JP2016000854A - Sintering machine part - Google Patents

Sintering machine part Download PDF

Info

Publication number
JP2016000854A
JP2016000854A JP2014121502A JP2014121502A JP2016000854A JP 2016000854 A JP2016000854 A JP 2016000854A JP 2014121502 A JP2014121502 A JP 2014121502A JP 2014121502 A JP2014121502 A JP 2014121502A JP 2016000854 A JP2016000854 A JP 2016000854A
Authority
JP
Japan
Prior art keywords
powder
iron
sintered
coarse
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014121502A
Other languages
Japanese (ja)
Other versions
JP6444621B2 (en
Inventor
雅道 藤川
Masamichi Fujikawa
雅道 藤川
尚樹 八代
Naoki Yashiro
尚樹 八代
大平 晃也
Akinari Ohira
晃也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014121502A priority Critical patent/JP6444621B2/en
Priority to CN201480072428.5A priority patent/CN105899315A/en
Priority to PCT/JP2014/083822 priority patent/WO2015111338A1/en
Priority to US15/108,660 priority patent/US20160327144A1/en
Priority to EP14880315.8A priority patent/EP3097999A4/en
Publication of JP2016000854A publication Critical patent/JP2016000854A/en
Application granted granted Critical
Publication of JP6444621B2 publication Critical patent/JP6444621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintering machine part which is reduced in coarse pores and is high-strength and low-cost.SOLUTION: A gear 1 is formed with an iron-based sintered body obtained by molding and sintering a raw material powder comprising an iron-based coarse powder of an average particle size of 60 μm or greater and an iron-based fine powder of particle sizes smaller than the square root √areaof the estimated maximum pore enveloping area of a sintering sample formed with the coarse powder. The blend ratio of the fine powder in the raw material powder is 5-20 wt.%, and the density of the iron-based sintered body is 7.6 g/cmor higher.

Description

本発明は、焼結機械部品に関する。   The present invention relates to sintered machine parts.

焼結体は、金属粉末や黒鉛粉末を含む混合粉末を金型に充填して圧縮成形した後、所定の温度で焼結することにより得られる。そのため、最終製品により近い状態を得るネットシェイプ成形もしくはニアネットシェイプ成形が可能となる。また、溶製材を切削加工する場合と比較して、材料歩留まりの向上や加工工数の削減による低コスト化を図ることもできる。焼結体の中でも特に鉄系焼結体は、機械的性質が優れていることから、自動車部品や産業機械といった様々な分野で使用される機械部品として幅広く採用されている。   The sintered body can be obtained by filling a mold with a mixed powder containing metal powder and graphite powder, compression molding, and sintering at a predetermined temperature. Therefore, net shape molding or near net shape molding that obtains a state closer to the final product is possible. Further, as compared with the case of cutting the melted material, cost reduction can be achieved by improving the material yield and reducing the number of processing steps. Among sintered bodies, iron-based sintered bodies are particularly widely used as machine parts used in various fields such as automobile parts and industrial machines because of their excellent mechanical properties.

ところで焼結体の内部には多くの空孔が残存している。この空孔は、応力集中源となって溶製材におけるき裂のように振る舞うため、引張・圧縮・曲げ強さや衝撃強さ、疲労強さ等各種の強度が低下する要因となる。この問題を解消するには、焼結体の密度を上げて空孔率を低減させるのが有効であり、かかる観点から従来から種々の試みが行われている。   By the way, many voids remain inside the sintered body. These vacancies act as a stress concentration source and behave like a crack in the molten metal, which causes a reduction in various strengths such as tension, compression, bending strength, impact strength, and fatigue strength. In order to solve this problem, it is effective to increase the density of the sintered body to reduce the porosity. From this viewpoint, various attempts have been made.

例えば特許文献1には、粗大粉末を有する金属粉末を用い、二段成形・二段焼結などのコストのかかる処理を用いることなく、ショットピーニング等の表面緻密化処理を施すことで焼結体の高密度化を図ることが記載されている。   For example, in Patent Document 1, a sintered body is obtained by using a metal powder having a coarse powder and performing a surface densification process such as shot peening without using a costly process such as two-stage molding and two-stage sintering. It is described to increase the density of.

また特許文献2には、粗粉末と微粉末とを含む混合粉末を使用することで焼結体の粗大気孔を縮小し、密度および強度の向上を図ることが記載されている。   Patent Document 2 describes that by using a mixed powder containing a coarse powder and a fine powder, the coarse pores of the sintered body are reduced to improve the density and strength.

特表2007−537359号公報Special table 2007-537359 gazette 特許第5113555号公報Japanese Patent No. 5113555

しかしながら、特許文献1では焼結後に表面緻密化処理を行っている。そのため、工程数の増加によるコストアップが問題となると共に、焼結体部品のメリットであるネットシェイプ成形を活かすことができない。   However, in patent document 1, the surface densification process is performed after sintering. For this reason, an increase in cost due to an increase in the number of processes becomes a problem, and net shape molding, which is a merit of sintered body parts, cannot be utilized.

また、特許文献2では、粗粉末の平均粒径を50μm以下、微粉末の平均粒径を25μm以下としており、何れも粉末冶金の分野において通常使用される粉末粒径(100μm程度が多い)よりも細かい粉末である。そのため、使用できる粉末種が限定され、材料コストの高騰が懸念される。   In Patent Document 2, the average particle size of the coarse powder is 50 μm or less, and the average particle size of the fine powder is 25 μm or less, both of which are more than the powder particle size normally used in the field of powder metallurgy (about 100 μm is more). Is also a fine powder. Therefore, the types of powder that can be used are limited, and there is a concern that the material cost will rise.

そこで、本発明は、破壊の起点となる粗大気孔を極力小さくした焼結機械部品を低コストに提供できるようにすることを目的とする。   In view of the above, an object of the present invention is to provide a low-cost sintered machine component in which the rough atmospheric holes that are the starting points of destruction are made as small as possible.

本発明は、荷重が負荷される荷重負荷面を有する焼結機械部品であって、平均粒径60μm以上の鉄系の粗粉末と、この粗粉末で形成された焼結試料の推定最大空孔包絡面積の平方根√areamaxを下回る粒径の鉄系の微粉末とを含む原料粉末を成形および焼結してなる鉄系焼結体で形成され、前記原料粉末における微粉末の配合量が5〜20wt%、前記鉄系焼結体の焼結密度が7.6g/cm3以上であり、前記√areamaxを、前記焼結試料の荷重負荷面相当部分から、前記荷重による応力が及ぶ深さを100%とした時の30%の深さに至るまでの領域を予測体積として求めたことを特徴とするものである。 The present invention relates to a sintered machine part having a load-loading surface to which a load is applied, an iron-based coarse powder having an average particle size of 60 μm or more, and an estimated maximum void of a sintered sample formed from the coarse powder. It is formed of an iron-based sintered body obtained by molding and sintering a raw material powder containing iron-based fine powder having a particle size less than the square root √area max of the envelope area, and the blending amount of the fine powder in the raw material powder is 5 ˜20 wt%, the sintered density of the iron-based sintered body is 7.6 g / cm 3 or more, and the √area max is set to a depth at which the stress due to the load is applied from the portion corresponding to the load loading surface of the sintered sample. A region up to a depth of 30% when the thickness is 100% is obtained as a predicted volume.

このように鉄系粉末として粗粉末と微粉末を使用することで、粗粉末の粒子間に微粉末が充填され易くなる。そのため、焼結後の鉄系焼結体中に残存する気孔を小さくして焼結機械部品を高密度化することができ、粗大気孔を起点としたき裂の進展、さらにはそれによる焼結機械部品の破壊・損傷を抑制することが可能となる。また、添加すべき鉄系の微粉末の粒径を、粗粉末で形成された焼結試料の√areamax値よりも小さくしているので、理論上は鉄系焼結体に存在すると推定される多数の粗大気孔よりも微粉末の粒径が小さくなる。そのため、粗大気孔の全てを微粉末で充足することが可能となる。従って、焼結後の粗大気孔の発生を確実に防止し、焼結機械部品の強度アップを図ることができる。また、粗大気孔を消失させるのに適合する微粉末の粒径を容易に判断することが可能となり、原料粉末準備工程で準備すべき粉末の選択が容易なものとなる。 Thus, by using coarse powder and fine powder as iron-based powder, it becomes easy to fill fine powder between the particles of coarse powder. For this reason, the pores remaining in the sintered iron-based sintered body can be reduced to increase the density of sintered machine parts, and the crack propagation starting from the rough atmospheric pores can be further promoted. It becomes possible to suppress destruction and damage of machine parts. In addition, since the particle size of the iron-based fine powder to be added is smaller than the √area max value of the sintered sample formed of the coarse powder, it is theoretically estimated that it exists in the iron-based sintered body. The particle size of the fine powder is smaller than the large number of coarse pores. Therefore, it is possible to fill all of the rough air holes with fine powder. Therefore, it is possible to reliably prevent the formation of rough atmospheric holes after sintering and increase the strength of the sintered machine part. In addition, it is possible to easily determine the particle size of the fine powder suitable for eliminating the rough atmospheric pores, and it becomes easy to select the powder to be prepared in the raw material powder preparation process.

