JP2016000788A - Resin composition and resin mold using of the resin composition - Google Patents

Resin composition and resin mold using of the resin composition Download PDF

Info

Publication number
JP2016000788A
JP2016000788A JP2014121516A JP2014121516A JP2016000788A JP 2016000788 A JP2016000788 A JP 2016000788A JP 2014121516 A JP2014121516 A JP 2014121516A JP 2014121516 A JP2014121516 A JP 2014121516A JP 2016000788 A JP2016000788 A JP 2016000788A
Authority
JP
Japan
Prior art keywords
filler
resin
resin composition
mass
longest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014121516A
Other languages
Japanese (ja)
Inventor
洋 若狭谷
Hiroshi Wakasaya
洋 若狭谷
眞 荒深
Makoto Arafuka
眞 荒深
亮一 古田
Ryoichi Furuta
亮一 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2014121516A priority Critical patent/JP2016000788A/en
Publication of JP2016000788A publication Critical patent/JP2016000788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition having appropriate strength while keeping heat conduction anisotropy and a resin mold using the resin composition.SOLUTION: A resin composition includes: 20-70 mass% of a thermoplastic resin; 10-50 mass% of a first filler selected from boron nitride or graphite; and 20-60 mass% of a second filler being an inorganic material other than the first filler, the second filler satisfying that a b/a value is 10 or more if the length of the longest axis of the inorganic material is c, the longest length of the longest axis in an orthogonal cross-section is b, and the longest length orthogonal to a longest direction of the orthogonal cross-section is a. A resin mold is molded using the resin composition.

Description

本発明は、熱伝導異方性を示す樹脂組成物及び該樹脂組成物を用いた樹脂成型体に関する。   The present invention relates to a resin composition exhibiting thermal conductivity anisotropy and a resin molded body using the resin composition.

種々の産業製品には、動作時に発熱を伴うものが数多く存在する。ここで、一般的に、携帯電話やスマートフォン等の携帯型通話機器においては、機器内部で発生した熱が、樹脂成型体で構成される筐体を通じて、樹脂成型体の厚み方向に局所的に伝わる。そのため、局所的に伝播した熱に因り使用者が火傷をする恐れがある。また、大容量のリチウムイオン二次電池は、複数のセルを組み合わせて用いられるのが一般的であるが、連続動作に伴い、セルとセルの間に熱が滞留することに因り、使用限度温度を超えてしまう問題がある。   There are many industrial products that generate heat during operation. Here, in general, in a portable telephone device such as a mobile phone or a smartphone, heat generated inside the device is locally transmitted in the thickness direction of the resin molded body through a housing formed of the resin molded body. . Therefore, the user may be burned due to the locally transmitted heat. In general, large capacity lithium ion secondary batteries are used in combination with multiple cells. There is a problem that exceeds.

上記のような製品においては、該製品で発生した熱を特定の方向に逃がす技術が求められている。すなわち、携帯型通話機器においては、機器内部で発生した熱が、筐体を構成する樹脂成型体の厚み方向ではなく面方向に非局所的に拡散して伝わる熱伝導性材料に関する技術が求められ、また、リチウムイオン二次電池においては、セル間に滞留する熱を外部に効果的に逃がす熱伝導性材料に関する技術が求められている。   In the products as described above, there is a demand for a technique for releasing heat generated in the products in a specific direction. That is, in portable telephone devices, there is a need for a technology related to a heat conductive material in which heat generated inside the device is non-locally diffused and transmitted not in the thickness direction of the resin molded body constituting the housing. In addition, in a lithium ion secondary battery, a technique relating to a heat conductive material that effectively releases heat accumulated between cells to the outside is required.

例えば、特許文献1には、鱗片状六方晶窒化ホウ素粉末を含有する樹脂組成物の樹脂成型体において、樹脂成型体の面方向の熱伝導率が、樹脂成型体の厚み方向の熱伝導率の2倍以上であることが記載されている。同文献に開示の技術を用いると、携帯型通話機器やリチウムイオン二次電池における上記課題を解決することができる。   For example, in Patent Document 1, in a resin molded body of a resin composition containing scaly hexagonal boron nitride powder, the thermal conductivity in the surface direction of the resin molded body is the thermal conductivity in the thickness direction of the resin molded body. It is described that it is twice or more. When the technique disclosed in the document is used, the above-described problems in portable telephones and lithium ion secondary batteries can be solved.

特開2010−1402号公報JP 2010-1402

本発明者が、特許文献1に開示の技術を試験してみたところ、樹脂成型体の面方向の熱伝導率が厚み方向の熱伝導率の2倍以上(本明細書では、樹脂成型体の面方向の熱伝導率が厚み方向の熱伝導率の2倍以上を示すことを「熱伝導異方性」ということがある。)であったものの、樹脂成型体の強度が乏しいことを知見した。   When this inventor tested the technique of patent document 1, the thermal conductivity of the surface direction of a resin molding is more than twice the thermal conductivity of a thickness direction (in this specification, the resin molding of The fact that the thermal conductivity in the plane direction is more than twice the thermal conductivity in the thickness direction was sometimes referred to as “thermal conductivity anisotropy”), but it was found that the strength of the resin molding was poor. .

本発明はかかる事情に鑑みてなされたものであり、熱伝導異方性を保ちつつ、好適な強度を示す樹脂組成物及び該樹脂組成物を用いた樹脂成型体を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a resin composition exhibiting suitable strength while maintaining thermal conductivity anisotropy and a resin molded body using the resin composition. .

本発明者が、樹脂成型体の強度増加の目的で、成形前の樹脂組成物にガラス繊維を配合したところ、樹脂成型体の強度は増加したものの、樹脂成型体の熱伝導異方性が保たれないことが判明した。   For the purpose of increasing the strength of the resin molded body, the present inventor blended glass fiber with the resin composition before molding. However, although the strength of the resin molded body increased, the thermal conductivity anisotropy of the resin molded body was maintained. It turned out not to hit.

本発明者が鋭意検討したところ、意外にも、成形前の樹脂組成物にガラス繊維ではなく一定の形状の無機材料を配合することで、樹脂成型体の強度が増加しつつ、樹脂成型体の熱伝導異方性も保たれることを発見した。   As a result of intensive studies by the present inventors, surprisingly, by adding an inorganic material having a certain shape instead of glass fiber to the resin composition before molding, the strength of the resin molded body is increased while the strength of the resin molded body is increased. It was discovered that the thermal conductivity anisotropy is also maintained.

本発明の樹脂組成物および樹脂成型体は、熱可塑性樹脂を20〜70質量%、窒化ホウ素又はグラファイトから選択される第1フィラーを10〜50質量%、前記第1フィラー以外の無機材料であって、該無機材料の最長軸の長さをc、該最長軸の直交断面における最長の長さをb、該直交断面の最長方向に直交する最長の長さをaとしたときに、b/a値が10以上である第2フィラーを20〜60質量%、含有することを特徴とする。   The resin composition and resin molding of the present invention are 20 to 70% by mass of a thermoplastic resin, 10 to 50% by mass of a first filler selected from boron nitride or graphite, and an inorganic material other than the first filler. When the length of the longest axis of the inorganic material is c, the longest length in the orthogonal cross section of the longest axis is b, and the longest length orthogonal to the longest direction of the orthogonal cross section is a, b / 20 to 60 mass% of the 2nd filler whose a value is 10 or more is contained, It is characterized by the above-mentioned.

本発明の樹脂組成物および樹脂成型体は、面方向の熱伝導率が厚み方向の熱伝導率の2倍以上であり、かつ、好適な強度を示す。   The resin composition and the resin molded body of the present invention have a thermal conductivity in the plane direction that is twice or more that in the thickness direction, and exhibit suitable strength.

実施例1の樹脂成型体の断面顕微鏡写真である。2 is a cross-sectional photomicrograph of the resin molded body of Example 1. 比較例2の樹脂成型体の断面顕微鏡写真である。4 is a cross-sectional micrograph of a resin molded body of Comparative Example 2.

本発明の樹脂組成物は、熱可塑性樹脂を20〜70質量%、窒化ホウ素又はグラファイトから選択される第1フィラーを10〜50質量%、前記第1フィラー以外の無機材料であって、該無機材料の最長軸の長さをc、該最長軸の直交断面における最長の長さをb、該直交断面の最長方向に直交する最長の長さをaとしたときに、b/a値が10以上である第2フィラーを20〜60質量%、含有することを特徴とする。   The resin composition of the present invention is 20 to 70% by mass of a thermoplastic resin, 10 to 50% by mass of a first filler selected from boron nitride or graphite, and is an inorganic material other than the first filler. When the length of the longest axis of the material is c, the longest length in the orthogonal cross section of the longest axis is b, and the longest length orthogonal to the longest direction of the orthogonal cross section is a, the b / a value is 10 20-60 mass% of the 2nd filler which is the above is contained, It is characterized by the above-mentioned.

本発明の樹脂成型体は、熱可塑性樹脂を20〜70質量%、窒化ホウ素又はグラファイトから選択される第1フィラーを10〜50質量%、前記第1フィラー以外の無機材料であって、該無機材料の最長軸の長さをc、該最長軸の直交断面における最長の長さをb、該直交断面の最長方向に直交する最長の長さをaとしたときに、b/a値が10以上である第2フィラーを20〜60質量%、含有する樹脂組成物を用いて成形されたものである。ここで、樹脂組成物とは、成形前の単なる混合物を意味する。   The resin molding of the present invention is 20 to 70% by mass of a thermoplastic resin, 10 to 50% by mass of a first filler selected from boron nitride or graphite, and is an inorganic material other than the first filler. When the length of the longest axis of the material is c, the longest length in the orthogonal cross section of the longest axis is b, and the longest length orthogonal to the longest direction of the orthogonal cross section is a, the b / a value is 10 It is molded using a resin composition containing 20 to 60% by mass of the second filler as described above. Here, the resin composition means a simple mixture before molding.

具体的な熱可塑性樹脂としては、ポリアミド、ポリエチレン、ポリプロピレン、ポリビニルクロライド、ポリビニルアセテート、アクリロニトリルブタジエン共重合体、アクリロニトリルスチレン共重合体、アクリル樹脂、ポリテトラフルオロエチレン、ポリオキシメチレン、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリスルホン、ポリエーテルスルホン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトンなどを例示できる。これらの樹脂を構成するモノマーを重合した熱可塑性共重合体を採用しても良い。熱可塑性樹脂としては、上記具体的なものを単独で採用してもよいし、複数を併用してもよい。   Specific thermoplastic resins include polyamide, polyethylene, polypropylene, polyvinyl chloride, polyvinyl acetate, acrylonitrile butadiene copolymer, acrylonitrile styrene copolymer, acrylic resin, polytetrafluoroethylene, polyoxymethylene, polycarbonate, polybutylene terephthalate. And polyethylene terephthalate, polyphenylene sulfide, polysulfone, polyether sulfone, amorphous polyarylate, liquid crystal polymer, polyether ether ketone, and the like. You may employ | adopt the thermoplastic copolymer which superposed | polymerized the monomer which comprises these resin. As the thermoplastic resin, the above specific ones may be employed alone, or a plurality of them may be used in combination.

樹脂組成物又は樹脂成型体に熱可塑性樹脂は20〜70質量%の範囲内で含有していればよく、好ましくは25〜60質量%の範囲内であり、より好ましくは30〜50質量%の範囲内である。熱可塑性樹脂の含有率が20質量%未満であると、成形前の樹脂組成物の流動性が悪くなり、成形作業が困難になる場合があるし、また、樹脂組成物に含まれる各フィラーの分散性が悪くなるため、本発明の所望する効果が十分に奏されない恐れがある。熱可塑性樹脂の含有率が70質量%を超えると、樹脂成型体に対して主に熱伝導異方性を付与する第1フィラーの含有量及び主に強度を付与する第2フィラーの含有量が少なくなるため、本発明の所望する効果が十分に奏されない恐れがある。   The thermoplastic resin should just be contained in the range of 20-70 mass% in a resin composition or a resin molding, Preferably it is in the range of 25-60 mass%, More preferably, it is 30-50 mass%. Within range. When the content of the thermoplastic resin is less than 20% by mass, the fluidity of the resin composition before molding becomes poor, and the molding operation may be difficult, and each filler contained in the resin composition may be difficult. Since dispersibility deteriorates, the desired effect of the present invention may not be sufficiently achieved. When the content of the thermoplastic resin exceeds 70% by mass, the content of the first filler that mainly gives thermal conductivity anisotropy to the resin molded body and the content of the second filler that mainly gives strength. Therefore, the desired effect of the present invention may not be sufficiently achieved.

第1フィラーは、樹脂組成物を成形した樹脂成型体に対して主に熱伝導異方性を付与するものであり、窒化ホウ素又はグラファイトから選択される。窒化ホウ素は層状の六方晶、層状の菱面体晶又は乱層状のものがよい。窒化ホウ素及びグラファイトはいずれも層状を示し強固な結晶構造を示す。そのため、結晶を構成する原子の熱振動が、安定して層の面方向に伝播しやすい。よって、窒化ホウ素及びグラファイトはいずれも層の面方向に優れた熱伝導性を示す。窒化ホウ素は絶縁体でありグラファイトは導電体なので、本発明の樹脂成型体の性質として絶縁性が求められる場合には、第1フィラーとして窒化ホウ素を選択するのが良く、本発明の樹脂成型体の性質として導電性が求められる場合には、第1フィラーとしてグラファイトを選択するのが良い。   The first filler mainly imparts thermal conductivity anisotropy to the resin molded body obtained by molding the resin composition, and is selected from boron nitride or graphite. The boron nitride is preferably a layered hexagonal crystal, a layered rhombohedral crystal or a disordered layer. Both boron nitride and graphite are layered and have a strong crystal structure. For this reason, the thermal vibration of the atoms constituting the crystal is likely to be stably propagated in the plane direction of the layer. Therefore, both boron nitride and graphite exhibit excellent thermal conductivity in the plane direction of the layer. Since boron nitride is an insulator and graphite is a conductor, boron nitride is preferably selected as the first filler when the insulating property is required as the property of the resin molded body of the present invention. When conductivity is required as the property, graphite is preferably selected as the first filler.

第2フィラーの形状は平面を有する板状(鱗片状)が良い。板状(鱗片状)の中でも薄片状のものが特によい。第2フィラーは前記形状によって樹脂成型体の面方向に配向しやすい性能を持つ。そのため、第1フィラーとともに樹脂組成物中に含有させても第1フィラーの面方向への配向を妨げることがなく、熱伝導異方性が発現しやすくなる。   The shape of the second filler is preferably a flat plate shape (scale-like shape). Of the plate-like (scale-like), a flaky one is particularly good. A 2nd filler has the performance which is easy to orientate in the surface direction of a resin molding by the said shape. Therefore, even if it is made to contain in a resin composition with a 1st filler, the orientation to the surface direction of a 1st filler is not prevented, and thermal conductivity anisotropy becomes easy to express.

第1フィラーの大きさとしては、一般的なレーザー回折式粒度分布測定装置で測定したD50の値、又は、顕微鏡で観察した長径の平均値が1〜300μmの範囲内が良く、5〜200μmの範囲内が好ましく、10〜100μmの範囲内がより好ましい。   As the size of the first filler, the value of D50 measured with a general laser diffraction particle size distribution measuring device, or the average value of the major axis observed with a microscope is preferably in the range of 1 to 300 μm, and 5 to 200 μm. Within the range is preferable, and within the range of 10 to 100 μm is more preferable.

第1フィラーとして好ましい市販の窒化ホウ素としては、PT−110、PT−120、PT−140、PT−160、PT−180(以上、モーメンティブ・パフォーマンス・マテリアルズ・ジャパン株式会社)、UHP−S1、UHP−1K、UHP−2(以上、昭和電工株式会社)、AP−10S、AP−20S、AP−100S、AP−170S(以上、株式会社MARUKA)などを挙げることができる。   As commercially available boron nitride preferable as the first filler, PT-110, PT-120, PT-140, PT-160, PT-180 (above, Momentive Performance Materials Japan Co., Ltd.), UHP-S1 UHP-1K, UHP-2 (above, Showa Denko KK), AP-10S, AP-20S, AP-100S, AP-170S (above, MARUKA Co., Ltd.).

樹脂組成物(樹脂成型体)に第1フィラーは10〜50質量%の範囲内で含有していればよく、好ましくは15〜40質量%の範囲内であり、より好ましくは20〜35質量%の範囲内である。第1フィラーの含有率が10質量%未満であると、樹脂成型体の熱伝導異方性が十分に保たれない恐れがある。第1フィラーの含有率が50質量%を超えると、成形前の樹脂組成物において第1フィラーの分散性が悪くなる恐れとともに樹脂組成物の流動性が悪くなる恐れがあり、さらには、コスト高になる恐れがある。   The 1st filler should just be contained in the range of 10-50 mass% in the resin composition (resin molding), Preferably it exists in the range of 15-40 mass%, More preferably, it is 20-35 mass%. Is within the range. There exists a possibility that the heat conductive anisotropy of a resin molding may not fully be maintained as the content rate of a 1st filler is less than 10 mass%. If the content of the first filler exceeds 50% by mass, the resin composition before molding may have poor dispersibility of the first filler and may have poor fluidity of the resin composition. There is a risk of becoming.

第2フィラーは、樹脂成型体に対して主に強度を付与するものであり、前記第1フィラー以外の無機材料であって該無機材料の最長軸の長さをc、該最長軸の直交断面における最長の長さをb、該直交断面の最長方向に直交する最長の長さをaとしたときに、b/a値が10以上のものである。すなわち、第2フィラーの形状は平面を有する板状(鱗片状)、特に薄片状である。   The second filler mainly gives strength to the resin molded body, and is an inorganic material other than the first filler. The length of the longest axis of the inorganic material is c, and the cross section orthogonal to the longest axis. The b / a value is 10 or more, where b is the longest length in and the longest length orthogonal to the longest direction of the orthogonal cross section is a. That is, the shape of the second filler is a flat plate shape (scale-like shape), particularly a thin piece shape.

cの範囲は10〜5000μmが良く、30〜3000μmが好ましく、50〜2000μmがより好ましい。aの範囲は0.1〜50μmが良く、0.5〜30μmが好ましく、1〜15μmがより好ましい。c/a値は10〜500の範囲内のものが良く、b/a値は10〜500の範囲内のものが良い。このような範囲内のフィラーとすることで金型等に充填される際に、フィラーが平行して整列しやすくなり、一定方向の配向が得られやすい。   The range of c is preferably 10 to 5000 μm, preferably 30 to 3000 μm, and more preferably 50 to 2000 μm. The range of a is preferably 0.1 to 50 μm, preferably 0.5 to 30 μm, and more preferably 1 to 15 μm. The c / a value is preferably in the range of 10 to 500, and the b / a value is preferably in the range of 10 to 500. By using a filler in such a range, when filling a mold or the like, the fillers are easily aligned in parallel, and an orientation in a certain direction is easily obtained.

樹脂組成物(樹脂成型体)に第2フィラーは20〜60質量%の範囲内で含有していればよく、好ましくは25〜55質量%の範囲内であり、より好ましくは30〜50質量%の範囲内である。第2フィラーの含有率が20質量%未満であると、樹脂成型体の強度が十分でなくなる恐れがある。第2フィラーの含有率が60質量%を超えると、成形前の樹脂組成物の流動性が悪くなる恐れとともに、樹脂組成物における第2フィラーの分散性が悪くなる恐れがある。   The 2nd filler should just be contained in the range of 20-60 mass% in the resin composition (resin molding), Preferably it is in the range of 25-55 mass%, More preferably, it is 30-50 mass%. Is within the range. There exists a possibility that the intensity | strength of a resin molding may become inadequate that the content rate of a 2nd filler is less than 20 mass%. When the content rate of the second filler exceeds 60% by mass, the fluidity of the resin composition before molding may be deteriorated, and the dispersibility of the second filler in the resin composition may be deteriorated.

第2フィラーとしてはケイ酸塩系充填材を挙げることができ、具体的なケイ酸塩系充填材としては、ガラス、マイカ、タルク、ゼオライト、セリサイト、カオリナイト、焼成クレー、パイロフィライト、ベントナイト、ウォラストナイトなどを例示できる。第2フィラーとしては、上記具体的なものを単独で採用してもよいし、複数を併用してもよい。   Examples of the second filler include silicate fillers, and specific silicate fillers include glass, mica, talc, zeolite, sericite, kaolinite, calcined clay, pyrophyllite, Examples include bentonite and wollastonite. As a 2nd filler, the said specific thing may be employ | adopted independently and multiple may be used together.

本発明の樹脂成型体には、本発明の趣旨を脱しない範囲内で、公知の添加剤を配合することができる。公知の添加剤として、炭素繊維、金属粉末、アルミナ、窒化アルミニウム若しくはガラス繊維などの無機材料、各種の表面処理剤、安定剤、滑剤、離型剤、可塑剤、難燃剤、難燃助剤、紫外線吸収剤、顔料、染料、帯電防止剤、分散剤、相溶化剤、抗菌剤などを例示できる。なお、ガラス繊維においては、最長軸の長さをc、該最長軸の直交断面における最長の長さをb、該直交断面の最長方向に直交する最長の長さをaとしたときに、b/a値が1〜5程度であり、c/a値が100〜500程度である。   The resin molded body of the present invention can be blended with known additives within a range not departing from the spirit of the present invention. As known additives, inorganic materials such as carbon fiber, metal powder, alumina, aluminum nitride or glass fiber, various surface treatment agents, stabilizers, lubricants, mold release agents, plasticizers, flame retardants, flame retardant aids, Examples include ultraviolet absorbers, pigments, dyes, antistatic agents, dispersants, compatibilizers, antibacterial agents, and the like. In the glass fiber, when the length of the longest axis is c, the longest length of the longest axis in the orthogonal cross section is b, and the longest length orthogonal to the longest direction of the orthogonal cross section is a, b The / a value is about 1 to 5, and the c / a value is about 100 to 500.

前述したように、本発明の樹脂成型体は、上記樹脂組成物を用いて成形されたものである。樹脂組成物を成形型に充填すると、樹脂組成物に含まれる各フィラーは、地球の重力に因り、各フィラーの平面が成形型の底面と平行な状態に配向されつつ、配置される。また、樹脂組成物を射出成形にて成形すると、樹脂成型体に含まれる各フィラーは、射出時の流れ方向に沿って配向して配置する。つまり、各フィラーは射出の流れに対して各フィラーの抵抗が最小になるように配向するため、射出による流れ方向を樹脂成型体の面方向に採ると、各フィラーの長手方向が面方向に平行となるように配向する。この際第2フィラーのb/a値が10以上の薄片形状とすると、第2フィラーは容易に樹脂成型体の面方向に長手方向(最長軸の長さc方向)が配置し、この影響で第1フィラーも容易に樹脂成型体の面方向に長手方向が制御され、層状の第1フィラーの面方向が樹脂成型体の面方向に配置する。その結果、射出成形にて得られた樹脂成型体は、良好な熱伝導異方性を維持したまま強度の向上が図れる。   As described above, the resin molded body of the present invention is formed using the above resin composition. When the mold is filled with the resin composition, the fillers contained in the resin composition are arranged while the plane of each filler is oriented in parallel with the bottom surface of the mold due to the gravity of the earth. In addition, when the resin composition is molded by injection molding, the fillers included in the resin molded body are oriented and arranged along the flow direction at the time of injection. In other words, since each filler is oriented so that the resistance of each filler is minimized with respect to the flow of injection, when the flow direction by injection is taken as the surface direction of the resin molding, the longitudinal direction of each filler is parallel to the surface direction. Orient to be In this case, if the b / a value of the second filler is a thin piece shape of 10 or more, the second filler is easily arranged in the longitudinal direction (the length c direction of the longest axis) in the surface direction of the resin molded body. The longitudinal direction of the first filler is also easily controlled in the surface direction of the resin molded body, and the surface direction of the layered first filler is arranged in the surface direction of the resin molded body. As a result, the resin molded body obtained by injection molding can be improved in strength while maintaining good thermal conductivity anisotropy.

樹脂組成物は、熱可塑性樹脂のガラス転移温度以上又は融点以上の温度条件下で、配合成分を混合することにより調製できる。   The resin composition can be prepared by mixing the compounding components under a temperature condition that is equal to or higher than the glass transition temperature or the melting point of the thermoplastic resin.

本発明の樹脂成型体は、フィルム状、板状など種々の形状とすることが可能であり、そして、電子機器材料、光学機器材料、医療器具材料、自動車材料、建築材料、家電材料など種々の材料として使用可能である。特に、本発明の樹脂成型体は、面方向の熱伝導率が厚み方向の熱伝導率の2倍以上であり、かつ、好適な強度を示すため、熱伝導異方性が求められる携帯型通話機器、ノート型パソコン、タブレット、ゲーム機の筐体や、リチウムイオン二次電池のセル間に配置される熱伝導性材料として好適である。   The resin molded body of the present invention can be formed into various shapes such as a film shape and a plate shape, and various shapes such as an electronic device material, an optical device material, a medical instrument material, an automobile material, a building material, and a home appliance material. It can be used as a material. In particular, the resin molded body of the present invention has a thermal conductivity in the plane direction that is twice or more that in the thickness direction and exhibits a suitable strength, so that a portable telephone call that requires thermal conductivity anisotropy is required. It is suitable as a heat conductive material disposed between a case of a device, a notebook computer, a tablet, a game machine, or a cell of a lithium ion secondary battery.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、実験例等を示し、本発明をより具体的に説明する。なお、本発明は、これらの実験例によって限定されるものではない。   Hereinafter, experimental examples and the like will be shown to describe the present invention more specifically. The present invention is not limited to these experimental examples.

(実験例1〜2及び比較例1〜3)
下記表1に記載の質量%で熱可塑性樹脂、第1フィラー、第2フィラー又はガラス繊維を混合し混合物とした。混合物を2軸押出機KZW15TW−45MG(株式会社テクノベル)に投入し、回転数300rpm、温度320℃の条件で樹脂組成物である成形用ペレットを製造した。
(Experimental Examples 1-2 and Comparative Examples 1-3)
A thermoplastic resin, the first filler, the second filler, or glass fiber was mixed at a mass% shown in Table 1 below to obtain a mixture. The mixture was put into a twin-screw extruder KZW15TW-45MG (Technobel Co., Ltd.) to produce molding pellets as a resin composition under the conditions of a rotation speed of 300 rpm and a temperature of 320 ° C.

熱可塑性樹脂としては、ポリアミドであるPA46 スタニールTW341−J(DSM社)を用いた。第1フィラーとしては、鱗片状の六方晶窒化ホウ素PT−110(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン株式会社)を用いた。PT−110の表面積は0.1〜10m/gの範囲内であり、平均粒子径は35〜60μmの範囲内である。PT−110のc/a値は10〜500の範囲内であって、b/a値は10〜500の範囲内である。 As the thermoplastic resin, polyamide PA46 Stanyl TW341-J (DSM) was used. As the first filler, scaly hexagonal boron nitride PT-110 (Momentive Performance Materials Japan Co., Ltd.) was used. The surface area of PT-110 is in the range of 0.1 to 10 m 2 / g, and the average particle size is in the range of 35 to 60 μm. The c / a value of PT-110 is in the range of 10 to 500, and the b / a value is in the range of 10 to 500.

第2フィラーとしては、薄板状(鱗片状)のガラスフレークREF−600A(日本板硝子株式会社)を用いた。REF−600Aのaの平均長さは5μmであり、平均粒子径は600μmである。REF−600Aのc/a値は10〜500の範囲内であって、b/a値は10〜500の範囲内である。   As the second filler, a thin plate-like (flaky) glass flake REF-600A (Nippon Sheet Glass Co., Ltd.) was used. The average length of a in REF-600A is 5 μm, and the average particle size is 600 μm. The c / a value of REF-600A is in the range of 10 to 500, and the b / a value is in the range of 10 to 500.

ガラス繊維としては、CSG3PA−830S(日東紡株式会社)を用いた。CSG3PA−830Sのb/a値は4であり、c/a値は300である。cの長さは約3mmである。   CSG3PA-830S (Nittobo Co., Ltd.) was used as the glass fiber. CSG3PA-830S has a b / a value of 4 and a c / a value of 300. The length of c is about 3 mm.

各成形用ペレットにつき、JIS K 7162で規定するダンベル形の金型が配置された射出成形機HSP55EH2(株式会社ソディック)を用い、JIS K 7152−1及び−2に準じて溶融樹脂温度320℃、型温120℃、保圧100MPaの条件で射出成形を行い、厚さ4mmのダンベル形の樹脂成型体を製造した。   For each molding pellet, using an injection molding machine HSP55EH2 (Sodick Co., Ltd.) in which a dumbbell-shaped mold defined in JIS K 7162 is arranged, a molten resin temperature of 320 ° C. according to JIS K 7152-1 and -2, Injection molding was performed under the conditions of a mold temperature of 120 ° C. and a holding pressure of 100 MPa to produce a dumbbell-shaped resin molded body having a thickness of 4 mm.

(評価例1)
JIS K 7161に準じ、実施例1〜2、及び比較例1〜3の樹脂成型体につき、引張強度を測定した。引張強度が70Mpa以上のものを合格とした。結果を表2に示す。
(Evaluation example 1)
According to JIS K 7161, the tensile strength was measured about the resin molding of Examples 1-2 and Comparative Examples 1-3. Those having a tensile strength of 70 Mpa or more were regarded as acceptable. The results are shown in Table 2.

表2の結果から、実施例1〜2、比較例2〜3の樹脂成型体は、第2フィラー又はガラス繊維の存在に因り、引張強度が増加したことがわかる。第2フィラー又はガラス繊維が存在しない比較例1の樹脂成型体は、引張強度が不十分であった。   From the results in Table 2, it can be seen that the resin molded bodies of Examples 1-2 and Comparative Examples 2-3 have increased tensile strength due to the presence of the second filler or glass fiber. The resin molded body of Comparative Example 1 in which the second filler or glass fiber was not present had insufficient tensile strength.

(評価例2)
実施例1〜2、及び比較例1〜3の樹脂成型体につき、樹脂成型体の厚み方向を厚みとして直径10mm、厚さ3mmの円板状に切り取り、試験片とした。各試験片につき、全自動レーザーフラッシュ法 熱定数測定装置TC−7000H(アルバック理工株式会社)を用いて、樹脂成型体の厚み方向の熱伝導率を測定した。
(Evaluation example 2)
About the resin moldings of Examples 1-2 and Comparative Examples 1-3, the thickness direction of the resin moldings was cut into a disk shape having a diameter of 10 mm and a thickness of 3 mm to obtain a test piece. About each test piece, the heat conductivity of the thickness direction of the resin molding was measured using fully automatic laser flash method thermal constant measuring device TC-7000H (ULVAC RIKO Co., Ltd.).

また、実施例1〜2、及び比較例1〜3の樹脂成型体につき、レーザーフラッシュアナライザーLFA447(NETZSCH社)を用い、レーザーフラッシュ ラメラ法にて、樹脂成型体の面方向の熱伝導率を測定した。具体的には、樹脂成型体を2mm×1mm×10mmの複数の板状小片に切り取った。ここで、上記板状小片における2mmの辺方向が、射出成形における流れ方向に該当し、1mmの辺方向が樹脂成型体の厚み方向に該当する。複数の板状小片につき、2mm×10mmの面同士を密着させて積層し、2mm×10mm×10mmの試験片を作成した。分析装置の光源からの光が上記試験片の2mm方向の辺に対して平行に照射されるように、試験片をレーザーフラッシュアナライザーに配置し、樹脂成型体の射出成形における流れ方向、すなわち面方向の熱伝導率を測定した。
(面方向の熱伝導率)/(厚み方向の熱伝導率)が2.0以上のものを合格とした。結果を表3に示す。
Further, for the resin molded bodies of Examples 1 and 2 and Comparative Examples 1 to 3, the thermal conductivity in the surface direction of the resin molded body was measured by a laser flash lamella method using a laser flash analyzer LFA447 (NETZSCH). did. Specifically, the resin molding was cut into a plurality of small plate-like pieces of 2 mm × 1 mm × 10 mm. Here, the side direction of 2 mm in the plate-shaped piece corresponds to the flow direction in the injection molding, and the side direction of 1 mm corresponds to the thickness direction of the resin molding. 2 mm × 10 mm surfaces were brought into close contact with each other and laminated to form a 2 mm × 10 mm × 10 mm test piece. The test piece is placed in a laser flash analyzer so that the light from the light source of the analyzer is irradiated in parallel to the 2 mm side of the test piece, and the flow direction in the injection molding of the resin molding, that is, the plane direction The thermal conductivity of was measured.
Those having a (surface direction thermal conductivity) / (thickness direction thermal conductivity) of 2.0 or more were considered acceptable. The results are shown in Table 3.

表3の結果から、実施例の樹脂成型体は、第2フィラーの存在に因り、(面方向の熱伝導率)/(厚み方向の熱伝導率)の値が比較例1の値よりは若干低下したものの、いずれも2.0以上であり、熱伝導異方性を保つことが裏付けられた。他方、比較例2〜3の樹脂成型体は、ガラス繊維の存在に因り、(面方向の熱伝導率)/(厚み方向の熱伝導率)の値が著しく低下し、熱伝導異方性を保つことができなかった。   From the results of Table 3, the resin molded body of the example has a value of (thermal conductivity in the plane direction) / (thermal conductivity in the thickness direction) slightly different from the value of Comparative Example 1 due to the presence of the second filler. Although it decreased, all were 2.0 or more, and it was supported that heat conduction anisotropy is maintained. On the other hand, in the resin molded bodies of Comparative Examples 2 to 3, the value of (thermal conductivity in the plane direction) / (thermal conductivity in the thickness direction) is significantly reduced due to the presence of glass fibers, and the thermal conductivity anisotropy is reduced. I couldn't keep it.

(評価例3)
実施例1及び比較例2の樹脂成型体を、射出成形における流れ方向に対して平行に、厚み方向で切断した。各樹脂成型体の断面を、レーザー顕微鏡VK−9710(株式会社キーエンス)を用いて、倍率200倍で観察した。実施例1及び比較例2の樹脂成型体の断面写真を図1及び図2に示す。図1及び図2にて、左右方向が射出成形における流れ方向、すなわち面方向に該当し、上下方向が厚み方向に該当する。また、図1及び図2にて、白く観察されたのが第2フィラー及びガラス繊維であり、黒く観察されたのが熱可塑性樹脂及び第1フィラーである。
(Evaluation example 3)
The resin molded bodies of Example 1 and Comparative Example 2 were cut in the thickness direction parallel to the flow direction in injection molding. The cross section of each resin molding was observed at a magnification of 200 times using a laser microscope VK-9710 (Keyence Corporation). Cross-sectional photographs of the resin molded bodies of Example 1 and Comparative Example 2 are shown in FIGS. 1 and 2, the left-right direction corresponds to the flow direction in injection molding, that is, the surface direction, and the up-down direction corresponds to the thickness direction. In FIGS. 1 and 2, the second filler and the glass fiber are observed in white, and the thermoplastic resin and the first filler are observed in black.

実施例1及び比較例2の樹脂成型体の断面写真から、実施例1の第2フィラーが断面全面にわたり、流れ方向に平行に配向しているのに対し、比較例2のガラス繊維は特に断面中央付近で非配向であるのがわかる。   From the cross-sectional photographs of the resin molded bodies of Example 1 and Comparative Example 2, the second filler of Example 1 is oriented in parallel to the flow direction over the entire cross-section, whereas the glass fiber of Comparative Example 2 is particularly cross-sectional. It can be seen that the film is non-oriented near the center.

実施例1の樹脂成型体の第2フィラーが断面全面で流れ方向に平行に配向していたことから、第1フィラーも第2フィラーと同様に断面全面で流れ方向に平行に配向しているといえる。このことは、第2フィラー配向が第1フィラーの配向を制御したためといえる。評価例2で示されたように、実施例の樹脂成型体が熱伝導異方性を保つことができたのは、熱伝導性の高い第1フィラーが流れ方向、すなわち面方向に沿って配向しているために、面方向への熱伝導が好適に保たれ、厚み方向への熱伝導が好適に抑制された結果と考察できる。   Since the second filler of the resin molded body of Example 1 was aligned parallel to the flow direction on the entire cross section, the first filler was aligned parallel to the flow direction on the entire cross section as well as the second filler. I can say that. This is because the second filler orientation controls the orientation of the first filler. As shown in Evaluation Example 2, the resin molded body of the example was able to maintain the thermal conductivity anisotropy because the first filler with high thermal conductivity was aligned along the flow direction, that is, the plane direction. Therefore, it can be considered that the heat conduction in the surface direction is suitably maintained and the heat conduction in the thickness direction is suitably suppressed.

他方、比較例2の樹脂成型体のガラス繊維が断面中央付近で非配向であったことから、第1フィラーもガラス繊維と同様に断面中央付近で非配向であるといえる。評価例2で示されたように、比較例2〜3の樹脂成型体が熱伝導異方性を保つことができなかったのは、熱伝導性の高い第1フィラーが非配向となったために、あらゆる方向に熱が伝導された結果と考察できる。   On the other hand, since the glass fiber of the resin molding of Comparative Example 2 was non-oriented near the center of the cross section, it can be said that the first filler is non-oriented near the center of the cross section as well as the glass fiber. As shown in Evaluation Example 2, the resin molded bodies of Comparative Examples 2 to 3 could not maintain the thermal conductivity anisotropy because the first filler having high thermal conductivity was not oriented. This can be considered as the result of heat conduction in all directions.

以上説明してきたように本発明の樹脂組成物は、熱可塑性樹脂に窒化ホウ素又はグラファイトを第1フィラーとして含有させることで樹脂組成物から成形される樹脂成型体に熱伝導異方性を与える。さらに、本発明で規定した所定の形状を有する第2フィラーを含有させることで樹脂成型体の熱伝導異方性を損なわない範囲内で樹脂成型体に所望の強度を与えることができる。なお、本発明の第1フィラーは、特に形状を限定していないが、第2フィラーと同じ規定の範囲の形状のものを使用することで、より熱伝導異方性が発現しやすくなるため好ましい。   As described above, the resin composition of the present invention imparts thermal conductivity anisotropy to a resin molded body molded from the resin composition by containing boron nitride or graphite as the first filler in the thermoplastic resin. Furthermore, by containing the second filler having a predetermined shape defined in the present invention, it is possible to give the resin molded body a desired strength within a range that does not impair the thermal conductivity anisotropy of the resin molded body. The shape of the first filler of the present invention is not particularly limited, but it is preferable to use a material having a shape within the same prescribed range as the second filler, since the thermal conductivity anisotropy is more easily expressed. .

Claims (4)

熱可塑性樹脂を20〜70質量%、
窒化ホウ素又はグラファイトから選択される第1フィラーを10〜50質量%、
前記第1フィラー以外の無機材料であって、該無機材料の最長軸の長さをc、該最長軸の直交断面における最長の長さをb、該直交断面の最長方向に直交する最長の長さをaとしたときに、b/a値が10以上である第2フィラーを20〜60質量%、
含有することを特徴とする樹脂組成物。
20 to 70% by mass of a thermoplastic resin,
10 to 50% by mass of a first filler selected from boron nitride or graphite,
An inorganic material other than the first filler, wherein the longest axis length of the inorganic material is c, the longest length in an orthogonal cross section of the longest axis is b, and the longest length orthogonal to the longest direction of the orthogonal cross section When the thickness is a, the second filler having a b / a value of 10 or more is 20 to 60% by mass,
A resin composition characterized by containing.
前記第2フィラーが、ケイ酸塩系充填材である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the second filler is a silicate-based filler. 前記第2フィラーが、ガラス、マイカ、タルク、ゼオライト、セリサイト、カオリナイト、焼成クレー、パイロフィライト、ベントナイト、ウォラストナイトから選択される請求項1又は2に記載の樹脂組成物。   The resin composition according to claim 1 or 2, wherein the second filler is selected from glass, mica, talc, zeolite, sericite, kaolinite, calcined clay, pyrophyllite, bentonite, and wollastonite. 請求項1乃至請求項3のいずれか1項に記載の樹脂組成物を用いて成形されたことを特徴とする樹脂成型体。   A resin molded article, which is molded using the resin composition according to any one of claims 1 to 3.
JP2014121516A 2014-06-12 2014-06-12 Resin composition and resin mold using of the resin composition Pending JP2016000788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121516A JP2016000788A (en) 2014-06-12 2014-06-12 Resin composition and resin mold using of the resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121516A JP2016000788A (en) 2014-06-12 2014-06-12 Resin composition and resin mold using of the resin composition

Publications (1)

Publication Number Publication Date
JP2016000788A true JP2016000788A (en) 2016-01-07

Family

ID=55076551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121516A Pending JP2016000788A (en) 2014-06-12 2014-06-12 Resin composition and resin mold using of the resin composition

Country Status (1)

Country Link
JP (1) JP2016000788A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063339A (en) * 2018-10-16 2020-04-23 Dic株式会社 Resin composition and molded product thereof
JP2021038353A (en) * 2019-09-05 2021-03-11 富士高分子工業株式会社 Heat-conductive resin molded body
WO2022158600A1 (en) * 2021-01-25 2022-07-28 積水テクノ成型株式会社 Resin composition and resin molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099799A (en) * 2005-09-30 2007-04-19 Mitsubishi Engineering Plastics Corp Highly heat-conductive insulating polycarbonate-based resin composition and molding
JP2008007758A (en) * 2006-05-30 2008-01-17 Toray Ind Inc Polyphenylene sulfide resin composition and molded article made thereof
JP2009096903A (en) * 2007-10-18 2009-05-07 Toyobo Co Ltd Polyamide-based molding material having excellent weld bonding property
JP2009173865A (en) * 2007-09-27 2009-08-06 Toray Ind Inc Molding having cylindrical portion and housing portion
JP2011016936A (en) * 2009-07-09 2011-01-27 Mitsubishi Engineering Plastics Corp High thermal conduction insulating resin composition and molding
WO2012050083A1 (en) * 2010-10-13 2012-04-19 株式会社カネカ Highly thermally conductive resin molded article, and manufacturing method for same
JP2013227455A (en) * 2012-04-26 2013-11-07 Kaneka Corp Method of manufacturing thermoplastic resin composition
JP2017538852A (en) * 2014-11-24 2017-12-28 エヌジーエフ ヨーロッパ リミテッドNgf Europe Limited Printed goods and feedstock

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099799A (en) * 2005-09-30 2007-04-19 Mitsubishi Engineering Plastics Corp Highly heat-conductive insulating polycarbonate-based resin composition and molding
JP2008007758A (en) * 2006-05-30 2008-01-17 Toray Ind Inc Polyphenylene sulfide resin composition and molded article made thereof
JP2009173865A (en) * 2007-09-27 2009-08-06 Toray Ind Inc Molding having cylindrical portion and housing portion
JP2009096903A (en) * 2007-10-18 2009-05-07 Toyobo Co Ltd Polyamide-based molding material having excellent weld bonding property
JP2011016936A (en) * 2009-07-09 2011-01-27 Mitsubishi Engineering Plastics Corp High thermal conduction insulating resin composition and molding
WO2012050083A1 (en) * 2010-10-13 2012-04-19 株式会社カネカ Highly thermally conductive resin molded article, and manufacturing method for same
JP2013227455A (en) * 2012-04-26 2013-11-07 Kaneka Corp Method of manufacturing thermoplastic resin composition
JP2017538852A (en) * 2014-11-24 2017-12-28 エヌジーエフ ヨーロッパ リミテッドNgf Europe Limited Printed goods and feedstock

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063339A (en) * 2018-10-16 2020-04-23 Dic株式会社 Resin composition and molded product thereof
WO2020080289A1 (en) * 2018-10-16 2020-04-23 Dic株式会社 Resin composition and molded article thereof
JP2021038353A (en) * 2019-09-05 2021-03-11 富士高分子工業株式会社 Heat-conductive resin molded body
WO2022158600A1 (en) * 2021-01-25 2022-07-28 積水テクノ成型株式会社 Resin composition and resin molded article

Similar Documents

Publication Publication Date Title
US9966324B2 (en) Thermally conductive sheet, method for producing same, and semiconductor device
CN102971365B (en) Thermally conductive sheet and process for producing same
US20140080954A1 (en) Methods for making thermally conductve compositions containing boron nitride
WO2014080743A1 (en) Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article
CN106575644B (en) Thermally conductive resin molded article
JP2010001402A (en) High thermal conductivity resin molded article
TW201319135A (en) Thermal conductive and flame-retardant compositions
EP2102288A1 (en) Heat-conductive resin composition and plastic article
CN108779267B (en) Resin molded article
TW201229128A (en) High-heat conductive resin molded article and method for manufacturing the same
JP2009280650A (en) Thermoplastic resin composition and thermoplastic resin molded article
JP2016000788A (en) Resin composition and resin mold using of the resin composition
JP2019167521A (en) Resin molding
JPWO2014024743A1 (en) Insulating high thermal conductivity thermoplastic resin composition
JP2012136684A (en) Thermoplastic resin composition and resin molded article
JP6168851B2 (en) Heat radiation resin molding
JP6182256B1 (en) Resin molded body
JP6490877B1 (en) Thermal conductive resin molding
JP2019038912A (en) Thermally conductive foam sheet
JP2012224719A (en) Highly thermoconductive thermoplastic resin composition
WO2023182395A1 (en) Resin composition and resin molded body
KR102411396B1 (en) Manufacturing Method of Thermally Conductive Sheet
JP2019038911A (en) Thermally conductive foam sheet
TW202248315A (en) Thermally conductive, electrically insulating film and battery pack comprising same
JP2014112658A (en) Heat dissipation member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327