JP2016001328A - Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
JP2016001328A
JP2016001328A JP2015155547A JP2015155547A JP2016001328A JP 2016001328 A JP2016001328 A JP 2016001328A JP 2015155547 A JP2015155547 A JP 2015155547A JP 2015155547 A JP2015155547 A JP 2015155547A JP 2016001328 A JP2016001328 A JP 2016001328A
Authority
JP
Japan
Prior art keywords
group
liquid crystal
carbon
bond
crystal aligning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015155547A
Other languages
Japanese (ja)
Other versions
JP6102997B2 (en
Inventor
佳和 宮本
Yoshikazu Miyamoto
佳和 宮本
幸志 樫下
Koshi Kashishita
幸志 樫下
利之 秋池
Toshiyuki Akiike
利之 秋池
博昭 徳久
Hiroaki Tokuhisa
博昭 徳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46808742&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016001328(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2015155547A priority Critical patent/JP6102997B2/en
Publication of JP2016001328A publication Critical patent/JP2016001328A/en
Application granted granted Critical
Publication of JP6102997B2 publication Critical patent/JP6102997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal alignment agent with which a liquid crystal display element capable of fast response and having a superior voltage retention rate, afterimage characteristics and light resistance, can be prepared, and which is also excellent in coating uniformity.SOLUTION: A liquid crystal alignment agent contains at least one polymer [A] selected from a group consisting of polyamic acid, polyimide, and polyamic acid ester, and the polymer has a partial structure derived from a compound represented by following formula (4). In the following formula (4), Ris a methylene group, an alkylene group having 2 to 30 carbon atoms, -(CHO)-, a phenylene group or a cyclohexylene group. b' is an integer of 0 to 20. c' is an integer of 0 to 10. Ris a linking group comprising a carbon-carbon double bond, a carbon-carbon triple bond, an ether bond, an ester bond or an amide bond. Ris a group having at least two monocyclic structures. (a) is 1. g is 2 or 3.

Description

本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。   The present invention relates to a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element.

近年、液晶表示素子は消費電力が小さいことや、小型化及びフラット化が容易であること等の利点を有しているため、携帯電話等の小型の液晶表示装置から液晶テレビ等の大画面液晶表示装置まで幅広い用途で適用されている。   In recent years, liquid crystal display elements have advantages such as low power consumption and easy miniaturization and flattening. Therefore, liquid crystal display elements can be used from small liquid crystal display devices such as mobile phones to large screen liquid crystals such as liquid crystal televisions. It is applied to a wide range of uses up to display devices.

液晶表示装置の駆動モードとしては、液晶分子の配向(配列)状態の変化に応じ、TN(Twisted Nematic)、STN(Super Twisted Nematic)、IPS(In−Plane Switching)、VA(Vertical Alignment)等が知られている。また、VAモードでは配向分割により視野角を高めるため、MVA(Multi domain Vertical Alignment)方式やPVA(Patterned Vertical Alignment)方式が採用されており、さらに高速応答性やパネル開口率を向上させ、液晶にプレチルト角を付与することで光垂直配向方式、PSA(Polymer Sustained Alignment)方式等に採用することが検討されている。これらのいずれの駆動モードにおいても、液晶分子の配向状態は液晶配向膜で直接制御されており、液晶配向膜は液晶表示素子の機能特性の発現や制御をかなりのウェイトで担っている。   As a driving mode of the liquid crystal display device, there are TN (Twisted Nematic), STN (Super Twisted Nematic), IPS (In-Plane Switching), VA (Vertical Alignment), etc. according to the change of the alignment (alignment) state of the liquid crystal molecules. Are known. In VA mode, MVA (Multi domain Vertical Alignment) method and PVA (Patterned Vertical Alignment) method are adopted to increase the viewing angle by orientation division, further improving the high-speed response and panel aperture ratio to the liquid crystal. It has been studied to adopt a pre-tilt angle for use in an optical vertical alignment method, a PSA (Polymer Sustained Alignment) method, and the like. In any of these drive modes, the alignment state of the liquid crystal molecules is directly controlled by the liquid crystal alignment film, and the liquid crystal alignment film is responsible for the development and control of the functional characteristics of the liquid crystal display element.

かかる液晶表示装置は携帯電話や液晶テレビ等の動画表示用装置として期待されていることから、液晶表示素子に求められる特性として、動画を滑らかに表示しつつ残像を極力抑えるべく、電気光学効果の応答時間のさらなる高速化が求められている。この要求に対して、液晶配向膜に用いるポリマー側鎖に誘電異方性を与える構造を付与することで改善を図る技術が報告されている(特表2007−521361号公報及び特表2007−521506号公報参照)。しかし、本特許文献には電気光学応答時間の高速化以外に実用面で重要となる電圧保持率、残像特性等の電気特性については全く記載されていない。   Since such a liquid crystal display device is expected as a moving image display device such as a mobile phone or a liquid crystal television, as a characteristic required for a liquid crystal display element, an electro-optic effect is required to suppress an afterimage as much as possible while smoothly displaying a moving image. A further increase in response time is required. In response to this requirement, a technique for improving the structure by imparting a structure that gives dielectric anisotropy to the polymer side chain used in the liquid crystal alignment film has been reported (Japanese Patent Publication No. 2007-521361 and Japanese Patent Publication No. 2007-521506). No. publication). However, this patent document does not describe electrical characteristics such as voltage holding ratio and afterimage characteristics that are important in practical use other than speeding up the electro-optic response time.

このような状況から、液晶素子の高速応答を実現しつつ、電圧保持率等の諸性能に優れた液晶表示素子を作製可能な液晶配向剤の開発が望まれている。   Under such circumstances, it is desired to develop a liquid crystal aligning agent capable of producing a liquid crystal display element excellent in various performances such as a voltage holding ratio while realizing a high-speed response of the liquid crystal element.

特表2007−521361号公報Special table 2007-521361 特表2007−521506号公報Special table 2007-521506 gazette

本発明は以上のような事情に基づいてなされたものであり、その目的は高速応答が可能であり、かつ電圧保持率、残像特性及び耐光性に優れた液晶表示素子を作製することができ、均一塗布性にも優れる液晶配向剤を提供することである。   The present invention has been made based on the above circumstances, the purpose of which can be a high-speed response, and can produce a liquid crystal display device excellent in voltage holding ratio, afterimage characteristics and light resistance, It is to provide a liquid crystal aligning agent that is excellent in uniform coating property.

上記課題を解決するためになされた発明は、
[A]ポリアミック酸、ポリイミド、(メタ)アクリル重合体、ポリシロキサン及びポリアミック酸エステルからなる群より選択される少なくとも1種の重合体(以下、「[A]重合体」とも称する)を含有し、かつ上記重合体が下記式(1)で表される基を有する液晶配向剤である。

Figure 2016001328
(式(1)中、
は、メチレン基、炭素数2〜30のアルキレン基、−(C2bO)−、フェニレン基又はシクロヘキシレン基である。bは、0〜20の整数である。cは、0〜10の整数である。但し、これらの基の水素原子の一部又は全部は、置換されていてもよい。
は、炭素−炭素二重結合、炭素−炭素三重結合、エーテル結合、エステル結合又はアミド結合を含む連結基である。
は、少なくとも2個の単環構造を有する基である。
aは、0又は1の整数である。) The invention made to solve the above problems is
[A] contains at least one polymer selected from the group consisting of polyamic acid, polyimide, (meth) acrylic polymer, polysiloxane, and polyamic acid ester (hereinafter also referred to as “[A] polymer”). And the said polymer is a liquid crystal aligning agent which has group represented by following formula (1).
Figure 2016001328
(In the formula (1),
R 1 is a methylene group, an alkylene group having 2 to 30 carbon atoms, — (C b H 2b O) c —, a phenylene group or a cyclohexylene group. b is an integer of 0-20. c is an integer of 0-10. However, some or all of the hydrogen atoms of these groups may be substituted.
R 2 is a linking group containing a carbon-carbon double bond, a carbon-carbon triple bond, an ether bond, an ester bond or an amide bond.
R 3 is a group having at least two monocyclic structures.
a is an integer of 0 or 1. )

当該液晶配向剤が、上記式(1)で表される特定構造の基を有する[A]重合体を含有することで、高速応答を実現することができる。また、ポリマー主鎖構造の異なるポリアミック酸、ポリイミド、(メタ)アクリル重合体、ポリシロキサン及びポリアミック酸エステルからなる群より選択される少なくとも1種の重合体を適宜選択する事で、液晶表示素子に所望の特性(電圧保持率、残像特性、均一塗布性、耐光性)を付与することができる。   When the liquid crystal aligning agent contains the [A] polymer having a specific structure group represented by the above formula (1), a high-speed response can be realized. In addition, by appropriately selecting at least one polymer selected from the group consisting of polyamic acid, polyimide, (meth) acrylic polymer, polysiloxane, and polyamic acid ester having different polymer main chain structures, a liquid crystal display element can be used. Desired characteristics (voltage holding ratio, afterimage characteristics, uniform coatability, light resistance) can be imparted.

上記Rは、下記式(2)で表される基であることが好ましい。

Figure 2016001328
(式(2)中、
及びRは、それぞれ独立してフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環である。但し、これらの基の水素原子の一部又は全部は、置換されていてもよい。
は、メチレン基、炭素数2〜10のアルキレン基、炭素−炭素二重結合、炭素−炭素三重結合、エーテル結合、エステル結合又は複素環を含む連結基である。但し、上記連結基の水素原子の一部又は全部は、置換されていてもよい。
は、水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基、アルコキシ基、トリフルオロメトキシ基又はアルキルカルボニルオキシ基である。
bは、0又は1である。cは、1〜9の整数である。但し、Rが複数の場合、複数のRは同一でも異なっていてもよい。) R 3 is preferably a group represented by the following formula (2).
Figure 2016001328
(In the formula (2),
R 4 and R 6 are each independently a phenylene group, a biphenylene group, a naphthalene group, a cyclohexylene group, a bicyclohexylene group, a cyclohexylenephenylene group, or a heterocyclic ring. However, some or all of the hydrogen atoms of these groups may be substituted.
R 5 is a linking group containing a methylene group, an alkylene group having 2 to 10 carbon atoms, a carbon-carbon double bond, a carbon-carbon triple bond, an ether bond, an ester bond or a heterocyclic ring. However, one part or all part of the hydrogen atom of the said coupling group may be substituted.
R 7 is a hydrogen atom, a cyano group, a fluorine atom, a trifluoromethyl group, an alkoxycarbonyl group, an alkyl group, an alkoxy group, a trifluoromethoxy group, or an alkylcarbonyloxy group.
b is 0 or 1. c is an integer of 1-9. However, when R 7 is plural, a plurality of R 7 may be the same or different. )

[A]重合体の側鎖として、上記式(2)で表される構造を導入することで、得られる液晶配向素子の応答速度をより向上することができる。   [A] By introducing the structure represented by the above formula (2) as the side chain of the polymer, the response speed of the obtained liquid crystal alignment element can be further improved.

本発明には、当該液晶表示素子から形成される液晶配向膜及び当該液晶配向膜を備える液晶表示素子が好適に含まれる。上述したように当該液晶配向剤によれば、高速応答が可能であり、かつ電圧保持率、残像特性、均一塗布性、耐光性等の諸性能に優れた液晶表示素子を作製可能であることから、当該液晶表示素子はTN、STN、IPS、FFS、Ht−VA(VA−IPS)、VA(MVA、PVA、光垂直配向、PSA等の方式を含む)等の駆動モードにおいても好適に適用できる。   The present invention preferably includes a liquid crystal alignment film formed from the liquid crystal display element and a liquid crystal display element including the liquid crystal alignment film. As described above, according to the liquid crystal aligning agent, it is possible to produce a liquid crystal display element capable of high-speed response and excellent in various performances such as voltage holding ratio, afterimage characteristics, uniform coating property, and light resistance. The liquid crystal display element can be suitably applied in driving modes such as TN, STN, IPS, FFS, Ht-VA (VA-IPS), and VA (including MVA, PVA, optical vertical alignment, PSA, and the like). .

本発明によれば、高速応答が可能であり、かつ電圧保持率、残像特性、耐光性等の諸性能に優れた液晶表示素子を作製することができ、均一塗布性にも優れる液晶配向剤を提供できる。従って、当該液晶表示素子はTN、STN、IPS、FFS、Ht−VA(VA−IPS)、VA(MVA、PVA、光垂直配向、PSA等の方式を含む)等の駆動モードにおいても好適に適用できる。   According to the present invention, a liquid crystal aligning agent capable of high-speed response and capable of producing a liquid crystal display element excellent in various performances such as voltage holding ratio, afterimage characteristics, light resistance and the like, and excellent in uniform coating property. Can be provided. Therefore, the liquid crystal display element can be suitably applied in driving modes such as TN, STN, IPS, FFS, Ht-VA (VA-IPS), and VA (including MVA, PVA, optical vertical alignment, PSA, and the like). it can.

<液晶配向剤>
本発明の液晶配向剤は、[A]重合体を含有する。また、当該液晶配向剤は、本発明の効果を損なわない範囲でその他の任意成分を含有することができる。以下、各成分を詳述する。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention contains a [A] polymer. In addition, the liquid crystal aligning agent can contain other optional components as long as the effects of the present invention are not impaired. Hereinafter, each component will be described in detail.

<[A]重合体>
[A]重合体は、ポリアミック酸、ポリイミド、(メタ)アクリル重合体、ポリシロキサン及びポリアミック酸エステルからなる群より選択される少なくとも1種の重合体を含有し、かつ上記重合体が上記式(1)で表される基を有する。当該液晶配向剤が、上記式(1)で表される特定構造の基を有する[A]重合体を含有することで、高速応答を実現することができる。また、ポリマー主鎖構造の異なるポリアミック酸、ポリイミド、(メタ)アクリル重合体、ポリシロキサン及びポリアミック酸エステルからなる群より選択される少なくとも1種の重合体を適宜選択する事で、液晶表示素子に所望の特性(電圧保持率、残像特性、均一塗布性、耐光性)を付与することができる。以下、上記式(1)で表される基、各重合体の順に詳述する。
<[A] polymer>
[A] The polymer contains at least one polymer selected from the group consisting of polyamic acid, polyimide, (meth) acrylic polymer, polysiloxane and polyamic acid ester, and the polymer is represented by the above formula ( It has group represented by 1). When the liquid crystal aligning agent contains the [A] polymer having a specific structure group represented by the above formula (1), a high-speed response can be realized. In addition, by appropriately selecting at least one polymer selected from the group consisting of polyamic acid, polyimide, (meth) acrylic polymer, polysiloxane, and polyamic acid ester having different polymer main chain structures, a liquid crystal display element can be used. Desired characteristics (voltage holding ratio, afterimage characteristics, uniform coatability, light resistance) can be imparted. Hereinafter, the group represented by the above formula (1) and the respective polymers will be described in detail.

[式(1)で表される基]
上記式(1)中、Rは、メチレン基、炭素数2〜30のアルキレン基、−(C2bO)−、フェニレン基又はシクロヘキシレン基である。bは、0〜20の整数である。cは、0〜10の整数である。但し、これらの基の水素原子の一部又は全部は、置換されていてもよい。Rは、炭素−炭素二重結合、炭素−炭素三重結合、エーテル結合、エステル結合又はアミド結合を含む連結基である。Rは、少なくとも2個の単環構造を有する基である。aは、0又は1の整数である。
[Group Represented by Formula (1)]
In the formula (1), R 1 represents a methylene group, an alkylene group having 2 to 30 carbon atoms, - (C b H 2b O ) c -, a phenylene group or a cyclohexylene group. b is an integer of 0-20. c is an integer of 0-10. However, some or all of the hydrogen atoms of these groups may be substituted. R 2 is a linking group containing a carbon-carbon double bond, a carbon-carbon triple bond, an ether bond, an ester bond or an amide bond. R 3 is a group having at least two monocyclic structures. a is an integer of 0 or 1.

上記Rで表される連結基としては、エーテル基、エステル基、アミド基が好ましい。 The linking group represented by R 2 is preferably an ether group, an ester group, or an amide group.

上記Rが示す炭素数2〜30のアルキレン基としては、例えばエチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基、ノナデシレン基、イコシレン基、ヘンイコシレン基、ドコシレン基、トリコシレン基、テトラコシレン基、ペンタコシレン基、ヘキサコシレン基、ヘプタコシレン基、オクタコシレン基、ノナコシレン基、トリアコンチレン基等が挙げられる。 Examples of the alkylene group having 2 to 30 carbon atoms represented by R 1 include ethylene group, propylene group, butylene group, pentylene group, hexylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tetradecylene group, Hexadecylene group, octadecylene group, nonadecylene group, icosylene group, hencicosylene group, docosylene group, tricosylene group, tetracosylene group, pentacosylene group, hexacosylene group, heptacosylene group, octacosylene group, nonacosylene group, triaconylene group, etc. .

上記Rが示す少なくとも2個の単環構造を有する基としては、上記式(2)で表される基であることが好ましい。[A]重合体の側鎖として、上記式(2)で表される構造を導入することで、得られる液晶配向素子の応答速度をより向上することができる。 The group having at least two monocyclic structures represented by R 3 is preferably a group represented by the above formula (2). [A] By introducing the structure represented by the above formula (2) as the side chain of the polymer, the response speed of the obtained liquid crystal alignment element can be further improved.

上記式(2)中、R及びRは、それぞれ独立してフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環である。但し、これらの基の水素原子の一部又は全部は、置換されていてもよい。Rは、メチレン基、炭素数2〜10のアルキレン基、炭素−炭素二重結合、炭素−炭素三重結合、エーテル結合、エステル結合又は複素環を含む連結基である。但し、上記連結基の水素原子の一部又は全部は、置換されていてもよい。Rは、水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基、アルコキシ基、トリフルオロメトキシ基又はアルキルカルボニルオキシ基である。bは、0又は1である。cは、1〜9の整数である。但し、Rが複数の場合、複数のRは同一でも異なっていてもよい。なお、本明細書においては上記ナフタレン基等の縮合環は、単環に含まれるものとする。 In the above formula (2), R 4 and R 6 are each independently a phenylene group, a biphenylene group, a naphthalene group, a cyclohexylene group, a bicyclohexylene group, a cyclohexylenephenylene group, or a heterocyclic ring. However, some or all of the hydrogen atoms of these groups may be substituted. R 5 is a linking group containing a methylene group, an alkylene group having 2 to 10 carbon atoms, a carbon-carbon double bond, a carbon-carbon triple bond, an ether bond, an ester bond or a heterocyclic ring. However, one part or all part of the hydrogen atom of the said coupling group may be substituted. R 7 is a hydrogen atom, a cyano group, a fluorine atom, a trifluoromethyl group, an alkoxycarbonyl group, an alkyl group, an alkoxy group, a trifluoromethoxy group, or an alkylcarbonyloxy group. b is 0 or 1. c is an integer of 1-9. However, when R 7 is plural, a plurality of R 7 may be the same or different. In the present specification, the condensed ring such as the naphthalene group is included in a single ring.

