JP2016000240A - ヘモグロビンの相対濃度変化と酸素飽和度測定装置 - Google Patents

ヘモグロビンの相対濃度変化と酸素飽和度測定装置 Download PDF

Info

Publication number
JP2016000240A
JP2016000240A JP2015163242A JP2015163242A JP2016000240A JP 2016000240 A JP2016000240 A JP 2016000240A JP 2015163242 A JP2015163242 A JP 2015163242A JP 2015163242 A JP2015163242 A JP 2015163242A JP 2016000240 A JP2016000240 A JP 2016000240A
Authority
JP
Japan
Prior art keywords
light
phantom
hemoglobin
oxygen
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015163242A
Other languages
English (en)
Other versions
JP5917756B2 (ja
Inventor
晴雄 山村
Haruo Yamamura
忠彦 塩崎
Tadahiko Shiozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJITA IKA KIKAI KK
Original Assignee
FUJITA IKA KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJITA IKA KIKAI KK filed Critical FUJITA IKA KIKAI KK
Priority to JP2015163242A priority Critical patent/JP5917756B2/ja
Publication of JP2016000240A publication Critical patent/JP2016000240A/ja
Application granted granted Critical
Publication of JP5917756B2 publication Critical patent/JP5917756B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】ファントムによる測定値を測定開始時の基準として、頭蓋における左右の血流の差を評価でき、しかもその後のヘモグロビンの相対濃度変化と酸素飽和度の相対変化を測定できる酸素飽和度測定装置を提供する。【解決手段】酸素飽和度測定装置は、センサー部2と装置本体部3とからなり、センサー部には近赤外線を照射する光源11,12と、光源から一定の距離に配置されて光源からの透過光を受光する受光素子11A,12Aと、予めファントムによる透過光を測定して基準値として記録したROM部とからなり、装置本体部は、センサー部の受光信号により実際の吸光度を算出し、基準値と比較してベアーランバートの法則に適応して生体の酸素状態を演算する演算処理部34を備えている。【選択図】図1