また、使用する粗粉末および微粉末の双方の粒径を、特許文献2で使用される粗粉末および微粉末よりも大きくすることができる。従って、鉄系粉末の流動性が良好となって成形圧縮工程でのキャビティへの充填性が向上する。また材料コストの高騰も抑制することができる。   Moreover, the particle size of both the coarse powder and fine powder to be used can be made larger than the coarse powder and fine powder used in Patent Document 2. Accordingly, the fluidity of the iron-based powder is improved, and the filling property into the cavity in the molding and compression process is improved. In addition, an increase in material costs can be suppressed.

粗粉末としては部分拡散合金鋼粉を使用することができる。この部分拡散合金鋼粉としては、例えばFe−Ni−Mo系を使用するのが好ましい。   Partially diffused alloy steel powder can be used as the coarse powder. As this partial diffusion alloy steel powder, it is preferable to use, for example, an Fe—Ni—Mo system.

微粉末としては、粗粉末と同じ鉄系粉末、または粗粉末と異なる鉄系粉末を使用することができる。   As the fine powder, the same iron-based powder as the coarse powder or an iron-based powder different from the coarse powder can be used.

本発明によれば、鉄系焼結体における粗大気孔の発生を低コストに抑制することができる。このように応力集中源となってき裂の起点となり得る粗大気孔が減少することから、低コストで高強度の焼結機械部品を提供することが可能となる。   According to this invention, generation | occurrence | production of the rough air hole in an iron-type sintered compact can be suppressed at low cost. Thus, since the rough atmospheric holes that can become a stress concentration source and can be a starting point of a crack are reduced, it is possible to provide a sintered machine component having high strength at low cost.

機械部品の一例であるギヤを示す正面図である。It is a front view which shows the gear which is an example of a machine component. 微粉末の粒径および添加量を変更した時の√areamaxの変化を検証した試験結果を示す表である。It is a table | surface which shows the test result which verified the change of (root) area max when changing the particle size and addition amount of a fine powder. 焼結密度の評価基準を示す表である。It is a table | surface which shows the evaluation criteria of a sintered density. √areamax値の評価基準を示す表である。It is a table | surface which shows the evaluation criteria of (square) area max value. 実施例3と比較例1の各試験片の顕微鏡写真である。2 is a photomicrograph of each test piece of Example 3 and Comparative Example 1.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)に、焼結機械部品の一例としてギヤを示す。ギヤ1は、トルク伝達を行う荷重負荷面としての複数の歯面1aを有する。ギヤ1の内周面1bに軸が固定され、もしくは軸が回転自在に嵌合される。   FIG. 1A shows a gear as an example of a sintered machine part. The gear 1 has a plurality of tooth surfaces 1a as load-loading surfaces that transmit torque. A shaft is fixed to the inner peripheral surface 1b of the gear 1, or the shaft is rotatably fitted.

本実施形態のギヤ1は鉄系焼結体で形成される。このギヤ1は、原料粉末を調製する原料粉末準備工程、原料粉末を圧縮成形して圧粉体を形成する成形圧縮工程、および圧粉体を焼結温度以上で加熱することによって焼結する焼結工程、および表面処理工程を経て製造される。   The gear 1 of this embodiment is formed of an iron-based sintered body. The gear 1 includes a raw material powder preparation step for preparing a raw material powder, a molding and compression step for compressing and molding the raw material powder to form a green compact, and a sintering for sintering the green compact by heating it at a sintering temperature or higher. Manufactured through a kneading step and a surface treatment step.

[原料粉末準備工程]
原料粉末準備工程では、鉄系粉末と、炭素固溶源としての炭素粉末と、成形時の潤滑を担う成形用潤滑剤とを含む原料粉末が製造される。
[Raw material powder preparation process]
In the raw material powder preparation step, a raw material powder containing iron-based powder, carbon powder as a carbon solid solution source, and a molding lubricant responsible for lubrication during molding is manufactured.

ここでいう鉄系粉末の代表例として、FeとFeに合金化させた他の金属(合金成分)とを含む低合金鋼粉を挙げることができる。低合金鋼粉の合金成分としては、Ni,Mo,Mn,Crの内の一種あるいは複数種の金属を使用することができ、例えば合金成分としてNi及びMoを含み、残部をFe及び不可避的不純物とした低合金鋼粉が使用可能である。Niは焼結体の機械的性質を強化し、熱処理後の焼結体の靱性を向上させる効果がある。また、Moは焼結体の機械的性質を強化し、熱処理時の焼入れ性を向上させる効果がある。鉄系粉末としては、低合金鋼粉以外にも、純鉄粉、ステンレス鋼粉、ハイス鋼粉等を使用することもできる。   As a typical example of the iron-based powder mentioned here, a low alloy steel powder containing Fe and another metal (alloy component) alloyed with Fe can be given. As an alloy component of the low alloy steel powder, one or more kinds of metals among Ni, Mo, Mn, and Cr can be used. For example, Ni and Mo are contained as an alloy component, and the balance is Fe and inevitable impurities. The low-alloy steel powder can be used. Ni has the effect of strengthening the mechanical properties of the sintered body and improving the toughness of the sintered body after heat treatment. Mo has the effect of enhancing the mechanical properties of the sintered body and improving the hardenability during heat treatment. As the iron-based powder, pure iron powder, stainless steel powder, high-speed steel powder and the like can be used in addition to the low alloy steel powder.

低合金鋼粉の具体例として、NiおよびMoを含み、残部をFe及び不可避的不純物としたFe-Ni-Mo系の部分拡散合金鋼粉を使用するのが好ましい。この部分拡散合金鋼粉は、Fe−Mo合金の周囲にNiを拡散接合させたものである。このように、Fe合金にNi等の金属を拡散付着させることで、FeとNiとを完全に合金化した鋼粉(プレアロイ鋼粉)と比べて、焼結前の合金鋼粉の硬さが抑えられるため、圧縮成形時の成形性が確保される。その結果、比較的多量のNiを配合することが可能となる。具体的に、本実施形態の部分拡散合金鋼粉におけるNiの配合割合は、0.5〜5.0wt%、好ましくは1.5〜2.2wt%、より好ましくは1.7〜2.2wt%とされる。一方、Moは、多量に添加してもその効果は飽和して、かえって成形性を悪化させる原因となる。このため、部分拡散合金鋼粉におけるMoの配合割合は、0.5〜3.0wt%、好ましくは0.8〜1.1wt%、より好ましくは0.9〜1.1wt%とされる。   As a specific example of the low alloy steel powder, it is preferable to use a Fe—Ni—Mo based partial diffusion alloy steel powder containing Ni and Mo, the balance being Fe and inevitable impurities. This partially diffused alloy steel powder is obtained by diffusion-bonding Ni around the Fe—Mo alloy. Thus, the hardness of the alloy steel powder before sintering is higher than that of steel powder (pre-alloyed steel powder) in which Fe and Ni are completely alloyed by diffusing and attaching a metal such as Ni to the Fe alloy. Therefore, the moldability at the time of compression molding is ensured. As a result, a relatively large amount of Ni can be blended. Specifically, the mixing ratio of Ni in the partial diffusion alloy steel powder of the present embodiment is 0.5 to 5.0 wt%, preferably 1.5 to 2.2 wt%, more preferably 1.7 to 2.2 wt%. %. On the other hand, even if Mo is added in a large amount, the effect is saturated, and on the contrary, it causes the formability to deteriorate. For this reason, the compounding ratio of Mo in the partial diffusion alloy steel powder is 0.5 to 3.0 wt%, preferably 0.8 to 1.1 wt%, and more preferably 0.9 to 1.1 wt%.