上記R及びRが示す複素環としては、例えばピリジン環、ピリダジン環、ピリミジン環等が挙げられる。上記Rが示す炭素数2〜10のアルキレン基を含む連結基の炭素数2〜10のアルキレン基としては、例えばエチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基等が挙げられる。上記Rが示す複素環としては、例えばピリジン環、ピリダジン環、ピリミジン環等が挙げられる。Rが示すアルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基等が挙げられる。Rが示すアルキル基としては、例えばメチル基、エチル基、プロピル基、n−ブチル基、イソブチル基等の炭素数1〜20の直鎖又は分岐鎖状のアルキル基等が挙げられる。Rが示すアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基等が挙げられる。Rが示すアルキルカルボニルオキシ基としては、例えばメトキシカルボニルオキシ基、エトキシカルボニルオキシ基、プロポキシカルボニルオキシ基等が挙げられる。 Examples of the heterocyclic ring represented by R 4 and R 6 include a pyridine ring, a pyridazine ring, and a pyrimidine ring. Examples of the alkylene group having 2 to 10 carbon atoms of the linking group containing the alkylene group having 2 to 10 carbon atoms represented by R 5 include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, and an octylene group. It is done. Examples of the heterocyclic ring represented by R 5 include a pyridine ring, a pyridazine ring, and a pyrimidine ring. Examples of the alkoxycarbonyl group represented by R 7 include a methoxycarbonyl group, an ethoxycarbonyl group, and a propoxycarbonyl group. Examples of the alkyl group represented by R 7 include linear or branched alkyl groups having 1 to 20 carbon atoms such as a methyl group, an ethyl group, a propyl group, an n-butyl group, and an isobutyl group. Examples of the alkoxy group represented by R 7 include a methoxy group, an ethoxy group, and a propoxy group. Examples of the alkylcarbonyloxy group represented by R 7 include a methoxycarbonyloxy group, an ethoxycarbonyloxy group, and a propoxycarbonyloxy group.

当該液晶配向剤を用いた液晶表示素子の高速応答の観点から、上記Rとしては、アルキル基が好ましく、炭素数1〜20の直鎖状のアルキル基がより好ましい。また、上記R〜Rの少なくとも1つの基がフッ素原子を有していることが好ましい。 From the viewpoint of high-speed response of a liquid crystal display device using the liquid crystal aligning agent, R 7 is preferably an alkyl group, and more preferably a linear alkyl group having 1 to 20 carbon atoms. Moreover, it is preferable that at least one group of R 4 to R 6 has a fluorine atom.

上記式(2)で表される基としては、例えば下記式で表される基等が挙げられる。   Examples of the group represented by the above formula (2) include a group represented by the following formula.

Figure 2016001328
Figure 2016001328

Figure 2016001328
Figure 2016001328

Figure 2016001328
Figure 2016001328

Figure 2016001328
Figure 2016001328

Figure 2016001328
Figure 2016001328

Figure 2016001328
Figure 2016001328

Figure 2016001328
Figure 2016001328

上記式(2−1)〜(2−123)中、Rは、炭素数1〜20のアルキル基又はアルコキシ基である。Xは、それぞれ独立して、水素原子又はフッ素原子である。 In the above formula (2-1) ~ (2-123), R 8 is an alkyl group or an alkoxy group having 1 to 20 carbon atoms. X is each independently a hydrogen atom or a fluorine atom.

上記Rとしては、炭素数1〜20のアルキル基であることが好ましく、炭素数1〜10のアルキル基であることがより好ましい。 R 8 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.

上記式(2)で表される基としては、当該液晶配向剤を用いた液晶表示素子の高速応答の観点から、上記式(2−1)、式(2−4)、式(2−6)、式(2−41)、式(2−50)〜(2−60)、式(2−64)、式(2−65)〜(2−123)で表される基が好ましく、式(2−41)、式(2−50)〜(2−58)、式(2−65)〜(2−123)のようにフッ素原子を有し、末端にアルキル基を有している基、式(2−72)で表される基及び式(2−90)で表される基がより好ましい。   As the group represented by the above formula (2), the above formula (2-1), formula (2-4), formula (2-6) from the viewpoint of high-speed response of the liquid crystal display element using the liquid crystal aligning agent. ), Formulas (2-41), formulas (2-50) to (2-60), formulas (2-64), and groups represented by formulas (2-65) to (2-123) are preferred. A group having a fluorine atom and having an alkyl group at its terminal as in (2-41), formulas (2-50) to (2-58) and formulas (2-65) to (2-123) The group represented by formula (2-72) and the group represented by formula (2-90) are more preferred.

[ポリアミック酸]
[A]重合体としてのポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得られる。上記ジアミン化合物の一部は上記式(1)で表される基を含むジアミン化合物とする必要がある。
[Polyamic acid]
[A] The polyamic acid as a polymer is obtained by reacting a tetracarboxylic dianhydride with a diamine compound. A part of the diamine compound needs to be a diamine compound containing a group represented by the formula (1).

テトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物等が挙げられる。これらのテトラカルボン酸二無水物は、単独又は2種以上を組み合わせて使用できる。   Examples of tetracarboxylic dianhydrides include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides, and the like. These tetracarboxylic dianhydrides can be used alone or in combination of two or more.

脂肪族テトラカルボン酸二無水物としては、例えばブタンテトラカルボン酸二無水物等が挙げられる。   Examples of the aliphatic tetracarboxylic dianhydride include butanetetracarboxylic dianhydride.

脂環式テトラカルボン酸二無水物としては、例えば1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシメチルノルボルナン−2:3,5:6−二無水物、2,4,6,8−テトラカルボキシビシクロ[3.3.0]オクタン−2:4,6:8−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン等が挙げられる。 Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4. , 5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b -Hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] Octane-2,4-dione-6-spiro-3 ′-(tetrahydrofuran-2 ′, 5′-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene -1,2-dicarboxylic acid Water, 3,5,6-tricarboxy-2-carboxymethylnorbornane-2: 3,5: 6-dianhydride, 2,4,6,8-tetracarboxybicyclo [3.3.0] octane- 2: 4,6: 8-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2,6 ] undecane-3,5,8,10-tetraone and the like.

芳香族テトラカルボン酸二無水物としては、例えばピロメリット酸二無水物等が挙げられるほか特願2010−97188号に記載のテトラカルボン酸二無水物が挙げられる。   Examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride and the like, and the tetracarboxylic dianhydride described in Japanese Patent Application No. 2010-97188.

これらのテトラカルボン酸二無水物のうち、脂環式テトラカルボン酸二無水物が好ましく、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物がより好ましい。   Of these tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides are preferred, 2,3,5-tricarboxycyclopentylacetic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride. Anhydrides are more preferred.

ジアミン化合物としては、例えば脂肪族ジアミン、脂環式ジアミン、ジアミノオルガノシロキサン、芳香族ジアミン等が挙げられる。これらジアミン化合物は、単独又は2種以上を組み合わせて使用できる。   Examples of the diamine compound include aliphatic diamine, alicyclic diamine, diaminoorganosiloxane, and aromatic diamine. These diamine compounds can be used alone or in combination of two or more.

脂肪族ジアミンとしては、例えばメタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン等が挙げられる。   Examples of the aliphatic diamine include metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and the like.

脂環式ジアミンとしては、例えば1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(シクロヘキシルアミン)、1,3−ビス(アミノメチル)シクロヘキサン等が挙げられる。   Examples of the alicyclic diamine include 1,4-diaminocyclohexane, 4,4′-methylenebis (cyclohexylamine), 1,3-bis (aminomethyl) cyclohexane, and the like.

ジアミノオルガノシロキサンとしては、例えば1,3−ビス(3−アミノプロピル)−テトラメチルジシロキサン等が挙げられるほか、特願2009−97188号に記載のジアミンが挙げられる。   Examples of the diaminoorganosiloxane include 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and the like, and diamines described in Japanese Patent Application No. 2009-97188.

芳香族ジアミンとしては、例えばp−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、1,5−ジアミノナフタレン、2,2’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、2,7−ジアミノフルオレン、4,4’−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、9,9−ビス(4−アミノフェニル)フルオレン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−(p−フェニレンジイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンジイソプロピリデン)ビスアニリン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,6−ジアミノピリジン、3,4−ジアミノピリジン、2,4−ジアミノピリミジン、3,6−ジアミノアクリジン、3,6−ジアミノカルバゾール、N−メチル−3,6−ジアミノカルバゾール、N−エチル−3,6−ジアミノカルバゾール、N−フェニル−3,6−ジアミノカルバゾール、N,N’−ビス(4−アミノフェニル)−ベンジジン、N,N’−ビス(4−アミノフェニル)−N,N’−ジメチルベンジジン、1,4−ビス−(4−アミノフェニル)−ピペラジン、3,5−ジアミノ安息香酸、ドデカノキシ−2,4−ジアミノベンゼン、テトラデカノキシ−2,4−ジアミノベンゼン、ペンタデカノキシ−2,4−ジアミノベンゼン、ヘキサデカノキシ−2,4−ジアミノベンゼン、オクタデカノキシ−2,4−ジアミノベンゼン、ドデカノキシ−2,5−ジアミノベンゼン、テトラデカノキシ−2,5−ジアミノベンゼン、ペンタデカノキシ−2,5−ジアミノベンゼン、ヘキサデカノキシ−2,5−ジアミノベンゼン、オクタデカノキシ−2,5−ジアミノベンゼン、コレスタニルオキシ−3,5−ジアミノベンゼン、コレステニルオキシ−3,5−ジアミノベンゼン、コレスタニルオキシ−2,4−ジアミノベンゼン、コレステニルオキシ−2,4−ジアミノベンゼン、3,5−ジアミノ安息香酸コレスタニル、3,5−ジアミノ安息香酸コレステニル、3,5−ジアミノ安息香酸ラノスタニル、3,6−ビス(4−アミノベンゾイルオキシ)コレスタン、3,6−ビス(4−アミノフェノキシ)コレスタン、4−(4’−トリフルオロメトキシベンゾイロキシ)シクロヘキシル−3,5−ジアミノベンゾエート、4−(4’−トリフルオロメチルベンゾイロキシ)シクロヘキシル−3,5−ジアミノベンゾエート、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ブチルシクロヘキサン、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ヘプチルシクロヘキサン、1,1−ビス(4−((アミノフェノキシ)メチル)フェニル)−4−ヘプチルシクロヘキサン、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−(4−ヘプチルシクロヘキシル)シクロヘキサン、2,4−ジアミノーN,N―ジアリルアニリン、4−アミノベンジルアミン、3−アミノベンジルアミン、下記式(3)で表される化合物、下記式(4)で表される化合物等が挙げられる。   Examples of the aromatic diamine include p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, 1,5-diaminonaphthalene, 2,2′-dimethyl-4,4′-diaminobiphenyl. 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 2,7-diaminofluorene, 4,4′-diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) Phenyl] propane, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoro Propane, 4,4 ′-(p-phenylenediisopropylidene) bisaniline, 4,4 ′-(m-pheny Diisopropylidene) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4 -Diaminopyrimidine, 3,6-diaminoacridine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole N, N′-bis (4-aminophenyl) -benzidine, N, N′-bis (4-aminophenyl) -N, N′-dimethylbenzidine, 1,4-bis- (4-aminophenyl)- Piperazine, 3,5-diaminobenzoic acid, dodecanoxy-2,4-diaminobenzene, tetradecanoxy-2,4-diamy Benzene, pentadecanoxy-2,4-diaminobenzene, hexadecanoxy-2,4-diaminobenzene, octadecanoxy-2,4-diaminobenzene, dodecanoxy-2,5-diaminobenzene, tetradecanoxy-2,5-diaminobenzene, pentadecanoxy-2 , 5-diaminobenzene, hexadecanoxy-2,5-diaminobenzene, octadecanoxy-2,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanyloxy- 2,4-diaminobenzene, cholestenyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestenyl 3,5-diaminobenzoate, lanostannyl 3,5-diaminobenzoate, 3,6-bi (4-aminobenzoyloxy) cholestane, 3,6-bis (4-aminophenoxy) cholestane, 4- (4′-trifluoromethoxybenzoyloxy) cyclohexyl-3,5-diaminobenzoate, 4- (4 ′ -Trifluoromethylbenzoyloxy) cyclohexyl-3,5-diaminobenzoate, 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butylcyclohexane, 1,1-bis (4-(( Aminophenyl) methyl) phenyl) -4-heptylcyclohexane, 1,1-bis (4-((aminophenoxy) methyl) phenyl) -4-heptylcyclohexane, 1,1-bis (4-((aminophenyl) methyl) ) Phenyl) -4- (4-heptylcyclohexyl) cyclohexane, 2,4-diamino-N, - diallyl aniline, 4-amino-benzylamine, 3-amino benzylamine compound represented by the following formula (3) include compounds represented by the following formula (4).

Figure 2016001328
Figure 2016001328

上記式(3)中、R、R9’’及びR9’’’は、それぞれ独立して単結合、−O−、*−COO−又は−OCO−である。但し、Rの*はジアミノフェニル基と結合する部位である。また、R9’’及びR9’’’の*はフェニレン基側に結合する部位である。R9’は、炭素数1〜3のアルカンジイル基である。dは、0又は1である。eは、0〜2の整数である。fは、0又は1である。R10は、直鎖状、分岐状又は環状のアルキル基である。ジアミノフェニル基における2つのアミノ基は、2,4位又は3,5位に結合することが好ましい。 In the above formula (3), R 9 , R 9 ″ and R 9 ′ ″ are each independently a single bond, —O—, * —COO— or —OCO—. However, the R 9 * is a site which binds a diaminophenyl group. Moreover, * of R 9 and R 9 ′ ″ is a site bonded to the phenylene group side. R 9 ′ is an alkanediyl group having 1 to 3 carbon atoms. d is 0 or 1. e is an integer of 0-2. f is 0 or 1. R 10 is a linear, branched or cyclic alkyl group. The two amino groups in the diaminophenyl group are preferably bonded to the 2,4 position or the 3,5 position.

Figure 2016001328
Figure 2016001328

上記式(4)中、R、d及びeは、上記式(3)と同義である。R〜R及びaは、上記式(1)と同義である。ジアミノフェニル基における2つのアミノ基は、2,4位又は3,5位に結合することが好ましい。gは、1〜5の整数である。 In said formula (4), R < 9 >, d, and e are synonymous with the said Formula (3). R 1 to R 3 and a are as defined in the above formula (1). The two amino groups in the diaminophenyl group are preferably bonded to the 2,4 position or the 3,5 position. g is an integer of 1-5.

上記R〜Rについては、上記[式(1)で表される基]におけるそれぞれの定義の説明及び好ましい基の説明をそのまま適用できる。 About said R < 1 > -R < 3 >, description of each definition in the said [group represented by Formula (1)] and description of a preferable group are applicable as it is.

上記gとしては、当該液晶配向剤を用いた液晶表示素子の高速応答の観点から、1〜3が好ましく、2又は3がより好ましい。   As said g, 1-3 are preferable from a viewpoint of the high-speed response of the liquid crystal display element using the said liquid crystal aligning agent, and 2 or 3 is more preferable.

上記式(4)で表されるジアミンとしては、例えば下記式で表されるジアミン等が挙げられる。   Examples of the diamine represented by the above formula (4) include diamines represented by the following formula.

Figure 2016001328
Figure 2016001328

Figure 2016001328
Figure 2016001328

Figure 2016001328
Figure 2016001328

これらのジアミンのうち、[A]重合体としてポリアミック酸を選択する場合においては、上記式(1)で表される基を重合体中に導入する観点から、ジアミンの1つとして少なくとも上記式(4)で表される化合物等の式(1)で表される基を有するジアミンを使用する必要がある。なお、他のジアミンを併用する場合としては、上記式(3)で表される化合物を使用することが好ましい。   Among these diamines, in the case of selecting a polyamic acid as the [A] polymer, from the viewpoint of introducing the group represented by the above formula (1) into the polymer, at least the above formula ( It is necessary to use a diamine having a group represented by the formula (1) such as a compound represented by 4). In addition, when using other diamine together, it is preferable to use the compound represented by the said Formula (3).

ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物の使用割合としては、ジアミン化合物に含まれるアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2当量〜2当量が好ましく、0.3当量〜1.2当量がより好ましい。   The ratio of the tetracarboxylic dianhydride and the diamine compound used in the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0 with respect to 1 equivalent of the amino group contained in the diamine compound. .2 equivalents to 2 equivalents are preferable, and 0.3 equivalents to 1.2 equivalents are more preferable.

合成反応は、有機溶媒中において行うことが好ましい。反応温度としては、−20℃〜150℃が好ましく、0℃〜100℃がより好ましい。反応時間としては、0.5時間〜24時間が好ましく、2時間〜12時間がより好ましい。   The synthesis reaction is preferably performed in an organic solvent. The reaction temperature is preferably −20 ° C. to 150 ° C., more preferably 0 ° C. to 100 ° C. The reaction time is preferably 0.5 hours to 24 hours, and more preferably 2 hours to 12 hours.

有機溶媒としては、合成されるポリアミック酸を溶解できるものであれば特に制限はなく、例えばN−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジメチルイミダゾリジノン、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m−クレゾール、キシレノール、フェノール、ハロゲン化フェノール、ジエチレングリコールエチルメチルエーテル等が挙げられる。   The organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid. For example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazolidinone, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol, phenol, halogenated phenol, diethylene glycol ethyl methyl ether and the like can be mentioned.

有機溶媒の使用量としては、テトラカルボン酸二無水物及びジアミン化合物の総量100質量部に対して、0.1質量部〜50質量部が好ましく、5質量部〜40質量部がより好ましい。   As the usage-amount of an organic solvent, 0.1 mass part-50 mass parts are preferable with respect to 100 mass parts of total amounts of tetracarboxylic dianhydride and a diamine compound, and 5 mass parts-40 mass parts are more preferable.

反応後に得られるポリアミック酸溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離した上で液晶配向剤の調製に供してもよく、単離したポリアミック酸を精製した上で液晶配向剤の調製に供してもよい。ポリアミック酸の単離方法としては、例えば反応溶液を大量の貧溶媒中に注いで得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等が挙げられる。ポリアミック酸の精製方法としては、単離したポリアミック酸を再び有機溶媒に溶解し、貧溶媒で析出させる方法、エバポレーターで有機溶媒等を減圧留去する工程を1回若しくは複数回行う方法が挙げられる。   The polyamic acid solution obtained after the reaction may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution. You may use for preparation of a liquid crystal aligning agent, after refine | purifying an acid. Examples of the method for isolating the polyamic acid include a method of pouring a reaction solution into a large amount of a poor solvent and drying a precipitate obtained under reduced pressure, and a method of distilling the reaction solution under reduced pressure using an evaporator. Examples of the method for purifying the polyamic acid include a method in which the isolated polyamic acid is dissolved again in an organic solvent and precipitated with a poor solvent, and a method in which the step of distilling off the organic solvent or the like with an evaporator is performed once or a plurality of times. .

[ポリイミド]
ポリイミドは、上記ポリアミック酸の有するアミック酸構造を脱水閉環してイミド化することにより製造できる。ポリイミドは、その前駆体であるポリアミック酸が有しているアミック酸構造の全てを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存している部分イミド化物であってもよい。
[Polyimide]
The polyimide can be produced by dehydrating and ring-closing the amic acid structure of the polyamic acid to imidize it. The polyimide may be a completely imidized product in which all of the amic acid structure of the precursor polyamic acid has been dehydrated and cyclized, and only a part of the amic acid structure may be dehydrated and cyclized to form an amic acid structure and an imide. It may be a partially imidized product in which a ring structure coexists.

ポリイミドの合成方法としては、例えば(i)ポリアミック酸を加熱する方法(以下、「方法(i)」とも称する)、(ii)ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し、必要に応じて加熱する方法(以下、「方法(ii)」とも称する)等のポリアミック酸の脱水閉環反応による方法が挙げられる。   As a method for synthesizing polyimide, for example, (i) a method of heating a polyamic acid (hereinafter also referred to as “method (i)”), (ii) a polyamic acid is dissolved in an organic solvent, and a dehydrating agent and a dehydrating agent are dissolved in this solution. Examples thereof include a method by a dehydration ring-closing reaction of a polyamic acid, such as a method of adding a ring-closing catalyst and heating as necessary (hereinafter also referred to as “method (ii)”).

方法(i)における反応温度としては、50℃〜200℃が好ましく、60℃〜170℃がより好ましい。反応温度が50℃未満では、脱水閉環反応が十分に進行せず、反応温度が200℃を超えると得られるポリイミドの分子量が低下することがある。反応時間としては、0.5時間〜48時間が好ましく、2時間〜20時間がより好ましい。   As reaction temperature in method (i), 50 to 200 degreeC is preferable and 60 to 170 degreeC is more preferable. When the reaction temperature is less than 50 ° C., the dehydration ring-closing reaction does not proceed sufficiently, and when the reaction temperature exceeds 200 ° C., the molecular weight of the resulting polyimide may decrease. The reaction time is preferably 0.5 hours to 48 hours, and more preferably 2 hours to 20 hours.

方法(i)において得られるポリイミドはそのまま液晶配向剤の調製に供してもよく、ポリイミドを単離した上で液晶配向剤の調製に供してもよく又は単離したポリイミドを精製した上で又は得られるポリイミドを精製した上で液晶配向剤の調製に供してもよい。   The polyimide obtained in the method (i) may be used for the preparation of the liquid crystal aligning agent as it is, may be used for the preparation of the liquid crystal aligning agent after isolating the polyimide, or may be obtained after purifying the isolated polyimide. You may use for the preparation of a liquid crystal aligning agent, after refine | purifying the polyimide obtained.

方法(ii)における脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の酸無水物が挙げられる。   Examples of the dehydrating agent in the method (ii) include acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride.

脱水剤の使用量としては、所望のイミド化率により適宜選択されるが、ポリアミック酸のアミック酸構造1モルに対して0.01モル〜20モルが好ましい。   Although the usage-amount of a dehydrating agent is suitably selected by the desired imidation rate, 0.01 mol-20 mol are preferable with respect to 1 mol of amic acid structures of a polyamic acid.

方法(ii)における脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等が挙げられる。   Examples of the dehydration ring closure catalyst in the method (ii) include pyridine, collidine, lutidine, triethylamine and the like.

脱水閉環触媒の使用量としては、含有する脱水剤1モルに対して0.01モル〜10モルが好ましい。なお、イミド化率は上記脱水剤及び脱水閉環剤の含有量が多いほど高くできる。   The amount of the dehydration ring closure catalyst used is preferably 0.01 mol to 10 mol with respect to 1 mol of the dehydrating agent contained. In addition, the imidation rate can be increased as the content of the dehydrating agent and the dehydrating ring-closing agent is increased.

方法(ii)に用いられる有機溶媒としては、例えばポリアミック酸の合成に用いられるものとして例示した有機溶媒と同様の有機溶媒等が挙げられる。   Examples of the organic solvent used in the method (ii) include organic solvents similar to those exemplified as those used for the synthesis of polyamic acid.

方法(ii)における反応温度としては、0℃〜180℃が好ましく、10℃〜150℃がより好ましい。反応時間としては、0.5時間〜20時間が好ましく、1時間〜8時間がより好ましい。反応条件を上記範囲とすることで、脱水閉環反応が十分に進行し、また、得られるポリイミドの分子量を適切なものとできる。   The reaction temperature in method (ii) is preferably 0 ° C to 180 ° C, more preferably 10 ° C to 150 ° C. The reaction time is preferably 0.5 hour to 20 hours, and more preferably 1 hour to 8 hours. By setting the reaction conditions in the above range, the dehydration ring-closing reaction proceeds sufficiently, and the molecular weight of the resulting polyimide can be made appropriate.

方法(ii)においてはポリイミドを含有する反応溶液が得られる。この反応溶液をそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離した上で液晶配向剤の調製に供してもよく又は単離したポリイミドを精製した上で液晶配向剤の調製に供してもよい。反応溶液から脱水剤及び脱水閉環触媒を除く方法としては、例えば溶媒置換の方法等が挙げられる。ポリイミドの単離方法及び精製方法としては、例えばポリアミック酸の単離方法及び精製方法として例示したものと同様の方法等が挙げられる。   In the method (ii), a reaction solution containing polyimide is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution, it may be used for the preparation of the liquid crystal aligning agent. You may use for preparation of an agent, or you may use for preparation of a liquid crystal aligning agent, after purifying the isolated polyimide. Examples of a method for removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution include a solvent replacement method. Examples of the polyimide isolation method and purification method include the same methods as those exemplified as the polyamic acid isolation method and purification method.

[(メタ)アクリル重合体]
[A]重合体としての(メタ)アクリル重合体は、上記式(1)で表される基を含む(メタ)アクリル重合体であれば特に限定されることはなく、公知のエチレン性不飽和化合物を公知の方法で重合させることにより得られる。例えば、(a)エポキシ基含有エチレン性不飽和化合物(以下、「(a)不飽和化合物」とも称する)と(b1)エチレン性不飽和カルボン酸及び/又は重合性不飽和多価カルボン酸無水物(以下、「(b1)不飽和化合物」とも称する)と(a)不飽和化合物及び(b1)不飽和化合物以外の重合性不飽和化合物(以下、「(b2)不飽和化合物」とも称する)との共重合体とを重合することで得られる。
[(Meth) acrylic polymer]
[A] The (meth) acrylic polymer as the polymer is not particularly limited as long as it is a (meth) acrylic polymer containing a group represented by the above formula (1). It is obtained by polymerizing a compound by a known method. For example, (a) an epoxy group-containing ethylenically unsaturated compound (hereinafter also referred to as “(a) unsaturated compound”) and (b1) an ethylenically unsaturated carboxylic acid and / or a polymerizable unsaturated polyvalent carboxylic acid anhydride (Hereinafter also referred to as “(b1) unsaturated compound”) and (a) unsaturated compound and (b1) polymerizable unsaturated compound other than unsaturated compound (hereinafter also referred to as “(b2) unsaturated compound”) It can be obtained by polymerizing with a copolymer.

(a)不飽和化合物としては、例えば(メタ)アクリル酸グリシジル、α−エチルアクリル酸グリシジル、α−n−プロピルアクリル酸グリシジル、α−n−ブチルアクリル酸グリシジル、(メタ)アクリル酸3,4−エポキシブチル、α−エチルアクリル酸3,4−エポキシブチル、(メタ)アクリル酸6,7−エポキシヘプチル、α−エチルアクリル酸6,7−エポキシヘプチル等が挙げられる。   (A) As unsaturated compounds, for example, glycidyl (meth) acrylate, glycidyl α-ethyl acrylate, glycidyl α-n-propyl acrylate, glycidyl α-n-butyl acrylate, (meth) acrylic acid 3,4 -Epoxybutyl, 3,4-epoxybutyl α-ethyl acrylate, 6,7-epoxyheptyl (meth) acrylate, 6,7-epoxyheptyl α-ethyl acrylate, and the like.

(b1)不飽和化合物としては、例えば
(メタ)アクリル酸、クロトン酸、α−エチルアクリル酸、α−n−プロピルアクリル酸、α−n−ブチルアクリル酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等の不飽和カルボン酸類;
無水マレイン酸、無水イタコン酸、無水シトラコン酸、シス−1,2,3,4−テトラヒドロフタル酸無水物等の不飽和多価カルボン酸無水物類等が挙げられる。
(B1) Examples of unsaturated compounds include (meth) acrylic acid, crotonic acid, α-ethylacrylic acid, α-n-propylacrylic acid, α-n-butylacrylic acid, maleic acid, fumaric acid, citraconic acid, Unsaturated carboxylic acids such as mesaconic acid and itaconic acid;
Examples thereof include unsaturated polycarboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, and cis-1,2,3,4-tetrahydrophthalic anhydride.

(b2)不飽和化合物としては、例えば
上記式(1)で表される基を有する(メタ)アクリル酸エステル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル等の(メタ)アクリル酸ヒドロキシル基を有するエステル類;
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸sec−ブチル、(メタ)アクリル酸t−ブチル等の(メタ)アクリル酸アルキルエステル類;
(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−メチルシクロヘキシル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン−8−イル、(メタ)アクリル酸2−ジシクロペンタニルオキシエチル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸コレスタニル等の(メタ)アクリル酸脂環式エステル類;
(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アリールエステル類;
マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等の不飽和ジカルボン酸ジエステル類;
N−フェニルマレイミド、N−ベンジルマレイミド、N−シクロヘキシルマレイミド、N−スクシンイミジル−3−マレイミドベンゾエート、N−スクシンイミジル−4−マレイミドブチレート、N−スクシンイミジル−6−マレイミドカプロエート、N−スクシンイミジル−3−マレイミドプロピオネート、N−(9−アクリジル)マレイミド等の不飽和ジカルボニルイミド誘導体;
(メタ)アクリロニトリル、α−クロロアクリロニトリル、シアン化ビニリデン等のシアン化ビニル化合物;
(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド等の不飽和アミド化合物;
スチレン、α−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−メトキシスチレン等の芳香族ビニル化合物;
インデン、1−メチルインデン等のインデン誘導体類;
1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン等の共役ジエン系化合物の他、塩化ビニル、塩化ビニリデン、酢酸ビニル等が挙げられる。
(B2) Examples of unsaturated compounds include (meth) acrylic acid ester having a group represented by the above formula (1), 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and the like. Esters having a (meth) acrylic acid hydroxyl group;
Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (Meth) acrylic acid alkyl esters such as sec-butyl (meth) acrylate and t-butyl (meth) acrylate;
(Meth) acrylic acid cyclopentyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid 2-methylcyclohexyl, (meth) acrylic acid tricyclo [5.2.1.0 2,6 ] decan-8-yl, (meta ) (Meth) acrylic acid alicyclic esters such as 2-dicyclopentanyloxyethyl acrylate, isobornyl (meth) acrylate, cholestanyl (meth) acrylate;
(Meth) acrylic acid aryl esters such as phenyl (meth) acrylate and benzyl (meth) acrylate;
Unsaturated dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, diethyl itaconate;
N-phenylmaleimide, N-benzylmaleimide, N-cyclohexylmaleimide, N-succinimidyl-3-maleimidobenzoate, N-succinimidyl-4-maleimidobutyrate, N-succinimidyl-6-maleimidocaproate, N-succinimidyl-3 -Unsaturated dicarbonylimide derivatives such as maleimide propionate, N- (9-acridyl) maleimide;
Vinyl cyanide compounds such as (meth) acrylonitrile, α-chloroacrylonitrile, vinylidene cyanide;
Unsaturated amide compounds such as (meth) acrylamide and N, N-dimethyl (meth) acrylamide;
Aromatic vinyl compounds such as styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-methoxystyrene;
Indene derivatives such as indene and 1-methylindene;
In addition to conjugated diene compounds such as 1,3-butadiene, isoprene, and 2,3-dimethyl-1,3-butadiene, vinyl chloride, vinylidene chloride, vinyl acetate, and the like can be given.

(a)不飽和化合物としては(メタ)アクリル酸グリシジルが好ましく、(b1)不飽和化合物としては、(メタ)アクリル酸が好ましく、(b2)不飽和化合物としては(メタ)アクリル酸コレスタニルが好ましい。[A]重合体としての(メタ)アクリル重合体を、例えばラジカル重合により合成する場合においては、上記式(1)で表される基を重合体中に導入する観点から、不飽和化合物の1つとして少なくとも上記式(1)で表される基を有する不飽和化合物を使用する必要がある。一方、例えば上記式(1)で表される基を有さない重合体中のエポキシ基を利用し、従来公知の高分子反応により上記式(1)で表される基を導入することもできる。   (A) The unsaturated compound is preferably glycidyl (meth) acrylate, (b1) the unsaturated compound is preferably (meth) acrylic acid, and (b2) the unsaturated compound is preferably cholestanyl (meth) acrylate. . [A] When the (meth) acrylic polymer as a polymer is synthesized by radical polymerization, for example, from the viewpoint of introducing the group represented by the above formula (1) into the polymer, 1 It is necessary to use an unsaturated compound having at least a group represented by the above formula (1). On the other hand, for example, a group represented by the above formula (1) can be introduced by a conventionally known polymer reaction using an epoxy group in a polymer having no group represented by the above formula (1). .

(メタ)アクリル重合体の合成方法としては、各不飽和化合物を適当な溶媒及び重合開始剤の存在下、例えばラジカル重合によって合成することが簡便である。有機溶媒としては、例えばポリアミック酸の合成に用いられるものとして例示した有機溶媒と同様の有機溶媒等が挙げられる。   As a method for synthesizing the (meth) acrylic polymer, it is convenient to synthesize each unsaturated compound by, for example, radical polymerization in the presence of a suitable solvent and a polymerization initiator. As an organic solvent, the organic solvent similar to the organic solvent illustrated as what is used for the synthesis | combination of a polyamic acid, etc. are mentioned, for example.

重合開始剤としては、例えば
2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物;
ベンゾイルペルオキシド、ラウロイルペルオキシド、t−ブチルペルオキシピバレート、1,1’−ビス−(t−ブチルペルオキシ)シクロヘキサン等の有機過酸化物;
過酸化水素;
これらの過酸化物と還元剤とからなるレドックス型開始剤等が挙げられる。これらの重合開始剤は、単独又は2種以上を混合して使用することができる。
Examples of the polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- (4-methoxy-2, Azo compounds such as 4-dimethylvaleronitrile);
Organic peroxides such as benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, 1,1′-bis- (t-butylperoxy) cyclohexane;
hydrogen peroxide;
Examples thereof include a redox initiator composed of these peroxides and a reducing agent. These polymerization initiators can be used alone or in admixture of two or more.

[ポリシロキサン]
[A]重合体としてのポリシロキサンは、上記式(1)で表される基を含むポリシロキサンであれば特に限定されないが、例えばアルコキシシラン化合物及びハロゲン化シラン化合物からなる群より選択される少なくとも1種のシラン化合物(以下、「原料シラン化合物」とも称する)を、好ましくは適当な有機溶媒中で、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成できる。
[Polysiloxane]
[A] The polysiloxane as the polymer is not particularly limited as long as it is a polysiloxane containing a group represented by the above formula (1), but for example, at least selected from the group consisting of alkoxysilane compounds and halogenated silane compounds One silane compound (hereinafter also referred to as “raw silane compound”) can be synthesized by hydrolysis or hydrolysis / condensation, preferably in the presence of water and a catalyst, in an appropriate organic solvent.

原料シラン化合物としては、例えば
テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラクロロシラン等;
メチルトリメトキシシラン、メチルトリエトキシシラン、オクタデシルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリ−iso−プロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン等;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジクロロシラン等;
トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン等;
上記式(1)で表される基を有するシラン等が挙げられる。
Examples of the raw material silane compound include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetra Chlorosilane, etc .;
Methyltrimethoxysilane, methyltriethoxysilane, octadecyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, methyltri-tert-butoxysilane, Methyltriphenoxysilane, methyltrichlorosilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-n-propoxysilane, ethyltri-iso-propoxysilane, ethyltri-n-butoxysilane, ethyltri-sec-butoxysilane, ethyltri-tert -Butoxysilane, ethyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltrichlorosilane and the like;
Dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldichlorosilane, etc .;
Trimethylmethoxysilane, trimethylethoxysilane, trimethylchlorosilane, etc .;
Examples thereof include silane having a group represented by the above formula (1).

これらの原料シラン化合物のうち、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、オクタデシルトリエトキシシラン、上記式(1)で表される基を有するシランが好ましい。[A]重合体としてポリシロキサンを選択する場合においては、上記式(1)で表される基を重合体中に導入する観点から、原料シラン化合物の1つとして少なくとも上記式(1)で表される基を有するシランを使用する必要がある。   Among these raw material silane compounds, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, trimethyl Ethoxysilane, octadecyltriethoxysilane, and silane having a group represented by the above formula (1) are preferable. [A] When polysiloxane is selected as the polymer, from the viewpoint of introducing the group represented by the above formula (1) into the polymer, at least one represented by the above formula (1) as one of the raw material silane compounds. It is necessary to use a silane having the group

ポリシロキサンを合成する際に、任意的に使用できる有機溶媒としては、例えばアルコール化合物、ケトン化合物、アミド化合物、エステル化合物又はその他の非プロトン性化合物が挙げられる。これらは単独又は2種以上組合せて使用できる。   Examples of the organic solvent that can be optionally used when synthesizing the polysiloxane include alcohol compounds, ketone compounds, amide compounds, ester compounds, and other aprotic compounds. These can be used alone or in combination of two or more.

ポリシロキサンを合成する際の反応温度としては、0℃〜100℃が好ましく、15℃〜80℃がより好ましい。反応時間としては、0.5時間〜24時間が好ましく、1時間〜8時間がより好ましい。   As reaction temperature at the time of synthesize | combining polysiloxane, 0 to 100 degreeC is preferable and 15 to 80 degreeC is more preferable. The reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 8 hours.

[ポリアミック酸エステル]
ポリアミック酸エステルは、上述したポリアミック酸と、有機ハロゲン化物、アルコール類又はフェノール類とを反応させることにより得られる重合体である。
[Polyamic acid ester]
The polyamic acid ester is a polymer obtained by reacting the above-described polyamic acid with an organic halide, alcohol or phenol.

なお、[A]重合体は、ポリアミック酸、ポリイミド、(メタ)アクリル重合体、ポリシロキサン及びポリアミック酸エステルからなる群より選択される少なくとも1種の重合体であるところ、[A]重合体が複数種の重合体を選択した場合、少なくとも1種の重合体が上記式(1)で表される基を有していれば本願所望の効果である高速応答性を実現することができる。   The [A] polymer is at least one polymer selected from the group consisting of polyamic acid, polyimide, (meth) acrylic polymer, polysiloxane, and polyamic acid ester. When a plurality of types of polymers are selected, high-speed response, which is a desired effect of the present application, can be realized if at least one type of polymer has a group represented by the above formula (1).

[A]重合体のゲルパーミエーションクロマトグラフィーによるスチレン換算での重量平均分子量(Mw)は特に限定されないが、ポリアミック酸、ポリイミド又はポリアミック酸エステルの場合は、1,000〜500,000が好ましく、2,000〜300,000がより好ましい。(メタ)アクリル重合体の場合は、1,000〜1,000,000が好ましく、2,000〜500,000がより好ましい。ポリシロキサンの場合は、1,000〜200,000が好ましく、2,000〜100,000がより好ましい。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。   [A] The weight average molecular weight (Mw) in terms of styrene by gel permeation chromatography of the polymer is not particularly limited, but in the case of polyamic acid, polyimide or polyamic acid ester, 1,000 to 500,000 is preferable, 2,000 to 300,000 is more preferable. In the case of a (meth) acrylic polymer, 1,000 to 1,000,000 is preferable, and 2,000 to 500,000 is more preferable. In the case of polysiloxane, 1,000 to 200,000 is preferable, and 2,000 to 100,000 is more preferable. By being in such a molecular weight range, it is possible to ensure good orientation and stability of the liquid crystal display element.

<その他の任意成分>
当該液晶配向剤は、本発明の効果を損なわない限り、例えば硬化剤、硬化触媒、硬化促進剤、エポキシ化合物、界面活性剤等のその他の任意成分を含有してもよい。なお、これらのその他の任意成分は、それぞれの成分を単独で使用してもよいし2種以上を混合して使用してもよい。また、その他の任意成分の配合量は、その目的に応じて適宜決定することができる。以下、各成分を詳述する。
<Other optional components>
The liquid crystal aligning agent may contain other optional components such as a curing agent, a curing catalyst, a curing accelerator, an epoxy compound, and a surfactant as long as the effects of the present invention are not impaired. In addition, these other arbitrary components may use each component independently, and may mix and use 2 or more types. Moreover, the compounding quantity of another arbitrary component can be suitably determined according to the objective. Hereinafter, each component will be described in detail.

[硬化剤、硬化触媒及び硬化促進剤]
硬化剤及び硬化触媒は、[A]重合体の架橋反応をより強固にする目的で当該液晶配向剤に含有することができる。硬化促進剤は、硬化剤の司る硬化反応を促進する目的で当該液晶配向剤に含有することができる。
[Curing agent, curing catalyst and curing accelerator]
A hardening agent and a hardening catalyst can be contained in the liquid crystal aligning agent for the purpose of strengthening the crosslinking reaction of the [A] polymer. The curing accelerator can be contained in the liquid crystal aligning agent for the purpose of accelerating the curing reaction controlled by the curing agent.

硬化剤としては、エポキシ基を有する硬化性化合物、又はエポキシ基を有する化合物を含有する硬化性組成物の硬化に一般に用いられている硬化剤を用いることができる。このような硬化剤としては、例えば多価アミン、多価カルボン酸無水物等が挙げられる。   As the curing agent, a curing agent generally used for curing a curable compound having an epoxy group or a curable composition containing a compound having an epoxy group can be used. Examples of such a curing agent include polyvalent amines and polyvalent carboxylic acid anhydrides.

多価カルボン酸無水物としては、例えばシクロヘキサントリカルボン酸の無水物及びその他の多価カルボン酸無水物が挙げられる。シクロヘキサントリカルボン酸無水物としては、例えばシクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、シクロヘキサン−1,3,5−トリカルボン酸−3,5−無水物、シクロヘキサン−1,2,3−トリカルボン酸−2,3−酸無水物等が挙げられる。その他の多価カルボン酸無水物としては、例えば4−メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、無水こはく酸、無水マレイン酸、無水フタル酸、無水トリメリット酸等が挙げられる。   Examples of the polyvalent carboxylic acid anhydride include cyclohexanetricarboxylic acid anhydride and other polyvalent carboxylic acid anhydrides. Examples of the cyclohexanetricarboxylic acid anhydride include, for example, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane-1,2 and the like. , 3-tricarboxylic acid-2,3-acid anhydride and the like. Examples of other polyvalent carboxylic acid anhydrides include 4-methyltetrahydrophthalic anhydride, methylnadic acid anhydride, dodecenyl succinic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, and the like. Can be mentioned.

硬化触媒としては、例えば6フッ化アンチモン化合物、6フッ化リン化合物、アルミニウムトリスアセチルアセトナート等が挙げられる。これらの触媒は、加熱によりエポキシ基のカチオン重合を触媒することができる。   Examples of the curing catalyst include an antimony hexafluoride compound, a phosphorus hexafluoride compound, aluminum trisacetylacetonate, and the like. These catalysts can catalyze the cationic polymerization of epoxy groups by heating.

硬化促進剤としては、例えばイミダゾール化合物;4級リン化合物;4級アミン化合物;1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩等のジアザビシクロアルケン;オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体等の有機金属化合物;三フッ化ホウ素、ホウ酸トリフェニル等のホウ素化合物;塩化亜鉛、塩化第二錫等の金属ハロゲン化合物;ジシアンジアミド、アミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;4級フォスフォニウム塩等の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;アミン塩型潜在性硬化促進剤;ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等が挙げられる。   Examples of the curing accelerator include imidazole compounds; quaternary phosphorus compounds; quaternary amine compounds; diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof; zinc octylate , Organometallic compounds such as tin octylate and aluminum acetylacetone complex; boron compounds such as boron trifluoride and triphenylborate; metal halogen compounds such as zinc chloride and stannic chloride; addition of dicyandiamide, amine and epoxy resin High melting point dispersion type latent curing accelerators such as amine addition type accelerators, etc .; microcapsule type latent curing accelerators coated with polymer on the surface of quaternary phosphonium salts, etc .; amine salt type latent curing accelerators Agents: High temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid salts.

[エポキシ化合物]
エポキシ化合物は、形成される液晶配向膜の基板表面に対する接着性を向上させる観点から、当該液晶配向剤に含有することができる。
[Epoxy compound]
The epoxy compound can be contained in the liquid crystal aligning agent from the viewpoint of improving the adhesion of the liquid crystal alignment film to be formed to the substrate surface.

エポキシ化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N,−ジグリシジル−ベンジルアミン、N,N−ジグリシジル−アミノメチルシクロヘキサンが好ましい。   Examples of the epoxy compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexanediol diester. Glycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl -M-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ', N'-tetraglycidyl-4,4'-diaminodi Enirumetan, N, N, - diglycidyl - benzylamine, N, N-diglycidyl - aminomethyl cyclohexane are preferred.

[界面活性剤]
界面活性剤としては、例えばノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、シリコーン界面活性剤、ポリアルキレンオキシド界面活性剤、含フッ素界面活性剤等が挙げられる。
[Surfactant]
Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, polyalkylene oxide surfactants, and fluorine-containing surfactants.

<液晶配向剤の調製方法>
当該液晶配向剤は、上述の通り[A]重合体を必須成分として含有し、必要に応じてその他の任意成分を含有できるが、好ましくは各成分が有機溶媒に溶解された溶液状の組成物として調製される。
<Method for preparing liquid crystal aligning agent>
The liquid crystal aligning agent contains the [A] polymer as an essential component as described above, and may contain other optional components as necessary. Preferably, each component is a solution composition in which each component is dissolved in an organic solvent. As prepared.

当該液晶配向剤を調製するために使用することのできる有機溶媒としては、[A]重合体及びその他の任意成分を溶解し、これらと反応しないものが好ましい。有機溶媒としては、例えば上記ポリアミック酸の合成に用いられるものとして上記に例示した有機溶媒等が挙げられる。また、ポリアミック酸の合成に用いられるものとして例示した貧溶媒を併用してもよい。なお、これらの有機溶媒は、単独又は2種以上を使用してもよい。   As an organic solvent that can be used to prepare the liquid crystal aligning agent, those that dissolve the [A] polymer and other optional components and do not react with them are preferable. Examples of the organic solvent include the organic solvents exemplified above as those used for the synthesis of the polyamic acid. Moreover, you may use together the poor solvent illustrated as what is used for the synthesis | combination of a polyamic acid. These organic solvents may be used alone or in combination of two or more.

当該液晶配向剤の調製に用いられる好ましい溶媒としては、後述する好ましい固形分濃度において当該液晶配向剤に含有される各成分が析出せず、かつ液晶配向剤の表面張力が25mN/m〜40mN/mの範囲となるものである。   As a preferable solvent used for the preparation of the liquid crystal aligning agent, each component contained in the liquid crystal aligning agent does not precipitate at a preferable solid content concentration described later, and the surface tension of the liquid crystal aligning agent is 25 mN / m to 40 mN /. The range is m.

当該液晶配向剤の固形分濃度、即ち液晶配向剤中の溶媒以外の全成分の重量が液晶配向剤の全重量に占める割合としては、粘性、揮発性等を考慮して選択されるが、好ましくは1質量%〜10質量%の範囲である。当該液晶配向剤は、基板表面に塗布され、液晶配向膜となる塗膜を形成するが、固形分濃度が1質量%以上である場合には、この塗膜の膜厚が過小となりにくくなって良好な液晶配向膜を得ることができる。一方、固形分濃度が10質量%以下の場合には、塗膜の膜厚が過大となることを抑制して良好な液晶配向膜を得ることができる。また、液晶配向剤の粘性が増大することを防止して塗布特性を良好なものとすることができる。より好ましい固形分濃度の範囲としては、例えばスピンナー法による場合には1.5質量%〜4.5質量%である。印刷法による場合には、3質量%〜9質量%である。インクジェット法による場合には、1質量%〜5質量%である。   The solid content concentration of the liquid crystal aligning agent, that is, the ratio of the weight of all components other than the solvent in the liquid crystal aligning agent to the total weight of the liquid crystal aligning agent is selected in consideration of viscosity, volatility, etc. Is in the range of 1% to 10% by weight. The liquid crystal aligning agent is applied to the substrate surface to form a coating film that becomes a liquid crystal aligning film. When the solid content concentration is 1% by mass or more, the film thickness of the coating film is less likely to be too small. A good liquid crystal alignment film can be obtained. On the other hand, when the solid content concentration is 10% by mass or less, it is possible to obtain an excellent liquid crystal alignment film while suppressing an excessive film thickness of the coating film. Moreover, it can prevent that the viscosity of a liquid crystal aligning agent increases, and can make an application | coating characteristic favorable. A more preferable range of the solid concentration is, for example, 1.5% by mass to 4.5% by mass in the case of the spinner method. In the case of the printing method, it is 3% by mass to 9% by mass. In the case of the ink jet method, the content is 1% by mass to 5% by mass.

<液晶表示素子>
本発明の液晶表示素子は、その駆動方式に特に制限はなく、TN、STN、IPS、FFS、Ht−VA(VA−IPS)、VA(VA−MVA方式、VA−PVA方式等を含む)等公知の各種方式に本技術を適用することが可能であり、上記液晶配向剤から形成された上記液晶配向膜を備える。上述したように当該液晶配向剤によれば、高速応答が可能であり、かつ電圧保持率、残像特性、均一塗布性、耐光性等の諸性能に優れた液晶表示素子を作製可能である。一般的に、液晶表示素子は表面に透明電極及び液晶配向膜がこの順に積層された一対の基板を備え、この一対の基板が内側に対向配設されており、この一対の基板間に液晶が充填され、周辺部がシール剤でシールされている。
<Liquid crystal display element>
The driving method of the liquid crystal display element of the present invention is not particularly limited, and TN, STN, IPS, FFS, Ht-VA (VA-IPS), VA (including VA-MVA method, VA-PVA method, etc.), etc. The present technology can be applied to various known systems, and includes the liquid crystal alignment film formed from the liquid crystal alignment agent. As described above, according to the liquid crystal aligning agent, it is possible to produce a liquid crystal display element capable of high-speed response and excellent in various performances such as voltage holding ratio, afterimage characteristics, uniform coating property, and light resistance. In general, a liquid crystal display element includes a pair of substrates on the surface of which a transparent electrode and a liquid crystal alignment film are laminated in this order. The pair of substrates are disposed to face each other, and a liquid crystal is interposed between the pair of substrates. Filled and the periphery is sealed with a sealant.

<液晶表示素子の製造方法>
本発明の液晶表示素子は、例えば以下のようにして製造することができる。当該液晶表示素子が備える液晶配向膜は、基板上に当該液晶配向剤を塗布し、次いで塗布面を加熱することにより基板上に形成される。基板としては、例えばフロートガラス、ソーダガラス等のガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、脂環式ポリオレフィン等のプラスチックからなる透明基板を用いることができる。上記のようにして液晶配向膜が形成された基板を2枚準備し、この2枚の基板間に液晶を配置することにより、液晶セルを製造する。液晶セルを製造する方法としては、例えば以下の方法等が挙げられる。
<Method for manufacturing liquid crystal display element>
The liquid crystal display element of this invention can be manufactured as follows, for example. The liquid crystal alignment film included in the liquid crystal display element is formed on the substrate by applying the liquid crystal alignment agent on the substrate and then heating the application surface. As the substrate, for example, glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, alicyclic polyolefin, or the like can be used. A liquid crystal cell is manufactured by preparing two substrates on which a liquid crystal alignment film is formed as described above, and disposing a liquid crystal between the two substrates. Examples of the method for producing the liquid crystal cell include the following methods.

第一の方法としては、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより、液晶セルを製造することができる。   As a first method, two substrates are arranged to face each other through a gap (cell gap) so that the respective liquid crystal alignment films face each other, and the peripheral portions of the two substrates are bonded together using a sealant, A liquid crystal cell can be manufactured by injecting and filling liquid crystal into a cell gap defined by the substrate surface and a sealing agent, and then sealing the injection hole.

第二の方法としては、ODF(One Drop Fill)方式と呼ばれる手法が挙げられる。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外光硬化性のシール材を塗布し、さらに液晶配向膜面上に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより、液晶セルを製造することができる。   As the second method, there is a method called an ODF (One Drop Fill) method. For example, an ultraviolet light curable sealing material is applied to a predetermined location on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystal is dropped on the liquid crystal alignment film surface. The other substrate is bonded so as to face each other, and then the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant, whereby a liquid crystal cell can be manufactured.

いずれの方法による場合でも、次いで液晶セルを用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、注入時の流動配向を除去することが望ましい。そして、液晶セルの外側表面に偏光板を貼り合わせることにより、当該液晶表示素子を得ることができる。   In any case, it is desirable to remove the flow alignment at the time of injection by heating to a temperature at which the liquid crystal using the liquid crystal cell takes an isotropic phase and then gradually cooling to room temperature. And the said liquid crystal display element can be obtained by bonding a polarizing plate on the outer surface of a liquid crystal cell.

上記シール剤としては、例えばスペーサーとしての酸化アルミニウム球及び硬化剤を含有するエポキシ樹脂等が挙げられる。   Examples of the sealing agent include an aluminum oxide sphere as a spacer and an epoxy resin containing a curing agent.

上記液晶としては、例えばネマティック型液晶、スメクティック型液晶等を用いることができる。TN型液晶セル又はSTN型液晶セルの場合、ネマティック型液晶を形成する正の誘電異方性を有するものが好ましい。このような液晶としては、例えばビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶等が用いられる。また上記液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネート等のコレステリック液晶;商品名C−15、CB−15(メルク社)として販売されているようなカイラル剤;p−デシロキシベンジリデン−p−アミノ−2−メチルブチルシンナメート等の強誘電性液晶等を、さらに添加して使用することもできる。   As the liquid crystal, for example, a nematic liquid crystal, a smectic liquid crystal, or the like can be used. In the case of a TN liquid crystal cell or an STN liquid crystal cell, those having positive dielectric anisotropy for forming a nematic liquid crystal are preferable. Examples of such liquid crystals include biphenyl liquid crystals, phenyl cyclohexane liquid crystals, ester liquid crystals, terphenyl liquid crystals, biphenyl cyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, and cubane liquid crystals. It is done. In addition, cholesteric liquid crystals such as cholesteryl chloride, cholesteryl nonate, cholesteryl carbonate; chiral agents such as those sold under the trade names C-15 and CB-15 (Merck); p-decyloxybenzylidene- Ferroelectric liquid crystals such as p-amino-2-methylbutyl cinnamate can be further added and used.

一方、垂直配向型液晶セルの場合には、ネマティック型液晶を形成する負の誘電異方性を有するものが好ましい。このような液晶としては、例えばジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶等が用いられる。   On the other hand, in the case of a vertical alignment type liquid crystal cell, a cell having negative dielectric anisotropy that forms a nematic liquid crystal is preferable. As such a liquid crystal, for example, a dicyanobenzene liquid crystal, a pyridazine liquid crystal, a Schiff base liquid crystal, an azoxy liquid crystal, a biphenyl liquid crystal, and a phenylcyclohexane liquid crystal are used.

液晶セルの外側に使用される偏光板としては、特に限定されないが、ポリビニルアルコールフィルムを延伸配向させながらヨウ素を吸収させた「H膜」と呼ばれる偏光膜を酢酸セルロース保護膜で挟んだ偏光板、又はH膜そのものからなる偏光板等が挙げられる。   The polarizing plate used outside the liquid crystal cell is not particularly limited, but is a polarizing plate in which a polarizing film called an “H film” in which iodine is absorbed while stretching and aligning a polyvinyl alcohol film is sandwiched between cellulose acetate protective films, Or the polarizing plate etc. which consist of H film | membrane itself are mentioned.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

以下の実施例において得られた[A]重合体の重量平均分子量(Mw)は、下記仕様のGPCにより測定したポリスチレン換算値である。
カラム:東ソー社、TSKgelGRCXLII
溶媒:テトラヒドロフラン
温度:40℃
圧力:68kgf/cm
The weight average molecular weight (Mw) of the [A] polymer obtained in the following examples is a polystyrene conversion value measured by GPC having the following specifications.
Column: Tosoh Corporation, TSKgelGRCXLII
Solvent: Tetrahydrofuran Temperature: 40 ° C
Pressure: 68 kgf / cm 2

[合成例1]
下記反応スキームに従い化合物1、2及び3を合成した。
[Synthesis Example 1]
Compounds 1, 2, and 3 were synthesized according to the following reaction scheme.

Figure 2016001328
Figure 2016001328

冷却管を備えた500mLの三口フラスコに4−シアノ−4’−ヒドロキシビフェニル12.6g(0.0645モル)、10−ブロモ−1−デカノール17.0g(0.0717モル)、炭酸カリウム28.4g及びN,N−ジメチルホルムアミド350mLを加え、160℃で5時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を水1,000mLに投入し、混合撹拌した。析出した白色固体をろ別し、水で更に洗浄した。得られた固体を80℃で真空乾燥することで、上記化合物1を20.6g得た。次に得られた化合物1の20g(0.0569モル)を150mLの脱水テトラヒドロフラン(THF)に溶解し、トリエチルアミン7.49g(0.0740モル)を加えた後、150mLのTHFに溶解した3,5−ジニトロベンゾイルクロリド14.4g(0.0625モル)を氷冷下で30分かけて徐々に滴下し、その後、室温で3時間攪拌した。反応終了後、濾過によりトリエチルアミン塩酸塩を取り除き、減圧蒸留によりTHFを取り除いた後にクロロホルム400mLを加えた。この溶液を水洗し、有機層を硫酸マグネシウムで乾燥後、クロロホルムを減圧蒸留により除去した。その後、エタノールで再結晶を実施し、80℃で真空乾燥することで上記化合物2を23.8g得た。窒素気流下、上記化合物2の20g(0.0367モル)及び5%Pd/Cを1g(化合物2に対して5wt.%)をエタノール500mLに加え、さらに28%アンモニア水4.2g(化合物2に対して2倍モル)を添加した。この溶液を15±5℃に保持しつつ、ヒドラジン一水和物(80%純度)21gを徐々に滴下した後、約20時間攪拌して反応させた。その後、反応液を熱時濾過しながら、純水中に滴下し、室温で攪拌洗浄後、濾過して白色〜淡黄色固体を得た。これを35℃で真空乾燥させて上記化合物3を16.8g得た。   In a 500 mL three-necked flask equipped with a condenser, 12.6 g (0.0645 mol) of 4-cyano-4′-hydroxybiphenyl, 17.0 g (0.0717 mol) of 10-bromo-1-decanol, 28. 4 g and 350 mL of N, N-dimethylformamide were added, and the mixture was heated and stirred at 160 ° C. for 5 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. The reaction solution was poured into 1,000 mL of water and mixed and stirred. The precipitated white solid was filtered off and further washed with water. The obtained solid was vacuum-dried at 80 ° C. to obtain 20.6 g of the compound 1. Next, 20 g (0.0569 mol) of the obtained compound 1 was dissolved in 150 mL of dehydrated tetrahydrofuran (THF), 7.49 g (0.0740 mol) of triethylamine was added, and then dissolved in 150 mL of THF. 5-Dinitrobenzoyl chloride (14.4 g, 0.0625 mol) was gradually added dropwise over 30 minutes under ice cooling, and then stirred at room temperature for 3 hours. After completion of the reaction, triethylamine hydrochloride was removed by filtration, THF was removed by distillation under reduced pressure, and then 400 mL of chloroform was added. This solution was washed with water, the organic layer was dried over magnesium sulfate, and chloroform was removed by distillation under reduced pressure. Then, recrystallization was performed with ethanol, and 23.8 g of the compound 2 was obtained by vacuum drying at 80 ° C. Under a nitrogen stream, 20 g (0.0367 mol) of the above compound 2 and 1 g of 5% Pd / C (5 wt.% Relative to compound 2) were added to 500 mL of ethanol, and 4.2 g of 28% aqueous ammonia (compound 2) 2 times mole). While maintaining this solution at 15 ± 5 ° C., 21 g of hydrazine monohydrate (80% purity) was gradually added dropwise, and the reaction was allowed to stir for about 20 hours. Thereafter, the reaction solution was dropped into pure water while being filtered while hot, stirred and washed at room temperature, and then filtered to obtain a white to pale yellow solid. This was vacuum dried at 35 ° C. to obtain 16.8 g of the compound 3.

[合成例2]
下記反応スキームに従い化合物4を合成した。
[Synthesis Example 2]
Compound 4 was synthesized according to the following reaction scheme.

Figure 2016001328
Figure 2016001328

合成例1と同様の操作により得た化合物1の20g(0.0569モル)を300mLのTHFに溶解し、トリエチルアミン7.49g(0.0740モル)を加えた後、メタクリロイルクロリド6.53g(0.0625モル)を氷冷下で30分かけて徐々に滴下し、その後室温で3時間攪拌した。反応終了後、濾過によりトリエチルアミン塩酸塩を取り除き、減圧蒸留によりTHFを取り除いた後にクロロホルム400mLを加えた。この溶液を水洗し、有機層を硫酸マグネシウムで乾燥後、クロロホルムを減圧蒸留により除去した。その後、エタノールで再結晶を実施し、80℃で真空乾燥することで上記化合物4を17.7g得た。   20 g (0.0569 mol) of Compound 1 obtained by the same operation as in Synthesis Example 1 was dissolved in 300 mL of THF, 7.49 g (0.0740 mol) of triethylamine was added, and then 6.53 g (0 of methacryloyl chloride). 0.0625 mol) was gradually added dropwise over 30 minutes under ice cooling, and then stirred at room temperature for 3 hours. After completion of the reaction, triethylamine hydrochloride was removed by filtration, THF was removed by distillation under reduced pressure, and then 400 mL of chloroform was added. This solution was washed with water, the organic layer was dried over magnesium sulfate, and chloroform was removed by distillation under reduced pressure. Then, recrystallization was performed with ethanol, and 17.7 g of the compound 4 was obtained by vacuum drying at 80 ° C.

[合成例3]
下記反応スキームに従い化合物5及び6を合成した。
[Synthesis Example 3]
Compounds 5 and 6 were synthesized according to the following reaction scheme.

Figure 2016001328
Figure 2016001328

冷却管を備えた500mLの三口フラスコに4−シアノ−4’−ヒドロキシビフェニル12.6g(0.0645モル)、11−ブロモ−1−ウンデセン16.7g(0.0717モル)、炭酸カリウム28.4g及びN,N−ジメチルホルムアミド350mLを加え、160℃で5時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を水1,000mLに投入し、混合撹拌した。析出した白色固体をろ別し、水で更に洗浄した。得られた固体を80℃で真空乾燥することで、上記化合物5を19.8g得た。還流管及び窒素導入管を備えた100mLの三口フラスコに化合物6を8.69g(0.0250モル)、トリメトキシシラン15g及び0.2M塩化白金酸六水和物のイソプロパノール溶液を40μLを仕込み、脱気を行った後、窒素下で10時間還流下に反応を行った。反応混合物をシリカゲルのショートカラムに通した後、シリカカラムで精製を行い、さら溶媒を除去することにより、上記化合物6を3.5g得た。   In a 500 mL three-necked flask equipped with a condenser tube, 12.6 g (0.0645 mol) of 4-cyano-4′-hydroxybiphenyl, 16.7 g (0.0717 mol) of 11-bromo-1-undecene, and 28. potassium carbonate. 4 g and 350 mL of N, N-dimethylformamide were added, and the mixture was heated and stirred at 160 ° C. for 5 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. The reaction solution was poured into 1,000 mL of water and mixed and stirred. The precipitated white solid was filtered off and further washed with water. The obtained solid was vacuum-dried at 80 ° C. to obtain 19.8 g of the compound 5. A 100 mL three-necked flask equipped with a reflux tube and a nitrogen introduction tube was charged with 8.69 g (0.0250 mol) of Compound 6, 15 g of trimethoxysilane and 40 μL of an isopropanol solution of 0.2 M chloroplatinic acid hexahydrate, After deaeration, the reaction was carried out under reflux for 10 hours under nitrogen. After passing the reaction mixture through a short column of silica gel, purification was performed with a silica column, and the solvent was removed to obtain 3.5 g of the above compound 6.

[合成例4]
下記スキームに従い化合物7〜11を合成した。
[Synthesis Example 4]
Compounds 7 to 11 were synthesized according to the following scheme.

Figure 2016001328
Figure 2016001328

冷却管を備えた500mLの三口フラスコに4−[ジフルオロ(4−ペンチルシクロヘキシル)メトキシ]−2,3−ジフルオロフェノール12.5g、11−ブロモウンデカン酸メチル10g、炭酸カリウム14.2g、N,N−ジメチルホルムアミド200mLを加え、160℃で5時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を水500mLに投入し、混合撹拌した。析出した白色固体をろ別し、水で更に洗浄した。得られた固体を80℃で真空乾燥することで、化合物7を14.8g得た。   In a 500 mL three-necked flask equipped with a condenser tube, 12.5 g of 4- [difluoro (4-pentylcyclohexyl) methoxy] -2,3-difluorophenol, 10 g of 11-bromoundecanoate, 14.2 g of potassium carbonate, N, N -Dimethylformamide 200mL was added and it heat-stirred at 160 degreeC for 5 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. The reaction solution was put into 500 mL of water and mixed and stirred. The precipitated white solid was filtered off and further washed with water. The obtained solid was vacuum dried at 80 ° C. to obtain 14.8 g of Compound 7.

冷却管を備えた200mLの三口フラスコに、化合物7を10g、水酸化リチウム・1水和物1.6g、メタノール30mL、水15mLを加え、80℃で4時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を撹拌した状態で、希塩酸を反応溶液にゆっくり滴下した。析出固体をろ過し、水、エタノールの順で洗浄した。得られた固体を80℃で真空乾燥することで、化合物8を6g得た。   To a 200 mL three-necked flask equipped with a condenser tube, 10 g of Compound 7, 1.6 g of lithium hydroxide monohydrate, 30 mL of methanol, and 15 mL of water were added, and the mixture was heated and stirred at 80 ° C. for 4 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature. While stirring the reaction solution, dilute hydrochloric acid was slowly added dropwise to the reaction solution. The precipitated solid was filtered and washed with water and ethanol in this order. The obtained solid was vacuum dried at 80 ° C. to obtain 6 g of Compound 8.

冷却管を備えた100mLの三口フラスコに、化合物8を5g、塩化チオニル5mLを混合し、80℃で1時間加熱攪拌し反応させた。水流式アスピレーターで減圧し未反応の塩化チオニルを除去した後、テトラヒドロフラン50mLと混合し、溶液(1)とした。次いで滴下ロートを備えた200ml三口フラスコにエチレングリコール8.9g、テトラヒドロフラン20mL、トリエチルアミン2.2gを混合し、氷浴中で攪拌した。そこに溶液(1)を滴下した後、室温で3時間攪拌し反応させた。反応後酢酸エチル300mLを加え、分液精製にて水洗した。その後、有機層を濃縮し固体を得た。得られた固体をエタノール/蒸留水中で再結晶し、析出した固体をろ過、乾燥することで、化合物9を4.3g得た。   5 g of Compound 8 and 5 mL of thionyl chloride were mixed in a 100 mL three-necked flask equipped with a condenser, and the mixture was reacted by heating at 80 ° C. for 1 hour. The pressure was reduced with a water flow aspirator to remove unreacted thionyl chloride, and then mixed with 50 mL of tetrahydrofuran to obtain Solution (1). Next, 8.9 g of ethylene glycol, 20 mL of tetrahydrofuran, and 2.2 g of triethylamine were mixed in a 200 ml three-necked flask equipped with a dropping funnel and stirred in an ice bath. Solution (1) was added dropwise thereto, and the mixture was stirred at room temperature for 3 hours to be reacted. After the reaction, 300 mL of ethyl acetate was added, followed by washing with water by liquid separation purification. Thereafter, the organic layer was concentrated to obtain a solid. The obtained solid was recrystallized in ethanol / distilled water, and the precipitated solid was filtered and dried to obtain 4.3 g of Compound 9.

滴下ロートを備えた100mL三口フラスコに化合物9を4.0g、テトラヒドロフラン35mL、トリエチルアミン1.0gを氷浴中で攪拌した。そこへ3,5−ジニトロ安息香酸クロリド1.8gをゆっくりと滴下した後、室温で3時間攪拌し反応させた。反応後、酢酸エチル300mLを加え、分液精製にて水洗した。その後、有機層を濃縮し固体を得た。得られた固体をエタノールで再結晶し、析出した固体をろ過、乾燥することで、化合物10を4.8g得た。   In a 100 mL three-necked flask equipped with a dropping funnel, 4.0 g of Compound 9, 35 mL of tetrahydrofuran, and 1.0 g of triethylamine were stirred in an ice bath. 1.8 g of 3,5-dinitrobenzoyl chloride was slowly added dropwise thereto, and the mixture was stirred at room temperature for 3 hours to be reacted. After the reaction, 300 mL of ethyl acetate was added, and the mixture was washed with water by liquid separation purification. Thereafter, the organic layer was concentrated to obtain a solid. The obtained solid was recrystallized from ethanol, and the precipitated solid was filtered and dried to obtain 4.8 g of Compound 10.

滴下ロートを備えた100mL三口フラスコに化合物10を4g、亜鉛7g、塩化アンモニウム1.1gを混合し、真空脱気、窒素置換した。次いで、テトラヒドロフラン10mL、エタノール10mLを加え氷浴中で攪拌混合した。次いで、蒸留水5mLをゆっくり滴下した。尚、反応に用いた溶媒はあらかじめ窒素バブリングしておいた。滴下中は、氷浴にて冷却しながら攪拌し、その後室温にて4時間反応させた。次いで、反応液をろ過し触媒を除去した。次いで、酢酸エチル300mLを加え、蒸留水にて分液精製を行った。次いで有機層を濃縮し溶媒を除去することで固体が得られた。エタノールにて再結晶させ、固体をろ過、減圧乾燥することで濾過しこれを35℃で真空乾燥させることで化合物11を2.4g得た。   In a 100 mL three-necked flask equipped with a dropping funnel, 4 g of compound 10, 7 g of zinc, and 1.1 g of ammonium chloride were mixed, vacuum degassed, and purged with nitrogen. Next, 10 mL of tetrahydrofuran and 10 mL of ethanol were added and mixed with stirring in an ice bath. Next, 5 mL of distilled water was slowly added dropwise. The solvent used for the reaction was previously bubbled with nitrogen. During the dropping, the mixture was stirred while cooling in an ice bath, and then allowed to react at room temperature for 4 hours. Next, the reaction solution was filtered to remove the catalyst. Subsequently, 300 mL of ethyl acetate was added, and liquid separation purification was performed with distilled water. Subsequently, the organic layer was concentrated and the solvent was removed to obtain a solid. Crystallization was performed using ethanol, and the solid was filtered and dried under reduced pressure, followed by vacuum drying at 35 ° C. to obtain 2.4 g of Compound 11.

[合成例5]
下記スキームに従い化合物12〜14を合成した。
[Synthesis Example 5]
Compounds 12 to 14 were synthesized according to the following scheme.

Figure 2016001328
Figure 2016001328

冷却管を備えた500mLの三口フラスコに3,5−ジニトロフルオロベンゼン18.6g、11−ブロモウンデカノール24.4g、トリエチルアミン20g、テトラヒドロフラン100mLを混合し、窒素雰囲気下100℃にて30時間反応させた。反応後、酢酸エチル200mLを加え、蒸留水50mLで4回分液精製を行った。次いで有機層を濃縮し溶媒を除去することで黄褐色の液体が得られた。これにエタノールを少量加え0℃以下にて冷却することで固体を析出させた。次いで、析出した個体をろ過、乾燥することで化合物12を30g得た。   A 500 mL three-necked flask equipped with a condenser tube was mixed with 18.6 g of 3,5-dinitrofluorobenzene, 24.4 g of 11-bromoundecanol, 20 g of triethylamine, and 100 mL of tetrahydrofuran, and reacted at 100 ° C. for 30 hours in a nitrogen atmosphere. I let you. After the reaction, 200 mL of ethyl acetate was added, and liquid separation purification was performed 4 times with 50 mL of distilled water. Subsequently, the organic layer was concentrated and the solvent was removed to obtain a tan liquid. A small amount of ethanol was added thereto and cooled at 0 ° C. or lower to precipitate a solid. Next, 30 g of Compound 12 was obtained by filtering and drying the precipitated solid.

冷却管を備えた300mLの三口フラスコに化合物12を8.3g、2,3−ジフルオロ−4−(4−ペンチルシクロヘキシル)フェノール6g、炭酸カリウム6g、ジメチルホルムアミド100mLを混合し、80℃にて5時間反応させた。反応終了を確認し、酢酸エチル200mLを加え、蒸留水50mLで4回分液精製を行った。次いで有機層を濃縮し溶媒を除去することで黄褐色の液体が得られた。これにエタノールを少量加え0℃以下にて冷却することで固体を析出させた。次いで、析出した個体をろ過、乾燥することで化合物13を10g得た。   In a 300 mL three-necked flask equipped with a condenser tube, 8.3 g of Compound 12, 6 g of 2,3-difluoro-4- (4-pentylcyclohexyl) phenol, 6 g of potassium carbonate, and 100 mL of dimethylformamide were mixed, and the mixture was mixed at 80 ° C. Reacted for hours. After confirming the completion of the reaction, 200 mL of ethyl acetate was added, and separation and purification was performed 4 times with 50 mL of distilled water. Subsequently, the organic layer was concentrated and the solvent was removed to obtain a tan liquid. A small amount of ethanol was added thereto and cooled at 0 ° C. or lower to precipitate a solid. Next, 10 g of Compound 13 was obtained by filtering and drying the precipitated solid.

滴下ロートを備えた200mL三口フラスコに化合物13を9.8g、亜鉛20g、塩化アンモニウム3.4gを混合し、真空脱気、窒素置換した。次いで、テトラヒドロフラン30mL、エタノール30mLを加え氷浴中で攪拌混合した。次いで、蒸留水10mLをゆっくり滴下した。尚、反応に用いた溶媒はあらかじめ窒素バブリングしておいた。滴下中は、氷浴にて冷却しながら攪拌し、その後室温にて6時間反応させた。次いで、反応液をろ過し触媒を除去した。次いで、酢酸エチル300mLを加え、蒸留水にて分液洗浄を行った。次いで有機層を濃縮し溶媒を除去することで固体が得られた。エタノールにて再結晶させ、固体をろ過、減圧乾燥することで化合物14を5g得た。   In a 200 mL three-necked flask equipped with a dropping funnel, 9.8 g of compound 13, 20 g of zinc, and 3.4 g of ammonium chloride were mixed, vacuum deaerated, and purged with nitrogen. Next, 30 mL of tetrahydrofuran and 30 mL of ethanol were added and mixed with stirring in an ice bath. Next, 10 mL of distilled water was slowly added dropwise. The solvent used for the reaction was previously bubbled with nitrogen. During the dropwise addition, the mixture was stirred while being cooled in an ice bath, and then reacted at room temperature for 6 hours. Next, the reaction solution was filtered to remove the catalyst. Subsequently, 300 mL of ethyl acetate was added, and liquid separation washing was performed with distilled water. Subsequently, the organic layer was concentrated and the solvent was removed to obtain a solid. 5g of compound 14 was obtained by recrystallizing with ethanol and filtering solid and drying under reduced pressure.

[合成例6]
下記スキームに従い化合物15〜17を合成した。
[Synthesis Example 6]
Compounds 15 to 17 were synthesized according to the following scheme.

Figure 2016001328
Figure 2016001328

3’,4’,5’−トリフルオロ−4−ヒドロキシビフェニル4.48g、2−[2−(2−クロロエトキシ)エトキシ]エタノール3.38g、炭酸カリウム8.3g、ジメチルホルムアミド100mLを混合し、窒素雰囲気下85℃にて24時間反応させた。次いで、酢酸エチル200mLを加え、蒸留水にて分液精製を行った。有機層を濃縮し溶媒を除去することで化合物15(淡黄色の液体)を6g得た。   3.48 g of 3 ′, 4 ′, 5′-trifluoro-4-hydroxybiphenyl, 3.38 g of 2- [2- (2-chloroethoxy) ethoxy] ethanol, 8.3 g of potassium carbonate, and 100 mL of dimethylformamide were mixed. The mixture was reacted at 85 ° C. for 24 hours under a nitrogen atmosphere. Subsequently, 200 mL of ethyl acetate was added, and liquid separation purification was performed with distilled water. The organic layer was concentrated and the solvent was removed to obtain 6 g of Compound 15 (light yellow liquid).

化合物15を5g、2,4−ジニトロフルオロベンゼン2.9g、テトラヒドロフラン50mL、トリエチルアミン1.9gを混合し80℃にて10時間反応させた。酢酸エチル200mLを加え、蒸留水にて分液精製を行った。有機層を濃縮し溶媒を除去することで化合物16を4.8g得た。   5 g of compound 15, 2.9 g of 2,4-dinitrofluorobenzene, 50 mL of tetrahydrofuran, and 1.9 g of triethylamine were mixed and reacted at 80 ° C. for 10 hours. 200 mL of ethyl acetate was added, and liquid separation purification was performed with distilled water. 4.8g of compound 16 was obtained by concentrating the organic layer and removing the solvent.

滴下ロートを備えた100mL三口フラスコに化合物16を4g、亜鉛10g、塩化アンモニウム1.6gを混合し、真空脱気、窒素置換した。次いで、窒素気流下、テトラヒドロフラン10ml、エタノール10mlを加え氷浴中で攪拌混合した。次いで、蒸留水5mlをゆっくり滴下した。尚、反応に用いた溶媒はあらかじめ窒素バブリングしておいた。滴下中は、氷浴にて冷却しながら攪拌し、その後室温にて2時間反応させた。次いで、反応液をろ過し触媒を除去した。次いで、酢酸エチル300mlを加え、蒸留水にて分液精製を行った。次いで有機層を濃縮し溶媒を除去することで固体が得られた。エタノールにて再結晶させ、固体をろ過、減圧乾燥することで濾過しこれを乾燥させることで化合物17を3.3g得た。   In a 100 mL three-necked flask equipped with a dropping funnel, 4 g of Compound 16, 10 g of zinc, and 1.6 g of ammonium chloride were mixed, vacuum degassed, and purged with nitrogen. Next, under a nitrogen stream, 10 ml of tetrahydrofuran and 10 ml of ethanol were added and stirred and mixed in an ice bath. Next, 5 ml of distilled water was slowly added dropwise. The solvent used for the reaction was previously bubbled with nitrogen. During the dropping, the mixture was stirred while cooling in an ice bath, and then allowed to react at room temperature for 2 hours. Next, the reaction solution was filtered to remove the catalyst. Subsequently, 300 ml of ethyl acetate was added, and liquid separation purification was performed with distilled water. Subsequently, the organic layer was concentrated and the solvent was removed to obtain a solid. Recrystallization with ethanol was performed, and the solid was filtered and dried under reduced pressure, followed by drying, and 3.3 g of Compound 17 was obtained.

[合成例7]
下記スキームに従い化合物18及び19を合成した。
[Synthesis Example 7]
Compounds 18 and 19 were synthesized according to the following scheme.

Figure 2016001328
Figure 2016001328

4−[ジフルオロ(4−ペンチルシクロヘキシル)メトキシ]−2,3−ジフルオロフェノール50g、11−ブロモウンデカノール38g、炭酸カリウム60g、ジメチルホルムアミド100mLを混合し、窒素雰囲気下85℃にて24時間反応させた。次いで、酢酸エチル200mLを加え、蒸留水にて分液精製を行った。有機層を濃縮し溶媒を除去することで化合物18を38.7g得た。   4- [difluoro (4-pentylcyclohexyl) methoxy] -2,3-difluorophenol 50 g, 11-bromoundecanol 38 g, potassium carbonate 60 g, and dimethylformamide 100 mL were mixed and reacted at 85 ° C. for 24 hours in a nitrogen atmosphere. I let you. Subsequently, 200 mL of ethyl acetate was added, and liquid separation purification was performed with distilled water. The organic layer was concentrated and the solvent was removed to obtain 38.7 g of Compound 18.

化合物18を10g、テトラヒドロフラン20mLに溶解し、トリエチルアミン3.9gを加えた後、アクリル酸クロリド2.6gをテトラヒドロフラン10mLに溶解させた溶液を氷冷下で15分かけて徐々に滴下し、その後室温で2時間攪拌した。反応終了後、濾過によりトリエチルアミン塩酸塩を取り除き、減圧蒸留により溶媒を取り除いた後にクロロホルム400mLを加えた。この溶液を水洗し、有機層を硫酸マグネシウムで乾燥後、クロロホルムを減圧蒸留により除去した。その後、エタノールで再結晶を実施し、80℃で真空乾燥することで化合物19を11g得た。   10 g of compound 18 was dissolved in 20 mL of tetrahydrofuran, 3.9 g of triethylamine was added, and then a solution of 2.6 g of acrylic acid chloride dissolved in 10 mL of tetrahydrofuran was gradually added dropwise over 15 minutes under ice cooling, and then room temperature. For 2 hours. After completion of the reaction, triethylamine hydrochloride was removed by filtration, the solvent was removed by distillation under reduced pressure, and then 400 mL of chloroform was added. This solution was washed with water, the organic layer was dried over magnesium sulfate, and chloroform was removed by distillation under reduced pressure. Then, recrystallization was performed with ethanol, and 11 g of Compound 19 was obtained by vacuum drying at 80 ° C.

<[A]重合体の合成>
[ポリアミック酸の合成]
[合成例8]
1,2,3,4−シクロブタンテトラカルボン酸二無水物26.08g、下記式で表されるジアミン(G−1)7.90g及び上記化合物3のジアミン66.0gをNMP400gに溶解し、室温で6時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸(PA−1)を78.5g得た。
<[A] Synthesis of polymer>
[Synthesis of polyamic acid]
[Synthesis Example 8]
26.08 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 7.90 g of diamine (G-1) represented by the following formula and 66.0 g of the diamine of the above compound 3 were dissolved in 400 g of NMP, For 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried at 40 ° C. under reduced pressure for 15 hours to obtain 78.5 g of polyamic acid (PA-1).

Figure 2016001328
Figure 2016001328

[合成例9]
化合物3の代わりに化合物11を96.6g用いた以外は合成例8と同様に操作することにより、ポリアミック酸(PA−2)を100.1g得た。
[Synthesis Example 9]
100.1g of polyamic acid (PA-2) was obtained by operating like the synthesis example 8 except having used 96.6g of compounds 11 instead of the compound 3.

[ポリイミドの合成]
[合成例10]
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物13.45g、ジアミン化合物として3,5−ジアミノ安息香酸3.72g、下記式で表されるジアミン(G−2)3.02g及び化合物3のジアミン14.81gをNMP140gに溶解させ、60℃で4時間反応させた。この重合液の粘度を測定したところ2,200mPa・sであった。反応溶液を大過剰のメチルアルコール中に注いで反応生成物を沈澱させた。その後、メチルアルコールで洗浄し、減圧下40℃で24時間乾燥させることによりポリアミック酸を得た。得られたポリアミック酸を全てNMP465gに再溶解させ、ピリジン7.12g及び無水酢酸9.19gを添加し110℃で4時間脱水閉環させ、上記と同様に操作して沈殿、洗浄、減圧乾燥を行い、イミド化率68%のポリイミド(PI−1)を21.5g得た。
[Synthesis of polyimide]
[Synthesis Example 10]
Tetracarboxylic dianhydride 2,3,5-tricarboxycyclopentylacetic dianhydride 13.45 g, diamine compound 3,5-diaminobenzoic acid 3.72 g, diamine represented by the following formula (G-2) 3.02 g and 14.81 g of the diamine of Compound 3 were dissolved in 140 g of NMP and reacted at 60 ° C. for 4 hours. When the viscosity of this polymerization liquid was measured, it was 2,200 mPa · s. The reaction solution was poured into a large excess of methyl alcohol to precipitate the reaction product. Thereafter, it was washed with methyl alcohol and dried at 40 ° C. under reduced pressure for 24 hours to obtain a polyamic acid. All of the obtained polyamic acid was redissolved in 465 g of NMP, 7.12 g of pyridine and 9.19 g of acetic anhydride were added, dehydration and cyclization were performed at 110 ° C. for 4 hours, and precipitation, washing, and drying under reduced pressure were performed in the same manner as above. 21.5 g of polyimide (PI-1) having an imidation ratio of 68% was obtained.

Figure 2016001328
Figure 2016001328

[合成例11]
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物10.89g、ジアミン化合物として上記ジアミン(G−2)7.33g及び化合物3のジアミン16.78gをNMPに溶解させ、60℃で4時間反応させた。この重合液の粘度を測定したところ1,250mPa・sであった。反応溶液を大過剰のメチルアルコール中に注いで反応生成物を沈澱させた。その後、メチルアルコールで洗浄し、減圧下40℃で24時間乾燥させることによりポリアミック酸を得た。得られたポリアミック酸を全てNMP465gに再溶解させ、ピリジン3.84g及び無水酢酸4.96gを添加し110℃で4時間脱水閉環させ、上記と同様に操作して沈殿、洗浄、減圧乾燥を行い、イミド化率49%のポリイミド(PI−2)を23.1g得た。
[Synthesis Example 11]
Dissolve 10.89 g of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride, 7.33 g of the above diamine (G-2) and 16.78 g of diamine of compound 3 in NMP as diamine compounds. , Reacted at 60 ° C. for 4 hours. When the viscosity of this polymerization liquid was measured, it was 1,250 mPa · s. The reaction solution was poured into a large excess of methyl alcohol to precipitate the reaction product. Thereafter, it was washed with methyl alcohol and dried at 40 ° C. under reduced pressure for 24 hours to obtain a polyamic acid. All of the obtained polyamic acid was redissolved in 465 g of NMP, 3.84 g of pyridine and 4.96 g of acetic anhydride were added, dehydration and ring closure were carried out at 110 ° C. for 4 hours, and precipitation, washing and drying under reduced pressure were carried out in the same manner as above. As a result, 23.1 g of polyimide (PI-2) having an imidization ratio of 49% was obtained.

[合成例12]
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物15.17g、ジアミン化合物として上記ジアミン(G−1)3.60g、化合物3のジアミン6.68g及び4,4’−ジアミノジフェニルメタン9.55gをNMP140gに溶解させ、60℃で4時間反応させた。この重合液の粘度を測定したところ、2,700mPa・sであった。反応溶液を大過剰のメチルアルコール中に注いで反応生成物を沈澱させた。その後、メチルアルコールで洗浄し、減圧下40℃で24時間乾燥させることによりポリアミック酸を得た。得られたポリアミック酸を全てNMP465gに再溶解させ、ピリジン10.70g及び無水酢酸13.82gを添加し110℃で4時間脱水閉環させ、上記と同様に操作して沈殿、洗浄、減圧乾燥を行い、イミド化率76%のポリイミド(PI−3)を22.4g得た。
[Synthesis Example 12]
2.17 g of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride, 3.60 g of the diamine (G-1) as a diamine compound, 6.68 g and 4,4 ′ of diamine of compound 3 -Diaminodiphenylmethane 9.55g was dissolved in NMP140g, and it was made to react at 60 degreeC for 4 hours. When the viscosity of this polymerization liquid was measured, it was 2,700 mPa · s. The reaction solution was poured into a large excess of methyl alcohol to precipitate the reaction product. Thereafter, it was washed with methyl alcohol and dried at 40 ° C. under reduced pressure for 24 hours to obtain a polyamic acid. All of the obtained polyamic acid was redissolved in 465 g of NMP, 10.70 g of pyridine and 13.82 g of acetic anhydride were added, dehydration and ring closure were carried out at 110 ° C. for 4 hours, and precipitation, washing and drying under reduced pressure were carried out in the same manner as above. 22.4 g of polyimide (PI-3) having an imidation ratio of 76% was obtained.

[合成例13]
化合物3の代わりに化合物14を7.69g用いた以外は合成例10と同様に操作することにより、イミド化率76%のポリイミド(PI−4)を22.9g得た。
[Synthesis Example 13]
By operating in the same manner as in Synthesis Example 10 except that 7.69 g of compound 14 was used instead of compound 3, 22.9 g of polyimide (PI-4) having an imidization ratio of 76% was obtained.

[合成例14]
化合物3の代わりに化合物17を6.36g用いた以外は合成例10と同様に操作することにより、イミド化率76%のポリイミド(PI−5)を21.9g得た。
[Synthesis Example 14]
By operating in the same manner as in Synthesis Example 10 except that 6.36 g of Compound 17 was used instead of Compound 3, 21.9 g of polyimide (PI-5) having an imidization ratio of 76% was obtained.

[メタクリル重合体の合成]
[合成例15]
下記反応スキームに従いメタクリル酸コレスタニルを合成した。
[Synthesis of methacrylic polymer]
[Synthesis Example 15]
Cholestanyl methacrylate was synthesized according to the following reaction scheme.

Figure 2016001328
Figure 2016001328

β‐コレスタノール80gを800mLのTHFに溶解し、トリエチルアミン27.2gを加えた後、塩化メタクリロイル35.6gを徐々に滴下し、室温で3時間攪拌させた。反応終了後、ろ過によりトリエチルアミン塩酸塩を取り除き、減圧蒸留によりTHFを取り除いた後にクロロホルム400mLを加えた。この溶液を水洗し、有機層を硫酸マグネシウムで乾燥後、クロロホルムを減圧蒸留により除去した。その後、エタノールによる再結晶を実施し、上記反応式に示す白色固体のメタクリル酸コレスタニル54g(収率:57.4%)を得た。攪拌棒、三方コック、温度計をセットした四つ口フラスコにモノマーとして上記メタクリル酸コレスタニル15.16g(0.033モル)、メタクリル酸グリシジル12.8g(0.09モル)、メタクリル酸7.2g(0.084モル)及び上記化合物4を45.85g(0.109モル)仕込み、溶媒としてジエチレングリコールエチルメチルエーテル52.8g、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)2.24g及び連鎖移動剤としてα−メチルスチレンダイマー0.96gを添加した。これを窒素気流で約10分間バブリングして系内の窒素置換を行った後、窒素雰囲気下、70℃で5時間反応させてメタクリル重合体(PM−1)を得た。GPCによりメタクリル重合体(PM−1)の分子量測定を行ったところ、Mw=96,000、Mw/Mn=7.87であり、残留モノマーに起因するピークは認められなかった。なお、重合体溶液において仕込みモノマーは全量メタクリル重合体(PM−1)に転換されたと仮定し、そのまま希釈して本発明の液晶配向剤調製に使用した。   80 g of β-cholestanol was dissolved in 800 mL of THF, 27.2 g of triethylamine was added, 35.6 g of methacryloyl chloride was gradually added dropwise, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, triethylamine hydrochloride was removed by filtration, THF was removed by distillation under reduced pressure, and then 400 mL of chloroform was added. This solution was washed with water, the organic layer was dried over magnesium sulfate, and chloroform was removed by distillation under reduced pressure. Thereafter, recrystallization with ethanol was performed to obtain 54 g (yield: 57.4%) of cholestanyl methacrylate as a white solid shown in the above reaction formula. The above-mentioned cholestanyl methacrylate 15.16 g (0.033 mol), glycidyl methacrylate 12.8 g (0.09 mol), methacrylic acid 7.2 g as monomers in a four-necked flask equipped with a stir bar, three-way cock and thermometer (0.084 mol) and 45.85 g (0.109 mol) of the above compound 4, 52.8 g of diethylene glycol ethyl methyl ether as a solvent, and 2,2′-azobis (2,4-dimethylvaleronitrile as a polymerization initiator) ) 2.24 g and 0.96 g of α-methylstyrene dimer as a chain transfer agent were added. This was bubbled with a nitrogen stream for about 10 minutes to perform nitrogen substitution in the system, and then reacted at 70 ° C. for 5 hours in a nitrogen atmosphere to obtain a methacrylic polymer (PM-1). When the molecular weight of the methacrylic polymer (PM-1) was measured by GPC, Mw = 96,000 and Mw / Mn = 7.87, and no peak attributable to the residual monomer was observed. In the polymer solution, it was assumed that the charged monomers were all converted to methacrylic polymer (PM-1) and diluted as they were to prepare the liquid crystal aligning agent of the present invention.

[合成例16]
メタクリル酸コレスタニル10.0g(0.0219モル)、メタクリル酸グリシジル15.0g(0.1055モル)、メタクリル酸9.0g(0.1045モル)及び化合物4を19.3g(0.046モル)仕込み、溶媒としてジエチレングリコールエチルメチルエーテル43.0g、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)1.83g及び連鎖移動剤としてα−メチルスチレンダイマー0.78gを用いた以外は合成例15と同様に操作して、メタクリル重合体(PM−2)を得た。GPCによりメタクリル重合体(PM−2)の分子量測定を行ったところ、Mw=125,000、Mw/Mn=9.54であり、残留モノマーに起因するピークは認められなかった。なお、本重合体溶液において仕込みモノマーは全量メタクリル重合体(PM−2)に転換されたと仮定し、そのまま希釈して本発明の液晶配向剤作成に使用した。
[Synthesis Example 16]
10.0 g (0.0219 mol) of cholestanyl methacrylate, 15.0 g (0.1055 mol) of glycidyl methacrylate, 9.0 g (0.1045 mol) of methacrylic acid and 19.3 g (0.046 mol) of compound 4 Preparation, 43.0 g of diethylene glycol ethyl methyl ether as a solvent, 1.83 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator and 0.78 g of α-methylstyrene dimer as a chain transfer agent were used. Was operated in the same manner as in Synthesis Example 15 to obtain a methacrylic polymer (PM-2). When the molecular weight of the methacrylic polymer (PM-2) was measured by GPC, Mw = 12,500 and Mw / Mn = 9.54, and no peak attributable to the residual monomer was observed. In this polymer solution, it was assumed that the charged monomers were all converted to methacrylic polymer (PM-2), and diluted as they were to prepare the liquid crystal aligning agent of the present invention.

[合成例17]
化合物4の代わりに化合物19を25.6g(0.046モル)用いた以外は合成例16と同様に操作することによりメタクリル重合体(PM−3)を得た。GPCによりメタクリル重合体(PM−3)の分子量測定を行ったところ、Mw=131,000、Mw/Mn=9.43であり、残留モノマーに起因するピークは認められなかった。なお、本重合体溶液において仕込みモノマーは全量メタクリル重合体(PM−3)に転換されたと仮定し、そのまま希釈して本発明の液晶配向剤作成に使用した。
[Synthesis Example 17]
A methacrylic polymer (PM-3) was obtained in the same manner as in Synthesis Example 16 except that 25.6 g (0.046 mol) of Compound 19 was used instead of Compound 4. When the molecular weight of the methacrylic polymer (PM-3) was measured by GPC, Mw = 131,000 and Mw / Mn = 9.43, and no peaks attributable to residual monomers were observed. In this polymer solution, it was assumed that the charged monomers were all converted to methacrylic polymer (PM-3) and diluted as they were to prepare the liquid crystal aligning agent of the present invention.

[ポリシロキサンの合成]
[合成例18]
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、シュウ酸12.4g及びエタノール22.2gを投入し、攪拌してシュウ酸のエタノール溶液を調製した。次いでこの溶液を窒素雰囲気下、70℃まで加熱した後、ここに原料であるシラン化合物として、テトラエトキシシラン11.1g及び化合物6が10.6gからなる混合物を滴下した。滴下終了後、70℃の温度を6時間維持した後に25℃まで冷却し、次いでブチルセロソルブ40.0gを加えることによりポリオルガノシロキサン(PS−1)を含有する溶液を調製した。この溶液に含有されるポリオルガノシロキサン(PS−1)のMwは9,000であった。
[Synthesis of polysiloxane]
[Synthesis Example 18]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 12.4 g of oxalic acid and 22.2 g of ethanol, and stirred to prepare an ethanol solution of oxalic acid. Next, this solution was heated to 70 ° C. in a nitrogen atmosphere, and then a mixture of 11.1 g of tetraethoxysilane and 10.6 g of compound 6 was added dropwise thereto as a silane compound as a raw material. After completion of the dropwise addition, the temperature of 70 ° C. was maintained for 6 hours and then cooled to 25 ° C., and then 40.0 g of butyl cellosolve was added to prepare a solution containing polyorganosiloxane (PS-1). Mw of polyorganosiloxane (PS-1) contained in this solution was 9,000.

[合成例19]
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、シュウ酸13.9g及びエタノール19.5gを投入し、攪拌してシュウ酸のエタノール溶液を調製した。次いでこの溶液を窒素雰囲気下、70℃まで加熱した後、ここに原料であるシラン化合物として、テトラエトキシシラン15.1g及び化合物6が3.95gからなる混合物を滴下した。滴下終了後、70℃の温度を6時間維持した後に25℃まで冷却し、次いでブチルセロソルブ40.0gを加えることによりポリオルガノシロキサン(PS−2)を含有する溶液を調製した。この溶液に含有されるポリオルガノシロキサン(PS−2)のMwは12,000であった。
[Synthesis Example 19]
Into a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser, 13.9 g of oxalic acid and 19.5 g of ethanol were added and stirred to prepare an ethanol solution of oxalic acid. Next, this solution was heated to 70 ° C. in a nitrogen atmosphere, and then a mixture of 15.1 g of tetraethoxysilane and 3.95 g of compound 6 was dropped as a raw material silane compound. After completion of the dropwise addition, the temperature of 70 ° C. was maintained for 6 hours and then cooled to 25 ° C., and then 40.0 g of butyl cellosolve was added to prepare a solution containing polyorganosiloxane (PS-2). Mw of polyorganosiloxane (PS-2) contained in this solution was 12,000.

[合成例20]
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、シュウ酸10.2g及びエタノール26.3gを投入し、攪拌してシュウ酸のエタノール溶液を調製した。次いでこの溶液を窒素雰囲気下、70℃まで加熱した後、ここに原料であるシラン化合物として、テトラエトキシシラン5.54g、化合物6が12.49g及びオクタデシルトリエトキシシラン2.5gからなる混合物を滴下した。滴下終了後、70℃の温度を6時間維持した後に25℃まで冷却し、次いでブチルセロソルブ40.0gを加えることによりポリオルガノシロキサン(PS−3)を含有する溶液を調製した。この溶液に含有されるポリオルガノシロキサン(PS−3)のMwは6,000であった。
[Synthesis Example 20]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 10.2 g of oxalic acid and 26.3 g of ethanol and stirred to prepare an ethanol solution of oxalic acid. Next, this solution was heated to 70 ° C. under a nitrogen atmosphere, and then a mixture of 5.54 g of tetraethoxysilane, 12.49 g of compound 6 and 2.5 g of octadecyltriethoxysilane was added dropwise as a raw material silane compound. did. After completion of the dropwise addition, the temperature of 70 ° C. was maintained for 6 hours and then cooled to 25 ° C., and then 40.0 g of butyl cellosolve was added to prepare a solution containing polyorganosiloxane (PS-3). Mw of polyorganosiloxane (PS-3) contained in this solution was 6,000.

[合成例21]
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物19.88g、ジアミン化合物としてp−フェニレンジアミン6.83g、ジアミノジフェニルメタン3.58g及び上記ジアミン(G−1)4.72gをNMP140gに溶解させ、60℃で4時間反応させた。この重合液の粘度を測定したところ、2,100mPa・sであった。次いで、反応溶液を大過剰のメチルアルコール中に注いで反応生成物を沈澱させた。その後、メチルアルコールで洗浄し、減圧下40℃で24時間乾燥させることによりポリアミック酸32.8gを得た。得られたポリアミック30gをNMP400gに溶解させ、ピリジン12.0g及び無水酢酸15.5gを添加し110℃で4時間脱水閉環させ、上記と同様にして沈殿、洗浄、減圧乾燥を行い、イミド化率79%のポリイミド(PI−6)を25g得た。
[Synthesis Example 21]
19.88 g of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride, 6.83 g of p-phenylenediamine, 3.58 g of diaminodiphenylmethane as the diamine compound, and the above diamine (G-1) 4. 72 g was dissolved in 140 g of NMP and reacted at 60 ° C. for 4 hours. When the viscosity of this polymerization liquid was measured, it was 2,100 mPa · s. The reaction solution was then poured into a large excess of methyl alcohol to precipitate the reaction product. Thereafter, it was washed with methyl alcohol and dried at 40 ° C. under reduced pressure for 24 hours to obtain 32.8 g of polyamic acid. 30 g of the resulting polyamic was dissolved in 400 g of NMP, 12.0 g of pyridine and 15.5 g of acetic anhydride were added, dehydration and ring closure were performed at 110 ° C. for 4 hours, precipitation, washing and drying under reduced pressure were performed in the same manner as above, and the imidization rate 25 g of 79% polyimide (PI-6) was obtained.

[合成例22]
攪拌棒、三方コック、温度計をセットした四つ口フラスコにモノマーとしてメタクリル酸コレスタニル15.16g(0.0332モル)、メタクリル酸グリシジル12.8g(0.09モル)、メタクリル酸7.2g(0.0836モル)、スチレン7.2g(0.0691モル)及びN−シクロヘキシルマレイミド7.2g(0.0402モル)を仕込み、さらに溶媒としてジエチレングリコールエチルメチルエーテル52.8g、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)2.24g及び連鎖移動剤としてα−メチルスチレンダイマー0.96gを添加した。これを窒素気流で約10分間バブリングして系内の窒素置換を行った後、窒素雰囲気下、70℃で5時間反応させてプレチルト角発現成分を有するメタクリル重合体(PM−4)を得た。GPCによりメタクリル重合体(PM−4)の分子量測定を行ったところ、Mw=96,000、Mw/Mn=7.87であり、残留モノマーに起因するピークは認められなかった。なお、本重合体溶液において仕込みモノマーは全量メタクリル重合体(PM−4)に転換されたと仮定し、そのまま希釈して本発明の液晶配向剤調製に使用した。
[Synthesis Example 22]
Cholestanyl methacrylate 15.16 g (0.0332 mol), glycidyl methacrylate 12.8 g (0.09 mol), methacrylic acid 7.2 g (monomer) in a four-necked flask set with a stir bar, three-way cock, and thermometer 0.0836 mol), 7.2 g (0.0691 mol) of styrene and 7.2 g (0.0402 mol) of N-cyclohexylmaleimide, 52.8 g of diethylene glycol ethyl methyl ether as a solvent, 2, 2.24 g of 2′-azobis (2,4-dimethylvaleronitrile) and 0.96 g of α-methylstyrene dimer as a chain transfer agent were added. This was bubbled in a nitrogen stream for about 10 minutes to perform nitrogen substitution in the system, and then reacted at 70 ° C. for 5 hours in a nitrogen atmosphere to obtain a methacrylic polymer (PM-4) having a pretilt angle developing component. . When the molecular weight of the methacrylic polymer (PM-4) was measured by GPC, Mw = 96,000 and Mw / Mn = 7.87, and no peak attributable to the residual monomer was observed. In this polymer solution, it was assumed that the charged monomers were all converted to methacrylic polymer (PM-4) and diluted as they were to prepare the liquid crystal aligning agent of the present invention.

[合成例23]
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、シュウ酸10.2g及びエタノール26.3gを投入し、攪拌してシュウ酸のエタノール溶液を調製した。次いでこの溶液を窒素雰囲気下、70℃まで加熱した後、ここに原料であるシラン化合物として、テトラエトキシシラン11.1g及びオクタデシルトリエトキシシラン2.5gからなる混合物を滴下した。滴下終了後、70℃の温度を6時間維持した後に25℃まで冷却し、次いでブチルセロソルブ40.0gを加えることによりポリオルガノシロキサン(PS−4)を含有する溶液を調製した。この溶液に含有されるポリオルガノシロキサン(PS−4)のMwは6,900であった。
[Synthesis Example 23]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 10.2 g of oxalic acid and 26.3 g of ethanol and stirred to prepare an ethanol solution of oxalic acid. Next, this solution was heated to 70 ° C. in a nitrogen atmosphere, and then a mixture of 11.1 g of tetraethoxysilane and 2.5 g of octadecyltriethoxysilane was added dropwise thereto as a raw material silane compound. After completion of the dropping, the temperature of 70 ° C. was maintained for 6 hours and then cooled to 25 ° C., and then 40.0 g of butyl cellosolve was added to prepare a solution containing polyorganosiloxane (PS-4). Mw of the polyorganosiloxane (PS-4) contained in this solution was 6,900.

<液晶配向剤の調製>
[実施例1]
上記ポリアミック酸(PA−1)に溶媒組成がNMP:ブチルセロソルブ=50:50(質量比)となるようにNMP及びブチルセロソルブを加えて、固形分濃度が3.5質量%(液晶セル作成用)及び固形分濃度が7.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径0.2μmのフィルターで濾過することにより、液晶配向剤(S−1)を調製した。
<Preparation of liquid crystal aligning agent>
[Example 1]
NMP and butyl cellosolve are added to the polyamic acid (PA-1) so that the solvent composition is NMP: butyl cellosolve = 50: 50 (mass ratio), and the solid content concentration is 3.5% by mass (for liquid crystal cell preparation) and A solution having a solid concentration of 7.0% (for uniform coating property evaluation) was obtained. After sufficiently stirring these solutions, a liquid crystal aligning agent (S-1) was prepared by filtering through a filter having a pore size of 0.2 μm.

[実施例2]
上記ポリアミック酸(PA−1)の代わりに上記ポリアミック酸(PA−2)を用いた以外は実施例1と同様に操作することにより、液晶配向剤(S−2)を調製した。
[Example 2]
The liquid crystal aligning agent (S-2) was prepared by operating like Example 1 except having used the said polyamic acid (PA-2) instead of the said polyamic acid (PA-1).

[実施例3]
上記ポリイミド(PI−1)に溶媒組成がNMP:ブチルセロソルブ=50:50(質量比)となるようにNMP及びブチルセロソルブを加えて、固形分濃度が3.5質量%(液晶セル作成用)及び固形分濃度が7.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径0.2μmのフィルターで濾過することにより、液晶配向剤(S−3)を調製した。
[Example 3]
NMP and butyl cellosolve are added to the polyimide (PI-1) so that the solvent composition is NMP: butyl cellosolve = 50: 50 (mass ratio), and the solid content concentration is 3.5% by mass (for liquid crystal cell preparation) and solids. A solution having a partial concentration of 7.0% (for uniform coating property evaluation) was obtained. After sufficiently stirring these solutions, a liquid crystal aligning agent (S-3) was prepared by filtering through a filter having a pore size of 0.2 μm.

[実施例4]
上記ポリイミド(PI−2)に溶媒組成がNMP:ブチルセロソルブ=50:50(質量比)となるようにNMP及びブチルセロソルブを加えて、固形分濃度が3.5質量%(液晶セル作成用)及び固形分濃度が7.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径0.2μmのフィルターで濾過することにより、液晶配向剤(S−4)を調製した。
[Example 4]
NMP and butyl cellosolve are added to the polyimide (PI-2) so that the solvent composition is NMP: butyl cellosolve = 50: 50 (mass ratio), and the solid content concentration is 3.5% by mass (for liquid crystal cell preparation) and solids. A solution having a partial concentration of 7.0% (for uniform coating property evaluation) was obtained. After sufficiently stirring these solutions, a liquid crystal aligning agent (S-4) was prepared by filtering through a filter having a pore size of 0.2 μm.

[実施例5]
上記ポリイミド(PI−3)に溶媒組成がNMP:ブチルセロソルブ=70:30(質量比)となるようにNMP及びブチルセロソルブを加えて、固形分濃度が3.5質量%(液晶セル作成用)及び固形分濃度が7.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径0.2μmのフィルターで濾過することにより、液晶配向剤(S−5)を調製した。
[Example 5]
NMP and butyl cellosolve are added to the polyimide (PI-3) so that the solvent composition is NMP: butyl cellosolve = 70: 30 (mass ratio), and the solid content concentration is 3.5% by mass (for liquid crystal cell preparation) and solids. A solution having a partial concentration of 7.0% (for uniform coating property evaluation) was obtained. After sufficiently stirring these solutions, a liquid crystal aligning agent (S-5) was prepared by filtering through a filter having a pore size of 0.2 μm.

[実施例6]
上記ポリイミド(PI−1)の代わりに上記ポリイミド(PI−4)を用いた以外は実施例3と同様に操作することにより、液晶配向剤(S−6)を調製した。
[Example 6]
The liquid crystal aligning agent (S-6) was prepared by operating like Example 3 except having used the said polyimide (PI-4) instead of the said polyimide (PI-1).

[実施例7]
上記ポリイミド(PI−1)の代わりに上記ポリイミド(PI−5)を用いた以外は実施例3と同様に操作することにより、液晶配向剤(S−7)を調製した。
[Example 7]
A liquid crystal aligning agent (S-7) was prepared by operating in the same manner as in Example 3 except that the polyimide (PI-5) was used instead of the polyimide (PI-1).

[実施例8]
上記メタクリル重合体(PM−1)溶液にさらにジエチレングリコールメチルエチルエーテルを添加し、固形分濃度が3.5質量%(液晶セル作成用)及び固形分濃度が7.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径0.2μmのフィルターを用いて濾過し、液晶配向剤(S−8)を調製した。
[Example 8]
Diethylene glycol methyl ethyl ether was further added to the methacrylic polymer (PM-1) solution, the solid content concentration was 3.5% by mass (for liquid crystal cell preparation), and the solid content concentration was 7.0% (for uniform coating property evaluation). ) Solution. After sufficiently stirring these solutions, each was filtered using a filter having a pore diameter of 0.2 μm to prepare a liquid crystal aligning agent (S-8).

[実施例9]
上記メタクリル重合体(PM−2)溶液にさらにジエチレングリコールメチルエチルエーテルを添加し、固形分濃度が3.5質量%(液晶セル作成用)及び固形分濃度が7.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径0.2μmのフィルターを用いて濾過し、液晶配向剤(S−9)を調製した。
[Example 9]
Diethylene glycol methyl ethyl ether was further added to the methacrylic polymer (PM-2) solution, the solid content concentration was 3.5% by mass (for liquid crystal cell preparation), and the solid content concentration was 7.0% (for uniform coating property evaluation). ) Solution. After sufficiently stirring these solutions, each was filtered using a filter having a pore diameter of 0.2 μm to prepare a liquid crystal aligning agent (S-9).

[実施例10]
上記メタクリル重合体(PM−1)の代わりに上記メタクリル重合体(PM−3)を用いた以外は実施例8と同様に操作することにより、液晶配向剤(S−10)を調製した。
[Example 10]
The liquid crystal aligning agent (S-10) was prepared by operating like Example 8 except having used the said methacrylic polymer (PM-3) instead of the said methacrylic polymer (PM-1).

[実施例11]
上記ポリオルガノシロキサン(PS−1)を含有する溶液にブチルセロソルブを加えて、固形分濃度5重量%(液晶セル作成用)及び固形分濃度が10.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径1μmのフィルターを用いて濾過することにより、液晶配向剤(S−11)を調製した。
[Example 11]
A solution containing butyl cellosolve in a solution containing the polyorganosiloxane (PS-1) and having a solid content concentration of 5% by weight (for liquid crystal cell preparation) and a solid content concentration of 10.0% (for evaluation of uniform coating properties) did. After sufficiently stirring these solutions, a liquid crystal aligning agent (S-11) was prepared by filtering using a filter having a pore diameter of 1 μm.

[実施例12]
上記ポリオルガノシロキサン(PS−2)を含有する溶液にブチルセロソルブを加えて、固形分濃度5重量%(液晶セル作成用)及び固形分濃度が10.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径1μmのフィルターを用いて濾過することにより、液晶配向剤(S−12)を調製した。
[Example 12]
Butyl cellosolve is added to the solution containing the polyorganosiloxane (PS-2), and a solution having a solid content concentration of 5% by weight (for liquid crystal cell preparation) and a solid content concentration of 10.0% (for uniform coating property evaluation) did. After sufficiently stirring these solutions, a liquid crystal aligning agent (S-12) was prepared by filtering using a filter having a pore diameter of 1 μm.

[実施例13]
上記ポリオルガノシロキサン(PS−3)を含有する溶液にブチルセロソルブを加えて、固形分濃度5重量%(液晶セル作成用)及び固形分濃度が10.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径1μmのフィルターを用いて濾過することにより、液晶配向剤(S−13)を調製した。
[Example 13]
Butyl cellosolve is added to the solution containing the polyorganosiloxane (PS-3), and a solution having a solid content concentration of 5% by weight (for liquid crystal cell preparation) and a solid content concentration of 10.0% (for uniform coating property evaluation) did. After sufficiently stirring these solutions, a liquid crystal aligning agent (S-13) was prepared by filtering using a filter having a pore diameter of 1 μm.

[比較例1]
上記ポリイミド(PI−6)に溶媒組成がNMP:ブチルセロソルブ=50:50(質量比)となるようにNMP及びブチルセロソルブをそれぞれ加えて、固形分濃度が3.5質量%(液晶セル作成用)及び固形分濃度が7.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径0.2μmのフィルターで濾過することにより、液晶配向剤(CS−1)を調製した。
[Comparative Example 1]
NMP and butyl cellosolve were added to the polyimide (PI-6) so that the solvent composition was NMP: butyl cellosolve = 50: 50 (mass ratio), respectively, and the solid content concentration was 3.5% by mass (for liquid crystal cell preparation) and A solution having a solid concentration of 7.0% (for uniform coating property evaluation) was obtained. After sufficiently stirring these solutions, a liquid crystal aligning agent (CS-1) was prepared by filtering through a filter having a pore size of 0.2 μm.

[比較例2]
上記メタクリル重合体(PM−4)溶液にさらにジエチレングリコールメチルエチルエーテルを添加し、固形分濃度が3.5質量%(液晶セル作成用)及び固形分濃度が7.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径0.2μmのフィルターを用いて濾過することにより、液晶配向剤(CS−2)を得た。
[Comparative Example 2]
Diethylene glycol methyl ethyl ether was further added to the methacrylic polymer (PM-4) solution, the solid content concentration was 3.5% by mass (for liquid crystal cell preparation), and the solid content concentration was 7.0% (for uniform coating property evaluation). ) Solution. After sufficiently stirring these solutions, a liquid crystal aligning agent (CS-2) was obtained by filtering using a filter having a pore diameter of 0.2 μm.

[比較例3]
上記ポリオルガノシロキサン(PS−4)を含有する溶液にブチルセロソルブを加えて、固形分濃度5重量%(液晶セル作成用)及び固形分濃度が10.0%(均一塗布性評価用)の溶液とした。これら溶液を十分に攪拌後、それぞれ孔径1μmのフィルターを用いて濾過することにより、液晶配向剤(CS−3)を調製した。
[Comparative Example 3]
Add a butyl cellosolve to the solution containing the polyorganosiloxane (PS-4), and a solution having a solid content concentration of 5% by weight (for liquid crystal cell preparation) and a solid content concentration of 10.0% (for uniform coating property evaluation) did. After sufficiently stirring these solutions, a liquid crystal aligning agent (CS-3) was prepared by filtering using a filter having a pore diameter of 1 μm.

<液晶表示素子の製造>
調製した各液晶配向剤を、ITO膜からなる透明電極付きガラス基板の透明電極面上にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、窒素に置換したオーブン中、200℃で1時間加熱して溶媒を除去することにより、膜厚0.08μmの塗膜(液晶配向膜)を形成した。この操作を繰り返し、液晶配向膜を有する基板を一対(2枚)作成した。上記基板のうちの1枚の液晶配向膜を有する面の外周に直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を、対向させて重ね合わせて圧着し、150℃で1時間加熱して接着剤を熱硬化した。次いで、液晶注入口より基板の間隙にネガ型液晶(メルク製、MLC−6608)を充填した後、エポキシ系接着剤で液晶注入口を封止し、さらに液晶注入時の流動配向を除くために、これを150℃で10分間加熱した後に室温まで徐冷した。さらに、基板の外側両面に、偏光板を2枚の偏光板の偏光方向が互いに直交するように貼り合わせることにより、液晶表示素子を製造した。
<Manufacture of liquid crystal display elements>
Each prepared liquid crystal aligning agent was applied on the transparent electrode surface of a glass substrate with a transparent electrode made of an ITO film using a spinner, pre-baked on an 80 ° C. hot plate for 1 minute, and then replaced with nitrogen. By heating at 200 ° C. for 1 hour to remove the solvent, a coating film (liquid crystal alignment film) having a thickness of 0.08 μm was formed. This operation was repeated to produce a pair (two) of substrates having a liquid crystal alignment film. After applying an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 3.5 μm to the outer periphery of the surface having one liquid crystal alignment film of the above substrates by screen printing, the liquid crystal alignment film surfaces of the pair of substrates are made to face each other. The adhesive was heat cured by heating at 150 ° C. for 1 hour. Next, after filling negative liquid crystal (Merck, MLC-6608) into the gap between the substrates from the liquid crystal injection port, the liquid crystal injection port is sealed with an epoxy adhesive, and further, the flow alignment at the time of liquid crystal injection is removed. This was heated at 150 ° C. for 10 minutes and then gradually cooled to room temperature. Furthermore, a liquid crystal display element was manufactured by bonding a polarizing plate on both outer surfaces of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other.

<評価>
製造した液晶表示素子について以下の評価を行った。結果を表1に示す。
<Evaluation>
The manufactured liquid crystal display element was evaluated as follows. The results are shown in Table 1.

[応答速度(msec.)]
偏光顕微鏡、光検出器、及びパルス発生機を含む装置で応答速度(液晶応答の立ち上がりの時間)を測定した。ここで液晶応答速度とは、作製した液晶表示素子に電圧無印加状態から5Vの電圧を最大1秒間印加した際に、透過率10%から透過率90%に変化するのに要した時間(msec.)とした。
[Response speed (msec.)]
The response speed (the rise time of the liquid crystal response) was measured with an apparatus including a polarizing microscope, a photodetector, and a pulse generator. Here, the liquid crystal response speed is the time (msec) required to change from 10% transmittance to 90% transmittance when a voltage of 5 V is applied to the manufactured liquid crystal display element from a state where no voltage is applied for a maximum of 1 second. .)

[電圧保持率(%)]
上記で製造した液晶表示素子に、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率(%)を測定した。測定装置は東陽テクニカ製VHR−1を使用した。
[Voltage holding ratio (%)]
A voltage of 5 V was applied to the liquid crystal display device manufactured above for 60 microseconds with a 167 millisecond span, and then the voltage holding ratio (%) after 167 milliseconds from the release of application was measured. The measuring device used was VHR-1 manufactured by Toyo Technica.

[残像特性(mV)]
上記と同様に操作して製造した液晶表示素子につき、100℃の環境温度において直流17Vの電圧を20時間印加し、直流電圧を切った直後の液晶セル内に残留した電圧(残留DC電圧(mV))を、フリッカ−消去法により求めた。
[Afterimage characteristics (mV)]
For a liquid crystal display device manufactured by operating in the same manner as described above, a voltage of 17 V DC was applied for 20 hours at an environmental temperature of 100 ° C., and the voltage remaining in the liquid crystal cell immediately after the DC voltage was turned off (residual DC voltage (mV )) Was determined by the flicker elimination method.

[均一塗布性]
6インチシリコンウエハー上に直径約4.1μmの樹脂スペーサー(積水化学製、ミクロパール EX−0041−AC4)を散布し、120℃に設定したホットプレート上で10分間加熱処理を行い、固着スペーサーを有するシリコンウエハーを準備した。また前記液晶配向剤組成において、印刷用に調整した液晶配向剤(固形分濃度が7.0%〜10.0%)を液晶配向膜印刷機(日本写真印刷製)を用いて上記固着スペーサー付きシリコンウエハーに塗布し、80℃のホットプレート上で1分間プレベークして溶媒を除去した後、200℃のホットプレート上で10分間ポストベークして、平均膜厚800Åの塗膜を形成した。この塗膜を倍率20倍の顕微鏡で観察して均一塗布性の評価を行った。印刷ムラ及び固着スペーサー部分におけるハジキの有無により評価を実施し、印刷ムラと固着スペーサー部分のハジキが全く観察されないものを「A」(優良と判断)、わずかに塗布不良が観察されるが、ほぼ塗布不良がないと判断できるものを「B」(良好と判断)、印刷ムラと固着スペーサー部分のはじきのいずれか一方でも多数観察されたものを「C」(不良と判断)とした。
[Uniform coating properties]
A resin spacer (Sekisui Chemical Co., Ltd., Micropearl EX-0041-AC4) with a diameter of about 4.1 μm is sprayed on a 6-inch silicon wafer, and heat-treated for 10 minutes on a hot plate set at 120 ° C. A silicon wafer was prepared. Further, in the liquid crystal aligning agent composition, a liquid crystal aligning agent (solid content concentration: 7.0% to 10.0%) prepared for printing is attached with the above-mentioned fixing spacer using a liquid crystal aligning film printer (Nissha Printing Co., Ltd.) It was applied to a silicon wafer, pre-baked on a hot plate at 80 ° C. for 1 minute to remove the solvent, and then post-baked on a hot plate at 200 ° C. for 10 minutes to form a coating film having an average film thickness of 800 mm. This coating film was observed with a microscope having a magnification of 20 times, and the uniform coating property was evaluated. Evaluation was performed based on the presence or absence of repellency in the printing unevenness and the fixed spacer portion, and “A” (determined to be excellent) where no unevenness of printing unevenness and repellency in the fixing spacer portion was observed, “B” (determined as good) was judged that there was no coating failure, and “C” (determined as defective) was observed in either one of the printing unevenness and the repelling of the fixed spacer portion.

[耐光性]
カーボンアークを光源とするウェザーメーターで3,000時間照射後の電圧保持率を上記同様に操作して測定し、照射前の測定値と比べて電圧保持率の変化量が0.5%以下の場合を「A」(優良と判断)、0.5%を超えて1%以下の場合を「B」(良好と判断)、1%を超えて3%以下の場合を「C」(やや良好と判断)、3%を超える場合を「D」(不良と判断)とした。
[Light resistance]
The voltage holding ratio after irradiation for 3,000 hours was measured in the same manner as described above with a weather meter using a carbon arc as a light source, and the amount of change in voltage holding ratio was 0.5% or less compared to the measured value before irradiation. Case "A" (determined as excellent), case exceeding 0.5% and 1% or less as "B" (determined as good), case exceeding 1% and 3% or less as "C" (somewhat good) And “D” (determined as defective).

Figure 2016001328
Figure 2016001328

表1の結果から明らかなように、実施例1〜13の液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、良好な液晶応答速度を示した。ポリイミド又はポリシロキサンを含有する当該液晶配向剤から形成された液晶配向膜を備える液晶表示素子は高い電圧保持率を示した。また、ポリアミック酸又はメタクリル重合体を含有する当該液晶配向剤は優れた均一塗布性を示した。さらに、ポリシロキサン又はポリアミック酸を含有する当該液晶配向剤から形成された液晶配向膜を備える液晶表示素子は優れた残像特性を示した。ポリシロキサンを含有する当該液晶配向剤から形成された液晶配向膜を備える液晶表示素子は優れた耐光性を示した。従って、当該液晶配向剤は液晶表示素子の高速応答性を可能とし、かつポリマー主鎖構造を適宜選択する事で、所望の特性(電圧保持率、残像特性、均一塗布性、耐光性)をより優れたものとすることができる。   As is clear from the results in Table 1, the liquid crystal display elements including the liquid crystal alignment films formed using the liquid crystal alignment agents of Examples 1 to 13 exhibited good liquid crystal response speed. A liquid crystal display device comprising a liquid crystal alignment film formed from the liquid crystal alignment agent containing polyimide or polysiloxane showed a high voltage holding ratio. Moreover, the liquid crystal aligning agent containing a polyamic acid or a methacrylic polymer showed excellent uniform coatability. Furthermore, the liquid crystal display element provided with the liquid crystal aligning film formed from the said liquid crystal aligning agent containing polysiloxane or polyamic acid showed the afterimage characteristic which was excellent. A liquid crystal display device provided with a liquid crystal alignment film formed from the liquid crystal alignment agent containing polysiloxane exhibited excellent light resistance. Accordingly, the liquid crystal aligning agent enables high-speed response of the liquid crystal display element, and by appropriately selecting the polymer main chain structure, desired characteristics (voltage holding ratio, afterimage characteristics, uniform coating property, light resistance) are further improved. It can be excellent.

本発明によれば、高速応答が可能であり、かつ電圧保持率、残像特性、耐光性等の諸性能に優れた液晶表示素子を作製することができ、均一塗布性にも優れる液晶配向剤を提供できる。従って、当該液晶表示素子はTN、STN、IPS、FFS、Ht−VA(VA−IPS)、VA(MVA、PVA、光垂直配向、PSA等の方式を含む)等の駆動モードにおいても好適に適用できる。   According to the present invention, a liquid crystal aligning agent capable of high-speed response and capable of producing a liquid crystal display element excellent in various performances such as voltage holding ratio, afterimage characteristics, light resistance and the like, and excellent in uniform coating property. Can be provided. Therefore, the liquid crystal display element can be suitably applied in driving modes such as TN, STN, IPS, FFS, Ht-VA (VA-IPS), and VA (including MVA, PVA, optical vertical alignment, PSA, and the like). it can.

Claims (4)

[A]ポリアミック酸、ポリイミド及びポリアミック酸エステルからなる群より選択される少なくとも1種の重合体を含有し、かつ上記重合体が下記式(4)で表される化合物に由来する部分構造を有する液晶配向剤。
Figure 2016001328
(式(4)中、
は、メチレン基、炭素数2〜30のアルキレン基、−(Cb’2b’O)c’−、フェニレン基又はシクロヘキシレン基である。b’は、0〜20の整数である。c’は、0〜10の整数である。但し、これらの基の水素原子の一部又は全部は、置換されていてもよい。
は、炭素−炭素二重結合、炭素−炭素三重結合、エーテル結合、エステル結合又はアミド結合を含む連結基である。
は、少なくとも2個の単環構造を有する基である。
aは、1である。
は、単結合、−O−、*−COO−又は−OCO−である。但し、*はジアミノフェニル基と結合する部位である。
dは、0又は1である。
eは、0〜2の整数である。
gは、2又は3である。)
[A] It contains at least one polymer selected from the group consisting of polyamic acid, polyimide and polyamic acid ester, and the polymer has a partial structure derived from a compound represented by the following formula (4) Liquid crystal aligning agent.
Figure 2016001328
(In formula (4),
R 1 is a methylene group, an alkylene group having 2 to 30 carbon atoms, — (C b ′ H 2b ′ O) c ′ —, a phenylene group or a cyclohexylene group. b 'is an integer of 0-20. c 'is an integer of 0-10. However, some or all of the hydrogen atoms of these groups may be substituted.
R 2 is a linking group containing a carbon-carbon double bond, a carbon-carbon triple bond, an ether bond, an ester bond or an amide bond.
R 3 is a group having at least two monocyclic structures.
a is 1.
R 9 is a single bond, —O—, * —COO— or —OCO—. However, * is a site | part couple | bonded with a diaminophenyl group.
d is 0 or 1.
e is an integer of 0-2.
g is 2 or 3. )
上記Rが、下記式(2)で表される基である請求項1に記載の液晶配向剤。
Figure 2016001328
(式(2)中、
及びRは、それぞれ独立してフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環である。但し、これらの基の水素原子の一部又は全部は、置換されていてもよい。
は、メチレン基、炭素数2〜10のアルキレン基、炭素−炭素二重結合、炭素−炭素三重結合、エーテル結合、エステル結合又は複素環を含む連結基である。但し、上記連結基の水素原子の一部又は全部は、置換されていてもよい。
は、水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基、アルコキシ基、トリフルオロメトキシ基又はアルキルカルボニルオキシ基である。
bは、0又は1である。cは、1〜9の整数である。但し、Rが複数の場合、複数のRは同一でも異なっていてもよい。)
The liquid crystal aligning agent according to claim 1, wherein R 3 is a group represented by the following formula (2).
Figure 2016001328
(In the formula (2),
R 4 and R 6 are each independently a phenylene group, a biphenylene group, a naphthalene group, a cyclohexylene group, a bicyclohexylene group, a cyclohexylenephenylene group, or a heterocyclic ring. However, some or all of the hydrogen atoms of these groups may be substituted.
R 5 is a linking group containing a methylene group, an alkylene group having 2 to 10 carbon atoms, a carbon-carbon double bond, a carbon-carbon triple bond, an ether bond, an ester bond or a heterocyclic ring. However, one part or all part of the hydrogen atom of the said coupling group may be substituted.
R 7 is a hydrogen atom, a cyano group, a fluorine atom, a trifluoromethyl group, an alkoxycarbonyl group, an alkyl group, an alkoxy group, a trifluoromethoxy group, or an alkylcarbonyloxy group.
b is 0 or 1. c is an integer of 1-9. However, when R 7 is plural, a plurality of R 7 may be the same or different. )
請求項1又は請求項2に記載の液晶配向剤から形成される液晶配向膜。   The liquid crystal aligning film formed from the liquid crystal aligning agent of Claim 1 or Claim 2. 請求項3に記載の液晶配向膜を備える液晶表示素子。   A liquid crystal display element provided with the liquid crystal aligning film of Claim 3.
JP2015155547A 2011-03-17 2015-08-05 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Active JP6102997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155547A JP6102997B2 (en) 2011-03-17 2015-08-05 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011059854 2011-03-17
JP2011059854 2011-03-17
JP2015155547A JP6102997B2 (en) 2011-03-17 2015-08-05 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012010523A Division JP5994257B2 (en) 2011-03-17 2012-01-20 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2016001328A true JP2016001328A (en) 2016-01-07
JP6102997B2 JP6102997B2 (en) 2017-03-29

Family

ID=46808742

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012010523A Active JP5994257B2 (en) 2011-03-17 2012-01-20 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2015155547A Active JP6102997B2 (en) 2011-03-17 2015-08-05 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012010523A Active JP5994257B2 (en) 2011-03-17 2012-01-20 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (4)

Country Link
JP (2) JP5994257B2 (en)
KR (2) KR101861185B1 (en)
CN (2) CN102676179B (en)
TW (2) TWI600750B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112192A (en) * 2012-10-31 2014-06-19 Jsr Corp Liquid crystal orienting agent for psa mode liquid crystal display element, liquid crystal orientation film for psa mode liquid crystal display element, psa mode liquid crystal display element, and method for producing the same
WO2014167885A1 (en) * 2013-04-12 2014-10-16 Jsr株式会社 Optical device
JP6672801B2 (en) * 2015-04-09 2020-03-25 Jsr株式会社 Liquid crystal alignment agent
US10877304B2 (en) * 2016-01-07 2020-12-29 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing liquid crystal display device
CN106842714A (en) * 2017-01-03 2017-06-13 京东方科技集团股份有限公司 Display base plate, display panel and display device
TWI767035B (en) * 2017-07-28 2022-06-11 日商日產化學股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2019056880A (en) * 2017-09-22 2019-04-11 シャープ株式会社 Liquid crystal cell and liquid crystal display device
CN108070388B (en) * 2017-12-05 2021-04-23 中节能万润股份有限公司 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2021059999A1 (en) * 2019-09-24 2021-04-01 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, polymer, and diamine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520702A (en) * 2005-12-23 2009-05-28 ロリク アーゲー Photocrosslinkable material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258026A (en) * 1988-08-24 1990-02-27 Sanyo Chem Ind Ltd Liquid crystal display element
JP3432572B2 (en) * 1993-03-25 2003-08-04 住友化学工業株式会社 Liquid crystal oligomer polymer film, method for producing the same, retardation plate and liquid crystal display device using liquid crystal oligomer polymer film
JP3430705B2 (en) * 1994-04-28 2003-07-28 日産化学工業株式会社 Novel diaminobenzene derivative and polyimide using it
US6084057A (en) * 1997-05-20 2000-07-04 Elsicon, Inc. Polarizable amines and polyimides for optical alignment of liquid crystals
EP1219651A1 (en) * 2000-12-29 2002-07-03 Rolic AG Photoactive copolymer
JP3842102B2 (en) * 2001-10-18 2006-11-08 日東電工株式会社 Method for producing homeotropic alignment liquid crystal film, homeotropic alignment liquid crystal film and optical film
US6919404B2 (en) * 2002-05-31 2005-07-19 Elsicon, Inc. Hybrid polymer materials for liquid crystal alignment layers
JP5194342B2 (en) * 2005-07-15 2013-05-08 Jnc株式会社 Liquid crystal aligning agent and vertical alignment liquid crystal display element for vertical alignment liquid crystal display element
US8123977B2 (en) * 2005-11-07 2012-02-28 Lg Chem, Ltd. Copolymer for liquid crystal alignment, liquid crystal aligning layer including copolymer for liquid crystal alignment, and liquid crystal display including liquid crystal aligning layer
TWI406838B (en) * 2006-08-04 2013-09-01 Jnc Corp Diamide,liquid crystal alignment agent,liquid crystal alignment film and liquid crystal display
JP5293943B2 (en) * 2007-08-16 2013-09-18 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5062109B2 (en) * 2007-10-09 2012-10-31 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US8057868B2 (en) * 2008-02-28 2011-11-15 Sharp Kabushiki Kaisha Composition for forming a liquid crystal alignment film, and liquid crystal display device
JP2010101999A (en) * 2008-10-22 2010-05-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent, and liquid crystal display element
JP5304174B2 (en) * 2008-10-29 2013-10-02 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5482109B2 (en) * 2008-11-25 2014-04-23 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101186902B1 (en) * 2009-04-15 2012-10-02 제이엔씨 주식회사 Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display device
CN103097949B (en) * 2010-07-13 2015-06-17 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520702A (en) * 2005-12-23 2009-05-28 ロリク アーゲー Photocrosslinkable material

Also Published As

Publication number Publication date
CN102676179B (en) 2015-05-13
KR101873248B1 (en) 2018-07-02
TWI600750B (en) 2017-10-01
CN104560061B (en) 2016-09-07
CN102676179A (en) 2012-09-19
TW201544581A (en) 2015-12-01
KR20170117926A (en) 2017-10-24
JP5994257B2 (en) 2016-09-21
KR101861185B1 (en) 2018-05-25
JP6102997B2 (en) 2017-03-29
TW201239069A (en) 2012-10-01
CN104560061A (en) 2015-04-29
TWI529240B (en) 2016-04-11
JP2012208471A (en) 2012-10-25
KR20120106588A (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP6102997B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101730297B1 (en) Liquid crystal aligning agent, process for forming liquid crystal aligning film, liquid crystal display device, and polyorganosiloxane
KR101778091B1 (en) Liquid crystal aligning agent, method for forming liquid crystal alignment film and liquid crystal display device
WO2012020628A1 (en) Light directivity control unit and process for production thereof, 2d/3d switchable display module, liquid crystal aligning agent
TW201443157A (en) Liquid crystal aligning agent and method for producing liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, method for producing liquid crystal aligning film, retardation film and method for producing retardation
KR102018163B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display device and menufacturing method thereof
JP5626510B2 (en) Liquid crystal aligning agent, liquid crystal alignment film forming method, and liquid crystal display element manufacturing method
JP6547461B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, retardation film, and method of producing retardation film
JP5321790B2 (en) Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
JP6701661B2 (en) Liquid crystal aligning agent, method for producing liquid crystal element, liquid crystal aligning film and liquid crystal element
JP5708914B2 (en) Manufacturing method of liquid crystal display element
CN113260911A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element
JP2016118573A (en) Liquid crystal alignment agent, manufacturing method of liquid crystal display device, liquid crystal alignment film, liquid crystal display device, polymer, and compound
JP6962440B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP6981542B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and method for manufacturing liquid crystal element
JP7226305B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP6260248B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element and manufacturing method thereof
JP2016095478A (en) Liquid crystal alignment agent and liquid crystal display element
JPWO2019230091A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
WO2019193854A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and production method for liquid crystal element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250