Description

この発明は、近赤外線を用いて、無侵襲で、生体内のヘモグロビンの、相対濃度変化と酸素飽和度測定装置に関する。
生体としての人体への酸素の供給は、循環する血液によって運搬、交換が行われる。呼吸によって取り込まれた酸素は、肺胞におけるガス交換によって血液中のヘモグロビン(Hb)と結合する。血液に取り込まれた酸素は、動脈血によって全身に送られ、毛細血管によって細胞に取り込まれる。
血液中の酸素により各部の細胞が生存しているため、心臓等の手術の際には、頭蓋の特に大脳皮質の酸素状態をリアルタイムで計測して、脳細胞の状態を常時チェックすることが必要である。この大脳皮質の酸素状態を計測する方法として、組織透過性に優れた近赤外線を用いて無侵襲で計測する方法が知られている。
例えば、生体の血液中の情報及び自律神経系の生理指標を精度よく同時に測定する装置として、特開2010−125147号公報(特許文献1)記載の生体計測装置が知られている。この装置は、互いに異なる中心波長を有し、且つ互いに同時に入射しない検査光を、第2検査光の入射周期が第1検査光の入射周期より短くなるように生体に入射する光入射手段(LED)と、光入射手段による入射に伴い、それぞれに対応するデジタル信号を出力する光検出手段(フォトダイオード)と、前記デジタル信号(出力信号)に基づいてオキシヘモグロビン及びデオキシヘモグロビンの濃度変化を算出し、デジタル信号に基づいて測定データを算出する演算部を備える。
また、異常部位の酸素残留量の変化をモニターすることが可能な装置として、特開2001−212115号公報(特許文献2)記載の生体光計測装置がある。この装置は、光を生体に照射する光照射手段と、生体を透過した光を検出し、検出した光量に対応する電気信号を出力する光検出手段と、電気信号に基づき計測部位毎のヘモグロビン濃度を計算する信号処理手段と、前記信号処理手段の計算結果を表示する手段とを備えており、表示手段は、計測部位毎にヘモグロビン濃度の時間経過を表示する手段とを備えたことを特徴とする。
特開2010−125147号公報 特開2001−212115号公報
ところで、特許文献1記載の生体光計測装置では、入射する光として735nmの中心波長を有する光と、850nmの中心波長を有する光を用いているために主に酸素飽和度を測定することができるが、ヘモグロビンの量を比較することはできない。ヘモグロビンの量の変化を測定するには、中心波長が800〜810nmの光を使用しなければならないからである。
また、特許文献2では、計測点毎の血中酸化ヘモグロビン/脱酸化ヘモグロビン濃度の相対変化量を計算することは可能である。計測時点での相対変化量を時間軸に沿って算出することはできても、計測開始時を基準とするものであって計測時点での実際のヘモグロビン濃度は不明である。
従来、生体内のヘモグロビンを光(オキシ、デオキシヘモグロビンの等吸収係数の光805nm)の吸収度合いを測定し、その測定値を無名数で数値表示していた。特許文献1,2とも、相対変化量は測定開始時点を基準とした相対値である。従来の測定方法では、計測開始時を基準としてその後の変化を計測するために、測定開始時点での濃度に対する変化量は計測できても、測定開始時点の濃度は不明である。
また、脳血流は頭蓋の左右において必ずしも同一の値を示すものではないが、測定開始時点を基準とすると左右の値は同一となる。即ち、測定開始時点に脳の左右の血流に差があっても、その差についての評価はできなかった。
さらに、従来の測定装置では、センサーの信号はフォトダイオードで検出される。フォトダイオードは波長に係わらずその感度領域の光であれば信号として出力される。ところで、実際の測定は真っ暗な環境で測定することはない。従って、所望の光による信号だけを得たいと思っても、外部の光が生体を経由してフォトダイオードで検出されることになる。
この外部の光を取り除く方法は各種提案されている。例えば、信号を変調してその成分のみ取り出したり、フィルターを使用してカットする方法などが行われている。しかしながら必ずしも十分な精度で測定することはできなかった。
この発明は、このような点に鑑み、計測開始時点からヘモグロビンの濃度と、その後の時間的な相対変化を計測することができると共に、脳の左右の血流の差を評価することができるヘモグロビンの相対濃度変化と酸素飽和度測定装置を提供することを目的とする。また、この発明は、測定環境に左右されず、所望の光だけの信号を検出するヘモグロビンの相対濃度変化と酸素飽和度測定装置を提供することを目的とする。
この目的を達成するため、この発明の請求項1に係る近赤外線無侵襲生体計測装置は、センサー部と装置本体部とからなり、センサー部には近赤外線を照射する光源と、前記光源から一定の距離に配置されて光源からの透過光を受光する受光素子と、予めファントムによる透過光を測定して基準値として記録したROM部とからなり、装置本体部は、前記センサー部の受光信号により実際の吸光度を算出し、前記基準値と比較してベアーランバートの法則に適応して生体の酸素状態を演算する演算処理部を備えていることを特徴とする。
また、別途形成したファントムとセンサー部及び装置本体部とを備えた測定装置とからなり、前記ファントムは、光を完全に遮断する材質で形成された箱型のケース内の最下層にクッション材を敷き、その上に反射板、散乱層、吸収板、散乱層、吸収板を順次積層して形成されており、前記センサー部は、光源と、この光源から一定の距離に配置した受光素子と、前記ファントムの受光信号を基準値として記録するROMとからなり、前記装置本体部は、前記センサー部の受光信号により実際の吸光度を算出し、前記基準値と比較してベアーランバートの法則に適応して生体の酸素状態を演算する演算処理部を備えている構成としてもよい。
センサー部はファントムを基準とした校正値を内蔵したROMを備え、或いは測定開始前にファントムからの受光信号を基準値として内蔵したROMを備えることによって、測定開始時の血液中のヘモグロビンの相対濃度変化と酸素飽和度を、前記基準値と比較して相対値として提供することができる。即ち、ファントムを基準とすることによって、測定開始時点を基準とした相対値ではなく絶対値を基準とした比較が可能になる。
また、ファントムによる絶対値を基準とすることにより、頭蓋における左右の血流の差が分かる。従来は、測定開始後の変化は評価することが可能であるものの、頭蓋における左右とも測定開始時点が基準となるので、左右の血流の差を評価することはできなかった。さらに、ファントムを基準とすることによりセンサーの誤差を修正することができる。個々のセンサーは、同一基準の測定値を示すように製造されているが、実際には僅かな誤差が見られる。そこで、個々のセンサーに誤差があってもファントムを基準とすることにより、全てのセンサーは誤差が修正されて同一レベルの基準値を設けることができる。
この発明に係る測定装置の構成を示すブロック図である。 センサーのタイプ別構成を示す概略説明図である。 ファントムの構成を示す縦断面図である。 装置本体部のアンプ部における回路図である。
以下、この発明の実施形態を図面に基づいて説明する。まず、図1は本測定装置のブロック図を示し、測定装置1は、頭蓋の表面に装着されるセンサー部2と装置本体部3とからなる。センサー部2には、LEDによる光源11、12とフォトダイオードで形成された受光素子11A、12Aとによって構成されており、左側を測定する光源11、受光素子11Aと、右側を測定する光源12、受光素子12Aがそれぞれ対になって左右に配置されている。
図示する実施形態では、左右が対になったダブルタイプを示しているが、中央部で分割して左側の光源11、受光素子11Aと、右側の光源12、受光素子12Aに分離したシングルタイプとすることもできる(図2参照)。シングルタイプの場合には、それぞれ個別に左右に装着すればよい。
前記光源11、12はLEDで構成されており、近赤外線をモニター部位に1波長あたり毎秒10回、0.2mSecのパルスを投射し、受光素子11A,12Aのフォトダイオードがオキシヘモグロビンとデオキシヘモグロビン及びそれらのクロスポイントに対応した各波長の近赤外線を検知し、その信号を増幅して測定値が計算される。例えば、光源11、12の波長は、近赤外線の吸収スペクトルの特性において、酸素ヘモグロビンと還元ヘモグロビンの吸光度が略一致する805nmと、それより小さい770nm及びそれより大きい870nmに設定されている。
頭蓋の表面に近赤外線の光源11、12と受光素子11A、12Aとを装着すると、光源11から受光素子11A及び光源12から受光素子12Aまでの距離が遠くなるほど、その距離dの2乗に反比例して減少する。また、光の強度が弱いとその光は頭蓋の頭皮や頭蓋骨の付近の浅い所を通過し、強度が強いほどその光は深い所の大脳皮質にまで達する。そして、距離が同一であれば光源11、12の強さに比例した受光信号が得られる。
そこで、センサー2の光源11と受光素子12の距離と、光が通過する深度(モニター深度)との関係を示すと、図2と表1のようになる。
Figure 2016000240
図2(a)は、光源11、受光素子11Aとからなるシングルタイプを示し、図2(b)は、光源11、受光素子11A及び光源12、受光素子12Aとを対にして配置したダブルタイプを示している。光源と受光素子との距離は、成人用、中人(子供〜成人)用、小児用等頭蓋の大きさによって決定される。
図1において、センサー部2におけるROM4は、図3に示すファントム5にセンサー2を接触させて反射光を測定してその信号を読み込み、校正データとして記録保存するものであり、装置本体部3の起動時に読み込まれて測定開始時点の基準値となる。センサー部2は、光の熱が血流でウォッシュアウトされるように出力と時間が制御されているので、測定前の校正は必要ない。
次に、測定開始時点の基準値を示すと共に、校正データとなるファントム5の構成を図3に基づいて説明する。ファントム5は、光を完全に遮断する材質で形成された箱型のケース51内に散乱板等が積層されて形成されている。さらに、詳述すると、最下層にクッション材52としてスポンジゴムシートを敷き、その上に反射板53としてアルミ板を載せ、さらに散乱層54として厚さ2mmのアクリル板を5枚積層し、続いて、吸収板55として厚さ0.4mmのグレイの塩ビ板と、散乱層54として厚さ2mmのアクリル板を6枚とを積層し、最上面に吸収板55として厚さ0.4mmのグレイの塩ビ板を積層することによって形成されている。
上記構成のファントム5は、中間に積層する吸収板55の位置を調整することによって生体と同一の吸収特性が得られる。センサーの受光特性と塩ビ板の吸収特性は波長によって異なるが、受光素子の距離40mmでは深さ20mmでほぼ平坦になることから、実施形態のファントム5の厚さは約23mmに形成されている。
オキシ,デオキシヘモグロビンで吸光係数が等しい波長(805nm)で吸光度を求めれば、酸素飽和度の値の如何に関わらず、吸光量はヘモグロビン量の変化と相関しているので、これをヘモグロビンインデックス(HbI)として表示する。ヘモグロビンインデックスは無名数で、相対値である。従来の装置では測定開始または測定中のある時点が基準で変化を比較していたが、ファントム5が基準になるので測定開始時から相対変化の比較が可能になる。
センサーの信号は受光素子11A,12A(フォトダイオード)で検出される。フォトダイオードは波長に関わらず、その感度領域の光であれば信号として出力する。
実際の測定では真っ暗な環境で測定することはないので、所望の光による信号だけを得たいと思っても、外部の光が生体を経由してフォトダイオードで検出されることになる。
この外部の光を取り除く方法は各種提案されている。例えば、信号を変調してその成分のみを取り出したり、フィルターを使用してカットしたりしている。この発明では、所望の波長の光が点灯していない無光(ブランク)の期間を設けて、無光時(周りの光だけ)のフォトダイオードの出力を測定して(サンプルホールド)保持し、電子回路で所望の光が点灯した時に所望の光と周りの光の合計として検出される光の値から、周りの光だけの値を差し引くことによって、所望の光だけの信号をデータとして得ることとした。
上記のような計算方法とすることによって、従来のような煩雑な信号処理が不要で、周りの環境が明るくても暗くても、所望の光が光った時の測定値がベースラインの増加分として測定ができるので、周りの環境に左右されない測定が可能となる。
図1及び図2のセンサー部2は、前額部に装着されるので、センサーの周りの皮膚や頭蓋骨などを通過した周りの光が影響するが、周りの光による信号のレベルは受光素子が飽和するようなレベルにはならないので、回りの光の影響は無視することができる。
さらに、ファントムを使用することにより、次のような効果が得られる。即ち、各センサーは同一の性能を保つように製造されているものの、実際の製品には僅かな誤差がある。従来のセンサーは全て測定開始時点を基準とするために誤差は修正されることはなかった。この発明では測定開始時点の基準をファントムから得ることとしたから、それぞれのセンサーが基準となることができる。
ファントムを基準とした校正値を内蔵した測定センサーを使用すれば、ファントム上で測定値を、酸素飽和度が50%、ヘモグロビン量が1.0になる。このセンサーで、例えばAさんを測定した場合に、酸素飽和度は左が63%、右が62%、ヘモグロビン量は左が1.2、 右が0.8のようになる場合がある。従来の測定法ではヘモグロビンは測定開始が基準で1.0なので、左右とも1.0となって左右は差として認識することができなかった。
次に、装置本体部3の構成について説明する。装置本体部3は、センサー部2に回路接続しており、電源ユニット31、前記電源ユニット31の電圧を制御する電源制御部31a、測定データを増幅するアンプ部32、データを計算できるようにデジタル信号に変換するA/Dコンバータ部33、データを計算する演算処理部34、データを表示する画面表示部35、データを記録するメモリー部36、センサー部の光源11,12のLEDを駆動制御するLED駆動部37、信号の同期を取るためのクロック部38、外部で操作するための入力部39、外部にデータを出力するUSB出力部34aによって構成されている。
装置本体3は、電源ユニット31をスイッチ操作すると、演算処理部34によりLED駆動部38に発光と受光を指示する。そして、センサー部2の2個の光源11,12から所定の波長の光を、強度を強、弱に変化して出力し、この光の透過光を2個の受光素子11A,12Aでそれぞれ受光する。
受光素子11A,12Aによる受光信号は、アンプ部32で増幅し、増幅した信号をA/Dコンバータ部33によりデジタル信号に変換して演算処理部34に入力する。演算処理部34は、これら発光信号、受光信号等によりベアーランバートの法則で酸素飽和度rSO2等をリアルタイムで演算し、それをメモリー部36に記憶し、且つ画面表示部35に表示する。
上記構成の測定装置を使用する場合について説明する。まず、センサー部2の2個の光源11,12と受光素子11A,12Aを、頭蓋の表面に接して装着する。その後、光源11,12に光の信号を出力して頭蓋の内部に照射する。そして、頭蓋において透過した光を受光素子11A,12Aでそれぞれ受光信号を得る。その血液の主としてヘモグロビンにより散乱、反射することによる受光信号が高い精度で求められる。その後、演算処理部で演算処理が行われる。
測定装置1は、近赤外線の光を頭蓋に照射し、吸収される光の量は入射光と溶質の濃度に比例するという、「ランバートベールの法則」によって脳内局所でのヘモグロビンの酸素飽和度と濃度の変化を測定する。オキシヘモグロビンとデオキシヘモグロビンとの光の吸収スペクトルの差を利用し、異なる波長(770nm、870nm)で頭蓋内を通過して受光素子で検出された光から吸光度を求め、局所の酸素飽和度(rSO2)を計算する。
上記演算処理部34では、酸素飽和度は次のようにして計算される。オキシヘモグロビンの吸光度をKHbO2、デオキシヘモグロビンの吸光度をKHb、酸素飽和度をrSO2=HbO2/(HbO2+Hb)、光路長をd、溶質の濃度をC、とすれば、ある波長でのセンサー直下の吸光度Kは、重ね合わせの理が成り立つので、以下の数1のようになる。
Figure 2016000240
2つの波長(仮にR770nm 及びIR870nm とする)での検出信号から吸光度を計算し、その比は数2で求められる。
Figure 2016000240
このR/IRは酸素飽和度と相関しているので、試験管内の血液サンプルの酸素飽和度とヘモグロビン量を予め測定して既知のものとし、その血液サンプルのR/IRを測定する。この測定して得られたR/IRの値と、測定装置1で測定したその血液の酸素飽和度を基にR/IRと酸素飽和度の関係を示す校正曲線を作成しておき、未知の血液の測定された吸光比R/IRから酸素飽和度(rSO2)を計算し表示する。
次に、図4に基づいて装置本体部3のアンプ部32の回路図について説明する。図4において、U5のピン番号2にフォトダイオード(PD)で検出されたアナログ信号が入力されている。
U9,U12,U13,U16,U17,U20,U21のピン番号8番に各々の信号をホールドするタイミングクロックが入力され、クロック部37のクロックに同期してフォトダイオード(PD)で検出された発光波長別の信号が保持されてピン番号5番にDC電圧で出力される。
出力されたDC電圧はA/Dコンバータ部33でデジタル信号に変換され、演算処理部34で演算処理され、各々酸素飽和度、ヘモグロビン量の情報として提供される。上記の回路の特徴は、差動アンプU8の基準ピン2に光のない時の信号レベルがU20で保持され印加されているので、U8の出力は入力信号との差が出力される。
以上詳述したように、外部の明るさを排除した測定値が得られるので、手術室等の屋内の使用に限らず、災害現場や昼夜等測定環境に影響されずに使用することができる。
1:測定装置
2:センサー部
3:装置本体部
5:ファントム
11,12:光源
11A,12A:受光素子
31:電源ユニット
32:アンプ部
33:A/Dコンバータ部
34:演算処理部
35:画面表示部
36:メモリー部
37:クロック部
38:LED駆動部
39:入力部

Claims (2)

  1. センサー部と装置本体部とからなり、センサー部には近赤外線を照射する光源と、前記光源から一定の距離に配置されて光源からの透過光を受光する受光素子と、予めファントムによる透過光を測定して基準値として記録したROM部とからなり、装置本体部は、前記センサー部の受光信号により実際の吸光度を算出し、前記基準値と比較してベアーランバートの法則に適応して生体の酸素状態を演算する演算処理部を備えていることを特徴とするヘモグロビンの相対濃度変化と酸素飽和度測定装置。
  2. ファントムとセンサー部及び装置本体部とを備えた測定装置とからなり、前記ファントムは、光を完全に遮断する材質で形成された箱型のケース内の最下層にクッション材を敷き、その上に反射板、散乱層、吸収板、散乱層、吸収板を順次積層して形成されており、前記センサー部は、光源と、この光源から一定の距離に配置した受光素子と、前記ファントムの受光信号を基準値として記録するROMとからなり、前記装置本体部は、前記センサー部の受光信号により実際の吸光度を算出し、前記基準値と比較してベアーランバートの法則に適応して生体の酸素状態を演算する演算処理部を備えていることを特徴とするヘモグロビンの相対濃度変化と酸素飽和度測定装置。
JP2015163242A 2015-08-20 2015-08-20 ヘモグロビンの相対濃度変化と酸素飽和度測定装置 Expired - Fee Related JP5917756B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163242A JP5917756B2 (ja) 2015-08-20 2015-08-20 ヘモグロビンの相対濃度変化と酸素飽和度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163242A JP5917756B2 (ja) 2015-08-20 2015-08-20 ヘモグロビンの相対濃度変化と酸素飽和度測定装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013001539U Continuation JP3183811U (ja) 2013-03-21 2013-03-21 ヘモグロビンの相対濃度変化と酸素飽和度測定装置

Publications (2)

Publication Number Publication Date
JP2016000240A true JP2016000240A (ja) 2016-01-07
JP5917756B2 JP5917756B2 (ja) 2016-05-18

Family

ID=55076165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163242A Expired - Fee Related JP5917756B2 (ja) 2015-08-20 2015-08-20 ヘモグロビンの相対濃度変化と酸素飽和度測定装置

Country Status (1)

Country Link
JP (1) JP5917756B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179103A1 (ja) * 2016-04-11 2017-10-19 株式会社フジタ医科器械 酸素飽和度測定センサ及び酸素飽和度測定装置
CN107569237A (zh) * 2017-09-14 2018-01-12 天津科技大学 无创检测血红蛋白水平的测量方法及装置
KR20180068103A (ko) * 2016-12-13 2018-06-21 현대자동차주식회사 피로도 측정 시스템
CN109688929A (zh) * 2016-09-14 2019-04-26 浜松光子学株式会社 浓度测定装置及浓度测定方法
US10499836B2 (en) 2016-03-11 2019-12-10 Fujita Medical Instruments Co., Ltd. Oxygen saturation measuring sensor, and oxygen saturation measuring apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016160U (ja) * 1995-03-23 1995-09-26 有限会社トステック 近赤外線無侵襲生体計測装置
JP2004350863A (ja) * 2003-05-28 2004-12-16 Hamamatsu Photonics Kk 散乱吸収体計測装置の校正方法、校正装置、及びそれを用いた散乱吸収体計測システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016160U (ja) * 1995-03-23 1995-09-26 有限会社トステック 近赤外線無侵襲生体計測装置
JP2004350863A (ja) * 2003-05-28 2004-12-16 Hamamatsu Photonics Kk 散乱吸収体計測装置の校正方法、校正装置、及びそれを用いた散乱吸収体計測システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499836B2 (en) 2016-03-11 2019-12-10 Fujita Medical Instruments Co., Ltd. Oxygen saturation measuring sensor, and oxygen saturation measuring apparatus
WO2017179103A1 (ja) * 2016-04-11 2017-10-19 株式会社フジタ医科器械 酸素飽和度測定センサ及び酸素飽和度測定装置
CN109688929A (zh) * 2016-09-14 2019-04-26 浜松光子学株式会社 浓度测定装置及浓度测定方法
US11337624B2 (en) 2016-09-14 2022-05-24 Hamamatsu Photonics K.K. Concentration measurement device and concentration measurement method
KR20180068103A (ko) * 2016-12-13 2018-06-21 현대자동차주식회사 피로도 측정 시스템
KR101886108B1 (ko) * 2016-12-13 2018-08-07 현대자동차 주식회사 피로도 측정 시스템
CN107569237A (zh) * 2017-09-14 2018-01-12 天津科技大学 无创检测血红蛋白水平的测量方法及装置

Also Published As

Publication number Publication date
JP5917756B2 (ja) 2016-05-18

Similar Documents

Publication Publication Date Title
US11490825B2 (en) Biological information detection apparatus that includes a light source projecting a near-infrared pattern onto an object and an imaging system including first photodetector cells detecting near-infrared wavelength light and second photodetector cells detecting visible wavelength light
JP5917756B2 (ja) ヘモグロビンの相対濃度変化と酸素飽和度測定装置
RU2688445C2 (ru) Система и способ для определения информации об основных физиологических показателях субъекта
US10575764B2 (en) System and method for extracting physiological information from remotely detected electromagnetic radiation
US10506960B2 (en) System for screening of the state of oxygenation of a subject
JP5028256B2 (ja) 光学的にアクセス可能な血管における血液の酸素飽和度を決定するための分光測光法
US20100210931A1 (en) Method for performing qualitative and quantitative analysis of wounds using spatially structured illumination
EP3145398B1 (en) Device and method for noninvasively determining the hematocrit value of a subject
Pinto et al. Non-invasive hemoglobin measurement using embedded platform
Myllylä et al. Measurement of cerebral blood flow and metabolism using high power light-emitting diodes
JP3183811U (ja) ヘモグロビンの相対濃度変化と酸素飽和度測定装置
Pollonini Optical properties and molar hemoglobin concentration of skeletal muscles measured in vivo with wearable near infrared spectroscopy
JP6060321B1 (ja) 酸素飽和度測定センサ及び酸素飽和度測定装置
EP4076186B1 (en) Device, system and method for determining oxygen saturation of a subject
Patil et al. Methods and devices to determine hemoglobin non invasively: A review
Budidha et al. Investigation of photoplethysmography, laser doppler flowmetry and near infrared spectroscopy during induced thermal stress
CN109596552A (zh) 利用单距离光源-探测器对测量组织血氧饱和度的方法
Rovati et al. A novel tissue oxymeter combining the multidistance approach with an accurate spectral analysis
Almajidy et al. Dual Layered Models of Light Scattering in the Near Infrared B: Experimental Results with a Phantom
TWI615131B (zh) 影像式血氧濃度檢測裝置與方法
Torricelli et al. Mapping cerebral hemodynamics in brain cortex by multi-channel time-resolved near-infrared spectroscopy
CN118076877A (zh) 独立于皮肤贡献对心血管变异性参数的光学确定
JP6850257B2 (ja) 共焦点分光測定装置を介して生理的パラメータを測定するための非侵襲的方法
WO2023018846A1 (en) Optical determination of a cardiovascular variability parameter independent of skin contributions
Humphreys et al. A CMOS camera-based system for non-contact pulse oximetry imaging

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees