JP2005036454A - Timbering structure and timbering method for underground cavity - Google Patents

Timbering structure and timbering method for underground cavity Download PDF

Info

Publication number
JP2005036454A
JP2005036454A JP2003198676A JP2003198676A JP2005036454A JP 2005036454 A JP2005036454 A JP 2005036454A JP 2003198676 A JP2003198676 A JP 2003198676A JP 2003198676 A JP2003198676 A JP 2003198676A JP 2005036454 A JP2005036454 A JP 2005036454A
Authority
JP
Japan
Prior art keywords
underground cavity
shafts
excavation
guide
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003198676A
Other languages
Japanese (ja)
Other versions
JP4318026B2 (en
Inventor
Kazuhiro Fukuda
和寛 福田
Shuhei Saegusa
修平 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003198676A priority Critical patent/JP4318026B2/en
Publication of JP2005036454A publication Critical patent/JP2005036454A/en
Application granted granted Critical
Publication of JP4318026B2 publication Critical patent/JP4318026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a timbering structure and a timbering method for an underground cavity, which pre-reinforce the entire outer periphery of the underground cavity. <P>SOLUTION: A first shaft 2 and a second shaft 3 are provided at both excavating-direction ends of the underground cavity 1, and top and bottom parts of the underground cavity 1 are provided with a top heading 4 and a bottom heading 5, which connect the first and second shafts 2 and 3 together. Bent steel pipes 9 are arranged in natural ground G at predetermined intervals in an excavating direction from the top heading 4 in such a manner as to envelop upper and lower half sections of the underground cavity 1. Bottom steel pipes 10 are arranged in the natural ground G at predetermined intervals in the excavating direction from the bottom heading 5 in such a manner as to envelop the batholith of the underground cavity 1. At both the excavating-direction ends of the underground cavity 1, end-section steel pipes 8 are arranged in the natural ground G at vertically predetermined intervals from each of the first and second shafts 2 and 3 in such a manner as to cover both the excavating-direction ends of the underground cavity 1, respectively. Additionally, long forepoling works 6 and 7 are applied to upper outer peripheral surfaces of top and bottom headings 4 and 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地下空洞の支保構造および支保工法に関し、特に、大規模地下空洞の支保構造および支保工法に関する。
【0002】
【従来の技術】
従来より用いられているNATM工法に代わる大断面トンネル工法として、WBR工法(特許文献1参照。)やSBR工法(特許文献2参照。)が開発されている。WBR工法は、トンネルの工区全長に亘り頂設導抗を貫通させた後、前記頂設導抗からトンネル周方向に、曲がりボーリング装置により曲がりボーリングを行って中口径鋼管を設置し、前記中口径鋼管からトンネル周辺地山に注入材を注入して人工地山アーチを造成してからトンネル掘削を行う工法である。また、SBR工法は、曲がりボーリング装置により曲がりボーリングを行って中口径鋼管を設置することに代えて、削岩機により曲がり削孔を行って小口径鋼管を設置するものである。
【0003】
【特許文献1】
特開平11−159275号公報(第2−3頁、第1図)
【特許文献2】
特開2000−160980号公報(第2−3頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、上記のWBR工法やSBR工法はいずれも、地下空洞の上半のみ事前補強するものであり、地下空洞の下半については、下半掘削と並行して吹付けコンクリートとロックボルトによる補強を行っている。
本発明は、上記事情に鑑みてなされたもので、地下空洞の全外周を事前補強する地下空洞の支保構造および支保工法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るトンネル支保構造では、地下空洞の頂部に位置し、前記地下空洞の掘進方向両端部にそれぞれ設けられた立坑同士を連結する頂設導抗から掘進方向に所定間隔で、前記地下空洞の上半および下半を包絡するように地山内に配設された円弧状の鋼管と、前記地下空洞の底部に位置し、前記立坑同士を連結する底設導抗から掘進方向に所定間隔で、前記地下空洞の底盤を包絡するように地山内に配設された鋼管とを備えることを特徴とする。
本発明では、地下空洞の上下半および底盤を事前補強することにより、本坑掘削による地山の緩みや塑性化を抑制することができる。
また、本発明に係るトンネル支保構造では、前記立坑からそれぞれ鉛直方向に所定間隔で、前記地下空洞の掘進方向両端部をそれぞれ覆うように地山内に配設された鋼管を備えていてもよい。
本発明では、地下空洞の上下半および底盤に加えて、地下空洞の掘進方向両端部を事前補強することにより、本坑掘削による地山の緩みや塑性化をより一層抑制することができる。
また、本発明に係るトンネル支保構造では、前記頂設導抗の外周部および前記底設導抗の外周部に先受工が施されていてもよい。
本発明では、頂設導抗の外周部および底設導抗の外周部に先受工を施すことにより、安全に頂設導抗および底設導抗の掘進を行うことができる。
【0006】
本発明に係るトンネル支保工法では、地下空洞の掘進方向両端部にそれぞれ立坑を設ける第一工程と、前記地下空洞の頂部位置で、前記立坑の一方から前記立坑の他方へ掘進し、前記立坑同士を連結する頂設導抗を設ける第二工程と、前記頂設導抗から掘進方向に所定間隔で、前記地下空洞の上半および下半を包絡するように円弧状の鋼管を地山内に配設する第三工程と、前記地下空洞の底部位置で、前記立坑の一方から前記立坑の他方へ掘進し、前記立坑同士を連結する底設導抗を設ける第四工程と、前記底設導抗から掘進方向に所定間隔で、前記地下空洞の底盤を包絡するように鋼管を地山内に配設する第五工程とを備えることを特徴とする。
本発明では、立坑、頂設導抗、底設導抗、上半部および下半部を原則的にそれぞれ専進させるので、作業の単純急速化が可能となる。したがって、工期の短縮および工費の削減を図ることができる。加えて、本発明では、本坑掘削に先駆けて頂設導抗および底設導抗の掘削を行うことにより、地質や地下水に関する詳細な情報を本坑掘削前に把握することができる。
また、本発明に係るトンネル支保工法では、前記第一工程とともに、前記立坑からそれぞれ鉛直方向に所定間隔で、前記地下空洞の掘進方向両端部をそれぞれ覆うように地山内に鋼管を配設してもよい。
また、本発明に係るトンネル支保工法では、前記第二工程とともに、前記頂設導抗の外周部に先受工を施し、前記第四工程とともに、前記底設導抗の外周部に先受工を施してもよい。
【0007】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
図1は、本発明に係る地下空洞の支保構造の一例を示したものである。
図1に示すように、地下空洞1の掘進方向両端部には、直径6m程の第一立坑2および第二立坑3が設けられ、地下空洞1の頂部および底部には、第一立坑2と第二立坑3とを連結する幅5m程の頂設導抗4および底設導抗5が設けられている。
頂設導抗4からは、掘進方向に略1200mm間隔で、地下空洞1の上半および下半を包絡するように曲がり鋼管9が地山G内に配設されている。曲がり鋼管9の口径は800mm程度であり、曲がり鋼管9内には注入材が充填されている。一方、底設導抗5からは、掘進方向に曲がり鋼管9と同じ所定間隔で、地下空洞1の底盤を包絡するように底部鋼管10が地山G内に配設されている。底部鋼管10の口径は200mm程度である。また、地下空洞1の掘進方向両端部には、第一立坑2および第二立坑3からそれぞれ鉛直方向に略600mm間隔で、地下空洞1の掘進方向両端部をそれぞれ覆うように地山G内に妻部鋼管8が配設されている。妻部鋼管8の口径は200mm程である。
頂設導抗4および底設導抗5の上部外周面には長尺先受工6、7が施されている。ここで、長尺先受工6、7は、掘削に先行して切羽から前方に向けて地下空洞1外周部にアーチ状に、長さ10〜25m程度の鋼管を削孔・打設した後、鋼管内部およびその周囲に注入材を充填することにより、地山Gを補強するものである。
【0008】
本実施形態による地下空洞の支保構造では、地下空洞1の全外周を事前補強することにより、本坑掘削による地山Gの緩みや塑性化を抑制することができる。
【0009】
図2乃至図5は、本発明に係る地下空洞の支保工法の一例を示したものである。図3以降、重複すると見づらくなるため、妻部鋼管8については一部図示していないが、地下空洞1の掘進方向両端の妻部全面に亘って、妻部鋼管8が設置されている。なお、図2以降の図において、図1と同一の構成要素には同一の符号を用いて説明を省略する。
先ず、図2に示すように、地下空洞1の掘進方向両端部に、地下空洞1の頂部位置までの深さを有する第一立坑2および第二立坑3を設ける。その後、地下空洞1の頂部位置で、第一立坑2から第二立坑3に向けて長尺先受工6を施しながら、自由断面掘削機などの掘進機を用いて急速掘進し、第一立坑2と第二立坑3とを連結する頂設導抗4を設ける。
次に、図3に示すように、第一立坑2および第二立坑3を地下空洞1の底部まで掘削しながら、第一立坑2および第二立坑3からそれぞれ鉛直方向に略600mm間隔で、地下空洞1の掘進方向両端部をそれぞれ覆うように地山G内に妻部鋼管8を配設する。また、頂設導抗4から掘進方向に略1200mm間隔で、地下空洞1の上半および下半を包絡するように曲がりボーリングを行い、曲がり鋼管9を地山G内に配設する。曲がり鋼管9内には注入材を充填する。
第一立坑2および第二立坑3を地下空洞1の底部まで掘削し終えた後、図4に示すように、地下空洞1の底部位置で、第一立坑2から第二立坑3に向けて長尺先受工7を施しながら、自由断面掘削機などの掘進機を用いて急速掘進し、第一立坑2と第二立坑3とを連結する底設導抗5を設ける。
引き続き、図5に示すように、底設導抗5から掘進方向に曲がり鋼管9と同じ所定間隔で、地下空洞1の底盤を包絡するように底部鋼管10を地山G内に配設する。その後、本坑の掘削を開始するが、頂設導抗4付近で、第一立坑2および第二立坑3側から地下空洞1内部に向かって切り広げ掘進する。この工程を下方に向かって所定の高さごと順次繰返すことで掘削を進めていき、最終的に、底設導抗5付近まで掘削して地下空洞1が形成される。
【0010】
本実施形態によるトンネル支保工法では、第一立坑2、第二立坑3、頂設導抗4、底設導抗5、上半部および下半部を原則的にそれぞれ専進させるので、作業の単純急速化が可能となる。したがって、工期の短縮および工費の削減を図ることができる。加えて、本実施形態によるトンネル支保工法では、本坑掘削に先駆けて頂設導抗4および底設導抗5の掘削を行うことにより、地質や地下水に関する詳細な情報を本坑掘削前に把握することができる。
【0011】
【発明の効果】
以上説明したように、本発明に係る地下空洞の支保構造および支保工法によれば、地下空洞の全外周を事前補強する地下空洞の支保構造および支保工法を実現することができる。
【図面の簡単な説明】
【図1】本発明に係る地下空洞の支保構造の一例を示す図である。
【図2】本発明に係る地下空洞の支保工法の一例を示す図である。
【図3】本発明に係る地下空洞の支保工法の一例を示す図である。
【図4】本発明に係る地下空洞の支保工法の一例を示す図である。
【図5】本発明に係る地下空洞の支保工法の一例を示す図である。
【符号の説明】
1……地下空洞
2……第一立坑
3……第二立坑
4……頂設導抗
5……底設導抗
6、7……長尺先受工
8……妻部鋼管
9……曲がり鋼管
10……底部鋼管
G……地山
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a support structure and a support method for an underground cavity, and more particularly to a support structure and a support method for a large-scale underground cavity.
[0002]
[Prior art]
A WBR method (see Patent Document 1) and an SBR method (see Patent Document 2) have been developed as a large-section tunnel method instead of the conventionally used NATM method. In the WBR construction method, after penetrating the installation guide over the entire length of the tunnel, the medium diameter steel pipe is installed by performing bending boring with a bending boring device in the circumferential direction of the tunnel from the installation guidance. It is a method of tunnel excavation after injecting material from steel pipe into the ground around the tunnel to create an artificial ground arch. In addition, the SBR method is to install a small-diameter steel pipe by bending a hole with a rock drilling machine instead of installing a medium-diameter steel pipe by bending with a bending boring apparatus.
[0003]
[Patent Document 1]
JP-A-11-159275 (page 2-3, FIG. 1)
[Patent Document 2]
JP 2000-160980 A (page 2-3, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, both the above-mentioned WBR and SBR methods only reinforce only the upper half of the underground cavity, and the lower half of the underground cavity is reinforced with shotcrete and rock bolts in parallel with the lower half excavation. Is going.
This invention is made | formed in view of the said situation, and it aims at providing the support structure and support method of an underground cavity which reinforces the whole outer periphery of an underground cavity beforehand.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in the tunnel support structure according to the present invention, the tunnel support structure is located at the top of the underground cavity and is connected to the shafts provided at both ends of the underground cavity in the direction of digging in the direction of digging. An arcuate steel pipe disposed in a natural ground so as to enclose the upper half and the lower half of the underground cavity at a predetermined interval, and a bottom guide for connecting the shafts located at the bottom of the underground cavity And a steel pipe disposed in the natural ground so as to envelop the bottom plate of the underground cavity at a predetermined interval in the direction of excavation.
In the present invention, loosening and plasticization of natural ground due to main excavation can be suppressed by pre-reinforcing the upper and lower halves of the underground cavity and the bottom plate.
Moreover, the tunnel support structure according to the present invention may include steel pipes arranged in the ground so as to cover both ends of the underground cavity in the direction of excavation at predetermined intervals in the vertical direction from the vertical shaft.
In the present invention, in addition to the upper and lower halves of the underground cavity and the bottom plate, loosening and plasticization of the natural ground due to the main digging can be further suppressed by pre-reinforcing both ends of the underground cavity in the digging direction.
Moreover, in the tunnel support structure according to the present invention, a tip receiving work may be applied to the outer peripheral portion of the top guide and the outer peripheral portion of the bottom guide.
According to the present invention, the top guide and the bottom guide can be safely excavated by performing the receiving work on the outer periphery of the top guide and the outer periphery of the bottom guide.
[0006]
In the tunnel support method according to the present invention, the first step of providing shafts at both ends of the underground cavities in the excavation direction, and excavating from one of the shafts to the other of the shafts at the top position of the underground cavities, A second step of providing a top guide for connecting the pipes, and arc-shaped steel pipes arranged in the ground so as to envelop the upper half and the lower half of the underground cavity at a predetermined interval from the top guide in the direction of excavation. A third step of providing, a fourth step of providing a bottom guide for connecting the shafts by digging from one of the shafts to the other of the shafts at the bottom position of the underground cavity, and the bottom guide And a fifth step of disposing a steel pipe in the natural ground so as to envelop the bottom plate of the underground cavity at a predetermined interval in the excavation direction.
In the present invention, the shafts, the top guide, the bottom guide, the upper half, and the lower half are principally advanced, respectively, so that the operation can be simplified and accelerated. Therefore, the construction period can be shortened and the construction cost can be reduced. In addition, in the present invention, detailed information on geology and groundwater can be grasped before excavation of the main pit by excavating the top guide and the bottom guide prior to the main dig excavation.
Further, in the tunnel support method according to the present invention, together with the first step, steel pipes are arranged in the natural ground so as to cover the both ends of the underground cavity in the vertical direction at predetermined intervals from the vertical shaft, respectively. Also good.
Further, in the tunnel support method according to the present invention, a pre-construction is applied to the outer peripheral portion of the top guide along with the second step, and a pre-construction is performed on the outer peripheral portion of the bottom guide along with the fourth step. May be applied.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a support structure for an underground cavity according to the present invention.
As shown in FIG. 1, a first shaft 2 and a second shaft 3 having a diameter of about 6 m are provided at both ends of the underground cavity 1 in the excavation direction. A top guide 4 and a bottom guide 5 having a width of about 5 m for connecting the second shaft 3 are provided.
A bent steel pipe 9 is disposed in the natural ground G so as to envelop the upper half and the lower half of the underground cavity 1 at an interval of about 1200 mm in the excavation direction from the top guide 4. The diameter of the bent steel pipe 9 is about 800 mm, and the bent steel pipe 9 is filled with an injection material. On the other hand, a bottom steel pipe 10 is disposed in the natural ground G so as to bend in the direction of excavation and envelop the bottom plate of the underground cavity 1 from the bottom guide 5 at the same predetermined interval as the steel pipe 9. The diameter of the bottom steel pipe 10 is about 200 mm. Further, at both ends of the underground cavity 1 in the excavation direction, in the natural ground G so as to cover the both ends of the underground cavity 1 in the excavation direction at approximately 600 mm intervals from the first vertical shaft 2 and the second vertical shaft 3, respectively. A wife steel pipe 8 is disposed. The diameter of the wife steel pipe 8 is about 200 mm.
Long tip receivers 6 and 7 are provided on the upper outer peripheral surfaces of the top conductor 4 and the bottom conductor 5. Here, the long tip receivers 6 and 7 are drilled and cast a steel pipe having a length of about 10 to 25 m in an arch shape in the outer periphery of the underground cavity 1 from the face to the front in advance of excavation. The natural ground G is reinforced by filling the steel pipe with and around the injection material.
[0008]
In the support structure of the underground cavity according to the present embodiment, loosening and plasticization of the natural ground G due to main excavation can be suppressed by reinforcing the entire outer periphery of the underground cavity 1 in advance.
[0009]
2 to 5 show an example of the underground cavity support method according to the present invention. In FIG. 3 and subsequent figures, since it is difficult to see when overlapped, a part of the wife steel pipe 8 is not shown, but the wife steel pipe 8 is installed over the entire wife part at both ends of the underground cavity 1 in the excavation direction. 2 and the subsequent drawings, the same components as those in FIG.
First, as shown in FIG. 2, a first shaft 2 and a second shaft 3 having a depth to the top position of the underground cavity 1 are provided at both ends of the underground cavity 1 in the excavation direction. Then, at the top position of the underground cavity 1, while making a long tip receiving work 6 from the first vertical shaft 2 to the second vertical shaft 3, rapid excavation using an excavating machine such as a free-section excavator, the first vertical shaft 2 and the second guide shaft 3 are connected.
Next, as shown in FIG. 3, while excavating the first vertical shaft 2 and the second vertical shaft 3 to the bottom of the underground cavity 1, the first vertical shaft 2 and the second vertical shaft 3 are each vertically spaced at approximately 600 mm intervals. The end portion steel pipe 8 is disposed in the natural ground G so as to cover both ends of the hollow 1 in the direction of digging. Further, bending boring is performed so as to envelope the upper half and the lower half of the underground cavity 1 at intervals of about 1200 mm in the direction of excavation from the top guide 4, and the bent steel pipe 9 is disposed in the natural ground G. The bent steel pipe 9 is filled with an injection material.
After the first vertical shaft 2 and the second vertical shaft 3 have been excavated to the bottom of the underground cavity 1, as shown in FIG. 4, the first vertical shaft 2 and the second vertical shaft 3 are long at the bottom position of the underground cavity 1. While performing the shank receiving work 7, rapid excavation is performed using an excavating machine such as a free-section excavator, and a bottom guide 5 that connects the first vertical shaft 2 and the second vertical shaft 3 is provided.
Subsequently, as shown in FIG. 5, the bottom steel pipe 10 is disposed in the natural ground G so as to envelop the bottom plate of the underground cavity 1 at the same predetermined interval as the steel pipe 9, bent from the bottom guide 5 in the digging direction. After that, excavation of the main mine is started, but the pit is expanded from the first vertical shaft 2 and the second vertical shaft 3 side toward the inside of the underground cavity 1 near the top guide 4. The excavation proceeds by repeating this process downward at a predetermined height sequentially, and finally, the underground cavity 1 is formed by excavating to the vicinity of the bottom guide 5.
[0010]
In the tunnel support method according to the present embodiment, the first shaft 2, the second shaft 3, the top guide 4, the bottom guide 5, the upper half, and the lower half are principally advanced, respectively. Simple acceleration is possible. Therefore, the construction period can be shortened and the construction cost can be reduced. In addition, in the tunnel support method according to this embodiment, prior to excavation of the main shaft, detailed information on geology and groundwater is obtained before excavation of the main channel 4 and bottom channel 5 can do.
[0011]
【The invention's effect】
As described above, according to the support structure and support method for underground cavities according to the present invention, the support structure and support method for underground cavities that pre-reinforce the entire outer periphery of the underground cavity can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a support structure for an underground cavity according to the present invention.
FIG. 2 is a diagram showing an example of a method for supporting an underground cavity according to the present invention.
FIG. 3 is a diagram showing an example of the underground cavity support method according to the present invention.
FIG. 4 is a view showing an example of a method for supporting an underground cavity according to the present invention.
FIG. 5 is a diagram showing an example of a method for supporting an underground cavity according to the present invention.
[Explanation of symbols]
1 …… Underground Cavity 2 …… First shaft 3 …… Second shaft 4 …… Top guide 5… Bottom guide 6,7 …… Long tip receiving 8 …… Tsumabetsu 9… Bending steel pipe 10 ... Bottom steel pipe G ... Mt.

Claims (6)

地下空洞の頂部に位置し、前記地下空洞の掘進方向両端部にそれぞれ設けられた立坑同士を連結する頂設導抗から掘進方向に所定間隔で、前記地下空洞の上半および下半を包絡するように地山内に配設された円弧状の鋼管と、前記地下空洞の底部に位置し、前記立坑同士を連結する底設導抗から掘進方向に所定間隔で、前記地下空洞の底盤を包絡するように地山内に配設された鋼管とを備えることを特徴とする地下空洞の支保構造。Located at the top of the underground cavity and enveloping the upper and lower halves of the underground cavity at predetermined intervals in the direction of excavation from the vertical guides connecting the shafts provided at both ends of the underground cavity in the direction of excavation In this way, the arcuate steel pipe disposed in the ground and the bottom of the underground cavity are enveloped at a predetermined interval in the direction of excavation from the bottom guide connecting the shafts to each other. A support structure for an underground cavity characterized by comprising a steel pipe disposed in a natural ground. 前記立坑からそれぞれ鉛直方向に所定間隔で、前記地下空洞の掘進方向両端部をそれぞれ覆うように地山内に配設された鋼管を備えることを特徴とする請求項1に記載の地下空洞の支保構造。2. The underground cavity support structure according to claim 1, further comprising steel pipes disposed in a natural ground so as to respectively cover both ends of the underground cavity in the vertical direction at predetermined intervals in the vertical direction. . 前記頂設導抗の外周部および前記底設導抗の外周部に先受工が施されていることを特徴とする請求項1又は2に記載の地下空洞の支保構造。The support structure for an underground cavity according to claim 1 or 2, wherein a front receiving work is applied to an outer peripheral portion of the top guide and an outer peripheral portion of the bottom guide. 地下空洞の掘進方向両端部にそれぞれ立坑を設ける第一工程と、
前記地下空洞の頂部位置で、前記立坑の一方から前記立坑の他方へ掘進し、前記立坑同士を連結する頂設導抗を設ける第二工程と、
前記頂設導抗から掘進方向に所定間隔で、前記地下空洞の上半および下半を包絡するように円弧状の鋼管を地山内に配設する第三工程と、
前記地下空洞の底部位置で、前記立坑の一方から前記立坑の他方へ掘進し、前記立坑同士を連結する底設導抗を設ける第四工程と、
前記底設導抗から掘進方向に所定間隔で、前記地下空洞の底盤を包絡するように鋼管を地山内に配設する第五工程とを備えることを特徴とする地下空洞の支保工法。
A first step of providing vertical shafts at both ends of the underground cavity in the excavation direction,
A second step of digging from one of the shafts to the other of the shafts at the top position of the underground cavity, and providing a guide for connecting the shafts;
A third step of disposing an arc-shaped steel pipe in a natural ground so as to envelop the upper half and the lower half of the underground cavity at a predetermined interval in the excavation direction from the installation guide;
A fourth step of digging from one of the shafts to the other of the shafts at the bottom position of the underground cavity, and providing a bottom guide for connecting the shafts;
And a fifth step of arranging a steel pipe in a natural ground so as to envelop the bottom plate of the underground cavity at a predetermined interval in the direction of excavation from the bottom installation guide.
前記第一工程とともに、前記立坑からそれぞれ鉛直方向に所定間隔で、前記地下空洞の掘進方向両端部をそれぞれ覆うように地山内に鋼管を配設することを特徴とする請求項4に記載の地下空洞の支保工法。The underground pipe according to claim 4, wherein, together with the first step, steel pipes are disposed in the natural ground so as to respectively cover both end portions of the underground cavity in the vertical direction at predetermined intervals from the vertical shaft. Hollow support method. 前記第二工程とともに、前記頂設導抗の外周部に先受工を施し、前記第四工程とともに、前記底設導抗の外周部に先受工を施すことを特徴とする請求項4又は5に記載の地下空洞の支保工法。The front receiving work is applied to the outer peripheral portion of the top guide with the second step, and the front receiving work is applied to the outer peripheral portion of the bottom guide with the fourth step. 5. An underground cavity support method according to 5.
JP2003198676A 2003-07-17 2003-07-17 Support structure and support method of underground cavity Expired - Fee Related JP4318026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198676A JP4318026B2 (en) 2003-07-17 2003-07-17 Support structure and support method of underground cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198676A JP4318026B2 (en) 2003-07-17 2003-07-17 Support structure and support method of underground cavity

Publications (2)

Publication Number Publication Date
JP2005036454A true JP2005036454A (en) 2005-02-10
JP4318026B2 JP4318026B2 (en) 2009-08-19

Family

ID=34208389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198676A Expired - Fee Related JP4318026B2 (en) 2003-07-17 2003-07-17 Support structure and support method of underground cavity

Country Status (1)

Country Link
JP (1) JP4318026B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046897A (en) * 2007-08-21 2009-03-05 Shimizu Corp Tunnel construction method
CN102155247A (en) * 2011-03-15 2011-08-17 李刚 Pipe shed support device
JP2016003488A (en) * 2014-06-17 2016-01-12 公立大学法人首都大学東京 Invert concrete construction method, and tunnel construction method using the same
CN113530558A (en) * 2021-08-20 2021-10-22 湖南涟邵建设工程(集团)有限责任公司 Double-chute-inclined roadway combined layered construction method for big and high chamber
KR102673127B1 (en) 2020-12-30 2024-06-10 (주)티에스테크 Tunnel CFT girder filling material with K-type expansive-concrete and ordinary Portland cement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109958445B (en) * 2019-04-16 2020-08-25 北京城建设计发展集团股份有限公司 Scaffold construction method for ultra-shallow large underground space

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046897A (en) * 2007-08-21 2009-03-05 Shimizu Corp Tunnel construction method
CN102155247A (en) * 2011-03-15 2011-08-17 李刚 Pipe shed support device
JP2016003488A (en) * 2014-06-17 2016-01-12 公立大学法人首都大学東京 Invert concrete construction method, and tunnel construction method using the same
KR102673127B1 (en) 2020-12-30 2024-06-10 (주)티에스테크 Tunnel CFT girder filling material with K-type expansive-concrete and ordinary Portland cement
CN113530558A (en) * 2021-08-20 2021-10-22 湖南涟邵建设工程(集团)有限责任公司 Double-chute-inclined roadway combined layered construction method for big and high chamber
CN113530558B (en) * 2021-08-20 2023-11-28 湖南涟邵建设工程(集团)有限责任公司 Double-drop shaft-inclined drift combined layered construction method for high-large chamber

Also Published As

Publication number Publication date
JP4318026B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP3824114B2 (en) Whale bone method for large section tunnel
JP3833403B2 (en) Large-section tunnel sushi bone method
KR101041301B1 (en) Method for digging tunnel
JPH08170484A (en) Construction method of large cross section tunnel
JP4132442B2 (en) Tunnel construction method
JP4318026B2 (en) Support structure and support method of underground cavity
JP2874561B2 (en) Fore piling method with stiffening of the leading leg using a shaft
JP4296549B2 (en) Underground support structure, its construction method and tunnel construction method
JP4730595B2 (en) Construction method of underground cavity
JP3834571B2 (en) Construction method for underground structures
KR20090011442A (en) Tunnel boring method using sheet pile and tunnel structure therof
JP2833482B2 (en) Steel lining structure of tunnel
JP3863320B2 (en) Tunnel receiving method
JPS6149473B2 (en)
JP5012149B2 (en) Ground support structure and ground support method
JP2764802B2 (en) Tunnel wall reinforcement method in tunnel excavation
JP2000073697A (en) Leg pile method
JP2006176999A (en) Natural ground reinforcing method
JP4841645B2 (en) Long tip receiving method
JPH0432200B2 (en)
JPH10169362A (en) Tunnel excavation method and excavator
JPH06346699A (en) Excavation method of underground space
JP2000226982A (en) Grouting reinforcing method in tunnel excavation
JP2006176988A (en) Long-sized forepoling construction method
JPS6175198A (en) Propelling of small caliber machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees