide shaft A in a direction intersecting the central axis of the pipe 2 is configured. In addition, an opening outside the figure is formed on the front end surface of the installation base 92 corresponding to the front end of each of the above-mentioned concave grooves not shown in the drawing of the guide base 90, and the pipe 2 is propelled so that the convex portion extends beyond the opening. Before entering the middle 10, the convex portion is removed.
In the case of the seventh embodiment, the concave grooves are provided so that convex portions attached to the left and right outer surfaces 6a; 6b of the pipe 2 by welding, bolts, nuts, or the like can be inserted into the concave grooves not shown from above the guide surface 91. An insertion hole (not shown) is formed by cutting out the upper wall.
In the case where no insertion hole is provided, after the tube 2 is placed on the guide surface 91, the protrusions forming the convex portions that are inserted into the groove are welded to the left and right outer surfaces 6a; 6b of the tube 2. You may attach with a bolt and a nut.

実施形態7によれば、管後端移動規制手段が、管2の外面と接触して管2を地中に入れる際の案内面91と当該案内面91に設置された管2の両横に位置する壁体としての左右の設置台92;92の内側面92a;92aを備えた案内台90と、案内面91に設置された管2の外面としての管2の左右の外側面6a;6bと当該左右の外側面6a;6bに対向する左右の設置台92;92の内側面92a;92a(壁体)とに設けられて凹凸係合を形成する凹部及び凸部とからなる凹凸係合体とを備えたので、凹凸係合体によって、管後端移動現象を防止できる。   According to the seventh embodiment, the pipe rear end movement restricting means is in contact with the outer surface of the pipe 2 and on both sides of the guide surface 91 when the pipe 2 is put into the ground and the pipe 2 installed on the guide surface 91. Left and right installation bases 92; 92 as inner walls 92a; 92a; 92a; guide base 90 provided with 92a; left and right outer surfaces 6a; 6b of pipe 2 as outer surface of pipe 2 installed on guide surface 91 And a concave / convex engaging body comprising concave and convex portions that are provided on the inner side surfaces 92a; 92a (walls) of the left and right installation bases 92; 92 facing the right and left outer surfaces 6a; 6b. Therefore, the pipe rear end movement phenomenon can be prevented by the concave-convex engagement body.

尚、実施形態3乃至実施形態7で述べた管後端移動規制手段を1つ以上併用してもよい。
また、上記では、窪んだ湾曲面である案内面91上に管2を載置して当該管2を地中に設置する例を示したが、案内台90の隆起した湾曲面である案内面上に管2を載置して当該管2を地中に設置するようにしてもよい。
また、実施形態1;2の押さえ部材として、連結材120を備えない構成の押さえ部材を用いてもよい。例えば、門形体113の梁材112と管2の上面6uとを接触させた状態で使用したり、門形体113の梁材112と管2の上面6uとを着脱可能に連結した構成としてもよい。
また、凹溝93の走行面としての下壁面と車輪116の外周面とを接触させる構成としてもよい。また、左右の設置台92;92を形成する各台の互いに向かい合う内側面92a;92aに形成された上述した図外の凹溝内に門形体113の走行手段114を係合させ、当該凹溝内に形成された走行面を走行手段114の車輪116が走行可能なように構成してもよい。
走行手段114と走行面とを備えない構成としてもよい。
実施形態1;2;4において、左右の設置台92;92を備えない案内面を有した案内台を用いてもよい。
One or more pipe rear end movement restricting means described in the third to seventh embodiments may be used in combination.
Moreover, although the example which mounts the pipe | tube 2 on the guide surface 91 which is a concave curved surface and installs the said pipe | tube 2 in the ground was shown above, the guide surface which is the curved curved surface of the guide stand 90 is shown. You may make it mount the pipe | tube 2 on the top and install the said pipe | tube 2 in the ground.
Moreover, you may use the pressing member of the structure which is not provided with the connection material 120 as a pressing member of Embodiment 1; 2. For example, the beam material 112 of the portal body 113 and the upper surface 6u of the pipe 2 may be used in contact with each other, or the beam material 112 of the portal body 113 and the upper surface 6u of the pipe 2 may be detachably connected. .
Moreover, it is good also as a structure which the lower wall surface as a running surface of the ditch | groove 93, and the outer peripheral surface of the wheel 116 are made to contact. In addition, the running means 114 of the gate-shaped body 113 is engaged with the above-described concave grooves formed on the inner side surfaces 92a; 92a facing each other of the respective platforms forming the left and right installation bases 92; You may comprise so that the wheel 116 of the driving | running | working means 114 can drive | work the driving | running | working surface formed in the inside.
It is good also as a structure which does not provide the travel means 114 and a travel surface.
In Embodiments 1; 2; 4, a guide base having a guide surface without the left and right installation bases 92; 92 may be used.

実施形態8
図13に示すように、回転掘削体46の回転中心線Lを、先頭管6の互いに平行に対向する一対の外側面と平行で、かつ、先頭管6の推進方向と直交する面と直交以外の状態で交差する状態に設定する掘削機械揺動駆動装置250を備えたことによって、先頭管6の進行に先立って先頭管6の前方において先頭管6の断面積よりも幅の広い断面積を掘削でき、先頭管6の前方での余堀が可能な管設置装置1Xを用いてもよい。例えば、図13(a);(b)に示すように、回転掘削体46が掘削進行方向の左右に揺動可能な構成を備える。
以下、管設置装置1Xの一例について説明するが、実施形態2の管設置装置1で説明した構成と同一構成部分については同一符号を付し、詳説を省略する。
実施形態7の管設置装置1Xは、実施形態2で説明した管設置装置1の掘削装置3の構成である基板25、管側推進力受け部21の代わりに掘削機械揺動駆動装置250を備えた構成である。
掘削機械揺動駆動装置250は、揺動基板300と、揺動基板300の案内部材310と、揺動基板駆動手段320とを備える。
管設置装置1Xは、筒状の案内部材310の筒の中心線と先頭管6の管の中心線とが一致するように案内部材310が先頭管6の先端開口6t側の内側に設置されて案内部材310の筒の外周面330と先頭管6の内周面6sとの間の水密性がゴムパッキン等の水密性能維持部材340によって保たれ、かつ、揺動基板300は先頭管6の互いに平行に対向する一対の外側面間の中心を回転中心としての左右の側壁301;302側が前後に揺動可能なように案内部材310に取付けられて揺動基板300の外周面390と案内部材310の筒の内周面350との間の水密性がゴムパッキン等の水密性能維持部材125によって保たれた構成とされる。先頭管6の先端開口6t側の内側における案内部材310の前方には推進力受け部630が設けられ、当該推進力受け部630は、先頭管6の先端開口6t側の内側に設置された案内部材310の筒の前端面311に接触して案内部材310の前方への移動を規制するとともに推進力伝達装置70を介して案内部材310に伝達された推進力を先頭管6に伝達することができるように、先頭管6の先端開口6t側の内周面6sに溶接、ボルト・ナット等の固定手段で固定されている。また、揺動基板300には、揺動基板300の平板を前後に貫通する支柱保持貫通孔130、排泥管保持貫通孔140、水供給管保持貫通孔150が形成され、支柱保持貫通孔130には、掘削機械26の支持部40の支柱42が貫通した状態で固定状態に保持され、排泥管保持貫通孔140には、排泥管76bの先端部が貫通した状態で固定状態に保持され、水供給管保持貫通孔150には、水供給管75cの先端部が貫通した状態で固定状態に保持される。そして、複数の掘削ビット(掘削刃)52を備えた掘削機械26の回転掘削体46が先頭管6の先端開口6tよりも前方に位置されて回転掘削体46を支持する支柱42が揺動基板300に支持されている。
実施形態8の管設置装置1Xによれば、先頭管6の前方の地中10を回転掘削体46で掘削する際に、油圧ジャッキのような揺動基板駆動手段320が揺動基板300における一対の側壁301;302側の後面を押圧及び引き戻して前後に移動させることで、回転掘削体46の回転中心線Lが、先頭管6の推進方向と直交する面及び先頭管6の互いに平行に対向する一対の外側面(例えば先頭管6の上下の外側面)と平行な第1の状態、及び、先頭管6の互いに平行に対向する一対の外側面(例えば先頭管6の上下の外側面)と平行で、かつ、先頭管6の推進方向と直交する面と直交以外の状態で交差する第2の状態(図13(a);(b)参照)に設定される。
即ち、管設置装置1Xは、先頭管6の前方において回転掘削体46を先頭管6の左右方向に揺動させるための掘削機械揺動駆動装置250を備えるので、先頭管6の前方の地中10を回転掘削体46で掘削する際に揺動基板駆動手段320により揺動基板300を駆動して回転掘削体46を例えば左右方向に揺動させることができ、回転掘削体46が左右方向に揺動しない場合と比べて、掘削可能な左右幅を大きくできる。つまり、管設置装置1Xを用いれば、先頭管6の進行に先立って先頭管6の前方において先頭管6の例えば左右幅間隔よりも幅の広い左右幅間隔で地中10を掘削でき、先頭管6の前方において先頭管6の左右幅方向での余堀が可能となるので、先頭管6の前方の硬質地盤層を掘削でき、地中10が硬質地盤層である場合でも管2を地中10においてスムーズに推進させることができる。
Embodiment 8
As shown in FIG. 13, the rotation center line L of the rotary excavator 46 is parallel to a pair of outer surfaces facing the parallel direction of the leading pipe 6 and is not perpendicular to a plane perpendicular to the propulsion direction of the leading pipe 6. By providing the excavating machine rocking drive device 250 that is set to intersect with each other, the cross-sectional area wider than the cross-sectional area of the leading pipe 6 is provided in front of the leading pipe 6 before the leading pipe 6 advances. You may use the pipe installation apparatus 1X which can excavate and can excavate in front of the front pipe 6. FIG. For example, as shown in FIGS. 13 (a) and 13 (b), the rotary excavator 46 has a configuration that can swing left and right in the excavation progress direction.
Hereinafter, an example of the tube installation device 1X will be described, but the same components as those described in the tube installation device 1 of Embodiment 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
A pipe installation device 1X according to the seventh embodiment includes a excavating machine swing driving device 250 instead of the substrate 25 and the pipe-side propulsion receiving portion 21 that are the configuration of the excavation device 3 of the pipe installation device 1 described in the second embodiment. It is a configuration.
The excavating machine swing drive device 250 includes a swing substrate 300, a guide member 310 of the swing substrate 300, and a swing substrate driving means 320.
In the tube installation device 1X, the guide member 310 is installed on the inner side of the front end opening 6t side of the front tube 6 so that the center line of the tube of the cylindrical guide member 310 matches the center line of the tube of the front tube 6. The watertightness between the outer peripheral surface 330 of the cylinder of the guide member 310 and the inner peripheral surface 6s of the leading pipe 6 is maintained by a watertight performance maintaining member 340 such as rubber packing, and the swinging substrate 300 is mutually connected to the leading pipe 6. The left and right side walls 301; 302 with the center between a pair of parallel outer surfaces facing each other as the center of rotation are attached to the guide member 310 so that the side wall can swing back and forth, and the outer peripheral surface 390 of the swing substrate 300 and the guide member 310 The water tightness between the inner peripheral surface 350 of the cylinder is maintained by a water tightness performance maintaining member 125 such as rubber packing. A propulsive force receiving portion 630 is provided in front of the guide member 310 on the inner side of the leading tube 6 on the tip opening 6t side, and the propelling force receiving portion 630 is installed inside the leading tube 6 on the tip opening 6t side. It is possible to restrict the forward movement of the guide member 310 by contacting the front end surface 311 of the cylinder of the member 310 and to transmit the propulsive force transmitted to the guide member 310 via the propulsive force transmission device 70 to the leading pipe 6. In order to be able to do so, it is fixed to the inner peripheral surface 6s on the tip opening 6t side of the leading pipe 6 by fixing means such as welding, bolts and nuts. Further, the swing substrate 300 is formed with a support holding through hole 130, a mud pipe holding through hole 140, and a water supply tube holding through hole 150 that pass through the flat plate of the swing substrate 300 forward and backward. In the excavating machine 26, the support 42 of the excavating machine 26 is held in a fixed state in a state of being penetrated, and the drainage pipe holding through hole 140 is held in a fixed state in which the tip of the drainage pipe 76b is penetrated. The water supply pipe holding through hole 150 is held in a fixed state with the tip of the water supply pipe 75c penetrating therethrough. Further, the rotary excavating body 46 of the excavating machine 26 having a plurality of excavating bits (excavating blades) 52 is positioned in front of the tip opening 6t of the top pipe 6 and the column 42 that supports the rotary excavating body 46 is a swinging substrate. 300 is supported.
According to the pipe installation device 1X of the eighth embodiment, when excavating the underground 10 in front of the top pipe 6 with the rotary excavator 46, the swing board driving means 320 such as a hydraulic jack is a pair of the swing board 300. By pressing and pulling back the rear surface of the side wall 301; 302 side of the wall, the rotational center line L of the rotary excavator 46 is opposed to the surface perpendicular to the propulsion direction of the leading pipe 6 and the leading pipe 6 in parallel with each other. A first state parallel to a pair of outer surfaces (for example, upper and lower outer surfaces of the leading tube 6), and a pair of outer surfaces of the leading tube 6 facing each other in parallel (for example, upper and lower outer surfaces of the leading tube 6). And a second state (see FIGS. 13A and 13B) that intersects the surface perpendicular to the propulsion direction of the leading pipe 6 in a state other than perpendicular.
That is, the pipe installation device 1X includes the excavating machine rocking drive device 250 for rocking the rotary excavating body 46 in the left-right direction of the top pipe 6 in front of the top pipe 6, so When the rotary excavator 46 is excavated by the rotary excavator 46, the rotary excavator 46 can be swung in the left-right direction by driving the swing substrate 300 by the swing substrate driving means 320, for example. Compared with the case where it does not swing, the left-right width that can be excavated can be increased. In other words, if the pipe installation device 1X is used, the underground 10 can be excavated at a width interval that is wider than, for example, the left-right width interval of the front tube 6 in front of the front tube 6 before the front tube 6 advances. Since it is possible to excavate the front pipe 6 in the left-right width direction in front of 6, the hard ground layer in front of the top pipe 6 can be excavated, and even when the underground 10 is a hard ground layer, the pipe 2 can be underground. 10 can be smoothly promoted.

実施形態8の掘削機械揺動駆動装置250を備えた管設置装置1Xを用いて管を地中10に設置する場合においては、先頭管6の前方において先頭管6の断面積よりも幅の広い断面積を掘削できる。即ち、先頭管6の前方の地中10において先頭管6の例えば左右側の地中10の余堀が可能となるので、管2を地中10においてスムーズに推進させることができる。   In the case where the pipe is installed in the ground 10 using the pipe installation device 1X including the excavating machine swing drive device 250 of the eighth embodiment, the width is wider than the cross-sectional area of the front pipe 6 in front of the front pipe 6. Cross section can be excavated. That is, since the underground pipe 10 in front of the leading pipe 6 can be dug in the underground pipe 10 on the left and right sides of the leading pipe 6, the pipe 2 can be smoothly driven in the underground 10.

実施形態9
図14及び図15に示すように、回転掘削体は、筐体50の外周面51より突出するように設けられた掘削刃としての第1の掘削ビット8e及び第2の掘削ビット8fとを備えた構成の回転掘削体46Aを用いてもよい。
複数個の第2の掘削ビット8fが筐体50の回転中心線Lに沿った方向に並べられて第2の掘削ビット群810が構成される。
筐体50の外周面51には複数のビット取付部83が点在するように設けられる。第1の掘削ビット8eは、筐体50の外周面51に設けられた個々のビット取付部83に1つ1つ個別に着脱可能に取り付けられる。第2の掘削ビット8fは、筐体50の外周面に設けられた複数のビット取付部83に着脱可能に取り付けられるビット設置板84に設けられる。即ち、第2の掘削ビット群810は、ビット取付部83に取り付けられて筐体50の回転中心線Lに沿って筐体50の外周面51の周面幅(回転中心線Lに沿った方向の幅、即ち、筐体50の回転中心線Lに沿った方向の両方の端面)に渡って延長するビット設置板84のビット設置面84aに、複数の第2の掘削ビット8fが回転中心線Lに沿った方向に並ぶように着脱可能又は固定的に設けられた構成である。
1つ1つの回転掘削体46Aにおいて、第1の掘削ビット8eは、筐体50の外周面51の周方向に互いに180°離れた位置にそれぞれ設けられる。第2の掘削ビット群810は、筐体50の外周面51上において第1の掘削ビット8eが設けられていない部分に設けられる。
図14(b)に示すように、筐体50の外周面51上で周方向に互いに180°離れた位置に設けられた各第2の掘削ビット群810;810の各掘削ビット8fの先端は、筐体50の回転中心線Lと直交する同一の面85e上に位置しないように設定されている。つまり、一方の第2の掘削ビット群810において互いに隣り合う各掘削ビット8f間で掘削されない地盤部分を他方の第2の掘削ビット群810の各掘削ビット8fで掘削できるように構成されている。要するに、1つ1つの回転掘削体46Aは、一方の第2の掘削ビット群810で掘削できない地盤部分を他方の第2の掘削ビット群810で掘削できるようにした相補的な一対の第2の掘削ビット群810;810を備えた構成である。
そして、図15(a)に示すように、筐体50の回転中心線Lから回転中心線Lと直交する線上を経由した第1の掘削ビット8eの先端までの第1距離80x(即ち、第1の掘削ビット8eによる掘削半径)と筐体50の回転中心線Lから回転中心線Lと直交する線上を経由した第2の掘削ビット8fの先端までの第2距離81x(即ち、第2の掘削ビットによる掘削半径)とが異なる。
つまり、第1距離80xを掘削半径とした第1の掘削ビット8eによる掘削径が、先頭管6の上下の内壁面6c;6d間(先頭管6の一方の一対の壁面の内壁面間)の寸法9xよりも小さく設定され、かつ、第2距離81xを掘削半径とした第2の掘削ビット8fによる掘削径が、先頭管6の先頭管6の上下の内壁面6c;6d間の寸法9xよりも大きく設定されていることにより、回転掘削体46Aが先頭管6の先端開口6tを介して先頭管6の前方及び先頭管6の内側に移動可能に構成されている。
即ち、第1距離80xは、回転掘削体46Aが先頭管6の内側で回転中心線Lを回転中心として回転可能な回転半径寸法に設定されたことによって、回転掘削体46Aが管2内を通過可能となり、掘削機械26を導坑Aに引き戻して回収できる。
また、第2距離81xは、回転掘削体46Aが先頭管6の内側で回転中心線Lを回転中心として回転不可能で、かつ、回転掘削体46Aが先頭管6の先端開口6tの前方に位置された場合に回転可能な回転半径に設定される。
即ち、回転掘削体46Aが先頭管6の先端開口6tの前方に位置された状態で回転駆動されることによって第1の掘削ビット8e及び第2の掘削ビット8fが先頭管6の先端開口6tの前方位置の地盤を掘削可能であり、かつ、回転掘削体46Aが管2(先頭管6及び後続管7)内を通過して管2を導坑Aに回収可能に構成される。
以上のような回転掘削体46Aを備えたことにより、先頭管6の先端開口6tの前方において先端開口6tの断面よりも例えば上下幅の大きい断面積の孔を掘削できるので、先頭管6の先端開口縁が地盤に衝突する前に地盤を掘削できて、管2をよりスムーズに推進させることができる。
また、掘削機械26の回収時には、図15(b)に示すように、第2の掘削ビット群810の第2の掘削ビット8fの先端が、先頭管6の上下の内壁面6c;6dと同一平面を示す位置より上方に位置しない状態にしてから、回転掘削体46Aを管2内に引き戻して掘削機械26導坑Aに回収する。
Embodiment 9
As shown in FIGS. 14 and 15, the rotary excavation body includes a first excavation bit 8 e and a second excavation bit 8 f as excavation blades provided so as to protrude from the outer peripheral surface 51 of the housing 50. A rotary excavator 46A having the above-described configuration may be used.
A plurality of second excavation bits 8 f are arranged in a direction along the rotation center line L of the housing 50 to constitute a second excavation bit group 810.
A plurality of bit attachment portions 83 are provided on the outer peripheral surface 51 of the housing 50 so as to be scattered. The first excavation bits 8e are detachably attached individually to individual bit attachment portions 83 provided on the outer peripheral surface 51 of the housing 50. The second excavation bit 8 f is provided on a bit installation plate 84 that is detachably attached to a plurality of bit attachment portions 83 provided on the outer peripheral surface of the housing 50. In other words, the second excavation bit group 810 is attached to the bit attachment portion 83 and extends along the rotation center line L of the housing 50 along the circumferential width of the outer peripheral surface 51 of the housing 50 (direction along the rotation center line L). A plurality of second excavation bits 8f on the bit installation surface 84a of the bit installation plate 84 extending across the width of the casing 50, that is, both end surfaces in the direction along the rotation center line L of the casing 50). It is a configuration that is detachably or fixedly provided so as to be aligned in a direction along L.
In each rotating excavation body 46A, the first excavation bits 8e are provided at positions 180 degrees apart from each other in the circumferential direction of the outer peripheral surface 51 of the housing 50. The second excavation bit group 810 is provided on the outer peripheral surface 51 of the housing 50 at a portion where the first excavation bit 8e is not provided.
As shown in FIG. 14 (b), the tips of the respective excavation bits 8f of the second excavation bit groups 810; 810 provided at positions 180 ° apart from each other in the circumferential direction on the outer peripheral surface 51 of the casing 50 are In addition, it is set so as not to be positioned on the same surface 85e orthogonal to the rotation center line L of the casing 50. That is, the ground portion that is not excavated between adjacent excavation bits 8f in one second excavation bit group 810 can be excavated by each excavation bit 8f of the other second excavation bit group 810. In short, each of the rotary excavating bodies 46A has a complementary pair of second second holes that enable excavation of a ground portion that cannot be excavated by one second excavation bit group 810 using the other second excavation bit group 810. It is the structure provided with the excavation bit group 810; 810.
Then, as shown in FIG. 15 (a), the first distance 80x (that is, the first distance) from the rotation center line L of the housing 50 to the tip of the first excavation bit 8e via a line orthogonal to the rotation center line L. A second radius 81x (that is, a second radius) from the rotation center line L of the casing 50 to the tip of the second drill bit 8f via a line orthogonal to the rotation center line L. The excavation radius by the excavation bit is different.
That is, the excavation diameter by the first excavation bit 8e with the first distance 80x as the excavation radius is between the upper and lower inner wall surfaces 6c and 6d of the head pipe 6 (between the inner wall surfaces of one pair of wall surfaces of the head pipe 6). The excavation diameter by the second excavation bit 8f, which is set to be smaller than the dimension 9x and the second distance 81x is the excavation radius, is based on the dimension 9x between the upper and lower inner wall surfaces 6c; In addition, the rotary excavator 46A is configured to be movable in front of the top tube 6 and inside the top tube 6 through the tip opening 6t of the top tube 6.
That is, the first excavation body 46A passes through the pipe 2 because the rotary excavation body 46A is set to have a rotation radius dimension that allows the rotation excavation body 46A to rotate around the rotation center line L inside the leading pipe 6. The excavating machine 26 can be withdrawn back to the guide shaft A and collected.
Further, the second distance 81x is such that the rotary excavator 46A cannot rotate around the rotation center line L inside the head pipe 6 and the rotary excavator 46A is positioned in front of the tip opening 6t of the head pipe 6. When set, the rotation radius is set to be rotatable.
That is, the rotary excavation body 46A is rotationally driven in a state where the rotary excavation body 46A is positioned in front of the front end opening 6t of the top pipe 6, whereby the first excavation bit 8e and the second excavation bit 8f are The ground at the front position can be excavated, and the rotary excavator 46A can pass through the pipe 2 (the leading pipe 6 and the succeeding pipe 7) so that the pipe 2 can be collected in the guide shaft A.
By providing the rotary excavating body 46A as described above, a hole having a cross-sectional area larger in the vertical width than that of the front end opening 6t can be excavated in front of the front end opening 6t of the front pipe 6, so that the front end of the front pipe 6 The ground can be excavated before the opening edge collides with the ground, and the pipe 2 can be pushed more smoothly.
Further, when the excavating machine 26 is collected, the tip of the second excavation bit 8f of the second excavation bit group 810 is the same as the upper and lower inner wall surfaces 6c; 6d of the top pipe 6, as shown in FIG. After the state where the plane is not located above the position indicating the plane, the rotary excavation body 46A is pulled back into the pipe 2 and collected in the excavation machine 26 guide shaft A.

即ち、実施形態9によれば、筐体50の回転中心線Lから回転中心線Lと直交する線上を経由した第1の掘削ビット8eの先端までの第1距離80x(即ち、第1の掘削ビット8eによる掘削半径)と筐体50の回転中心線Lから回転中心線Lと直交する線上を経由した第2の掘削ビット8fの先端までの第2距離81x(即ち、第2の掘削ビット8fによる掘削半径)とが異なるように設定され、第1距離80xを掘削半径とした第1の掘削ビット8eによる掘削径が、先頭管6の案内刃管9(図8参照)の上下の内壁面6c;6d間の寸法9xよりも小さく、第2距離81xを掘削半径とした第2の掘削ビット8fによる掘削径が、先頭管6の上下の内壁面6c;6d間の寸法9xよりも大きく設定された回転掘削体46Aを備えた。このため、先頭管6の先端開口6tより前方に位置する回転掘削体46Aを回転させて掘削ビット8e;8fが地盤を掘削することにより、先頭管6の先端開口6tの前方において、先頭管6の管の中心を中心とした四角断面であって先頭管6の先端開口6tの四角断面の幅寸法(回転掘削体46Aの径方向に対応する幅寸法、例えば、先頭管6の上下の内壁面6c;6d間の寸法9x)より幅寸法の大きい四角断面の孔を掘削できる。よって、先頭管6の先端開口縁が地盤に衝突する前に、先頭管6の先端開口6tよりも前方に位置する地盤を掘削ビット8e;8fにより確実に掘削できるので、先頭管6の先端開口縁が硬質の地盤に衝突して先頭管6を推進できなくなるような事態を防止でき、地山が硬質地盤である場合でも、管2をよりスムーズに推進させることができる。   That is, according to the ninth embodiment, the first distance 80x (that is, the first excavation) from the rotation center line L of the housing 50 to the tip of the first excavation bit 8e via a line orthogonal to the rotation center line L. The second distance 81x (that is, the second excavation bit 8f) from the rotation center line L of the casing 50 to the tip of the second excavation bit 8f via the line orthogonal to the rotation center line L. The excavation diameter by the first excavation bit 8e with the first distance 80x as the excavation radius is the upper and lower inner wall surfaces of the guide blade pipe 9 (see FIG. 8) of the leading pipe 6. 6c; the drilling diameter by the second drilling bit 8f with the second distance 81x as the drilling radius is set to be larger than the dimension 9x between the upper and lower inner wall surfaces 6c; The rotary excavation body 46A was provided. For this reason, the rotary excavator 46A positioned in front of the front end opening 6t of the top pipe 6 is rotated and the excavation bit 8e; 8f excavates the ground, so that the front pipe 6 is positioned in front of the front end opening 6t of the top pipe 6. The width of the square section of the front end opening 6t of the leading pipe 6 (the width dimension corresponding to the radial direction of the rotary excavator 46A, for example, the upper and lower inner wall surfaces of the leading pipe 6) It is possible to excavate a hole with a square cross section having a width dimension larger than the dimension 9x) between 6c and 6d. Therefore, the ground located in front of the front end opening 6t of the front pipe 6 can be reliably excavated by the excavation bits 8e; 8f before the front end opening edge of the front pipe 6 collides with the ground. It is possible to prevent a situation in which the edge collides with the hard ground and the front pipe 6 cannot be pushed, and the pipe 2 can be pushed more smoothly even when the ground is a hard ground.

また、筐体50の外周面51上で周方向に互いに180°離れた位置に設けられた各第2の掘削ビット群810;810の各掘削ビット8fの先端位置が、筐体50の回転中心線Lと直交する同一の面85e上に位置しないように設定されている。つまり、筐体50の外周面51上で周方向に互いに180°離れた位置に設けられた一対の第2の掘削ビット群810;810は、回転掘削体46Aの回転により一方の第2の掘削ビット群810で掘削できない地盤部分を他方の第2の掘削ビット群810で掘削できるように構成されているので、先頭管6の先端開口6tの四角断面の幅寸法より幅寸法の大きい四角断面の孔を効率的に掘削でき、管2をよりスムーズに推進させることができる。
また、各第2の掘削ビット群810を、回転中心線Lを中心として筐体50の外周面51上で例えば等間隔に配置することで、回転掘削体46Aの回転重心を一定に保てるようになり、回転掘削体46Aの回転がスムーズになって効率的に掘削できて、管2をよりスムーズに推進させることができる。
また、第2の掘削ビット8f及び第1の掘削ビット8eを備えたので、第2距離81xを掘削半径とした掘削径の孔を第2の掘削ビット8f及び第1の掘削ビット8eによってより効率的に掘削できるようになる。
The tip positions of the respective excavation bits 8 f of the second excavation bit groups 810; 810 provided at positions 180 ° apart from each other in the circumferential direction on the outer peripheral surface 51 of the enclosure 50 are the rotation centers of the enclosure 50. It is set so as not to be positioned on the same surface 85e orthogonal to the line L. That is, a pair of second excavation bit groups 810; 810 provided at positions 180 ° apart from each other in the circumferential direction on the outer peripheral surface 51 of the casing 50 is rotated by the second excavation body 46A. Since the ground portion that cannot be excavated by the bit group 810 can be excavated by the other second excavation bit group 810, a square section having a larger width dimension than the width dimension of the square section of the tip opening 6t of the leading pipe 6 is formed. A hole can be excavated efficiently and the pipe 2 can be propelled more smoothly.
Further, by arranging the second excavation bit groups 810, for example, at equal intervals on the outer peripheral surface 51 of the housing 50 around the rotation center line L, the rotational center of gravity of the rotary excavator 46A can be kept constant. Thus, the rotation of the rotary excavator 46A becomes smooth and can be excavated efficiently, and the pipe 2 can be propelled more smoothly.
In addition, since the second excavation bit 8f and the first excavation bit 8e are provided, a hole having an excavation diameter with the second distance 81x as the excavation radius is made more efficient by the second excavation bit 8f and the first excavation bit 8e. Can be excavated.

尚、第2の掘削ビット群810は、筐体50の外周面51に設けられた個々のビット取付部83に個々に取付けられた第2の掘削ビット8fの集合体により構成されてもよい。
また、筐体50の外周面51上において筐体50の回転中心線Lに沿った方向の両方の端面に跨って回転中心線Lに沿った方向に直線状又は非直線状に個々の第2の掘削ビット8fが個々に並ぶように配置されていたり、筐体50の外周面51上において筐体50の回転中心線Lに沿った方向の両方の端面に跨って回転中心線Lに沿った方向に直線状又は非直線状に延長する1つの掘削刃を有した第2の掘削ビットを備えた構成の回転掘削体46Aであって、回転掘削体46Aが管2の内側で回転中心線Lを中心として回転不可能で、かつ、先頭管6の先端開口6tの前方位置で回転可能なように構成されていればよい。
また、第2の掘削ビット群810;810が筐体50の外周面51上で周方向に互いに180°離れた位置に設けられていなくてもよい。
要するに、回転掘削体46Aは、回転中心線Lから回転中心線Lと直交する線上を経由した第1の掘削ビット8eの先端までの第1距離80xが、回転掘削体46Aが管6の内側で回転中心線Lを中心として回転可能な回転半径に設定され、回転中心線Lから回転中心線Lと直交する線上を経由した第2の掘削ビット8fの先端までの第2距離81xが、回転掘削体46Aが管2の内側で回転中心線Lを中心として回転不可能で、かつ、回転掘削体46Aが先頭管6の先端開口6tの前方に位置された場合に回転中心線Lを中心として回転可能な回転半径に設定されればよい。
The second excavation bit group 810 may be configured by an aggregate of second excavation bits 8f individually attached to individual bit attachment portions 83 provided on the outer peripheral surface 51 of the housing 50.
In addition, on the outer peripheral surface 51 of the housing 50, the individual second linearly or non-linearly in the direction along the rotation center line L across both end faces in the direction along the rotation center line L of the housing 50. The excavation bits 8f are arranged so as to be lined up individually, or along the rotation center line L across both end faces in the direction along the rotation center line L of the casing 50 on the outer peripheral surface 51 of the casing 50. Rotating excavator 46A having a second excavating bit having one excavating blade extending linearly or non-linearly in the direction, the rotating excavator 46A being inside the pipe 2 and rotating centerline L It is only necessary to be configured so that it is not rotatable around the center and is rotatable at a position in front of the tip opening 6t of the top tube 6.
Further, the second excavation bit group 810; 810 may not be provided at positions 180 degrees apart from each other in the circumferential direction on the outer peripheral surface 51 of the housing 50.
In short, the rotary excavator 46A has a first distance 80x from the rotation center line L to the tip of the first excavation bit 8e via a line orthogonal to the rotation center line L, and the rotary excavator 46A is located inside the pipe 6. The second radius 81x from the rotation center line L to the tip of the second excavation bit 8f passing through the line orthogonal to the rotation center line L is set to a rotation radius that can rotate around the rotation center line L. When the body 46A cannot rotate around the rotation center line L inside the pipe 2 and the rotary excavation body 46A is positioned in front of the tip opening 6t of the top pipe 6, it rotates around the rotation center line L. What is necessary is just to set to the possible rotation radius.

また、回転掘削体は、第1の掘削ビット8eを備えない構成としてもよい。即ち、掘削ビットとして第2の掘削ビット8fのみを有した回転掘削体を用いてもよい。
要するに、回転掘削体が第1の掘削ビット8eを備えない構成の場合において、回転中心線Lから回転中心線Lと直交する線上を経由した回転掘削体の筐体50の外周面51までの最短距離である第1距離が、回転掘削体が管6の内側で回転中心線Lを中心として回転可能な回転半径に設定され、回転中心線Lから回転中心線Lと直交する線上を経由した第2の掘削ビット8fの先端までの第2距離81xが、回転掘削体が管2の内側で回転中心線Lを中心として回転不可能で、かつ、回転掘削体が先頭管6の先端開口6tの前方に位置された場合に回転中心線Lを中心として回転可能な回転半径に設定されればよい。
つまり、第1距離を半径とした筐体50の直径が、先頭管6の上下の内壁面6c;6d間の寸法よりも小さく設定され、かつ、第2距離81xを掘削半径とした第2の掘削ビット8fによる掘削径が、先頭管6の先頭管6の上下の内壁面6c;6d間の寸法9xよりも大きく設定されていることにより、回転掘削体46Aが先頭管6の先端開口6tを介して先頭管6の前方及び先頭管6の内側に移動可能に構成される。
実施形態9によれば、第2の掘削ビット8fによる掘削によって、先頭管6の前方において先頭管6の例えば上下の内壁面6c;6d(先頭管6の一方の一対の壁面)と直交する方向である先頭管6の上下幅間隔よりも広い上下幅間隔で地中10を掘削できるようになり、先頭管6の前方において先頭管6の上下幅方向での余堀が可能となるので、地山が硬質地盤である場合でも管2をよりスムーズに推進させることが可能となる。
Further, the rotary excavator may be configured not to include the first excavation bit 8e. That is, you may use the rotary excavation body which has only the 2nd excavation bit 8f as an excavation bit.
In short, in the case where the rotary excavator does not include the first excavation bit 8e, the shortest distance from the rotation center line L to the outer peripheral surface 51 of the casing 50 of the rotary excavator passing through a line orthogonal to the rotation center line L. The first distance, which is the distance, is set to a rotation radius that allows the rotary excavator to rotate around the rotation center line L inside the pipe 6, and passes through a line perpendicular to the rotation center line L from the rotation center line L. The second distance 81x to the tip of the second excavation bit 8f is such that the rotary excavator cannot rotate around the rotation center line L inside the pipe 2 and the rotary excavator is located at the tip opening 6t of the leading pipe 6. What is necessary is just to set to the rotation radius which can rotate centering | focusing on the rotation center line L when it is located ahead.
That is, the diameter of the casing 50 with the first distance as the radius is set to be smaller than the dimension between the upper and lower inner wall surfaces 6c; 6d of the top pipe 6, and the second distance 81x is the second digging radius. Since the excavation diameter by the excavation bit 8f is set to be larger than the dimension 9x between the upper and lower inner wall surfaces 6c; 6d of the front pipe 6, the rotary excavator 46A opens the tip opening 6t of the front pipe 6. It is configured to be movable in front of the leading pipe 6 and inside the leading pipe 6.
According to the ninth embodiment, a direction perpendicular to, for example, the upper and lower inner wall surfaces 6c; 6d (one pair of wall surfaces of the leading pipe 6) of the leading pipe 6 in front of the leading pipe 6 by excavation by the second drilling bit 8f. Since the underground 10 can be excavated at a wider vertical width interval than the vertical interval of the leading pipe 6 and the front pipe 6 can be excavated in the vertical width direction of the leading pipe 6 in front of the leading pipe 6, Even when the mountain is hard ground, the pipe 2 can be propelled more smoothly.

実施形態9の回転掘削体46Aを備えた管設置装置を用いて管2を地中10に設置する場合においては、先頭管6の前方において先頭管6の断面積よりも幅の広い断面積を掘削できる。即ち、先頭管6の前方の地中10において先頭管6の例えば上下側の地中10の余堀が可能となることから、上述した管後端移動現象が発生しやすくなる。したがって、実施形態9の管設置装置を用いて管2を地中10に設置する場合に、上述した管後端移動規制手段を用いて、上述した管後端移動現象を抑制することが効果的である。   In the case where the pipe 2 is installed in the underground 10 using the pipe installation device provided with the rotary excavation body 46A of the ninth embodiment, a cross-sectional area wider than the cross-sectional area of the top pipe 6 is provided in front of the top pipe 6. Can drill. That is, since the underground pipe 10 in front of the leading pipe 6 can be dug in the underground pipe 10 on the upper and lower sides of the leading pipe 6, for example, the above-mentioned pipe rear end movement phenomenon is likely to occur. Therefore, when the pipe 2 is installed in the ground 10 using the pipe installation device of the ninth embodiment, it is effective to suppress the pipe rear end movement phenomenon described above using the pipe rear end movement restricting means described above. It is.

実施形態10
実施形態9の回転掘削体46Aと実施形態8の掘削機械揺動駆動装置250とを備えた管設置装置を用いれば、先頭管6の前方の地中10において先頭管6の上下左右側の地中10の余堀が可能となることから、上述した管後端移動現象がより発生しやすくなる。したがって、実施形態9の管設置装置を用いて管2を地中10に設置する場合に、上述した管後端移動規制手段を用いて、上述した管後端移動現象を抑制することが効果的である。
また、実施形態9の回転掘削体46Aと実施形態8の掘削機械揺動駆動装置250とを備えた管設置装置を用いた場合、地盤が硬質地盤層や岩盤層であっても管2をスムーズに推進させることができる。
Embodiment 10
If the pipe installation device provided with the rotary excavator 46A of the ninth embodiment and the excavating machine swing drive device 250 of the eighth embodiment is used, the ground on the top, bottom, left and right sides of the top pipe 6 in the ground 10 in front of the top pipe 6 is used. Since the middle 10 additional moats are possible, the above-mentioned pipe rear end movement phenomenon is more likely to occur. Therefore, when the pipe 2 is installed in the ground 10 using the pipe installation device of the ninth embodiment, it is effective to suppress the pipe rear end movement phenomenon described above using the pipe rear end movement restricting means described above. It is.
Further, when the pipe installation device provided with the rotary excavation body 46A of the ninth embodiment and the excavating machine swing drive device 250 of the eighth embodiment is used, the pipe 2 can be smoothed even if the ground is a hard ground layer or a rock layer. Can be promoted.

実施形態11
管2としては、管本体と管本体の外側面に管の延長方向に沿って管路が延長するように設けられた図外の中空管とを備えた管2を用いてもよい。当該中空管を備えた管2を用いれば、管本体内にコンクリートが埋められた後であっても、中空管を注入管として利用して管2の周囲の地盤に地盤改良材を注入することができるようになる。
Embodiment 11
As the tube 2, a tube 2 provided with a tube main body and a hollow tube (not shown) provided on the outer surface of the tube main body so as to extend the pipe line along the tube extending direction may be used. If the pipe 2 provided with the hollow tube is used, even after the concrete is buried in the pipe body, the ground improvement material is injected into the ground around the pipe 2 using the hollow pipe as an injection pipe. Will be able to.

尚、油圧ジャッキ62等の推進装置の推進力を管2に伝達する方法としては、管2の後端開口より後方に突出する図外の推進力伝達部材を設けてもよいし、推進装置で管2の後端面を直接押圧するようにしてもよい。   As a method for transmitting the propulsive force of the propulsion device such as the hydraulic jack 62 to the pipe 2, a non-illustrated propulsive force transmitting member protruding rearward from the rear end opening of the tube 2 may be provided. You may make it press the rear-end surface of the pipe | tube 2 directly.

また、掘削機械26としては、ウォータージェット装置(高圧水噴射装置)、管2の中心軸を回転中心とする回転掘削機等を用いてもよい。
例えば、断面形状が長方形の管2であれば、上記掘削機械26を用いることが好ましいが、断面形状が正方形の管を用いるのであれば、掘削機械として、ウォータージェット装置(高圧水噴射装置)を用いたり、管2の中心軸を回転中心とする回転掘削機を用いたり、あるいは、これらを併用して用いてもよい。例えば、先頭管6の前方開口部の中央に管の中心軸を回転中心とする回転掘削機を設置し、先頭管6の前方開口部における角部にウォータージェット装置の噴射ノズルを設置する。尚、本発明でいう断面形状が四角形状とは、四角の角部が面取りされた形状のものも含む。
Further, as the excavating machine 26, a water jet device (high pressure water injection device), a rotary excavator having the center axis of the pipe 2 as a rotation center, or the like may be used.
For example, if the pipe 2 has a rectangular cross section, the excavating machine 26 is preferably used. However, if a pipe having a square cross section is used, a water jet device (high pressure water injection device) is used as the excavating machine. It may be used, a rotary excavator having the center axis of the tube 2 as the center of rotation, or a combination thereof. For example, a rotary excavator having the center axis of the pipe as the center of rotation is installed at the center of the front opening of the top pipe 6, and an injection nozzle of a water jet device is installed at the corner of the front opening of the top pipe 6. In addition, the cross-sectional shape referred to in the present invention is a quadrangular shape including a shape in which square corners are chamfered.

地中10の状態、例えば地質が硬質地盤層や、岩盤層等によって管2の浮き上がりが発生しない場合は、管後端移動規制手段200を用いなくともよい。
さらに、管2は、断面円形状の管であってもよい。また、推進装置として油圧ジャッキ62以外の推進装置を用いてもよい。
When the pipe 2 is not lifted by the state of the underground 10, for example, a hard ground layer or a rock layer, the pipe rear end movement restricting means 200 may not be used.
Further, the tube 2 may be a tube having a circular cross section. A propulsion device other than the hydraulic jack 62 may be used as the propulsion device.

実施形態1;2で説明したトンネル構築方法の実施に用いる管設置装置としては、実施形態3〜実施形態11で説明した構成の管設置装置を個別に用いてもよいし、又は、実施形態3〜実施形態11で説明した管設置装置の特徴を様々に組み合わせた構成の管設置装置を用いてもよい。   As the pipe installation device used for implementing the tunnel construction method described in the first and second embodiments, the pipe installation device having the configuration described in the third to eleventh embodiments may be used individually, or the third embodiment. A tube installation device having a configuration in which the features of the tube installation device described in the eleventh embodiment are variously combined may be used.

また、本発明においては、上述したインバートコンクリート施工方法によってインバートコンクリートを形成する作業とインバートコンクリートの形成予定地の上方の地山を掘削してトンネル空洞部を形成する作業とを同時進行で行うようにしてもよい。即ち、インバートコンクリート形成作業とトンネル空洞部形成作業とを同時進行で行い、トンネル空洞部形成作業が完了する前にインバートコンクリート形成作業を完了させておけば、トンネルの早期閉合が可能となってトンネルの早期安定を図ることが可能となるとともにトンネル施工時間を短縮することが可能となる。   Further, in the present invention, the work for forming the invert concrete by the above-described invert concrete construction method and the work for excavating the ground above the place where the invert concrete is to be formed to form the tunnel cavity are performed simultaneously. It may be. That is, if the invert concrete forming operation and the tunnel cavity forming operation are performed simultaneously and the invert concrete forming operation is completed before the tunnel cavity forming operation is completed, the tunnel can be closed early. As a result, the tunnel construction time can be shortened.

10 地中、A 導坑、B;BX インバートコンクリート、C 管、
C1 コンクリート、CX 支保工、E トンネル上半空洞部,T トンネル、
TR トンネルの施工予定地、TU トンネル空洞部の内壁。
10 underground, A shaft, B; BX invert concrete, C pipe,
C1 concrete, CX support work, E tunnel upper half cavity, T tunnel,
TR tunnel construction site, inner wall of TU tunnel cavity.

Claims (7)

トンネルの施工予定地の底部に施工予定のトンネルの延長方向に沿った導坑を形成した後に、当該導坑から断面四角形の管を地中に進行させて管を地中に設置するとともに地中に設置された管内にコンクリートを充填することによりインバートコンクリートを形成したことを特徴とするインバートコンクリート施工方法。   After forming a guide pit along the extension direction of the tunnel planned to be constructed at the bottom of the tunnel construction planned site, a pipe with a square cross section is advanced from the guide shaft into the ground and the pipe is installed underground. An invert concrete construction method characterized in that invert concrete is formed by filling concrete in a pipe installed in a pipe. インバートコンクリートを、トンネルの延長方向に延長する断面アーチ形状の厚さの等しい先行覆工として機能する板状に形成したことを特徴とする請求項1に記載のインバートコンクリート施工方法。   The invert concrete construction method according to claim 1, wherein the invert concrete is formed in a plate shape that functions as a preceding lining having an equal thickness of a cross-sectional arch shape extending in the extension direction of the tunnel. 地中に設置された管内に支保工を設置した後に当該支保工が設置された管内にコンクリートを充填することによりインバートコンクリートを形成したことを特徴とする請求項1又は請求項2に記載のインバートコンクリート施工方法。   The invert concrete according to claim 1 or 2, wherein the invert concrete is formed by filling the pipe in which the support is installed after the support is installed in the pipe installed in the ground. Concrete construction method. 導坑がトンネルの施工予定地の底部において施工予定のトンネルの左右幅間の中央側に位置して施工予定のトンネルの延長方向に沿って延長するように形成され、
導坑の側壁を介して導坑とトンネル空洞部の内壁の下端位置に相当する地中位置とに跨るように地中に設置された管が施工予定のトンネルの延長方向に沿って隣り合うように地中に複数配置されたことを特徴とする請求項1乃至請求項3のいずれか一項に記載のインバートコンクリート施工方法。
The shaft is located at the center between the left and right widths of the tunnel to be constructed at the bottom of the tunnel construction site, and is formed to extend along the extension direction of the tunnel to be constructed,
The pipes installed in the ground so as to straddle the guide pit and the underground position corresponding to the lower end position of the inner wall of the tunnel cavity through the side wall of the guide mine are adjacent to each other along the extension direction of the tunnel to be constructed. The invert concrete construction method according to any one of claims 1 to 3, wherein a plurality of the concrete is disposed in the ground.
請求項1乃至請求項4のいずれか一項に記載のインバートコンクリート施工方法によってインバートコンクリートを形成した後に、地中に形成されたインバートコンクリートの上方の地山を掘削してトンネル本坑を形成したことを特徴とするトンネル施工方法。   After forming the invert concrete by the invert concrete construction method according to any one of claims 1 to 4, the tunnel main pit was formed by excavating a natural ground above the invert concrete formed in the ground. A tunnel construction method characterized by this. 請求項1乃至請求項4のいずれか一項に記載のインバートコンクリート施工方法によってインバートコンクリートを形成する作業とインバートコンクリートの形成予定地の上方の地山を掘削してトンネル空洞部を形成する作業とを同時進行で行うようにしたことを特徴とするトンネル施工方法。   An operation for forming invert concrete by the invert concrete construction method according to any one of claims 1 to 4, and an operation for excavating a natural ground above a place where the invert concrete is to be formed to form a tunnel cavity. A tunnel construction method characterized by the fact that it is performed simultaneously. トンネル施工予定地のトンネル上半となる部分を掘削してトンネル上半空洞部を形成し、当該トンネル上半空洞部の内壁面に上部支保工を形成するとともにトンネル上半空洞部の底面に底部支保工を形成することによってトンネル上半空洞部の内周面に上半支保工を形成して当該トンネル上半空洞部を閉合した後、
当該トンネル上半空洞部の内壁面の下端とインバートコンクリートの端部との間の地山を掘削して当該トンネル上半空洞部の内壁面に形成されている上部支保工の下端部とインバートコンクリートの端部とを繋ぐようにトンネル空洞部の内壁面の下端側の支保工を形成することによってトンネルを閉合し、
その後、トンネル上半空洞部の底面に設けられた底部支保工の撤去作業、トンネル下半となる部分を掘削する掘削作業、導坑の撤去作業を行うことによってトンネル本坑を形成したことを特徴とする請求項5又は請求項6に記載のトンネル施工方法。
The upper half of the tunnel is excavated to form the upper half cavity of the tunnel construction site, the upper support is formed on the inner wall surface of the tunnel upper half cavity, and the bottom is formed on the bottom of the tunnel upper half cavity. After forming the upper half support on the inner peripheral surface of the tunnel upper half cavity by forming the support, and closing the tunnel upper half cavity,
The lower end of the upper support and the invert concrete formed on the inner wall of the upper half cavity of the tunnel by excavating a ground between the lower end of the inner wall of the upper half cavity of the tunnel and the end of the invert concrete The tunnel is closed by forming a support on the lower end side of the inner wall surface of the tunnel cavity so as to connect the end of
After that, the main tunnel was formed by removing the bottom support work provided on the bottom of the upper half cavity of the tunnel, excavating the lower half of the tunnel, and removing the guide shaft The tunnel construction method according to claim 5 or 6.
JP2014124477A 2014-06-17 2014-06-17 Invert concrete construction method and tunnel construction method using the method Active JP6400951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124477A JP6400951B2 (en) 2014-06-17 2014-06-17 Invert concrete construction method and tunnel construction method using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124477A JP6400951B2 (en) 2014-06-17 2014-06-17 Invert concrete construction method and tunnel construction method using the method

Publications (2)

Publication Number Publication Date
JP2016003488A true JP2016003488A (en) 2016-01-12
JP6400951B2 JP6400951B2 (en) 2018-10-03

Family

ID=55222980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124477A Active JP6400951B2 (en) 2014-06-17 2014-06-17 Invert concrete construction method and tunnel construction method using the method

Country Status (1)

Country Link
JP (1) JP6400951B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199817A (en) * 1991-09-04 1993-04-06 Mayreder Consult Of The United States, Inc. Process of providing an elongate underground cavity
JP2005036454A (en) * 2003-07-17 2005-02-10 Shimizu Corp Timbering structure and timbering method for underground cavity
JP2006037496A (en) * 2004-07-27 2006-02-09 Ohbayashi Corp Bottomed pilot tunnel advancing arch pipe roof construction method
JP2012117275A (en) * 2010-11-30 2012-06-21 Kumagai Gumi Co Ltd Method for forming underground space in ground

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199817A (en) * 1991-09-04 1993-04-06 Mayreder Consult Of The United States, Inc. Process of providing an elongate underground cavity
JP2005036454A (en) * 2003-07-17 2005-02-10 Shimizu Corp Timbering structure and timbering method for underground cavity
JP2006037496A (en) * 2004-07-27 2006-02-09 Ohbayashi Corp Bottomed pilot tunnel advancing arch pipe roof construction method
JP2012117275A (en) * 2010-11-30 2012-06-21 Kumagai Gumi Co Ltd Method for forming underground space in ground

Also Published As

Publication number Publication date
JP6400951B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP5597113B2 (en) How to create underground space in the ground
JP6055220B2 (en) Pipe installation device
CN109026035A (en) Tunnel circumferential direction variable cross-section digs method
JP5547577B2 (en) Pipe installation method and excavation equipment in the ground
JP5718083B2 (en) Pipe installation device and pipe installation method
JP6400951B2 (en) Invert concrete construction method and tunnel construction method using the method
JP6223751B2 (en) Invert construction method for existing tunnels
JP6704266B2 (en) Tunnel widening method
JP5597114B2 (en) Pipe installation device
JP6055221B2 (en) Pipe installation method and pipes used for the method, bent pipes, pipe split bodies
JP6392546B2 (en) Pipe installation method and pipe with guide member used in the method
JP5688274B2 (en) Pipe installation device
JP6325892B2 (en) Tube installation method and tube with correction guide member used in the method
JP5597112B2 (en) How to install pipes in the ground
JP5688275B2 (en) Pipe and underground pipe installation method
JP6062677B2 (en) tube
JP6243609B2 (en) Tunnel construction method
JP6636774B2 (en) Integrated structure of pipe roof material
JP6055219B2 (en) Propulsion transmission device
JP2013100659A (en) Pipe installation device
JP4731463B2 (en) Tunnel excavator and tunnel excavation method
JP4731464B2 (en) Tunnel excavator and tunnel excavation method
JP6006571B2 (en) Pipe installation method
JP6430864B2 (en) Pipe installation method, pipe installation apparatus and pipe propulsion direction adjusting apparatus
JP6006570B2 (en) Pipe installation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180906

R150 Certificate of patent or registration of utility model

Ref document number: 6400951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250