部分拡散合金鋼粉のベースとなる鉄粉としては、アトマイズ粉や還元粉等が存在するが、還元粉は粒子が多孔質で高密度化が困難であるため、本実施形態では、空孔を有しない中実のアトマイズ粉、特にコスト面も考えて水アトマイズ粉を使用する。なお、部分拡散合金鋼粉の例として、Fe−Mo合金粉の周囲にNi粉を拡散接合させたものを例示したが、純鉄粉の周囲にNiやMoを拡散接合させた合金粉を使用することもできる。   As the iron powder used as the base of the partially diffused alloy steel powder, there are atomized powder, reduced powder, and the like. However, since the reduced powder has a porous particle and is difficult to increase in density, in this embodiment, pores are not formed. Solid atomized powder that does not have, especially water atomized powder is used in consideration of cost. In addition, as an example of the partial diffusion alloy steel powder, the one in which Ni powder is diffusion bonded around the Fe-Mo alloy powder is exemplified, but the alloy powder in which Ni or Mo is diffusion bonded around the pure iron powder is used. You can also

この部分拡散合金鋼粉は一般に軟質であり、純鉄粉と同程度の硬さを有する。部分拡散合金鋼粉の硬さの目安として、マイクロビッカース硬度で120HV0.05未満、望ましくは100HV0.05未満、より好ましくは90HV0.05未満のものが使用される。この硬度は、Fe−Cr−Mo系の完全合金鋼粉(プレアロイ粉)における粒子の硬さ(概ね120HV0.05以上)に比べて低い。そのため、この種の完全合金鋼粉に比べ、同一の加圧力でもより高密度化させやすくなる。   This partial diffusion alloy steel powder is generally soft and has the same hardness as pure iron powder. As a measure of the hardness of the partially diffused alloy steel powder, a micro Vickers hardness of less than 120HV0.05, desirably less than 100HV0.05, more preferably less than 90HV0.05 is used. This hardness is lower than the particle hardness (approximately 120 HV 0.05 or more) in the Fe—Cr—Mo based fully alloy steel powder (pre-alloy powder). Therefore, compared to this type of complete alloy steel powder, it becomes easier to increase the density even with the same applied pressure.

本発明では、鉄系粉末として、粒径が大きい粗粉末と粒径が小さい微粉末とが使用される。このうちの粗粉末としては、平均粒径が60μm以上、好ましくは70μm以上130μm以下、より好ましくは80μm以上110μm以下の鉄系粉末が使用される。平均粒径が小さすぎると、汎用される鉄系粉末の使用が困難となって高コスト化を招く。また、平均粒径が大きすぎると、粗大粉末が多く含まれるようになるため、後述の成形圧縮工程での充填性が悪化し、焼結後に粗大気孔が発生し易くなる。平均粒径は、例えばレーザ回析散乱法に基づいて測定することができる。この測定方法は、粒子群にレーザ光を照射し、そこから発せられる回折・散乱光の強度分布パターンから計算によって粒度分布、さらには平均粒径を求めるもので、測定装置として、例えば株式会社島津製作所のSALD31000を使用することができる。一方、微粉末としては、粗粉末だけで形成した焼結試料の推定最大空孔包絡面積の平方根√areamaxを下回る粒径のものが使用される。推定最大空孔包絡面積の平方根√areamaxは、予測体積中に内在すると推定される最大空孔の包絡面積の平方根であり、詳細は後述する。 In the present invention, coarse powder having a large particle size and fine powder having a small particle size are used as the iron-based powder. Among these, as the coarse powder, an iron-based powder having an average particle diameter of 60 μm or more, preferably 70 μm or more and 130 μm or less, more preferably 80 μm or more and 110 μm or less is used. If the average particle size is too small, it is difficult to use a general-purpose iron-based powder, resulting in an increase in cost. On the other hand, if the average particle size is too large, a large amount of coarse powder is contained, so that the filling property in the molding and compression step described later is deteriorated, and coarse air holes are easily generated after sintering. The average particle diameter can be measured based on, for example, a laser diffraction scattering method. In this measurement method, a particle group is irradiated with a laser beam, and a particle size distribution and further an average particle size are obtained by calculation from the intensity distribution pattern of diffracted / scattered light emitted from the particle group. SALD 31000 from the factory can be used. On the other hand, as the fine powder, one having a particle diameter smaller than the square root √area max of the estimated maximum pore envelope area of the sintered sample formed only with the coarse powder is used. The square root √area max of the estimated maximum hole envelope area is the square root of the envelope area of the maximum hole estimated to be inherent in the predicted volume, and will be described in detail later.

粗粉末および微粉末としては、同じ鉄系粉末を使用する他、異なる鉄系粉末を使用することもできる。ここでいう「異なる」は、含有する合金元素の種類および配合割合のどちらか一方または双方が異なる場合の他、粉末の形態(完全合金鋼粉であるか、あるいは部分拡散合金鋼粉であるか等)が異なる場合も含まれる。   As the coarse powder and the fine powder, the same iron-based powder can be used, and different iron-based powders can also be used. “Different” as used herein refers to the case where either one or both of the types of alloying elements and the mixing ratio are different, or the form of powder (whether it is a complete alloy steel powder or a partial diffusion alloy steel powder) Etc.) are also included.

炭素粉末としては、例えば人造黒鉛の粉末が使用される。黒鉛粉末は、粒径D90が10μm以下のものが使用され、好ましくは8μm以下のものが使用される。また、黒鉛粉末の粒径D90は、3μm以上、好ましくは4μm以上のものが使用される。黒鉛粉末の配合割合は、混合粉末全体に対して0.3wt%以下、好ましくは0.25wt%以下とされる。また、黒鉛粉末の配合割合は、混合粉末全体に対して0.05wt%以上、好ましくは0.1wt%以上とされる。炭素粉末としては、黒鉛粉末の他、カーボンブラック、ケッチェンブラック、ナノカーボン粉末などを使用することもできる。これらの何れかの粉末を二種以上使用することも可能である。   As the carbon powder, for example, artificial graphite powder is used. As the graphite powder, one having a particle diameter D90 of 10 μm or less is used, preferably 8 μm or less. The graphite powder having a particle diameter D90 of 3 μm or more, preferably 4 μm or more is used. The blending ratio of the graphite powder is 0.3 wt% or less, preferably 0.25 wt% or less with respect to the entire mixed powder. The blending ratio of the graphite powder is 0.05 wt% or more, preferably 0.1 wt% or more with respect to the entire mixed powder. As the carbon powder, carbon black, ketjen black, nanocarbon powder and the like can be used in addition to the graphite powder. Two or more of these powders can be used.

成形用潤滑剤は、混合粉末を圧縮成形する際の金型と粉末との間、または粉末同士の間の摩擦を低減させる目的で添加される。成形用潤滑剤としては、金属石けん(例えばステアリン酸亜鉛)やアミドワックス(例えばエチレンビスステアリルアミド)等の公知の潤滑剤粉末を任意に選択して使用することができる。この他、これらの潤滑剤を溶剤に分散させて溶液とし、この溶液を原料粉末に噴霧させ、あるいはこの溶液中に原料粉末を浸漬させてから、溶剤成分を揮発させて除去するようにしてもよい。本発明の目的を果たす上では、焼結後に素材内部に残存しない成分であれば潤滑剤粉末の種類は問わず使用可能である。また、二種類以上の成形用潤滑剤を併用することもできる。   The molding lubricant is added for the purpose of reducing the friction between the mold and the powder when the mixed powder is compression-molded or between the powders. As the molding lubricant, known lubricant powders such as metal soap (for example, zinc stearate) and amide wax (for example, ethylene bisstearyl amide) can be arbitrarily selected and used. In addition, these lubricants are dispersed in a solvent to form a solution, and this solution is sprayed on the raw material powder, or the raw material powder is immersed in this solution and then the solvent component is volatilized and removed. Good. In fulfilling the object of the present invention, any kind of lubricant powder can be used as long as it does not remain in the raw material after sintering. Two or more types of molding lubricants can be used in combination.

[成形圧縮工程]
成形圧縮工程では、成形金型のキャビティに上記の原料粉末を投入・充填し、これを圧縮することで、ギヤ1の最終形状に対応した形状の圧粉体を成形する。この時の成形は、一軸および多軸加圧成形、CNCプレス成形などの連続生産に適した成形機で行うのが好ましい。また、成形時の温度は、室温以上で潤滑剤の融点以下とするのが好ましい。特に成形用潤滑剤の融点よりも10〜20°低い温度で成形すると、粉末の降伏強度を低下させて圧縮性が高められるため、成形密度を高めることができる。さらなる高密度化のために金型および粉末を60℃以上に加温して成形する温間成形を採用することもできる。必要に応じて、金型表面に潤滑剤を保持させ、あるいは金型表面に摩擦低減のための被膜(DLC被膜など)をコーティングしてもよい。
[Molding compression process]
In the molding and compression step, the raw material powder is charged and filled in the cavity of the molding die and compressed to form a green compact having a shape corresponding to the final shape of the gear 1. The molding at this time is preferably performed by a molding machine suitable for continuous production such as uniaxial and multiaxial pressure molding, CNC press molding, and the like. The molding temperature is preferably room temperature or higher and not higher than the melting point of the lubricant. In particular, when the molding is performed at a temperature 10 to 20 ° lower than the melting point of the molding lubricant, the yield strength of the powder is reduced and the compressibility is increased, so that the molding density can be increased. For further densification, it is possible to employ warm molding in which the mold and powder are heated to 60 ° C. or more for molding. If necessary, a lubricant may be held on the mold surface, or a film (DLC film or the like) for reducing friction may be coated on the mold surface.

成形圧縮工程での成形圧力を高くすると、圧粉体の密度を高くすることができる。その一方、成形圧力が高すぎると圧粉体の内部に密度ムラによるラミネーション(層状剥離)や金型の破損などが生じる。以上を考慮して、本実施形態では、成形圧力は1150〜1350MPa程度に設定する。このようにして得た圧粉体の密度(真密度)は7.4g/cm3以上となる。 When the molding pressure in the molding compression process is increased, the density of the green compact can be increased. On the other hand, if the molding pressure is too high, lamination (laminar peeling) due to density unevenness or damage to the mold occurs inside the green compact. Considering the above, in this embodiment, the molding pressure is set to about 1150 to 1350 MPa. The density (true density) of the green compact thus obtained is 7.4 g / cm 3 or more.

[焼結工程]
次いで、脱脂処理により圧粉体に含まれる成形用潤滑剤を除去した上で、焼結工程にて圧粉体を焼結温度以上で加熱し、焼結体を形成する。緻密で空孔の小さい焼結体が得られるように、焼結温度は1100℃以上1300℃の範囲内で設定される。また、酸化による焼結性および強度の低下と、脱炭とを防止するため、窒素、水素、アルゴン等を主成分とする不活性もしくは還元性雰囲気下で焼結するのが好ましい。この他、真空下で焼結することもできる。圧粉体を焼結することにより、圧粉体中の炭素粉末が鉄系粉末に固溶し、黒鉛粉末があった部分が空孔となる。これと共に、鉄系粉末の粒子同士が焼結結合することにより、圧粉体全体が収縮する。その結果、炭素粉末の固溶による密度低下より、圧粉体の収縮による密度上昇の効果が上回り、焼結体の密度が圧粉体の密度よりも高くなる。この焼結体の真密度は、7.6g/cm3以上とし、その相対密度は90%以上(好ましくは95%以上、より好ましくは97%以上)とする。
[Sintering process]
Next, after removing the molding lubricant contained in the green compact by degreasing, the green compact is heated above the sintering temperature in the sintering step to form a sintered body. The sintering temperature is set within the range of 1100 ° C. or higher and 1300 ° C. so that a dense sintered body having small pores can be obtained. Further, in order to prevent a decrease in sinterability and strength due to oxidation and decarburization, it is preferable to sinter in an inert or reducing atmosphere mainly containing nitrogen, hydrogen, argon or the like. In addition, it can also be sintered under vacuum. By sintering the green compact, the carbon powder in the green compact dissolves in the iron-based powder, and the portion where the graphite powder is present becomes a void. At the same time, the entire green compact contracts by sintering and bonding the particles of the iron-based powder. As a result, the density increase effect due to the shrinkage of the green compact exceeds the density decrease due to the solid solution of the carbon powder, and the density of the sintered body becomes higher than the density of the green compact. The sintered body has a true density of 7.6 g / cm 3 or more and a relative density of 90% or more (preferably 95% or more, more preferably 97% or more).

[表面処理工程]
焼結工程を経た焼結体は表面処理工程に移送され、焼入れ焼き戻し等の各種表面処理が施される。表面処理の一例として、浸炭焼入れ焼き戻し処理を挙げることができる。浸炭焼入れ焼き戻しにより、歯面1aを含むギヤ1の表面が硬質化されると共に内部の靱性が確保されるため、き裂の進展抑制に有効となる。浸炭焼入れ焼き戻しの他、ずぶ焼入れ焼き戻し、高周波焼入れ焼き戻し、浸炭窒化、真空浸炭などの各種熱処理を施すこともできる。これ以外にも窒化処理、軟窒化処理、浸硫処理、ダイヤモンドライクカーボン処理(DLC)等で硬質被膜を形成し、あるいは樹脂被膜の形成や各種メッキ処理、黒染加工処理、スチーム処理等により防錆処理を行うこともできる。必要に応じて、以上に例示した複数の表面処理を組み合わせることもできる。
[Surface treatment process]
The sintered body that has undergone the sintering process is transferred to the surface treatment process and subjected to various surface treatments such as quenching and tempering. As an example of the surface treatment, a carburizing quenching and tempering treatment can be given. By carburizing, quenching and tempering, the surface of the gear 1 including the tooth surface 1a is hardened and internal toughness is ensured, which is effective in suppressing crack propagation. In addition to carburizing quenching and tempering, various heat treatments such as full quenching and tempering, induction quenching and tempering, carbonitriding, and vacuum carburizing can also be performed. Besides this, hard coating is formed by nitriding treatment, soft nitriding treatment, sulfuration treatment, diamond-like carbon treatment (DLC), etc., or it is prevented by resin coating formation, various plating treatments, black dyeing treatment treatment, steam treatment, etc. Rust treatment can also be performed. If necessary, a plurality of the surface treatments exemplified above can be combined.

以上の工程により、鉄系焼結体からなるギヤ1が完成する。このギヤ1に含まれる各元素の割合は、原料粉準備工程で述べた割合(例えばNiを1.5〜2.2wt%、Moを0.5〜1.1wt%、炭素を0.05〜0.35wt%含み、残部がFe及び不可避不純物からなる)に準じたものとなる。かかる工程により、ネットシェイプ成形あるいはニアネットシェイプ成形が可能となるため、焼結機械部品の低コスト化を図ることができる。また、かかる製造工程は1回成形および1回焼結であるので、製造工程や製造設備を簡略化することができる。   The gear 1 which consists of an iron-type sintered compact is completed according to the above process. The ratio of each element contained in the gear 1 is the ratio described in the raw material powder preparation step (for example, Ni is 1.5 to 2.2 wt%, Mo is 0.5 to 1.1 wt%, and carbon is 0.05 to 0.35 wt%, and the balance is composed of Fe and inevitable impurities). This process enables net shape molding or near net shape molding, thereby reducing the cost of sintered machine parts. Moreover, since this manufacturing process is 1 time shaping | molding and 1 time sintering, a manufacturing process and manufacturing equipment can be simplified.

この他、必要に応じて焼結工程後で、かつ表面処理工程前に再圧縮処理(例えばサイジング工程)を施すこともできる。   In addition, if necessary, a recompression process (for example, a sizing process) can be performed after the sintering process and before the surface treatment process.

[推定最大空孔包絡面積の平方根]   [Squared root of estimated maximum hole envelope area]

焼結機械部品のうち、大きな荷重が負荷される荷重負荷面(ギヤ1であれば歯面1a)の周辺での粗大気孔の有無は機械部品の耐久寿命に大きな影響を与えると考えられる。従って、機械部品の耐久寿命を評価するためには、粗大気孔の存在の程度を何らかの形で数値化することが望まれる。数値化する一つの手段として、焼結体の密度(真密度あるいは相対密度)を規定することが考えられる。   Of the sintered machine parts, the presence or absence of rough air holes around the load surface (tooth surface 1a in the case of gear 1) on which a large load is applied is considered to have a great influence on the durable life of the machine parts. Therefore, in order to evaluate the durable life of the machine part, it is desirable to quantify the degree of the presence of the rough air hole in some form. As one means for quantification, it is conceivable to define the density (true density or relative density) of the sintered body.

しかしながら、密度は部品全体の緻密化の程度を評価する上では有効な尺度であるにしても、荷重負荷面周辺に限った領域での粗大気孔の有無を評価する上では必ずしも有効ではない。例えば、部品全体の密度が下限値を超えていても、荷重負荷面である歯面1a周辺に数は少ないながらも粗大気孔が存在する場合があり、この粗大気孔がき裂の起点となり得る。焼結機械部品の荷重負荷面周辺に限った領域の密度で粗大気孔の有無を評価することも考えられるが、そのような一部領域の密度を正確に測定することは容易ではない。   However, even though the density is an effective measure for evaluating the degree of densification of the entire part, it is not always effective for evaluating the presence or absence of rough atmospheric holes in a region limited to the vicinity of the load surface. For example, even if the density of the entire part exceeds the lower limit value, there may be a small number of coarse air holes around the tooth surface 1a that is the load-loading surface, but this rough air hole may be the starting point of the crack. Although it is conceivable to evaluate the presence or absence of rough atmospheric pores with the density of the region limited to the periphery of the load surface of the sintered machine part, it is not easy to accurately measure the density of such a partial region.

以上の検証に基づき、本発明では、焼結機械部品のうち、荷重負荷面を含む予測体積の領域に内在すると推定される最大空孔の包絡面積の平方根√areamaxに着目し、この数値から予測体積中に存在する粗大気孔の程度を評価することとした。√areamax値の推定手法の詳細を以下に説明する。 Based on the above verification, the present invention pays attention to the square root √area max of the envelope area of the largest hole estimated to be inherent in the region of the predicted volume including the load surface, among the sintered machine parts. It was decided to evaluate the degree of coarse air holes present in the predicted volume. Details of the √area max value estimation method will be described below.

まず、焼結体の空孔の極値分布が二重指数分布に従うとする。これにより、極値統計を用いた空孔包絡面積の最大値の推定を行う。具体的には以下の手順を経て、推定最大空孔包絡面積の平方根√areamaxが算出される。 First, it is assumed that the extreme value distribution of pores in the sintered body follows a double exponential distribution. Thereby, the maximum value of the hole envelope area is estimated using extreme value statistics. Specifically, the square root √area max of the estimated maximum hole envelope area is calculated through the following procedure.

鏡面研磨を施した試験片について顕微鏡観察を行い、定めた基準面積So(mm2)のy領域の画像を取得する。得られた画像について画像解析ソフトを用いて二値化し、空孔の包絡面積を解析する。得られた包絡面積のうち最も大きなものを基準面積So中の最大空孔包絡面積とし、その平方根をその領域における√areamaxとする。この測定を、検査領域を変えてn回繰り返す。 The specimen subjected to mirror polishing is observed with a microscope, and an image of a y region having a predetermined reference area So (mm 2 ) is acquired. The obtained image is binarized using image analysis software, and the envelope area of the holes is analyzed. The largest envelope area among the obtained envelope areas is defined as the maximum hole envelope area in the reference area So, and the square root thereof is defined as √area max in the region. This measurement is repeated n times while changing the inspection region.

測定したn個の√areamaxを小さいものから順に並べ、それぞれ√areamax,j(j=1〜n)とする。(式1参照)
Measured n √area max are arranged in order from the smallest, and √area max, j (j = 1 to n), respectively. (See Formula 1)

それぞれのj(j=1〜n)について、式2で表される累積分布関数Fj(%)および式3で表される基準化変数yjを計算する。

For each j (j = 1 to n), a cumulative distribution function F j (%) expressed by Expression 2 and a standardized variable y j expressed by Expression 3 are calculated.

極値確率用紙の座標横軸に√areamaxを取り、上記結果をプロットして極値分布を得る。(極値確率用紙の縦軸はFもしくはyを取っている)
最小二乗法による近似直線を極値分布に対して外挿し、式4で表されるaおよびbを得る。ただし、yは式5で表される基準化変数、Tは式6で表される再帰期間、Vは推定対象領域の体積(予測体積:mm3)、V0は式7で表される基準体積(mm3)、hは式8で表される測定した√areamax,jの平均値(mm)である。




Taking √area max on the coordinate horizontal axis of the extreme value probability sheet, the above result is plotted to obtain an extreme value distribution. (The vertical axis of the extreme probability sheet takes F or y)
An approximate straight line obtained by the least square method is extrapolated with respect to the extreme value distribution to obtain a and b represented by Expression 4. However, y is the normalization variable represented by Formula 5, T is the recursion period represented by Formula 6, V is the volume of the estimation target region (predicted volume: mm 3 ), and V 0 is the standard represented by Formula 7. Volume (mm 3 ), h is an average value (mm) of the measured √area max, j represented by Formula 8.




極値確率用紙の縦軸であるF目盛の10〜85%におけるプロット点が近似直線状に乗ることを確認する。これにより、得られた極値分布が二重指数分布に従うことを確認できる。式6に推定対象領域の体積V(予測体積)を代入し、再帰期間Tと得られた極値分布が交わる点が推定最大空孔包絡面積の平方根√areamaxである。 It is confirmed that the plot points at 10 to 85% of the F scale which is the vertical axis of the extreme value probability sheet are on an approximate straight line. Thereby, it can be confirmed that the obtained extreme value distribution follows a double exponential distribution. Substituting the volume V (predicted volume) of the estimation target region into Equation 6, the point where the recurring period T and the obtained extreme value distribution intersect is the square root √area max of the estimated maximum hole envelope area.

[本発明で使用する微粉末]
前述のとおり、微粉末の粒径は、粗粉末だけで形成した焼結試料の推定最大空孔包絡面積の平方根√areamaxを下回るように定められる。以下、この粒径の決定手順を詳細に説明する。
[Fine powder used in the present invention]
As described above, the particle size of the fine powder is determined to be less than the square root √area max of the estimated maximum pore envelope area of the sintered sample formed only with the coarse powder. Hereinafter, the procedure for determining the particle size will be described in detail.

先ず、微粉末を含まない前述の原料粉末(粗粉末、炭素粉末、および成形用潤滑剤からなる粉末)を用いて、最終製品であるギヤ1と同じ形状の焼結試料を製作する。焼結試料を製作する際の成形圧縮や焼結は、最終製品のギヤ1を製作する際の成形圧縮工程や焼結工程と同じ条件で行う。   First, a sintered sample having the same shape as the gear 1 that is the final product is manufactured using the above-described raw material powder (a powder made of a coarse powder, a carbon powder, and a molding lubricant) that does not contain fine powder. Molding compression and sintering at the time of manufacturing the sintered sample are performed under the same conditions as the molding compression process and sintering process at the time of manufacturing the final product gear 1.

次に、この焼結試料の√areamaxを前述の手順で求める。この時、基準面積Soは、例えば、縦をギヤ状焼結試料の歯面相当部分からトルク伝達に伴う荷重で生じる引張応力が及ぶまでの深さを100%とした時の30%の深さとし、横を縦の1.33倍として、縦の寸法と横の寸法を乗じた値とする。また、予測体積Vは、焼結試料の歯面相当部分から深さ方向で前記引張応力が及ぶまでの深さを100%とした時の30%の深さで、かつ歯面のうちで引張応力が作用する範囲(特に歯元付近)の体積とする。検査回数nは例えば32回とする。 Next, √area max of this sintered sample is obtained by the above-described procedure. At this time, the reference area So is, for example, a depth of 30% when the depth from the portion corresponding to the tooth surface of the gear-shaped sintered sample to the tensile stress generated by the load accompanying torque transmission is 100%. , The horizontal is 1.33 times the vertical, and the vertical dimension is multiplied by the horizontal dimension. The predicted volume V is 30% when the depth until the tensile stress is applied in the depth direction from the tooth surface equivalent part of the sintered sample is 100%, and the tensile volume is within the tooth surface. The volume is within the range where stress acts (particularly near the tooth root). For example, the number of inspections n is 32.

このようにして求めた√areamaxよりも僅かに小さい目開きの篩を用いて鉄系粉末を篩い分けし、この篩を通過した微粉末を収集することで微粉末を得ることができる。篩の目開きは、JIS Z8801で段階的に規格化されているので、√areamaxよりも小さく、かつ√areamaxに直近の目開きを有する篩を使用して微粉末を収集するのが好ましい。通常、√areamaxは30μm〜70μmの範囲に収まるが、この範囲では目開き32μm、38μm、45μm、53μm、63μmが規格化されているので、この何れかの目開きを有する篩を用いて微粉末を収集することになる。 Fine powder can be obtained by sieving the iron-based powder using a sieve having an opening slightly smaller than √area max determined in this way, and collecting the fine powder that has passed through this sieve. Mesh sieve, so are stepwise standardized by JIS Z8801, less than} area max, and preferably for collecting the fine powder using a sieve having a nearest mesh to} area max . Usually, √area max is in the range of 30 μm to 70 μm, but in this range, the openings 32 μm, 38 μm, 45 μm, 53 μm, 63 μm are standardized. The powder will be collected.

このように鉄系粉末として粗粉末と微粉末の双方を使用することで、粗粉末の粒子間に微粉末が充填され易くなる。そのため、焼結後の鉄系焼結体中に残存する気孔を小さくしてギヤ1を高密度化することができ、粗大気孔を起点としたき裂の進展、さらにはそれによるギヤ1の破壊・損傷を抑制することが可能となる。特に本発明では、粗粉末で形成した焼結試料の荷重負荷面相当部分(特に最大荷重負荷面の相当部分)を含む領域の√areamaxに着目し、配合すべき微粉末の粒径を、この√areamaxよりも小さくしているので、理論上は全ての微粉末が鉄系焼結体に存在すると推定される粗大気孔よりも小さくなるため、粗大気孔を微粉末で確実に充足することができる。そのため、焼結後の粗大気孔を減少させることができ、粗大気孔が応力集中源となってき裂の起点となる事態を確実に防止することができる。また、√areamax値に着目することで、粗大気孔を消失させるのに適合する微粉末の粒径を容易に判断することが可能となり、そのために原料粉末準備工程で準備すべき粉末の選択が容易となる利点も得られる。加えて、事後的に鉄系焼結体の√areamaxを求めれば、たとえ密度が同一水準であっても、√areamaxの大小関係から各種焼結体の優劣を的確に評価することが可能となる。 Thus, by using both coarse powder and fine powder as iron-based powder, it becomes easy to fill the fine powder between the particles of the coarse powder. For this reason, the pores remaining in the sintered iron-based sintered body can be reduced to increase the density of the gear 1, crack growth starting from the rough atmospheric pores, and further the destruction of the gear 1 due to it. -It becomes possible to suppress damage. In particular, in the present invention, paying attention to the √area max of the region including the portion corresponding to the load surface of the sintered sample formed from the coarse powder (particularly the portion corresponding to the maximum load surface), the particle size of the fine powder to be blended is Since it is smaller than this √area max , theoretically, all fine powders are smaller than the coarse air holes estimated to be present in the iron-based sintered body, so the coarse air holes must be filled with fine powders reliably. Can do. As a result, the number of coarse air holes after sintering can be reduced, and the situation where the rough air holes become a stress concentration source and become the starting point of a crack can be reliably prevented. In addition, by paying attention to the √area max value, it is possible to easily determine the particle size of the fine powder that is suitable for eliminating the coarse pores. An advantage that is easy is also obtained. In addition, if the √area max of the iron-based sintered body is obtained afterwards, it is possible to accurately evaluate the superiority or inferiority of various sintered bodies from the magnitude relationship of the √area max even if the density is the same level. It becomes.

また、粗粉末として平均粒径60μm以上のもの(好ましくは70μm以上130μm以下、より好ましくは80μm以上110μm以下)を使用し、微粉末として目開き32μm〜68μmの篩を通過したものを使用しているため、特許文献2で使用する粗粉末および微粉末(粗粉末が平均粒径50μm以下、微粉末が平均粒径1〜25μm)よりも粒径の大きな粉末を使用することができる。従って、鉄系粉末の流動性が良好となって成形圧縮工程でのキャビティへの充填性が向上する。また材料コストの高騰も抑制することができる。   Further, a coarse powder having an average particle diameter of 60 μm or more (preferably 70 μm or more and 130 μm or less, more preferably 80 μm or more and 110 μm or less) is used, and a fine powder having passed through a sieve having an opening of 32 μm to 68 μm is used. Therefore, it is possible to use a powder having a larger particle size than the coarse powder and fine powder used in Patent Document 2 (the coarse powder has an average particle size of 50 μm or less and the fine powder has an average particle size of 1 to 25 μm). Accordingly, the fluidity of the iron-based powder is improved, and the filling property into the cavity in the molding and compression process is improved. In addition, an increase in material costs can be suppressed.

ところで、本発明のように鉄系粉末として粗粉末と微粉末を使用する場合、微粉末の配合割合や粒径によっては、焼結体に生じる粗大気孔の大きさ、延いては鉄系焼結体の強度が変化すると予想される。この関係を明らかにするため、以下の評価試験を行った。   By the way, when coarse powder and fine powder are used as iron-based powder as in the present invention, depending on the blending ratio and particle size of the fine powder, the size of coarse air holes generated in the sintered body, and eventually iron-based sintering. Body strength is expected to change. In order to clarify this relationship, the following evaluation test was conducted.

[試験片]
鉄系粉末として、2wt%のNi、1wt%のMoを含み、残部を鉄および不可避的不純物とする部分拡散合金鋼粉(JFEスチール株式会社製 シグマロイ2010)を使用する。この部分拡散合金鋼粉を150μm〜250μm(例えば180μm)の目開きを有する篩で篩分けして篩を通過した粉末を収集し、これを粗粉末として使用する(平均粒径90μm〜100μm程度)。また、同じ部分拡散合金鋼粉を32μm、45μm、63μmの何れかの目開きを有する篩で篩分けして篩を通過した粒径32μm以下、45μm以下、63μm以下の粉末をそれぞれ収集し、これを複数種の微粉末として使用する。粗粉末に、図2の表に記載された各粒径の微粉末を同表記載の配合割合で添加し、複数種の混合粉を準備する。次に、成形用潤滑剤としてエチレンビスステアリルアミド(ロンザジャパン株式会社製 ACRAWAX C)を用い、これをアルコール系溶剤(日本アルコール販売株式会社製 ソルミックスAP−7)に分散させて熱を加えながら複数種の混合粉のそれぞれと混合し、アルコール系溶剤を揮発させて成形用潤滑剤を鉄系粉末に均一に被覆させる。これに炭素固溶源としての黒鉛粉(TIMCAL社製 TIMREX F−10)を0.2wt%の割合で添加し、混合したものを原料粉とする。
[Test pieces]
As an iron-based powder, partially diffused alloy steel powder (Sigmaloy 2010 manufactured by JFE Steel Co., Ltd.) containing 2 wt% Ni and 1 wt% Mo and the balance being iron and inevitable impurities is used. The partially diffused alloy steel powder is sieved with a sieve having an opening of 150 μm to 250 μm (for example, 180 μm), and the powder passing through the sieve is collected and used as a coarse powder (average particle size of about 90 μm to 100 μm). . Further, the same partially diffused alloy steel powder is sieved with a sieve having an opening of 32 μm, 45 μm, or 63 μm, and powders having a particle size of 32 μm or less, 45 μm or less, and 63 μm or less that have passed through the sieve are collected. Are used as multiple types of fine powders. The fine powder of each particle size described in the table | surface of FIG. 2 is added to a coarse powder in the mixing | blending ratio of the same table | surface, and several types of mixed powder is prepared. Next, ethylene bisstearylamide (ACRAWAX C, manufactured by Lonza Japan Co., Ltd.) is used as a molding lubricant, and this is dispersed in an alcohol solvent (Solmix AP-7 manufactured by Japan Alcohol Sales Co., Ltd.) while applying heat. It mixes with each of a plurality of types of mixed powders, volatilizes the alcohol solvent, and uniformly coats the iron-based powder with the molding lubricant. To this, graphite powder (TIMREX F-10, manufactured by TIMCAL) as a carbon solid solution source was added at a rate of 0.2 wt%, and the resulting mixture was used as the raw material powder.

各原料粉を1176MPaの圧力で圧縮成形し、外径がφ23.2mm、内径がφ16.4mm、軸方向寸法が7mmのリング状圧粉体を製作する。この圧縮成形時には金型および原料粉を120℃に加温する。また、金型の外周および内周に、前記アルコール系溶剤に前記成形用潤滑剤を分散させたものを噴霧し、表面に潤滑剤膜を形成して金型潤滑成形を行う。次に、このリング状圧粉体をアルゴンガス雰囲気下において最高温度1300℃、最高温度保持時間200分で焼結することで、図2に示す実施例1〜6の試験片が得られる。   Each raw material powder is compression-molded at a pressure of 1176 MPa to produce a ring-shaped green compact having an outer diameter of φ23.2 mm, an inner diameter of φ16.4 mm, and an axial dimension of 7 mm. During the compression molding, the mold and the raw material powder are heated to 120 ° C. Further, the outer periphery and the inner periphery of the mold are sprayed with the alcohol-based solvent in which the molding lubricant is dispersed, and a lubricant film is formed on the surface to perform mold lubrication molding. Next, the test pieces of Examples 1 to 6 shown in FIG. 2 are obtained by sintering this ring-shaped green compact in an argon gas atmosphere at a maximum temperature of 1300 ° C. and a maximum temperature holding time of 200 minutes.

また、鉄系粉末が実施例と同じ粗粉末のみからなる原料粉、および鉄系粉末が実施例と同じ微粉末(粒径32μm以下)のみからなる原料粉を焼結したものをそれぞれ比較例1および比較例2とした。併せて、鉄系粉末として粗粉末と微粉末(粒径32μm以下)の混合粉を使用する一方で、微粉末の配合量を少なくしたもの(2wt%)を比較例3とし、微粉末の配合量を多くしたもの(30wt%)を比較例4とした。さらに、鉄系粉末として粗粉末と微粉末の混合粉を使用し、かつ微粉末の粒径を大きくしたもの(粒径63μm以下)を比較例5とした。各比較例における原料粉の作成手順、圧縮成形条件、および焼結条件等は実施例1〜6と同じである。   Comparative examples 1 were obtained by sintering a raw material powder consisting of only the same coarse powder as in the example, and a raw material powder consisting of only the same fine powder (particle size of 32 μm or less) as in the example. And it was set as Comparative Example 2. In addition, while using a mixed powder of a coarse powder and a fine powder (particle size of 32 μm or less) as an iron-based powder, a powder with a reduced amount of fine powder (2 wt%) is used as Comparative Example 3, and the fine powder is blended. A larger amount (30 wt%) was used as Comparative Example 4. Further, Comparative Example 5 was prepared by using a mixed powder of coarse powder and fine powder as the iron-based powder and increasing the particle diameter of the fine powder (particle diameter of 63 μm or less). The preparation procedure of raw material powder, compression molding conditions, sintering conditions, etc. in each comparative example are the same as those in Examples 1-6.

ここで比較例1は、微粉末を含まずに粗粉末だけで形成された前記焼結試料に相当する。この焼結試料について、既に述べた手順で√areamax値を求めたところ、60μmという結果が得られた。従って、実施例1〜5で使用する微粉末の粒径は、焼結試料(比較例1)の√areamax値を下回るが、比較例5で使用した微粉末の粒径はこの√areamax値を上回ることになる。 Here, Comparative Example 1 corresponds to the sintered sample formed only of the coarse powder without including the fine powder. With respect to this sintered sample, the √area max value was determined by the procedure described above, and a result of 60 μm was obtained. Therefore, the particle size of the fine powder used in Examples 1 to 5 is lower than the √area max value of the sintered sample (Comparative Example 1), but the particle size of the fine powder used in Comparative Example 5 is √area max. It will exceed the value.

以上の準備を経た上で、実施例1〜6および比較例2〜5の焼結試験片のそれぞれについて焼結密度(真密度)を測定すると共に、√areamax値を求めた。焼結密度の測定はJISZ2501に則って行う。また、√areamax値を求める手順は、既に説明した手順と同様である。この際、基準面積Soは0.39mm2、検査回数nは32回、予測体積Vは200mm3に設定した。基準面積Soは、縦を試験片の表層から深さ方向で引張応力が及ぶ深さを100%とした時の30%の領域である、試験片内径面から0.54mmの寸法とし、横を縦の1.33倍である0.74mmの寸法として、縦の寸法と横の寸法を乗じることで基準面積Soが求めている。また、予測体積Vは、試験片の表層から深さ方向で引張応力が及ぶ深さを100%とした時の30%領域である、試験片内径面から0.53mmの円筒領域の面積に、軸方向寸法7mmを乗じることで求められる。 After undergoing the above preparation, the sintered density (true density) was measured for each of the sintered test pieces of Examples 1 to 6 and Comparative Examples 2 to 5, and the √area max value was determined. The sintered density is measured in accordance with JISZ2501. The procedure for obtaining the √area max value is the same as the procedure already described. At this time, the reference area So was set to 0.39 mm 2 , the number of inspections n was set to 32 times, and the predicted volume V was set to 200 mm 3 . The reference area So is a dimension of 0.54 mm from the inner surface of the test piece, which is 30% of the length when the depth at which the tensile stress extends in the depth direction from the surface layer of the test piece is 100%. The reference area So is obtained by multiplying the vertical dimension and the horizontal dimension as a dimension of 0.74 mm which is 1.33 times the vertical dimension. Moreover, the predicted volume V is a 30% region when the depth of the tensile stress in the depth direction from the surface layer of the test piece is 100%, and is an area of a cylindrical region of 0.53 mm from the inner surface of the test piece, It is obtained by multiplying the axial dimension of 7 mm.

各実施例1〜6および比較例1〜5の焼結試験片における焼結密度および√areamaxを図2に示す。図2中の焼結密度、および√areamax値の評価基準は図3および図4に示すとおりである。図4に示されるように、試験片の√areamax値は、60μm未満、好ましくは50μm未満、より好ましくは40μm未満である。なお、図2中の「微粉末粒径」欄の数値(32μm、45μm,63μm)は、それぞれ32μm、45μm、または63μmの何れかの目開きを有する篩を通過させることで得られた微粉末を表したものである。 The sintered density and √area max in the sintered test pieces of Examples 1 to 6 and Comparative Examples 1 to 5 are shown in FIG. The evaluation criteria for the sintered density and the √area max value in FIG. 2 are as shown in FIGS. 3 and 4. As shown in FIG. 4, the √area max value of the test piece is less than 60 μm, preferably less than 50 μm, more preferably less than 40 μm. Note that the numerical values (32 μm, 45 μm, 63 μm) in the “fine powder particle size” column in FIG. 2 are fine powders obtained by passing through a sieve having an opening of 32 μm, 45 μm, or 63 μm, respectively. It represents.

図2の表から明らかなように、全ての実施例および比較例において7.60g/cm3以上の焼結密度が得られるが、√areamaxの値についていえば、実施例1〜6は比較例1〜5よりも小さく、従って、実施例1〜6の組成であれば、粗大気孔の大きさを比較例1〜5よりも小さくすることができることが明らかとなった。√areamax値が小さいほど焼結体の強度が向上することが既に明らかとなっているので、実施例1〜5の組成であれば、焼結機械部品の強度アップを図ることができることが明らかとなった。なお、この結果は、焼結密度が一定水準以上であっても、内部空孔径は一様とはならないことも意味する。 As is apparent from the table of FIG. 2, a sintered density of 7.60 g / cm 3 or more is obtained in all examples and comparative examples, but in terms of the value of √area max , Examples 1 to 6 are comparative. It was found that the size of the coarse air holes can be made smaller than those of Comparative Examples 1 to 5 with the compositions of Examples 1 to 6 smaller than Examples 1 to 5. Since it has already been clarified that the strength of the sintered body is improved as the √area max value is smaller, it is clear that the strength of the sintered machine part can be increased with the compositions of Examples 1 to 5. It became. This result also means that the internal pore diameter is not uniform even if the sintered density is above a certain level.

実際に実施例3と比較例1の試験片の顕微鏡写真(焼結試験片の軸方向中央部分における内周面近傍の断面写真)を撮影して観察したところ、図5(a)に示す実施例3の焼結試験片には、図5(b)に示す比較例1の焼結試験片が有する粗大気孔Pは存在していないことが確認された。   When actually taking and observing micrographs of the test pieces of Example 3 and Comparative Example 1 (cross-sectional pictures in the vicinity of the inner peripheral surface in the axial central portion of the sintered test piece), the execution shown in FIG. In the sintered test piece of Example 3, it was confirmed that the rough atmospheric holes P included in the sintered test piece of Comparative Example 1 shown in FIG.

また、図2中の実施例3、実施例6、および比較例5の対比から、微粉末の粒径として、焼結試料(比較例1)の√areamax値を下回る粒径の微粉末を使用した実施例3および6では、これを上回る粒径の微粉末を使用した比較例5よりも粗大気孔が小さくなることが理解できる。従って、微粉末としては焼結試料が有する√areamaxを下回る粒径のものを使用する必要がある。この場合、少なくとも微粉末の最大粒径が60μm未満であれば鉄系焼結体の√areamax値の縮小に一定の効果が認められると考えられる。もちろん、微粉末の最大粒径をこれよりも小さくすれば(好ましくは最大粒径50μm未満、より好ましくは40μm未満)、鉄系焼結体の√areamax値をより小さくすることができ、焼結機械部品のさらなる強度アップを図ることができる。さらに、実施例1〜5と比較例3,4の対比から、原料粉末における微粉末の配合割合は、5〜20wt%(好ましくは8〜15wt%)が好ましいことも判明した。 Further, from the comparison of Example 3, Example 6 and Comparative Example 5 in FIG. 2, the fine powder having a particle size smaller than the √area max value of the sintered sample (Comparative Example 1) is used as the particle size of the fine powder. In Examples 3 and 6 used, it can be understood that the coarse pores are smaller than those in Comparative Example 5 in which fine powder having a particle size larger than this is used. Therefore, it is necessary to use a fine powder having a particle size smaller than √area max of the sintered sample. In this case, if at least the maximum particle size of the fine powder is less than 60 μm, it is considered that a certain effect is observed in reducing the √area max value of the iron-based sintered body. Of course, if the maximum particle size of the fine powder is made smaller (preferably the maximum particle size is less than 50 μm, more preferably less than 40 μm), the √area max value of the iron-based sintered body can be made smaller, The strength of the machined machine parts can be further increased. Furthermore, from comparison between Examples 1 to 5 and Comparative Examples 3 and 4, it was found that the blending ratio of the fine powder in the raw material powder is preferably 5 to 20 wt% (preferably 8 to 15 wt%).

以上に説明したように、本発明をギヤ1に適用する場合、歯面1aから深さ方向にトルク伝達に起因した引張応力(特に最大引張応力)が及ぶ深さを計算して基準面積Soや予測体積Vを設定し、√areamax値を求めることになる。 As described above, when the present invention is applied to the gear 1, the depth to which the tensile stress (particularly the maximum tensile stress) caused by the torque transmission from the tooth surface 1a in the depth direction is calculated to calculate the reference area So or The predicted volume V is set and the √area max value is obtained.

以上の説明では、ギヤ1等の機械部品の全体を同組成の鉄系焼結体で形成する場合を例示したが、本発明はこれ以外にも機械部品の一部が他の材料で形成されるような場合にも同様に適用することができる。例えば図1に示すギヤ1をアイドルギヤとして使用する場合には、軸との間の摺動性を改善するため、図1に示す破線よりも内径側部分を低摩擦性のスリーブで構成し、このスリーブをこれよりも外径側のギヤ本体に固定して一体化させる場合があるが、この場合には内径側のスリーブを除くギヤ本体に本発明を適用することができる。   In the above description, the case where the entire mechanical part such as the gear 1 is formed of an iron-based sintered body having the same composition has been exemplified. However, in the present invention, a part of the mechanical part is made of other materials. The same can be applied to such cases. For example, when the gear 1 shown in FIG. 1 is used as an idle gear, in order to improve the slidability with the shaft, the inner diameter side portion is configured with a low friction sleeve from the broken line shown in FIG. In some cases, the sleeve is fixed to and integrated with the gear body on the outer diameter side, but in this case, the present invention can be applied to the gear body excluding the sleeve on the inner diameter side.

また、本発明は強度が求められる機械部品であれば、ギヤ1を問わず、種々の部品、例えばカム、プラネタリーキャリア、スプロケット、クラッチ部材等に適用することができる。何れの機械部品でも、大きな荷重を受ける荷重負荷面(例えばカムの場合であればカム面)から深さ方向に該荷重に起因した応力(カムの場合は圧縮応力)が及ぶ深さを計算して基準面積Soや予測体積Vを設定し、√areamax値を評価することになる。 Further, the present invention can be applied to various parts such as a cam, a planetary carrier, a sprocket, a clutch member, etc. regardless of the gear 1 as long as it is a mechanical part that requires strength. For any mechanical part, calculate the depth at which the stress (compressive stress in the case of a cam) due to the load extends in the depth direction from the load-bearing surface (for example, the cam surface in the case of a cam) that receives a large load. Thus, the reference area So and the predicted volume V are set, and the √area max value is evaluated.

1 ギヤ
1a 歯面(荷重負荷面)
1b 内周面
P 粗大気孔
1 Gear 1a Tooth surface (Load load surface)
1b Inner peripheral surface P Rough air hole

Claims (5)

荷重が負荷される荷重負荷面を有する焼結機械部品であって、
平均粒径60μm以上の鉄系の粗粉末と、この粗粉末で形成された焼結試料の推定最大空孔包絡面積の平方根√areamaxを下回る粒径の鉄系の微粉末とを含む原料粉末を成形および焼結してなる鉄系焼結体で形成され、前記原料粉末における微粉末の配合量が5〜20wt%、前記鉄系焼結体の焼結密度が7.6g/cm3以上であり、
前記√areamaxを、前記焼結試料の荷重負荷面相当部分から、前記荷重による応力が及ぶ深さを100%とした時の30%の深さに至るまでの領域を予測体積として求めたことを特徴とする焼結機械部品。
A sintered machine part having a load surface to which a load is applied,
Raw material powder comprising an iron-based coarse powder having an average particle size of 60 μm or more and an iron-based fine powder having a particle size less than the square root √area max of the estimated maximum pore envelope area of a sintered sample formed of the coarse powder Is formed by sintering and sintering an iron-based sintered body, the amount of fine powder in the raw material powder is 5 to 20 wt%, and the sintered density of the iron-based sintered body is 7.6 g / cm 3 or more. And
The √area max was determined as a predicted volume from the portion corresponding to the load-loading surface of the sintered sample to a depth of 30% when the depth at which the stress due to the load reaches 100%. Sintered mechanical parts characterized by
前記粗粉末として部分拡散合金鋼粉を使用した請求項1記載の焼結機械部品。   The sintered machine part according to claim 1, wherein partially diffused alloy steel powder is used as the coarse powder. 前記部分拡散合金鋼粉として、Fe−Ni−Mo系を使用した請求項2記載の焼結機械部品。   The sintered machine part according to claim 2, wherein an Fe-Ni-Mo system is used as the partial diffusion alloy steel powder. 前記微粉末として、粗粉末と同じ鉄系粉末を使用した請求項1〜3何れか1項に記載の焼結機械部品。   The sintered machine part according to any one of claims 1 to 3, wherein the fine powder is the same iron-based powder as the coarse powder. 前記微粉末として、粗粉末と異なる鉄系粉末を使用した請求項1〜3何れか1項に記載の焼結機械部品。   The sintered machine part according to any one of claims 1 to 3, wherein an iron-based powder different from the coarse powder is used as the fine powder.
JP2014121502A 2014-01-22 2014-06-12 Sintered machine parts Expired - Fee Related JP6444621B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014121502A JP6444621B2 (en) 2014-06-12 2014-06-12 Sintered machine parts
CN201480072428.5A CN105899315A (en) 2014-01-22 2014-12-22 Sintered machine part and manufacturing method thereof
PCT/JP2014/083822 WO2015111338A1 (en) 2014-01-22 2014-12-22 Sintered machine part and manufacturing method thereof
US15/108,660 US20160327144A1 (en) 2014-01-22 2014-12-22 Sintered machine part and manufacturing method thereof
EP14880315.8A EP3097999A4 (en) 2014-01-22 2014-12-22 Sintered machine part and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121502A JP6444621B2 (en) 2014-06-12 2014-06-12 Sintered machine parts

Publications (2)

Publication Number Publication Date
JP2016000854A true JP2016000854A (en) 2016-01-07
JP6444621B2 JP6444621B2 (en) 2018-12-26

Family

ID=55076587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121502A Expired - Fee Related JP6444621B2 (en) 2014-01-22 2014-06-12 Sintered machine parts

Country Status (1)

Country Link
JP (1) JP6444621B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115659A1 (en) 2016-07-15 2018-01-18 Tdk Corporation SENSOR UNIT
WO2020158789A1 (en) * 2019-01-30 2020-08-06 住友電気工業株式会社 Sintered material, gear, and method for manufacturing sintered material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355726A (en) * 1999-04-16 2000-12-26 Unisia Jecs Corp Alloy steel powder compacting stock and alloy steel powder worked body
JP2007197814A (en) * 2005-08-12 2007-08-09 Jfe Steel Kk Method for producing high-density iron-based compact and high-strength high-density iron-based sintered body
JP2009203535A (en) * 2008-02-28 2009-09-10 Toyota Central R&D Labs Inc Iron based sintered alloy, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355726A (en) * 1999-04-16 2000-12-26 Unisia Jecs Corp Alloy steel powder compacting stock and alloy steel powder worked body
JP2007197814A (en) * 2005-08-12 2007-08-09 Jfe Steel Kk Method for producing high-density iron-based compact and high-strength high-density iron-based sintered body
JP2009203535A (en) * 2008-02-28 2009-09-10 Toyota Central R&D Labs Inc Iron based sintered alloy, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115659A1 (en) 2016-07-15 2018-01-18 Tdk Corporation SENSOR UNIT
WO2020158789A1 (en) * 2019-01-30 2020-08-06 住友電気工業株式会社 Sintered material, gear, and method for manufacturing sintered material

Also Published As

Publication number Publication date
JP6444621B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6394768B2 (en) Alloy steel powder and sintered body for powder metallurgy
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
CA2992092C (en) Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body
JP6428909B2 (en) Iron-based sintered body and method for producing the same
US20160327144A1 (en) Sintered machine part and manufacturing method thereof
JP6309215B2 (en) Sintered machine part manufacturing method and mixed powder used therefor
JP2017206753A (en) Sintered steel for carburization, carburized sintered member and production method therefor
WO2016088333A1 (en) Alloy steel powder for powder metallurgy, and sintered compact
JP6444621B2 (en) Sintered machine parts
JP2012255183A (en) Carburized sintered body, and manufacturing method thereof
WO2015111338A1 (en) Sintered machine part and manufacturing method thereof
CN110267754A (en) The manufacturing method of powder used in metallurgy mixed powder, sintered body and sintered body
JP7114817B2 (en) Sintered material and method for producing sintered material
JP2016056445A (en) Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy
JP6391954B2 (en) Sintered machine parts and manufacturing method thereof
JP7275465B2 (en) Sintered material
KR102647464B1 (en) Iron alloy sintered body and iron mixed powder for powder metallurgy
JP2014080642A (en) Method of manufacturing sintered component
JP7179269B2 (en) Sintered parts and electromagnetic couplings
JP2018123412A (en) Iron-based powdery mixture for powder metallurgy and production method therefor, and sintered compact excellent in tensile strength and impact resistance
JPWO2020202805A1 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
CN110234448A (en) The manufacturing method of powder used in metallurgy mixed powder, sintered body and sintered body
JP2019026880A (en) Method for producing forging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R150 Certificate of patent or registration of utility model

Ref document number: 6444621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees